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ABSTRACT 

Multivariate time series (MTS) data is widely utilized in 
industrial manufacturing, equipment maintenance, and health 
monitoring. However, the high dimensionality, dynamic 
nature, and heterogeneity characteristics bring significant 
challenges for modeling. Traditional deep learning 
algorithms based on sequential modeling struggle to capture 
the complex structural relationships between different time 
series variables, making it difficult to uncover interaction 
patterns and potential dependencies. To address the dynamic 
and complex dependencies among variables in MTS data and 
further balance the importance distribution across multiple 
temporal feature channels, this work proposes a channel-
aware multi-scale adaptive graph interaction network 
(CMAGIN) for MTS forecasting. The proposed framework 
integrates a dynamic and adaptive graph constructor with 
local awareness and global attention (DAGC-LAGA) and a 
channel-wise adaptive center enhancement (CACE) 
mechanism. The design of DAGC-LAGA captures sparse 
neighborhood relations through a multi-view local dynamic 
graph constructor and further leverages a global attention 
graph enhancer to model semantic correlations. The results 
effectively display dynamic dependencies among variables. 
The introduction of the CACE module dynamically enhances 
key node features by calculating the node importance at the 
channel level. In addition, applying the centrality-aware 

attention mechanism improves the sensitivity of the model to 
crucial temporal patterns. Furthermore, the results are 
verified via the C-MAPSS dataset for aircraft engine 
degradation prediction. Experimental results demonstrate 
that the CMAGIN model outperforms comparative methods 
in both RMSE and Score metrics, and exhibits robust 
performance under complex operating conditions and 
multiple-fault scenarios. Future research could investigate 
scalable applications of CMAGIN across diverse industrial 
scenarios to enable field deployment of intelligent operation 
and maintenance systems. 

1. INTRODUCTION 

In industrial scenarios, the widespread deployment of sensors 
in control systems leads to the continuous generation of large 
volumes of multivariate time series (MTS) data. These data 
can predict system states through historical behavior analysis 
and hold significant application value in fields such as 
transportation and energy (Feng, Shao, Wang, Zhang, & Wen, 
2025; Huo et al., 2023). The MTS data consists of sequential 
measurements collected from multiple sensors over time and 
is widely used to represent the evolving states of complex 
systems or processes. The accurate modeling and forecasting 
of MTS data become essential for timely decision making and 
fault prevention in industrial applications (Casolaro, Capone, 
Iannuzzo, & Camastra, 2023; H. Wang, Zhang, Yang, & 
Xiang, 2023). However, the heterogeneous sources and 
dynamic characteristics result in the industrial MTS data 
being dependent on strong spatiality and temporal 
dependency. These properties make it difficult for traditional 
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methods to capture the underlying patterns and interactions. 
To further capture spatiotemporal dependencies, model 
nonlinear interactions, and further handle uncertainties in 
industrial environments, it is necessary to develop novel 
forecasting methods. 

Deep learning methods have achieved significant success in 
MTS forecasting. Some of these approaches, such as the 
long- and short-term time-series network (Lai, Chang, Yang, 
& Liu, 2018) and the temporal pattern attention for MTS 
forecasting (Shih, Sun, & Lee, 2019), effectively capture 
nonlinear temporal patterns. However, these approaches still 
face challenges in learning spatial dependencies among 
variables and accurately modeling pairwise interactions. 
Meanwhile, graph neural networks (GNNs) have 
demonstrated strong potential in capturing spatial 
relationships by utilizing graph-structured data, where 
entities are abstracted as nodes and their interactions as edges 
(Wu et al., 2021). Compared to traditional methods, GNNs 
demonstrate superior performance in MTS forecasting by 
effectively capturing spatial correlations through their graph 
structure, dynamically modeling variable interactions via 
message passing mechanisms, and flexibly adapting to 
changing sensor network configurations (Jin et al., 2024). 
These indicate that GNNs could be a powerful solution for 
addressing the critical challenge of spatiotemporal 
dependency modeling in complex industrial systems 

Although GNN-based approaches have significantly 
advanced MTS forecasting, several critical challenges persist 
in modeling complex and dynamic spatiotemporal 
dependencies. Adaptive graph convolutional recurrent 
network (Bai, Yao, Li, Wang, & Wang, 2020) employs node-
adaptive embeddings to implicitly learn spatial relationships, 
yet it depends on a shared and temporally invariant graph 
construction. While recent efforts have addressed temporal 
adaptivity, they still face limitations in fusing heterogeneous 
graph signals or capturing both local and global dynamic 
interactions comprehensively (N. Xu, Kosma, & 
Vazirgiannis, 2023). These models rely on static or single-
scale graph structures, limiting the ability to capture time-
varying high-order dependencies. STGSL-Balanced (W. 
Chen et al., 2023) applies shared processing across variables, 

limiting the model’s capacity to distinguish informative 
channels from redundant ones. The parameter-sharing 
paradigm weakens the ability to adapt to dynamic variations 
and hampers the extraction of critical features, ultimately 
degrading predictive performance (Liu et al., 2022). These 
methods adopt uniform transformation and aggregation 
operations across channels, overlooking inherent 
heterogeneity and temporal dynamics present in multivariate 
signals 

To address the aforementioned issues, this paper proposes a 
channel-aware multi-scale adaptive graph interaction 
network (CMAGIN) for modeling dynamic dependencies 
and channel-specific heterogeneity. CMAGIN comprises two 
key modules: a dynamic and adaptive graph constructor with 
local awareness and global attention (DAGC-LAGA) and a 
channel-wise adaptive center enhancement (CACE) module. 
In addition, DAGC-LAGA builds graph structures from two 
views: the multi-view local dynamic graph constructor (MV-
LDGC) captures evolving sparse dependencies by tracking 
adjacency changes over time, while the global attention graph 
enhancer (GAGE) constructs a global graph using cross-
channel semantic correlations to model long-range 
dependencies. CACE enhances central node representations 
by computing channel-level importance scores based on 
temporal strength and consistency, generating attention 
vectors to guide information aggregation from critical 
channels. This enables precise modeling of key variables 
across time and channels. 

In summary, our main contributions are as follows: 

1) To address the complex and dynamic dependencies among 
variables in MTS data and the uneven distribution of 
importance across temporal feature channels, this work 
proposes a CMAGIN for MTS forecasting, which 
incorporates the DAGC-LAGA and CACE. 

2) This paper presents the DAGC-LAGA, which integrates 
the MV-LDGC and GAGE submodules to dynamically 
capture sparse local dependencies and global semantic 
correlations in MTS data. Simultaneously, the CACE module 
is introduced to establish a channel-wise node importance 

Abbreviation Full Name Description 

CMAGIN Channel-aware multi-scale adaptive graph interaction 
network Proposed framework 

DAGC-LAGA Dynamic and adaptive graph constructor with local 
awareness and global attention Dynamic graph module 

CACE Channel-wise adaptive center enhancement Channel-level modulation module 
MV-LDGC Multi-view local dynamic graph constructor Local sparse subgraph builder 

GAGE Global attention graph enhancer  Global dependency modeler 
RUL Remaining Useful Life Target variable 
PHM Prognostics and Health Management Application field 

Table 1. List of abbreviations 
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measurement mechanism, enabling dynamic enhancement of 
the expressive power of critical node features. 

