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ABSTRACT

Multivariate time series (MTS) data is widely utilized in
industrial manufacturing, equipment maintenance, and health
monitoring. However, the high dimensionality, dynamic
nature, and heterogeneity characteristics bring significant
challenges for modeling. Traditional deep learning
algorithms based on sequential modeling struggle to capture
the complex structural relationships between different time
series variables, making it difficult to uncover interaction
patterns and potential dependencies. To address the dynamic
and complex dependencies among variables in MTS data and
further balance the importance distribution across multiple
temporal feature channels, this work proposes a channel-
aware multi-scale adaptive graph interaction network
(CMAGIN) for MTS forecasting. The proposed framework
integrates a dynamic and adaptive graph constructor with
local awareness and global attention (DAGC-LAGA) and a
channel-wise adaptive center enhancement (CACE)
mechanism. The design of DAGC-LAGA captures sparse
neighborhood relations through a multi-view local dynamic
graph constructor and further leverages a global attention
graph enhancer to model semantic correlations. The results
effectively display dynamic dependencies among variables.
The introduction of the CACE module dynamically enhances
key node features by calculating the node importance at the
channel level. In addition, applying the centrality-aware
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attention mechanism improves the sensitivity of the model to
crucial temporal patterns. Furthermore, the results are
verified via the C-MAPSS dataset for aircraft engine
degradation prediction. Experimental results demonstrate
that the CMAGIN model outperforms comparative methods
in both RMSE and Score metrics, and exhibits robust
performance under complex operating conditions and
multiple-fault scenarios. Future research could investigate
scalable applications of CMAGIN across diverse industrial
scenarios to enable field deployment of intelligent operation
and maintenance systems.

1. INTRODUCTION

In industrial scenarios, the widespread deployment of sensors
in control systems leads to the continuous generation of large
volumes of multivariate time series (MTS) data. These data
can predict system states through historical behavior analysis
and hold significant application value in fields such as
transportation and energy (Feng, Shao, Wang, Zhang, & Wen,
2025; Huo et al., 2023). The MTS data consists of sequential
measurements collected from multiple sensors over time and
is widely used to represent the evolving states of complex
systems or processes. The accurate modeling and forecasting
of MTS data become essential for timely decision making and
fault prevention in industrial applications (Casolaro, Capone,
lannuzzo, & Camastra, 2023; H. Wang, Zhang, Yang, &
Xiang, 2023). However, the heterogeneous sources and
dynamic characteristics result in the industrial MTS data
being dependent on strong spatiality and temporal
dependency. These properties make it difficult for traditional
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Abbreviation Full Name Description
CMAGIN Eiglélr(i(l-aware multi-scale adaptive graph interaction Proposed framework
DAGC-LAGA S\z/:ferz;s :1111(;1 gli) il;ﬁt;:tzmgigiph constructor with local Dynamic graph module
CACE Channel-wise adaptive center enhancement Channel-level modulation module
MV-LDGC Multi-view local dynamic graph constructor Local sparse subgraph builder
GAGE Global attention graph enhancer Global dependency modeler
RUL Remaining Useful Life Target variable
PHM Prognostics and Health Management Application field

Table 1. List of abbreviations

methods to capture the underlying patterns and interactions.
To further capture spatiotemporal dependencies, model
nonlinear interactions, and further handle uncertainties in
industrial environments, it is necessary to develop novel
forecasting methods.

Deep learning methods have achieved significant success in
MTS forecasting. Some of these approaches, such as the
long- and short-term time-series network (Lai, Chang, Yang,
& Liu, 2018) and the temporal pattern attention for MTS
forecasting (Shih, Sun, & Lee, 2019), effectively capture
nonlinear temporal patterns. However, these approaches still
face challenges in learning spatial dependencies among
variables and accurately modeling pairwise interactions.
Meanwhile, graph neural networks (GNNs) have
demonstrated strong potential in capturing spatial
relationships by utilizing graph-structured data, where
entities are abstracted as nodes and their interactions as edges
(Wu et al., 2021). Compared to traditional methods, GNNs
demonstrate superior performance in MTS forecasting by
effectively capturing spatial correlations through their graph
structure, dynamically modeling variable interactions via
message passing mechanisms, and flexibly adapting to
changing sensor network configurations (Jin et al., 2024).
These indicate that GNNs could be a powerful solution for
addressing the critical challenge of spatiotemporal
dependency modeling in complex industrial systems