3) To validate the effectiveness of the proposed model, 
remaining useful life (RUL) prediction experiments are 
conducted on four subsets of the C-MAPSS dataset. The 
results demonstrate that the proposed approach outperforms 
state-of-the-art methods in terms of RMSE and Score, 
showing robust performance under diverse operating 
conditions and compound fault scenarios. 

2. RELATED WORK 

2.1. From Statistical Models to Deep Sequential 
Learning 

Traditional time series forecasting depends heavily on 
statistical methods such as ARIMA, which assumes linearity 
and stationarity (Tarmanini, Sarma, Gezegin, & Ozgonenel, 
2023). While effective for simple patterns, these methods 
struggle to model complex nonlinearities and long-range 
dependencies (Hyndman & Athanasopoulos, 2018). The 
emergence of deep learning introduces recurrent 
architectures such as long short-term memory (LSTM) (Guo, 
He, & Wang, 2024) and gated recurrent unit (GRU) (Bacanin 
et al., 2023), which capture temporal dependencies more 
effectively through gating mechanisms. In addition, 1D 
convolutional neural networks (Kim, Oh, Kim, & Choi, 2023) 
leverage parameter sharing and local receptive fields, 
showing competitive performance in short-term time series 
modeling.  

Subsequently, the Transformer architecture (Vaswani et al., 
2017) revolutionizes sequence modeling with self-attention, 
enabling parallel computation and superior long-range 
dependency capture. Efficient variants, such as FEDformer 
(T. Zhou et al., 2022) and Crossformer (S. Li & Cai, 2024) 
further enhanced performance through frequency-domain 
representation and cross-variable attention. Nevertheless, 
these sequence-based models inherently lack mechanisms to 
explicitly represent dynamic inter-variable dependencies, 
which are crucial for multivariate forecasting tasks. 

2.2. Graph Neural Networks for Time Series Forecasting 

GNNs have emerged as a powerful paradigm for modeling 
structured dependencies among time series variables. 
Foundational works such as the Graph Convolutional 
Network (Kipf & Welling, 2016) and subsequent surveys 
(Wu et al., 2021) have established the mathematical 
underpinnings and practical applications of GNNs across 
multiple domains. Seminal models such as spatio-temporal 
graph convolutional networks (STGCN) (B. Yu, Yin, & Zhu, 
2018) and Graph WaveNet (Wu, Pan, Long, Jiang, & Zhang, 
2019) combined spectral graph convolution with temporal 
modules, introducing adaptive adjacency mechanisms to 
learn latent spatial relationships. Dynamic graph approaches, 
such as EvolveGCN (Pareja et al., 2020), employ recurrent 

units to evolve graph structures over time. Meanwhile, the 
attention mechanism pioneered by the graph attention 
network (GAT) (Veličković et al., 2017) has been 
incorporated into spatiotemporal models (e.g., Kim et al., 
2023; Ding et al., 2023) to capture global correlations. 
Despite these advances, existing approaches often rely on 
homogeneous aggregation and fixed-scale graphs, limiting 
the ability to adapt to distribution shifts across channels or to 
capture locally sparse yet globally connected dependencies.  

In the prognostics and health management (PHM) domain, 
modeling dynamic multi-scale interactions remains a key 
challenge that constrains performance improvement in RUL 
prediction and fault diagnosis (Lei et al., 2018). Recent 
studies highlight a growing trend toward integrating GNNs, 
attention mechanisms, and domain knowledge to enhance 
interpretability and robustness in health assessment systems 
(Su, H., & Lee, J., 2023; Kumar et al., 2024). This integration 
underscores the unique value of adaptive graph reasoning in 
complex industrial monitoring tasks. Motivated by these 
challenges, this paper proposes CMAGIN for spatiotemporal 
time series forecasting in RUL prediction applications. The 
model comprises two core components: a DAGC-LAGA and 
a CACE module. The former enriches structural information 
for node representation by integrating both locally sparse and 
globally attentive graph structures, while the latter enhances 
feature stability and discriminability by introducing a global 
center node to guide cross-channel feature fusion.  

3. DESIGN OF THE CMAGIN FRAMEWORK 

To address the complex and dynamic dependencies among 
variables in MTS data and the uneven distribution of 
importance across temporal feature channels, this work 
proposes a CMAGIN for MTS forecasting. The overall 
architecture is shown in Figure 1. The input MTS data first 
flows through the DAGC-LAGA module, which dynamically 
constructs and refines graph structures to capture both local 
and global dependencies among variables. Within this 
module, MV-LDGC models sparse dependencies that change 
over time, while GAGE complements these with long-range 
cross-channel interactions. The resulting representations are 
then fed into the CACE module, which assesses the node 
importance along the channel dimension and selectively 
enhances key channel features via a central node guidance 
mechanism. Together, these modules enable CMAGIN to 
effectively capture complex temporal dynamics while 
adaptively emphasizing critical channel features. 

3.1. The Construction of DAGC-LAGA 

The spatio-temporal dependencies among variables in MTS 
data are complex and dynamically evolve over time. 
Traditional methods often rely on static or single-scale graph 
structures, making it difficult to accurately capture multi-
order dependencies and multi-scale interactions that change 
over time, thereby limiting their modeling capabilities. To 
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address this issue, this paper proposes a DAGC-LAGA. This 
module consists of two components: the MV-LDGC and the 
GAGE. The MV-LDGC dynamically constructs multiple 
sparse graph structures based on variable similarity within 
local temporal windows, aiming to capture the evolving 
characteristics of short-term neighborhood relationships. 
Meanwhile, GAGE employs a cross-channel attention 
mechanism to model global semantic dependencies among 
variables, generating graph structures that reflect such global 
interactions. On this basis, the model introduces learnable 
graph fusion weights to adaptively integrate both local and 
global graph structures, enabling dynamic modeling of multi-
scale and time-varying dependencies. 

3.1.1. Multi-view Local Dynamic Graph Constructor 

In MTS modeling, the dependencies among variables not 
only evolve over time but also exhibit diverse local 
interaction patterns. However, existing methods typically 
rely on static and single-perspective graph structures to 
model variable relationships, which limits the ability to 
effectively capture locally evolving interactions. To address 
this issue, this work proposes the MV-LDGC, which 
dynamically constructs multiple sparse graph structures from 
different perspectives. These graphs are then adaptively 
integrated through a learnable fusion mechanism, enabling 
the model to capture diverse local interactions among 
multivariate variables. This approach enhances the modeling 
capacity for short-term local dependencies and improves the 
robustness to noise in complex and dynamic MTS data. 

Inspired by multi-view graph learning methods, the node 
feature matrix X  N d  and K subgraph spaces are 
introduced. This paper maps the input features into multiple 
subspaces via a set of linear transformations, generating 
feature representations ( ) ( ) , 1,2,3, ,k k k K= = X XW  

corresponding to each subgraph. Specifically, ( )W k d d  
denotes the learnable projection matrix for the k-th subgraph, 
and ( )X  N dk   represents the node features in the k-th 
subspace. The multi-space projection generates multiple 
feature subspaces in parallel through linear transformations, 
capturing diverse latent relationship patterns in MTS. 
Subsequently, the topological relationships of nodes within 
each subgraph space are computed independently, where an 
improved cosine similarity is employed to calculate the 
association strength between node i and node j. Thus, the 
adjacency matrix ( )kA  of the k-th subgraph is defined as  

 
( )

( ) ( )

)

2 2

( )

( ( )

( )A X X

X X

 
 =  
  +



 

k
k k

k k






 (1) 

Where ( )

2

kX  denotes the operation of computing the L2 

norm row-wise (i.e., for each node's feature vector).   is the 
small constant added to avoid division by zero, and σ(⋅) 
denotes a LeakyReLU activation to enhance nonlinear 
representation capability and ensure numerical stability.  

To reduce computational complexity and suppress noise 
interference, while alleviating the over-smoothing problem in 
graph structures, a Top-k sparsification strategy is applied to 
the adjacency matrix of each subgraph. Specifically, for each 
node, only the connections to the top k most similar nodes are 
retained, and the remaining connections are set to zero. This 
approach preserves significant local connections while 
reducing the computational complexity from O(N2) to O(kN). 
The computation is formulated as follows.  
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Figure 1. Overall structure of CMAGIN 
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where the neighbor set Nk(i) of node i is selected using the 
Top-k method: ( )argtopk |( ) { }k

k ij
j V

i j i


= N A . 

To capture the diverse local dependency patterns 
characterized by different subgraphs and dynamically 
balance each view’s contribution to the overall graph 
structure, this paper introduces learnable graph weight 
parameters k  to perform a weighted fusion of multiple 
subgraph adjacency matrices ( )Â k . This fusion captures the 
local interaction patterns across subgraphs, resulting in an 
adjacency matrix Alocal that represents diverse local 
dependencies.  

 ( )

1

ˆA A
=

= 
K

k
local k

k
 (3) 

where λk is initialized with a uniform distribution 

1

exp( )
exp( )

k
k K

ll





=

=


, and 1{ }K
k k =  is the trainable parameter 

optimized jointly with the network through backpropagation.  

3.1.2. Global Attention Graph Enhancer 

In MTS modeling, variables exhibit complex and global 
semantic dependencies that often extend beyond local 
neighborhoods. Traditional local graph structures struggle to 
effectively capture these dependencies. Existing methods 
primarily focus on local adjacency relationships and lack 
systematic modeling of global semantic correlations, 
resulting in models that struggle to fully understand and 
leverage long-range dependencies and global interactions 
among variables.  

To address this limitation, this paper designs the GAGE 
module. This module dynamically uncovers global semantic 
correlations among variables through a cross-channel self-
attention mechanism, constructing a graph structure that 
reflects the global dependencies of multivariate data. 
Specifically, the module computes similarity weights 
between all node pairs, strengthening interactions between 
distant nodes and effectively supplementing the global 
information that local graphs may miss. Leveraging multi-
head attention, the GAGE module establishes global node 
connections, resolving long-range dependencies and latent 
relationships potentially overlooked during dynamic multi-
graph construction. This provides a global topology 
correction for the graph structure. Figure 2 illustrates the 
working mechanism of the graph attention enhancement.  

First, the input features are linearly projected through a 
shared linear transformation layer to generate three feature 
matrices: Query (Q), Key (K), and Value (V). Then, these 
three matrices are split into h heads by a chunking operation, 
forming multiple sets of feature representations required for 
the multi-head attention mechanism. For each attention head, 

the scaled dot-product attention score Sh is independently 
computed as  

    {1, , }
/

T
h h

h h h
d h

=   …
Q K

S  (4) 

where the scaling factor /d h  is used to control gradient 
stability and prevent the gradient vanishing problem caused 
by excessively large variance in the dot product results. As 
the dimension d/h increases, the variance of the dot product 
also increases. the scaling operation helps stabilize the 
training process.  

In practical attention computation, a node often exhibits the 
highest relevance when querying itself, leading to an 
attention distribution that is heavily concentrated on self-
connections. This reduces the model's ability to capture 
potential global dependencies among different nodes. 
Therefore, to prevent local self-connections from dominating 
the relational learning and to encourage the model to focus 
more on cross-node interactions, this paper introduces a self-
loop suppression mechanism by constructing a Boolean mask 
matrix  0, N N −M , where the diagonal elements are set 
to −∞ and the remaining elements are set to 0. After 
suppressing the diagonal elements in the attention score 
matrix Sh, the masked score matrix S S M= +h h  is obtained. 
In implementation, the −∞ mask is incorporated into the 
attention logits before normalization, effectively nullifying 
the contribution of self-loop terms during global dependency 
modeling. Applying the softmax operation to S h  produces 
the normalized global attention weight matrix 

 )softm x(a hh =A S , in which the diagonal elements tend 
toward zero after softmax. Here, Ah denotes the global 
dependency strength of node i on node j. 

To ensure that each node retains at least its information 
propagation path and to enhance the structural stability of the 
attention graph, this paper explicitly introduces self-loop 
connections after aggregating multi-head attention weights. 
This yields the final globally enhanced attention adjacency 
matrix, denoted as  

 
1

1A A I
=

= +
h

glob Nal i
ih

 (5) 

WQ
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Aglobal

Attention 
Features 

×

×

 

h h= +S S M

 
Figure 2. Working mechanism of GAGE 
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where, Ai denotes the global attention matrix from the i-th 
attention head. IN is the identity matrix, and λ is the self-loop 
strength coefficient used to control the weight proportion of 
self-loop connections.  

3.1.3. Adaptive Fusion Mechanism 

In MTS data, a single graph construction approach often 
struggles to balance the fine-grained modeling of local 
structures and the comprehensive representation of global 
dependencies. The former emphasizes the sparsity and 
temporal variability of adjacency relations, while the latter 
focuses on global semantic consistency. To alleviate this 
modeling bias, this paper proposes an adaptive fusion 
mechanism designed to dynamically integrate the structural 
information from both local dynamic graphs and global 
attention graphs, thereby achieving unified global-local 
modeling. 

The sparse local adjacency matrix A  N N
local   output by 

the multi-view local dynamic graph constructor and the dense 
global matrix A  N N

global   generated by the attention-
based enhancement module are adaptively fused. The 
resulting dynamic adaptive adjacency matrix constructed in 
this work is defined as  

 )( )1f local globalNorm  =  + − （A A A  (6) 

where the normalization operation Norm(·) is calculated as 
1/2 1/2

1
( ) , n

ii ijj
Norm − −

=
= =A D AD D A , ensuring numerical 

stability during graph signal propagation and alleviating the 
problem of gradient explosion. The fused adjacency A𝑓 is 
subsequently used for graph convolution in the following 
layer.  0,1   denotes a learnable balancing parameter 
which is initialized to 0.5 and optimized via backpropagation 
to dynamically adjust the contribution of local dependencies 
and global information. The gradient update rule is  

 , ,
,

( )A A
A

 
= −

  local ij global ij
i j ij

L L  (7) 

This formula indicates that if the relationship between a pair 
of nodes in the local graph contributes more to reducing the 
overall loss, the corresponding gradient will drive an increase 
in α, thereby enhancing the weight of the local graph in the 
fusion. Otherwise, the contribution of the global graph will 
be increased. 