Although GNN-based approaches have significantly
advanced MTS forecasting, several critical challenges persist
in modeling complex and dynamic spatiotemporal
dependencies. Adaptive graph convolutional recurrent
network (Bai, Yao, Li, Wang, & Wang, 2020) employs node-
adaptive embeddings to implicitly learn spatial relationships,
yet it depends on a shared and temporally invariant graph
construction. While recent efforts have addressed temporal
adaptivity, they still face limitations in fusing heterogeneous
graph signals or capturing both local and global dynamic
interactions comprehensively (N. Xu, Kosma, &
Vazirgiannis, 2023). These models rely on static or single-
scale graph structures, limiting the ability to capture time-
varying high-order dependencies. STGSL-Balanced (W.
Chen et al., 2023) applies shared processing across variables,

limiting the model’s capacity to distinguish informative
channels from redundant ones. The parameter-sharing
paradigm weakens the ability to adapt to dynamic variations
and hampers the extraction of critical features, ultimately
degrading predictive performance (Liu et al., 2022). These
methods adopt uniform transformation and aggregation
operations across channels, overlooking inherent
heterogeneity and temporal dynamics present in multivariate
signals

To address the aforementioned issues, this paper proposes a
channel-aware multi-scale adaptive graph interaction
network (CMAGIN) for modeling dynamic dependencies
and channel-specific heterogeneity. CMAGIN comprises two
key modules: a dynamic and adaptive graph constructor with
local awareness and global attention (DAGC-LAGA) and a
channel-wise adaptive center enhancement (CACE) module.
In addition, DAGC-LAGA builds graph structures from two
views: the multi-view local dynamic graph constructor (MV-
LDGC) captures evolving sparse dependencies by tracking
adjacency changes over time, while the global attention graph
enhancer (GAGE) constructs a global graph using cross-
channel semantic correlations to model long-range
dependencies. CACE enhances central node representations
by computing channel-level importance scores based on
temporal strength and consistency, generating attention
vectors to guide information aggregation from critical
channels. This enables precise modeling of key variables
across time and channels.

In summary, our main contributions are as follows:

1) To address the complex and dynamic dependencies among
variables in MTS data and the uneven distribution of
importance across temporal feature channels, this work
proposes a CMAGIN for MTS forecasting, which
incorporates the DAGC-LAGA and CACE.

2) This paper presents the DAGC-LAGA, which integrates
the MV-LDGC and GAGE submodules to dynamically
capture sparse local dependencies and global semantic
correlations in MTS data. Simultaneously, the CACE module
is introduced to establish a channel-wise node importance
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measurement mechanism, enabling dynamic enhancement of
the expressive power of critical node features.

3) To validate the effectiveness of the proposed model,
remaining useful life (RUL) prediction experiments are
conducted on four subsets of the C-MAPSS dataset. The
results demonstrate that the proposed approach outperforms
state-of-the-art methods in terms of RMSE and Score,
showing robust performance under diverse operating
conditions and compound fault scenarios.

2. RELATED WORK

2.1. From Statistical Models to Deep Sequential
Learning

Traditional time series forecasting depends heavily on
statistical methods such as ARIMA, which assumes linearity
and stationarity (Tarmanini, Sarma, Gezegin, & Ozgonenel,
2023). While effective for simple patterns, these methods
struggle to model complex nonlinearities and long-range
dependencies (Hyndman & Athanasopoulos, 2018). The
emergence of deep learning introduces recurrent
architectures such as long short-term memory (LSTM) (Guo,
He, & Wang, 2024) and gated recurrent unit (GRU) (Bacanin
et al., 2023), which capture temporal dependencies more
effectively through gating mechanisms. In addition, 1D
convolutional neural networks (Kim, Oh, Kim, & Choi, 2023)
leverage parameter sharing and local receptive fields,
showing competitive performance in short-term time series
modeling.