At this point, the dynamic adaptive graph construction is 
complete. This module combines dynamic multi-graphs with 
attention graphs to eliminate the perspective bias inherent in 
a single graph construction method, achieving a unified 
representation of local precision and global completeness. As 
a result, the graph neural network can simultaneously capture 
both the local structural features and the global semantic 
relationships of the graph data. 

3.2. Channel-wise Adaptive Center Enhancement 

In MTS graph modeling, different feature channels often 
exhibit statistical disparities, such as varying unit scales, 
inconsistent dynamic change frequencies, or uneven 
distributions of semantic contributions. This heterogeneity 
can lead to issues like uneven overfitting, feature confusion, 
or redundant aggregation when graph neural networks treat 
the central node features of all channels uniformly. 
Traditional graph isomorphism networks (GIN) (K. Xu, Hu, 
Leskovec, & Jegelka, 2018) typically use a single globally 
shared scalar parameter ε to control the weight of the node’s 
features during information aggregation, which fails to fully 
express the personalized importance of each channel and 
limits the model’s expressive capacity. 

To address these issues, this paper proposes the CACE 
mechanism. This module integrates the channel-adaptive 
characteristics of GIN with a multi-scale neighborhood 
aggregation strategy. Through learnable channel-level 
parameters ε, it adaptively weights the central nodes across 
feature dimensions, enabling the model to independently 
learn the enhancement degree of the center node for each 
feature dimension. As a result, it dynamically adjusts the 
influence of center nodes in different channels, better 
accommodating the heterogeneous distributions of 
multivariate features. 

3.2.1. Multi-scale Neighborhood Aggregation 

In graph neural networks, the update of node representations 
is typically based on propagation through adjacency matrices 
of fixed orders (e.g., first-order or second-order), which 
limits the model’s ability to express graph data with varying 
structural complexities. Especially in dynamic systems or 
heterogeneous structures, fixed multi-hop neighbor 
aggregation strategies may overlook certain crucial structural 
semantic information.  

To enhance the model’s adaptability to structural diversity, 
the module captures the l-hop neighborhood information 
through the power of the adjacency matrix Al. Each order 
adjacency matrix is symmetrically normalized with self-
loops as ( ) ( )A A I= +l lNorm . Then, for each scale 

 1, ,l L  , a feature transformation is performed, and the 

ε1

ε2

ε3

ε4

ε5

 
Figure 3. Channel enhancement mechanism 
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aggregated neighbor features based on the k-th order 
adjacency matrix are given by  

 ( ) ( ) ( )( )H XA= l l l  (8) 

where Θ(k) is the learnable linear transformation for the k-th 
order aggregation. 

3.2.2. Multi-scale Feature Fusion 

Multi-scale neighborhood information can be fused through 
either concatenation or summation.  

 

(

( )

(1) 2) ( )

1

( , , )H H H
H

H
=


= 




…, L

L
l

l

concat
 (9) 

Additionally, to maintain consistency of feature dimensions, 
a projection layer Φproj is introduced to perform a projection 
transformation on the input features, ensuring that features of 
different scales can be effectively fused within the same 
space. 

3.2.3. Channel-wise GIN Enhancement Mechanism 

The traditional GIN uses a globally shared scalar ε to adjust 
the information fusion ratio between the central node and its 
neighboring nodes. However, this design cannot capture the 
varying degrees of dependency on the central node across 
different feature channels, limiting the model’s expressive 
power on heterogeneous graphs. 

To enhance the model’s capability on structurally 
heterogeneous graphs, the module introduces channel-wise 
learnable ε parameters combined with multi-hop 
neighborhood information fusion, thereby achieving adaptive 
multi-scale information integration. Figure 3 illustrates the 
structure of this channel enhancement mechanism. 

The original GIN aggregation formula is 

( )( 1) ( ) ( )
( )

(1 )H H H+


= +  + j

l l l
j N i

MLP , where ε is the 

globally shared scalar parameter. This design cannot adapt to 
the varying degrees of dependency on the central node across 
different feature channels, which limits the model’s 
expressive power. To enhance the model’s representation 
capability, this work introduces a multi-scale neighborhood 
aggregation mechanism, extending the single-hop 
neighborhood summation to a weighted sum of multiple 

adjacency matrices ( )
1
W H

=L l
ll . Furthermore, the scalar ε is 

generalized to the diagonal matrix diag(ε), i.e., 
( )(1 ) ( )X XW + → +  projI diag , enabling channel-wise 

information modulation.  
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where  is the learnable channel-adaptive vector 
optimized through backpropagation, enabling each channel 
to independently control the influence of its center node. This 
design improves interpretability by highlighting the relative 
importance of different sensor channels. For example, in the 
C-MAPSS dataset, channels with larger ε values may 
correspond to temperature and pressure sensors that dominate 
the degradation trend. The symbol  denotes element-wise 
multiplication.  is a projection matrix used to 
learn differentiated interaction patterns of the central node 
features at various distances. Wl is the linear transformation 
matrix for the l-th order neighborhood features, and L denotes 
the maximum propagation order. 

The final output stage is processed by an MLP layer with 
batch normalization and nonlinear activation, achieving 
stable feature modeling and enhanced expressive capability. 
By incorporating channel-wise parameterization and multi-
scale aggregation mechanisms, this module retains the strong 
expressive power of GIN while improving the model’s 
adaptability to complex graph structures and heterogeneous 
node relationships.  

4. EXPERIMENT 

4.1. Dataset Description and Experimental Setup 

This study utilizes the commercial modular aero-propulsion 
system simulation (C-MAPSS) dataset (Saxena, Goebel, 
Simon, & Eklund, 2008) to conduct remaining useful life 
(RUL) prediction for aero-engines, thereby validating the 
effectiveness and robustness of the proposed method in real-
world industrial scenarios. The C-MAPSS dataset, provided 
by NASA Ames Research Center, simulates the operational 
and degradation processes of aircraft engines under various 
operating conditions and fault modes, and has been widely 
used in intelligent predictive maintenance research. The 
dataset comprises four subsets: FD001, FD002, FD003, and 
FD004. Each subset corresponds to different numbers of 
operating conditions and fault types, with progressively 
increasing task complexity. In each subset, 21 sensors are 
deployed to comprehensively monitor the operational status 
of each engine, collecting and recording key physical 
parameters in real-time, such as temperature, pressure, and 
rotational speed. Basic information of the C-MAPSS dataset 
is summarized in Table 2.  

To comprehensively assess the performance of CMAGIN on 
the RUL prediction task, this study follows prior work (Y. 
Wang, Y. Xu, et al., 2023) and adopts two commonly used 
regression metrics: root mean square error (RMSE) and Score 
function.  

 2

1

1 ˆRMSE ( )
n
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where n is the number of samples. ˆiy  and iy  denote the 
predicted and true RUL of the 𝑖-th sample respectively. 
RMSE measures the average deviation between predicted 
and true values, reflecting overall prediction accuracy. The 
Score function applies weighted penalties to prediction errors, 
imposing stronger penalties on early or late predictions, 
thereby aligning more closely with practical engineering 
requirements. Lower RMSE and Score values indicate better 
predictive performance and greater model robustness. 