Subsequently, the Transformer architecture (Vaswani et al.,
2017) revolutionizes sequence modeling with self-attention,
enabling parallel computation and superior long-range
dependency capture. Efficient variants, such as FEDformer
(T. Zhou et al., 2022) and Crossformer (S. Li & Cai, 2024)
further enhanced performance through frequency-domain
representation and cross-variable attention. Nevertheless,
these sequence-based models inherently lack mechanisms to
explicitly represent dynamic inter-variable dependencies,
which are crucial for multivariate forecasting tasks.

2.2. Graph Neural Networks for Time Series Forecasting

GNNs have emerged as a powerful paradigm for modeling
structured dependencies among time series variables.
Foundational works such as the Graph Convolutional
Network (Kipf & Welling, 2016) and subsequent surveys
(Wu et al, 2021) have established the mathematical
underpinnings and practical applications of GNNs across
multiple domains. Seminal models such as spatio-temporal
graph convolutional networks (STGCN) (B. Yu, Yin, & Zhu,
2018) and Graph WaveNet (Wu, Pan, Long, Jiang, & Zhang,
2019) combined spectral graph convolution with temporal
modules, introducing adaptive adjacency mechanisms to
learn latent spatial relationships. Dynamic graph approaches,
such as EvolveGCN (Pareja et al., 2020), employ recurrent

units to evolve graph structures over time. Meanwhile, the
attention mechanism pioneered by the graph attention
network (GAT) (Velickovi¢ et al., 2017) has been
incorporated into spatiotemporal models (e.g., Kim et al.,
2023; Ding et al., 2023) to capture global correlations.
Despite these advances, existing approaches often rely on
homogeneous aggregation and fixed-scale graphs, limiting
the ability to adapt to distribution shifts across channels or to
capture locally sparse yet globally connected dependencies.

In the prognostics and health management (PHM) domain,
modeling dynamic multi-scale interactions remains a key
challenge that constrains performance improvement in RUL
prediction and fault diagnosis (Lei et al.,, 2018). Recent
studies highlight a growing trend toward integrating GNNss,
attention mechanisms, and domain knowledge to enhance
interpretability and robustness in health assessment systems
(Su, H., & Lee, J., 2023; Kumar et al., 2024). This integration
underscores the unique value of adaptive graph reasoning in
complex industrial monitoring tasks. Motivated by these
challenges, this paper proposes CMAGIN for spatiotemporal
time series forecasting in RUL prediction applications. The
model comprises two core components: a DAGC-LAGA and
a CACE module. The former enriches structural information
for node representation by integrating both locally sparse and
globally attentive graph structures, while the latter enhances
feature stability and discriminability by introducing a global
center node to guide cross-channel feature fusion.

3. DESIGN OF THE CMAGIN FRAMEWORK

To address the complex and dynamic dependencies among
variables in MTS data and the uneven distribution of
importance across temporal feature channels, this work
proposes a CMAGIN for MTS forecasting. The overall
architecture is shown in Figure 1. The input MTS data first
flows through the DAGC-LAGA module, which dynamically
constructs and refines graph structures to capture both local
and global dependencies among variables. Within this
module, MV-LDGC models sparse dependencies that change
over time, while GAGE complements these with long-range
cross-channel interactions. The resulting representations are
then fed into the CACE module, which assesses the node
importance along the channel dimension and selectively
enhances key channel features via a central node guidance
mechanism. Together, these modules enable CMAGIN to
effectively capture complex temporal dynamics while
adaptively emphasizing critical channel features.

3.1. The Construction of DAGC-LAGA

The spatio-temporal dependencies among variables in MTS
data are complex and dynamically evolve over time.
Traditional methods often rely on static or single-scale graph
structures, making it difficult to accurately capture multi-
order dependencies and multi-scale interactions that change
over time, thereby limiting their modeling capabilities. To
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Figure 1. Overall structure of CMAGIN

address this issue, this paper proposes a DAGC-LAGA. This
module consists of two components: the MV-LDGC and the
GAGE. The MV-LDGC dynamically constructs multiple
sparse graph structures based on variable similarity within
local temporal windows, aiming to capture the evolving
characteristics of short-term neighborhood relationships.
Meanwhile, GAGE employs a cross-channel attention
mechanism to model global semantic dependencies among
variables, generating graph structures that reflect such global
interactions. On this basis, the model introduces learnable
graph fusion weights to adaptively integrate both local and
global graph structures, enabling dynamic modeling of multi-
scale and time-varying dependencies.

3.1.1. Multi-view Local Dynamic Graph Constructor

In MTS modeling, the dependencies among variables not
only evolve over time but also exhibit diverse local
interaction patterns. However, existing methods typically
rely on static and single-perspective graph structures to
model variable relationships, which limits the ability to
effectively capture locally evolving interactions. To address
this issue, this work proposes the MV-LDGC, which
dynamically constructs multiple sparse graph structures from
different perspectives. These graphs are then adaptively
integrated through a learnable fusion mechanism, enabling
the model to capture diverse local interactions among
multivariate variables. This approach enhances the modeling
capacity for short-term local dependencies and improves the
robustness to noise in complex and dynamic MTS data.

Inspired by multi-view graph learning methods, the node
feature matrix X € R" and K subgraph spaces are
introduced. This paper maps the input features into multiple
subspaces via a set of linear transformations, generating
feature  representations X = XW® k=123, K

corresponding to each subgraph. Specifically, W e R
denotes the learnable projection matrix for the k-th subgraph,

and X e R"“ represents the node features in the k-th
subspace. The multi-space projection generates multiple
feature subspaces in parallel through linear transformations,
capturing diverse latent relationship patterns in MTS.
Subsequently, the topological relationships of nodes within
each subgraph space are computed independently, where an
improved cosine similarity is employed to calculate the
association strength between node i and node j. Thus, the

adjacency matrix A of the k-th subgraph is defined as

W _ o xX® '(X(k))TT
X1, -(lx,)

Where "X (")"2 denotes the operation of computing the L2

(1

norm row-wise (i.e., for each node's feature vector). € is the
small constant added to avoid division by zero, and o(-)
denotes a LeakyReLU activation to enhance nonlinear
representation capability and ensure numerical stability.

To reduce computational complexity and suppress noise
interference, while alleviating the over-smoothing problem in
graph structures, a Top-k sparsification strategy is applied to
the adjacency matrix of each subgraph. Specifically, for each
node, only the connections to the top k£ most similar nodes are
retained, and the remaining connections are set to zero. This
approach preserves significant local connections while
reducing the computational complexity from O(N?) to O(kN).
The computation is formulated as follows.

40— {A;.“ if j e N, (i)

v 0  otherwise

)
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where the neighbor set Ni(i) of node i is selected using the
Top-k method: N, (i) = argtopk{A"' | j #i} .
jev

To capture the diverse local dependency patterns
characterized by different subgraphs and dynamically
balance each view’s contribution to the overall graph
structure, this paper introduces learnable graph weight
parameters A € R* to perform a weighted fusion of multiple

subgraph adjacency matrices A). This fusion captures the
local interaction patterns across subgraphs, resulting in an
adjacency matrix A that represents diverse local
dependencies.

K ~
Alocal = Z ]'k A(k) (3)
k=1

where A; is initialized with a uniform distribution

exp(w, . .
. = _oxp(@) , and {w,}+, is the trainable parameter

3" exp(@)

optimized jointly with the network through backpropagation.

3.1.2. Global Attention Graph Enhancer

In MTS modeling, variables exhibit complex and global
semantic dependencies that often extend beyond local
neighborhoods. Traditional local graph structures struggle to
effectively capture these dependencies. Existing methods
primarily focus on local adjacency relationships and lack
systematic modeling of global semantic correlations,
resulting in models that struggle to fully understand and
leverage long-range dependencies and global interactions
among variables.

To address this limitation, this paper designs the GAGE
module. This module dynamically uncovers global semantic
correlations among variables through a cross-channel self-
attention mechanism, constructing a graph structure that
reflects the global dependencies of multivariate data.
Specifically, the module computes similarity weights
between all node pairs, strengthening interactions between
distant nodes and effectively supplementing the global
information that local graphs may miss. Leveraging multi-
head attention, the GAGE module establishes global node
connections, resolving long-range dependencies and latent
relationships potentially overlooked during dynamic multi-
graph construction. This provides a global topology
correction for the graph structure. Figure 2 illustrates the
working mechanism of the graph attention enhancement.