The experiments consist of two parts: comparative studies 
against state-of-the-art (SOTA) methods and ablation studies 
on the key modules of the proposed model. To ensure result 
stability and reliability, each model is independently run 10 
times, and the average performance metrics are reported. All 
experiments are conducted on a system equipped with an 
NVIDIA GeForce RTX A6000 GPU. The model is 
implemented using the PyTorch 1.9 framework. The Adam 
optimizer is used for training, with a minimum of 20 epochs. 
Other training hyperparameters are tuned based on validation 
set performance. For fair comparison, all baseline models 
were reimplemented or fine-tuned using identical training 
configurations, including optimizer type, learning rate, batch 
size, and early stopping criteria. Where available, official 
implementations were employed and trained under the same 
experimental conditions to ensure methodological 
consistency. 

4.2. Comparison with SOTA Models 

To assess the effectiveness of CMAGIN in temporal graph 
modeling tasks, this subsection presents a systematic 
comparison with representative SOTA methods, including 
those based on graph neural networks, graph convolution 
techniques, graph pooling strategies, and conventional 
temporal deep learning architectures. The methodological 
details, performance results, and RMSE box plots are shown 
in Table 3 and Figure 4, respectively. 

The experimental results demonstrate that the proposed 
method consistently outperforms all baseline models across 
all four C-MAPSS sub-datasets (FD001–FD004), achieving 

superior performance in both prediction accuracy (RMSE) 
and cost-sensitive metric (Score). On the FD001 dataset, 
characterized by a single operating condition and a single 
fault mode, CMAGIN achieves the lowest RMSE of 10.99 
and Score of 206, representing a 9.0% and 18.6% 
improvement over the second-best model FCSTGNN (Y. 
Wang et al., 2024). This advantage likely results from 
FCSTGNN’s limited ability to integrate temporal dynamics 
in graph modeling. The proposed DAGC-LAGA and CACE 
modules effectively enhance the central node's representation 
and dynamically capture multi-scale neighbor relationships, 
leading to higher prediction accuracy in simpler fault 
scenarios. 

The FD003 dataset involves a single condition and compound 
faults. CMAGIN continues to demonstrate strong robustness, 
achieving the best RMSE (11.09) and Score (199) among all 
compared models. This further indicates that CMAGIN has 
the capability to handle complex fault patterns. Even on the 
more challenging multi-condition datasets FD002 and FD004, 
CMAGIN maintains a clear advantage. On FD002, which 
involves multiple operating conditions and a single fault 
mode, CMAGIN achieves the lowest RMSE (12.80) and 
Score (711). It outperforms FCSTGNN (RMSE = 13.27, 
Score = 777), suggesting a strong ability to capture 
degradation patterns under varying conditions with high 
accuracy and cost awareness. On FD004, featuring multiple 
conditions and compound faults, CMAGIN again achieves 
the best results (RMSE = 13.58, Score = 759). It reduces the 
Score by approximately 15.6% compared to FCSTGNN 
(RMSE = 14.06, Score = 899), further confirming its 
robustness under high-noise, high-dimensional, and 
heterogeneous input scenarios. 

CMAGIN outperforms existing representative approaches 
across multiple evaluation metrics, demonstrating its 
effectiveness and advancement in addressing the problem of 
RUL prediction for industrial equipment. The temporal 
modeling approach AConvLSTM (Xiao et al., 2021) excels 
in capturing temporal dependencies during the degradation 
process but fails to explicitly model spatial dependencies 
among sensors, making it difficult to account for structural 
heterogeneity. Classical graph convolutional methods, such 
as GCN (Kipf & Welling, 2016) and HAGCN (T. Li et al., 
2021), exhibit certain capabilities in modeling spatial 
dependencies among sensors. However, the overall 
predictive performance remains limited. One possible reason 
is the reliance on static graph structures, which struggle to 
adapt to dynamically evolving dependencies during the 
degradation process. Another reason may be the insufficient 
ability to model temporal evolution, leading to inadequate 
integration of time-series information under non-stationary 
conditions. In contrast, the DAGC-LAGA module in 
CMAGIN dynamically and adaptively combines sparse local 
structures with global relational modeling, enabling the graph 
structure to update dynamically during training and 
effectively capturing node interactions and latent 

Datasets FD001 FD002 FD003 FD004 
Training 100 260 100 249 
Testing 100 295 100 248 

Fault Types 1 1 2 2 
Sensors 21 21 21 21 

Conditions 1 6 1 6 

Table 2. Basic information of the C-MAPSS dataset 
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dependencies under non-stationary and variable operating 
conditions. 

Advanced GNN-based methods, such as MAGNN(L. Chen 
et al., 2023) and FCSTGNN, integrate structural and temporal 
information to some extent. MAGNN enhances spatial 
modeling by incorporating heterogeneous semantic 
information, but its complex architecture is prone to 
overfitting on small- and medium-scale industrial datasets. 
Graph pooling-based methods, including iPool (X. Gao et al., 
2021), TAP (Gao, Liu, & Ji, 2021), and HierCorrPool (Y. 
Wang, Wu, Li, Xie, & Chen, 2023), achieve better 
performance than GCN in some scenarios, but still fail to 
stably model complex structures. This limitation is mainly 
due to the inevitable loss of critical node information during 
graph pooling, which becomes particularly pronounced under 
multi-operating conditions or compound fault scenarios, 
leading to performance degradation. Although FCSTGNN 

demonstrates strong spatiotemporal modeling capabilities, its 
static graph construction lacks contextual adaptability, 
making it difficult to dynamically capture evolving inter-
sensor relationships and constraining its performance under 
complex working conditions. The CACE module in 
CMAGIN enhances the expressive power of central nodes 
across different feature channels, enabling precise 
characterization of critical node information across time and 
channels. 

In summary, experimental results across multiple C-MAPSS 
subsets demonstrate that the proposed model consistently 
surpasses compared methods in terms of prediction accuracy 
and engineering adaptability, particularly under complex 
operational scenarios. Future work may further explore its 
performance in cost-sensitive tasks and investigate structural 
compression and lightweight deployment strategies to 
support efficient application in real-world industrial 
environments. 

To validate the reliability of the observed performance 
improvement, paired t-tests are conducted between 
CMAGIN and the best-performing baseline method 
(FCSTGNN) across 10 independent experimental runs. The 
results show statistically significant improvements in both 
RMSE and Score metrics (p < 0.05), confirming that the 
performance gains are not due to random variations. 

4.3. Ablation Study 

This section conducts ablation experiments to verify the 
effectiveness of the key modules proposed in this work, 
including the MV-LDGC module, the GAGE module, and 
the CACE module. Under the same experimental settings, 
each of these modules is sequentially removed or replaced to 
observe its impact on the overall model performance. The 
specific configurations are as follows.  