First, the input features are linearly projected through a
shared linear transformation layer to generate three feature
matrices: Query (Q), Key (K), and Value (V). Then, these
three matrices are split into / heads by a chunking operation,
forming multiple sets of feature representations required for
the multi-head attention mechanism. For each attention head,

h, Attention Score soft-loop Adjacency
S, =8S,+M Matrix
K v
&€ hy Attention Score i M
\
Wy» @ .
b . Attention Agiobar
. hy, Attention Score Weight Matrix
v Attention
X
Features

Figure 2. Working mechanism of GAGE

the scaled dot-product attention score S is independently
computed as

s — QhKhT

SN

where the scaling factor /d /& is used to control gradient
stability and prevent the gradient vanishing problem caused
by excessively large variance in the dot product results. As
the dimension d/A increases, the variance of the dot product
also increases. the scaling operation helps stabilize the
training process.

Vhe{l, - h (&)

In practical attention computation, a node often exhibits the
highest relevance when querying itself, leading to an
attention distribution that is heavily concentrated on self-
connections. This reduces the model's ability to capture
potential global dependencies among different nodes.
Therefore, to prevent local self-connections from dominating
the relational learning and to encourage the model to focus
more on cross-node interactions, this paper introduces a self-
loop suppression mechanism by constructing a Boolean mask

matrix M e {0, —oo}NXN , where the diagonal elements are set

to —oo and the remaining elements are set to 0. After
suppressing the diagonal elements in the attention score

matrix S, the masked score matrix §, =S, + M is obtained.

In implementation, the —oo mask is incorporated into the
attention logits before normalization, effectively nullifying
the contribution of self-loop terms during global dependency

modeling. Applying the softmax operation to S, produces
the normalized global attention weight matrix

A, =softmax(S,) , in which the diagonal elements tend

toward zero after softmax. Here, 4, denotes the global
dependency strength of node i on node ;.

To ensure that each node retains at least its information
propagation path and to enhance the structural stability of the
attention graph, this paper explicitly introduces self-loop
connections after aggregating multi-head attention weights.
This yields the final globally enhanced attention adjacency
matrix, denoted as

1 h
Aglobal = ZZAI' + /IIN Q)

i=l
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where, A; denotes the global attention matrix from the i-th
attention head. Iy is the identity matrix, and / is the self-loop
strength coefficient used to control the weight proportion of
self-loop connections.

3.1.3. Adaptive Fusion Mechanism

In MTS data, a single graph construction approach often
struggles to balance the fine-grained modeling of local
structures and the comprehensive representation of global
dependencies. The former emphasizes the sparsity and
temporal variability of adjacency relations, while the latter
focuses on global semantic consistency. To alleviate this
modeling bias, this paper proposes an adaptive fusion
mechanism designed to dynamically integrate the structural
information from both local dynamic graphs and global
attention graphs, thereby achieving unified global-local
modeling.

NxN

The sparse local adjacency matrix 4,,, € R™" output by

the multi-view local dynamic graph constructor and the dense
global matrix A4 ,,  eR"" generated by the attention-

global
based enhancement module are adaptively fused. The
resulting dynamic adaptive adjacency matrix constructed in
this work is defined as

Af = NOrm( a- A/ocal + (1 - a) ! Aglobal) (6)

where the normalization operation Norm(+) is calculated as
Norm(A)=D""?AD™?,D, =3 A4

stability during graph signal propagation and alleviating the
problem of gradient explosion. The fused adjacency A is
subsequently used for graph convolution in the following
layer. o €[0,1] denotes a learnable balancing parameter

i > ensuring numerical

which is initialized to 0.5 and optimized via backpropagation
to dynamically adjust the contribution of local dependencies
and global information. The gradient update rule is

60{ ZGA ( lacaltj global,ij) (7)

This formula indicates that if the relationship between a pair
of nodes in the local graph contributes more to reducing the
overall loss, the corresponding gradient will drive an increase
in o, thereby enhancing the weight of the local graph in the
fusion. Otherwise, the contribution of the global graph will
be increased.

At this point, the dynamic adaptive graph construction is
complete. This module combines dynamic multi-graphs with
attention graphs to eliminate the perspective bias inherent in
a single graph construction method, achieving a unified
representation of local precision and global completeness. As
a result, the graph neural network can simultaneously capture
both the local structural features and the global semantic
relationships of the graph data.

g —O—
& O—
&g —@®
&4 —@—

85_@'

Figure 3. Channel enhancement mechanism

3.2. Channel-wise Adaptive Center Enhancement

In MTS graph modeling, different feature channels often
exhibit statistical disparities, such as varying unit scales,
inconsistent dynamic change frequencies, or uneven
distributions of semantic contributions. This heterogeneity
can lead to issues like uneven overfitting, feature confusion,
or redundant aggregation when graph neural networks treat
the central node features of all channels uniformly.
Traditional graph isomorphism networks (GIN) (K. Xu, Hu,
Leskovec, & Jegelka, 2018) typically use a single globally
shared scalar parameter ¢ to control the weight of the node’s
features during information aggregation, which fails to fully
express the personalized importance of each channel and
limits the model’s expressive capacity.

To address these issues, this paper proposes the CACE
mechanism. This module integrates the channel-adaptive
characteristics of GIN with a multi-scale neighborhood
aggregation strategy. Through learnable channel-level
parameters ¢, it adaptively weights the central nodes across
feature dimensions, enabling the model to independently
learn the enhancement degree of the center node for each
feature dimension. As a result, it dynamically adjusts the
influence of center nodes in different channels, better
accommodating the heterogeneous distributions of
multivariate features.

3.2.1. Multi-scale Neighborhood Aggregation

In graph neural networks, the update of node representations
is typically based on propagation through adjacency matrices
of fixed orders (e.g., first-order or second-order), which
limits the model’s ability to express graph data with varying
structural complexities. Especially in dynamic systems or
heterogeneous  structures, fixed multi-hop neighbor
aggregation strategies may overlook certain crucial structural
semantic information.

To enhance the model’s adaptability to structural diversity,
the module captures the /-hop neighborhood information
through the power of the adjacency matrix A’. Each order
adjacency matrix is symmetrically normalized with self-

loops as A" = Norm(A'+1I) . Then, for each scale

le{l,---,L}, a feature transformation is performed, and the
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aggregated neighbor features based on the k-th order
adjacency matrix are given by

HY = ®(1)(A(1)X) (8)

where ®® is the learnable linear transformation for the k-th
order aggregation.

3.2.2. Multi-scale Feature Fusion

Multi-scale neighborhood information can be fused through
either concatenation or summation.

concat(H" ,H® -+, H")
H=]s ©)

ZH(I)

I=1

Additionally, to maintain consistency of feature dimensions,
a projection layer @, is introduced to perform a projection
transformation on the input features, ensuring that features of
different scales can be effectively fused within the same
space.

3.2.3. Channel-wise GIN Enhancement Mechanism

The traditional GIN uses a globally shared scalar ¢ to adjust
the information fusion ratio between the central node and its
neighboring nodes. However, this design cannot capture the
varying degrees of dependency on the central node across
different feature channels, limiting the model’s expressive
power on heterogeneous graphs.

To enhance the model’s capability on structurally
heterogeneous graphs, the module introduces channel-wise
learnable & parameters combined with multi-hop
neighborhood information fusion, thereby achieving adaptive
multi-scale information integration. Figure 3 illustrates the
structure of this channel enhancement mechanism.

The original GIN
H" =MLP((1+2)-H" +Y

aggregation formula is

jeN(l_)Hi”) , where ¢ is the
globally shared scalar parameter. This design cannot adapt to
the varying degrees of dependency on the central node across
different feature channels, which limits the model’s
expressive power. To enhance the model’s representation
capability, this work introduces a multi-scale neighborhood
aggregation mechanism, extending the single-hop
neighborhood summation to a weighted sum of multiple

adjacency matrices Z; wH @ Furthermore, the scalar ¢ is
generalized to the diagonal
(+8)X — (I +diag(e))© XW,

proj >

matrix  diag(e), i.e.,
enabling channel-wise

information modulation.