(1) “w/o GAGE” denotes the removal of the GAGE module, 
retaining only the MV-LDGC module for graph structure 

Datasets FD001 FD002 FD003 FD004 
Index RMSE Score RMSE Score RMSE Score RMSE Score 
GCN 12.68±0.29 245±27 13.77±0.21 833±54 12.01±0.17 227±41 14.39±0.39 986±72 
iPool 12.35±0.24 261±37 13.17±0.21 775±43 12.33±0.28 258±47 14.52±0.22 1063±102 
TAP 12.37±0.16 221±26 13.18±0.18 747±260 12.40±0.26 246±23 14.41±0.25 899±37 

HAGCN 13.42±0.25 302±33 14.55±0.27 1035±55 13.47±0.28 374±59 14.69±0.37 995±87 
AConvLSTM  12.42±0.31 279±28 13.21±0.51 845±161 12.66±0.46 311±38 15.72±1.89 1516±790 
HierCorrPool 12.18±0.13 250±15 13.08±0.13 754±9 12.04±0.07 218±14 14.23±0.20 928±48 

MAGNN 12.79±0.22 256±22 13.35±0.21 798±33 12.28±0.18 302±41 14.46±0.29 1045±79 
FCSTGNN 12.08±0.17 253±18 13.27±0.24 777±51 11.96±0.26 254±37 14.06±0.28 899±54 
CMAGIN 10.99±0.18 206±17 12.80±0.18 711±26 11.09±0.15 199±15 13.58±0.24 759±36 

Table 3. Comparison with SOTA models on the C-MAPSS dataset 

Figure 4. Comparative box plots of model performance 
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building, to evaluate the role of the global attention 
mechanism in capturing long-range node dependencies.  

(2) “w/o MV” indicates the removal of the MV-LDGC 
module while keeping the GAGE module, aimed at 
examining the model performance in the absence of local 
perceptual capability.  

(3) “w/o CACE” refers to retaining both the MV-LDGC and 
GAGE modules, but replacing the CACE module with a 
conventional graph convolutional network, to assess the 
contribution of CACE in characterizing key node 
representations across channels.  

(4) “w/o DA&CA” involves simultaneously removing the 
MV-LDGC module, the GAGE module, and the CACE 
module, substituting them with dot-product attention-based 
graph construction and standard graph convolutional 
networks, to evaluate the overall effectiveness and 
synergistic benefits of the proposed method.  

Table 4 presents the comparative results of these model 
variants against the full model across multiple evaluation 
metrics. 

The ablation results for “w/o GAGE” show that removing the 
GAGE module leads to varying degrees of performance 
degradation across all subsets compared to the full model. 
Notably, on the multi-fault subset FD003, the Score metric 
increases from 199 to 228, a rise of approximately 14.6%. 
This indicates that the GAGE module plays a significant role 
in modeling long-range dependencies across nodes, thereby 
enhancing the model’s representational capacity under 
complex fault conditions. A similar performance decline is 
also observed on the multi-condition, multi-fault subset 
FD004, further demonstrating the positive impact of global 
structure modeling on overall model performance. 

Analysis of the “w/o MV” results reveals that the Score 
values on the multi-condition datasets FD002 and FD004 
increase from 711 and 759 to 791 and 811, respectively, 
suggesting that removing the MV-LDGC module weakens 
the model’s adaptability to varying operating conditions. This 
indicates the module’s contribution to modeling 
heterogeneity across conditions. In contrast, performance 
changes on the single-condition datasets FD001 and FD003 
are relatively minor, implying that this module has a lesser 
impact on tasks with limited condition variability. 

Additionally, on FD001, the “w/o MV” configuration slightly 
outperforms “w/o GAGE” in terms of RMSE, suggesting that 
the global attention mechanism may be more beneficial in 
simpler, single-condition scenarios.  

In the “w/o CACE” experiment, replacing the CACE 
mechanism with a conventional graph convolution results in 
overall performance decline across all subsets. For instance, 
the Score on FD004 rises from 759 to 871, an increase of 
about 14.7%. This result indicates that the CACE module, 
through channel-wise modulation and multi-scale 
aggregation, enhances the model’s ability to emphasize 
important node features, thereby improving overall 
prediction accuracy. Although the RMSE on FD003 is 
slightly better than some other variants, the overall trend 
confirms the module’s advantage in modeling complex 
spatiotemporal features. 

When the GAGE, MV-LDGC, and CACE modules are all 
removed simultaneously, the model’s performance 
deteriorates substantially, achieving the worst results across 
all subsets. For example, on FD001, the Score increases from 
206 to 248, highlighting the indispensable role of these key 
modules in structural modeling and feature learning. 
Compared with the “w/o DA&CA” configuration, the whole 
model achieves a 20.4% improvement in Score on FD001 and 
attains the best performance across all datasets, confirming 
the effectiveness and stability of the multi-module integrated 
design under diverse scenarios. 

In summary, the three key modules proposed in this study 
demonstrate notable effectiveness in MTS modeling tasks. 

(1) The GAGE mechanism introduces global contextual 
information, thereby enhancing the modeling of long-range 
dependencies among nodes. This is particularly beneficial in 
subsets characterized by multiple fault interferences and 
complex feature correlations, as it improves the model’s 
capability to capture critical fault-related information. 

(2) The MV-LDGC module contributes to the model's 
adaptability to varying operating conditions, offering 
advantages in scenarios involving diverse working 
environments. 

(3) The CACE mechanism, through the integration of 
channel-weight modulation and multi-scale aggregation 

Datasets FD001 FD002 FD003 FD004 
Index RMSE Score RMSE Score RMSE Score RMSE Score 

w/o GAGE 11.38±0.21 214±17 12.98±0.19 752±22 11.40±0.19 228±19 13.76±0.17 762±45 
w/o MV 11.28±0.19 219±15 13.01±0.21 791±18 11.47±0.18 297±18 13.68±0.20 811±39 

w/o CACE 11.47±0.20 233±18 13.03±0.24 819±20 11.24±0.17 224±15 13.89±0.19 871±42 
w/o DA&CA 11.87±0.23 248±22 13.15±0.22 720±24 11.75±0.21 232±20 13.94±0.22 893±51 

CMAGIN 10.99±0.18 206±17 12.80±0.18 711±26 11.09±0.15 199±15 13.58±0.24 759±36 

Table 4. Ablation Study on the C-MAPSS Dataset 
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strategies, further strengthens the representation of key nodes 
across channels during the feature fusion process. 

Collectively, the integration of these three modules enables 
the proposed model to achieve stable and accurate prediction 
performance under varying fault types and operational 
conditions.  

4.4. Parameter Sensitivity Analysis 

To further investigate the impact of key parameters on the 
performance of CMAGIN, this work conducts a systematic 
sensitivity analysis using the C-MAPSS aircraft engine 
degradation datasets (FD001–FD004). Specifically, the 
effects of three parameters are examined: the number of 
subgraphs (default value: 3), the number of attention heads 
(default value: 4), and the top-k sparsification degree (default 
value: 5). Under a controlled experimental setup where all 
other configurations remain unchanged, each parameter is 
varied individually following a univariate control strategy. 
The model's performance on each subset is recorded across 
different parameter settings to evaluate the sensitivity and 
identify the optimal configuration for each parameter.  

4.4.1. Number of Subgraphs 

To evaluate the effect of the number of subgraphs on model 
performance within the dynamic multi-graph construction 
module, the number of subgraphs is systematically varied. 
Here, “1 graph” corresponds to a single global graph, while 
“3/5 graphs” represent the construction of fused multi-graph 
structures. Under consistent training settings, comparative 
experiments are conducted on the four C-MAPSS subsets 
(FD001–FD004), using RMSE and Score as evaluation 
metrics to assess predictive performance. The grouped 
column chart in Figure 5 reveals the optimal performance 
variation patterns of the model under different subgraph 
configurations. 