L
H, = MLP((I +diag(e))© XW,  +> WH" j (10)
=1

where &€ R is the learnable channel-adaptive vector
optimized through backpropagation, enabling each channel
to independently control the influence of its center node. This
design improves interpretability by highlighting the relative
importance of different sensor channels. For example, in the
C-MAPSS dataset, channels with larger ¢ values may
correspond to temperature and pressure sensors that dominate
the degradation trend. The symbol ® denotes element-wise

. . . ded
multiplication. W, € R

is a projection matrix used to
learn differentiated interaction patterns of the central node
features at various distances. W is the linear transformation
matrix for the /-th order neighborhood features, and L denotes

the maximum propagation order.

The final output stage is processed by an MLP layer with
batch normalization and nonlinear activation, achieving
stable feature modeling and enhanced expressive capability.
By incorporating channel-wise parameterization and multi-
scale aggregation mechanisms, this module retains the strong
expressive power of GIN while improving the model’s
adaptability to complex graph structures and heterogeneous
node relationships.

4. EXPERIMENT

4.1. Dataset Description and Experimental Setup

This study utilizes the commercial modular aero-propulsion
system simulation (C-MAPSS) dataset (Saxena, Goebel,
Simon, & Eklund, 2008) to conduct remaining useful life
(RUL) prediction for aero-engines, thereby validating the
effectiveness and robustness of the proposed method in real-
world industrial scenarios. The C-MAPSS dataset, provided
by NASA Ames Research Center, simulates the operational
and degradation processes of aircraft engines under various
operating conditions and fault modes, and has been widely
used in intelligent predictive maintenance research. The
dataset comprises four subsets: FD001, FD002, FD003, and
FDO004. Each subset corresponds to different numbers of
operating conditions and fault types, with progressively
increasing task complexity. In each subset, 21 sensors are
deployed to comprehensively monitor the operational status
of each engine, collecting and recording key physical
parameters in real-time, such as temperature, pressure, and
rotational speed. Basic information of the C-MAPSS dataset
is summarized in Table 2.

To comprehensively assess the performance of CMAGIN on
the RUL prediction task, this study follows prior work (Y.
Wang, Y. Xu, et al., 2023) and adopts two commonly used
regression metrics: root mean square error (RMSE) and Score

function.
1 n R
RMSE=1’ZZ(yi—y,.)2 (11)
i=1
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Datasets FDO001 FD002 FDO003 FD004
Training 100 260 100 249
Testing 100 295 100 248
Fault Types 1 1 2 2
Sensors 21 21 21 21
Conditions 1 6 1 6

Table 2. Basic information of the C-MAPSS dataset

Jimy

B e B —1if § -y <0
Score=¢,& =1 B (12)
i=1

Yi =i

i

e -1, if p—-y 20

where n is the number of samples. y, and y, denote the

predicted and true RUL of the i-th sample respectively.
RMSE measures the average deviation between predicted
and true values, reflecting overall prediction accuracy. The
Score function applies weighted penalties to prediction errors,
imposing stronger penalties on early or late predictions,
thereby aligning more closely with practical engineering
requirements. Lower RMSE and Score values indicate better
predictive performance and greater model robustness.

The experiments consist of two parts: comparative studies
against state-of-the-art (SOTA) methods and ablation studies
on the key modules of the proposed model. To ensure result
stability and reliability, each model is independently run 10
times, and the average performance metrics are reported. All
experiments are conducted on a system equipped with an
NVIDIA GeForce RTX A6000 GPU. The model is
implemented using the PyTorch 1.9 framework. The Adam
optimizer is used for training, with a minimum of 20 epochs.
Other training hyperparameters are tuned based on validation
set performance. For fair comparison, all baseline models
were reimplemented or fine-tuned using identical training
configurations, including optimizer type, learning rate, batch
size, and early stopping criteria. Where available, official
implementations were employed and trained under the same
experimental conditions to ensure methodological
consistency.