It can be observed that the influence of subgraph quantity on 
model performance is closely related to the operational 
complexity and degradation characteristics of the dataset. On 
datasets with relatively simple operating conditions, such as 
FD001 and FD003, the model achieves the best predictive 
performance when three subgraphs are used, with RMSE 
values of 10.79 and 10.89 and Score values of 193.3 and 
183.35, respectively, outperforming both the single-graph 
and five-graph configurations. This indicates that moderate 
multi-graph fusion effectively captures multiple degradation 
patterns exhibited by the engines under various conditions, 
including short-term local correlations, long-term 
dependency trends, and cross-channel commonalities. 

However, when the number of subgraphs increases to five, a 
noticeable performance drop is observed on FD001, which 
may be attributed to the introduction of redundant or noisy 
information, thereby increasing the risk of overfitting. 
Notably, on the more complex FD002 dataset, performance 

differences among different subgraph configurations are 
marginal, which aligns with the relatively stable sensor 
relationships in this subset. In the larger FD004 dataset, 
RMSE and Score exhibit inconsistent trends: while five 
subgraphs yield the lowest RMSE, the best Score is still 
obtained with three subgraphs. This discrepancy may stem 
from the varying sensitivity of these metrics to different 
degradation stages. 

Overall, the experimental results suggest that using three 
subgraphs provides a balanced and effective configuration 
across the datasets employed in this study. Therefore, this 
setting is adopted as the default in the experiments conducted 
in this work. 

4.4.2. Number of Attention Heads 

A systematic sensitivity analysis was conducted to 
investigate the impact of the number of attention heads, 
which is a key hyperparameter, on the model's performance 
in aircraft engine degradation prediction. As illustrated in 
Figure 6, comparative experiments were performed on the 
four C-MAPSS subsets (FD001 to FD004) under three 
configurations with 2, 4, and 8 attention heads, respectively. 
The predictive performance was evaluated using both RMSE 
and Score metrics. 

Experimental results reveal a clear non-linear relationship 
between the number of attention heads and model 
performance. On the FD001 dataset, the 4 heads 
configuration achieved the best results, with an RMSE of 
10.79 and a Score of 193.3, showing 2.0% and 3.6% 
improvements respectively compared to the 2 heads baseline. 
However, further increasing the number to 8 heads led to a 
significant performance drop, with RMSE and Score 
deteriorating by 6.3% and 9.4%, respectively. This suggests 
that a moderate number of attention heads can effectively 
model multi-dimensional feature interactions, while an 
excessive number may introduce redundancy and increase 
the risk of overfitting. 

In contrast, the FD002 dataset exhibited a different pattern. 
While the lowest RMSE was still achieved with 4 heads 
(12.55), the 8 heads configuration yielded the lowest Score 
(657.96), outperforming the 4-head setting by approximately 
10.6%. This inconsistency between RMSE and Score may 

 
Figure 5. Sensitivity analysis of the number of subgraphs 
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stem from the dataset's specific operational characteristics, 
where a greater number of attention heads helps capture more 
complex feature dependencies, thereby improving overall 
predictive quality. 

The FD003 dataset showed a similar trend to FD001, with the 
4-head configuration delivering the best results. Compared to 
the 2 heads setup, RMSE and Score improved by 9.4% and 
25.8%, respectively, further confirming the modeling 
advantages of a moderate number of attention heads for tasks 
with medium-level complexity. However, on the FD004 
dataset, model performance deteriorated consistently as the 
number of attention heads increased. In particular, the 8 heads 
configuration resulted in the worst Score (875.97), likely due 
to the higher noise levels and lower effective feature 
dimensionality in FD004, which causes multi-head attention 
to introduce redundant or interfering information. 

In summary, the optimal number of attention heads appears 
to be closely related to the complexity and feature 
characteristics of the dataset. For the C-MAPSS subsets used 
in this study, the 4 heads configuration consistently 
demonstrated superior performance and is therefore adopted 
as the default setting in the experiments conducted in this 
work. 

4.4.3. Top-k Sparsification 

To investigate the impact of the top-k sparsification strategy 
in the dynamic graph construction module on model 
performance, this study systematically evaluates the 
prediction results under three different sparsity levels (Top-3, 
Top-5, and Top-10) on the four C-MAPSS sub-datasets from 
FD001 to FD004. As illustrated in Figure 7, the experimental 
results reveal that the degree of sparsity in the constructed 
graph structure significantly influences degradation 
prediction performance, and the effect varies depending on 
dataset characteristics. 

On the FD001 dataset, the Top-5 sparsification configuration 
achieved optimal performance with an RMSE of 10.79 and a 
Score of 193.3, demonstrating 6.6% and 4.7% improvements 
over the Top-3 setting, respectively. However, further 
increasing k to 10 resulted in performance degradation. This 
suggests that a moderate sparsification level can effectively 

retain critical connections while filtering out noisy edges, 
thereby enhancing the model's representational capacity. In 
contrast, excessive sparsity (Top-3) or density (Top-10) 
could impair performance. 

Interestingly, the FD002 dataset exhibited a different trend, 
where Top-10 sparsification yielded the best Score of 661.77, 
showing a 10.1% improvement over the Top-5 setting. This 
may be attributed to the dataset’s more complex global 
dependencies, which benefit from preserving a greater 
number of edges to capture intricate relationships. 

For the FD003 dataset, results were consistent with those 
observed on FD001. The Top-5 configuration again delivered 
superior performance, with RMSE and Score improvements 
of 5.9% and 16.1% over Top-3, respectively, confirming the 
advantage of moderate sparsification under moderately 
complex operating conditions. 

However, for the FD004 dataset, model performance 
declined consistently as k increased, with the Top-10 setting 
resulting in the worst Score of 900.86. This indicates that the 
dataset may contain substantial noise or ineffective inter-
sensor relationships, and that denser graph structures may 
introduce redundant or distracting information, thereby 
degrading model stability. 

The experimental results demonstrate that the Top-k 
sparsification strategy significantly influences prediction 
performance, with its optimal configuration depending on the 
structural characteristics of the graph and the operational 
complexity of the dataset. In most scenarios, the Top-5 
setting achieves a favorable balance by retaining informative 
connections while reducing noise, making it the default 
choice in this study. However, adjusting the sparsification 
level based on dataset-specific properties may further 
enhance performance in certain cases. These findings reveal 
an apparent "moderation effect" between sparsification and 
model performance, where both excessively sparse and 
overly dense graph structures degrade accuracy. This 
underscores the importance of carefully designing and tuning 
sparsification strategies in dynamic graph construction 
modules. 

 
Figure 6. Sensitivity analysis of the number of attention 
heads 

 
Figure 7. Sensitivity analysis of top-k sparsification 
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4.5. Computational Complexity Analysis 

The computational complexity of CMAGIN mainly arises 
from the DAGC-LAGA and the CACE modules. 

(1) In the MV-LDGC of DAGC-LAGA, building K 
subgraphs requires 𝑂(𝐾𝑁2)pairwise similarity computations. 
After applying the Top-k sparsification, this cost is reduced 
to 𝑂(𝐾𝑁 ⋅ 𝑘) . In the GAGE, the multi-head attention 
mechanism introduces 𝑂(ℎ𝑁2𝑑/ℎ) = 𝑂(𝑁2𝑑) operations 
for h attention heads, where d is the feature dimension. Thus, 
the overall time complexity of DAGC-LAGA per layer is 
approximately 𝑂(𝑘𝐾𝑁 + 𝑁2𝑑), and the corresponding space 
complexity is 𝑂(𝑁2 + 𝑁𝑑). 

(2) In the CACE, the channel-wise enhancement mainly 
involves multi-scale aggregation and MLP transformations, 
whose cost is 𝑂(𝐿𝑁𝑑2), where L is the number of scales. 

(3) Combining the above, the total computational cost of 
CMAGIN per layer can be expressed as 𝑂(𝑘𝐾𝑁 + 𝑁2𝑑 +
𝐿𝑁𝑑2), while the memory footprint remains 𝑂(𝑁2 + 𝑁𝑑). 
Given that the C-MAPSS dataset contains only 21 sensor 
variables, CMAGIN operates efficiently and is easily 
scalable to larger systems. In practical industrial PHM 
scenarios, adjusting k, h, or L provides a linear trade-off 
between efficiency and accuracy, ensuring real-time 
applicability. 

4.6. Interpretability Analysis 

4.6.1. Channel-wise Interpretability  

Compared with other SOTA graph-based forecasting models, 
CMAGIN provides stronger interpretability at both structural 
and channel levels. The CACE module employs a learnable 
vector ε to explicitly regulate each channel's central node 
influence. Analyzing the trained ε values quantifies the 
relative importance of different sensor channels. This offers 
physical insights into which variables dominate degradation 
processes. For example, channels with larger εi values in the 
C-MAPSS dataset typically correspond to temperature or 
pressure sensors exhibiting stronger degradation trends. 

In contrast, most baseline methods like Graph WaveNet, 
AGCRN, and MTGNN use shared attention or weight 
matrices across all channels. These methods capture inter-

variable correlations but lack explicit interpretability for 
individual features. The channel-wise enhancement of 
CMAGIN thus provides a clearer, more physically 
meaningful explanation of model behavior while maintaining 
competitive prediction accuracy. Furthermore, visualizing 
the learned adjacency matrices from the DAGC-LAGA 
module reveals the evolution of local-to-global dependency 
pattern during training, highlighting how the model 
progressively refines its structural understanding of the 
system dynamics. 

4.6.2. Visualization of Graph Structure Evolution 

To further enhance the interpretability, the graph evolution 
during training is visualized by recording the learned 
adjacency matrices at selected epochs (epoch 2, 6, 10, 14, and 
18). As shown in Figure 8, the adjacency matrices gradually 
evolve from sparse and disordered connections in the early 
stages to more structured and semantically meaningful 
patterns as training progresses. This indicates that the DAGC-
LAGA progressively captures both local dependencies and 
global correlations among sensor nodes. The observed 
changes in graph topology provide an intuitive understanding 
of how the model refines its structural perception of the 
system over time. 

Moreover, the learned adjacency matrices exhibit distinct 
block-like patterns, where dense submatrices emerge among 
specific groups of nodes. In the heatmap visualization, 
brighter colors (approaching yellow) represent stronger 
learned connection weights between two sensors, while 
darker regions (closer to blue or purple) indicate weaker or 
negligible interactions. Therefore, the emergence of bright, 
compact pixel blocks implies the formation of sensor clusters 
with strong mutual dependencies, suggesting that CMAGIN 
successfully identifies subsystem-level structures within the 
overall system. 

This observation aligns with physical intuition. For instance, 
sensors measuring similar physical quantities (e.g., 
temperature and pressure within the same engine module) 
tend to exhibit higher correlations, forming bright sub-blocks 
in the adjacency matrix. The interpretable block structures 
highlight the CMAGIN’s ability to uncover hierarchical and 
physically meaningful relationships among system variables.  

Epoch 10Epoch 6Epoch 2 Epoch 14 Epoch 18
 

Figure 8. Visualization of learned adjacency matrices at different training epochs 
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4.6.3. Dynamics of the Fusion Coefficient α 

To further interpret how CMAGIN balances local and global 
dependencies during training, the evolution of the learnable 
fusion coefficient 𝛼 is monitored. 

As shown in Figure 9, α gradually decreases from 
approximately 0.5 to around 0.41, following an exponential 
decay trend. Initially, α = 0.5 indicates that both local sparse 
graphs and global attention graphs make comparable 
contributions. As training proceeds, α steadily decreases and 
stabilizes after about 15 epochs, implying that the model 
progressively refines its dependency structure and transitions 
toward globally informed representations. 

This observation reveals that CMAGIN increasingly relies on 
globally refined attention graphs rather than local sparse 
connections in later training stages, where global contextual 
relationships become more influential in predicting system 
degradation trends, while local correlations remain 
complementary. Such adaptive behavior reflects a dynamic 
balance between global contextual learning and local 
structural refinement, demonstrating that the fusion 
mechanism effectively calibrates the information flow 
between heterogeneous graph structures. 

The overall trend of α evolution provides intuitive 
interpretability for how the model adjusts its reliance on 
different structural priors during learning. 

5. CONCLUSION 

This paper proposes a CMAGIN model for time series 
prediction. The model combines a dynamic adaptive graph 
construction module with local perception and global 
attention, and incorporates a channel-wise adaptive center 
enhancement mechanism. Specifically, the DAGC-LAGA 
module combines multi-view local dynamic graph 
construction with a global attention enhancement mechanism, 
enabling dynamic modeling of temporal graph structures and 
improving the capacity to capture both local and global 
dependencies. The CACE module enhances the 

representation of key nodes across multiple channels by 
introducing channel-level node importance estimation and 
centrality-aware attention mechanisms, thereby 
strengthening the model’s ability to capture and represent 
critical degradation information. 

Experimental results on the four standard C-MAPSS sub-
datasets demonstrate that the proposed model outperforms 
baseline methods in both RMSE and Score metrics. 
Specifically, on the FD001 subset, CMAGIN achieves 9.0% 
and 18.6% improvements in RMSE and Score compared to 
the suboptimal FCSTGNN model, exhibiting superior 
prediction accuracy and robustness. Through systematic 
comparative analysis, three major limitations of existing 
approaches are identified: while AConvLSTM excels at 
temporal modeling, it neglects spatial dependencies; static 
graph methods (GCN/HAGCN) fail to adapt to dynamic 
dependencies during degradation processes; and graph 
pooling methods (e.g., iPool) suffer from critical node 
information loss. To address these deficiencies, CMAGIN 
introduces innovative solutions: the DAGC-LAGA module 
employs a dynamic adaptive graph construction strategy that 
integrates local awareness with global attention to effectively 
capture node interactions and latent dependencies under non-
stationary and variable operating conditions. Simultaneously. 
the CACE mechanism enhances the expressive power of 
central nodes across different feature channels for precise 
characterization of critical node information. 

These findings collectively validate the effectiveness and 
advancement of the proposed method for complex temporal 
graph modeling tasks. Future research could further explore 
extending the application of CMAGIN to broader industrial 
scenarios to facilitate the practical deployment of intelligent 
operation and maintenance systems. 
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