4.2. Comparison with SOTA Models

To assess the effectiveness of CMAGIN in temporal graph
modeling tasks, this subsection presents a systematic
comparison with representative SOTA methods, including
those based on graph neural networks, graph convolution
techniques, graph pooling strategies, and conventional
temporal deep learning architectures. The methodological
details, performance results, and RMSE box plots are shown
in Table 3 and Figure 4, respectively.

The experimental results demonstrate that the proposed
method consistently outperforms all baseline models across
all four C-MAPSS sub-datasets (FD0O01-FD004), achieving

superior performance in both prediction accuracy (RMSE)
and cost-sensitive metric (Score). On the FD0O1 dataset,
characterized by a single operating condition and a single
fault mode, CMAGIN achieves the lowest RMSE of 10.99
and Score of 206, representing a 9.0% and 18.6%
improvement over the second-best model FCSTGNN (Y.
Wang et al., 2024). This advantage likely results from
FCSTGNN’s limited ability to integrate temporal dynamics
in graph modeling. The proposed DAGC-LAGA and CACE
modules effectively enhance the central node's representation
and dynamically capture multi-scale neighbor relationships,
leading to higher prediction accuracy in simpler fault
scenarios.

The FD003 dataset involves a single condition and compound
faults. CMAGIN continues to demonstrate strong robustness,
achieving the best RMSE (11.09) and Score (199) among all
compared models. This further indicates that CMAGIN has
the capability to handle complex fault patterns. Even on the
more challenging multi-condition datasets FD002 and FD004,
CMAGIN maintains a clear advantage. On FD002, which
involves multiple operating conditions and a single fault
mode, CMAGIN achieves the lowest RMSE (12.80) and
Score (711). It outperforms FCSTGNN (RMSE = 13.27,
Score = 777), suggesting a strong ability to capture
degradation patterns under varying conditions with high
accuracy and cost awareness. On FD004, featuring multiple
conditions and compound faults, CMAGIN again achieves
the best results (RMSE = 13.58, Score = 759). It reduces the
Score by approximately 15.6% compared to FCSTGNN
(RMSE = 14.06, Score = 899), further confirming its
robustness under high-noise, high-dimensional, and
heterogeneous input scenarios.

CMAGIN outperforms existing representative approaches
across multiple evaluation metrics, demonstrating its
effectiveness and advancement in addressing the problem of
RUL prediction for industrial equipment. The temporal
modeling approach AConvLSTM (Xiao et al., 2021) excels
in capturing temporal dependencies during the degradation
process but fails to explicitly model spatial dependencies
among sensors, making it difficult to account for structural
heterogeneity. Classical graph convolutional methods, such
as GCN (Kipf & Welling, 2016) and HAGCN (T. Li et al.,
2021), exhibit certain capabilities in modeling spatial
dependencies among sensors. However, the overall
predictive performance remains limited. One possible reason
is the reliance on static graph structures, which struggle to
adapt to dynamically evolving dependencies during the
degradation process. Another reason may be the insufficient
ability to model temporal evolution, leading to inadequate
integration of time-series information under non-stationary
conditions. In contrast, the DAGC-LAGA module in
CMAGIN dynamically and adaptively combines sparse local
structures with global relational modeling, enabling the graph
structure to update dynamically during training and
effectively capturing node interactions and latent
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Datasets FDO001 FD002 FDO003 FD004
Index RMSE Score RMSE Score RMSE Score RMSE Score
GCN 12.68+0.29 | 245427 | 13.7740.21 | 833+£54 | 12.01+0.17 | 227441 | 14.39+0.39 | 986+72
iPool 12.35£0.24 | 261+£37 | 13.17£0.21 | 775443 | 12.33+£0.28 | 258+47 | 14.52+0.22 | 1063+102
TAP 12.37+0.16 | 221426 | 13.18+0.18 | 747+260 | 12.40+0.26 | 246+23 | 14.41+0.25 | 899437
HAGCN 13.42+0.25 | 302433 | 14.55+0.27 | 1035+55 | 13.47+0.28 | 374459 | 14.69+0.37 | 995+87
AConvLSTM | 12.4240.31 | 279428 | 13.21+0.51 | 845+161 | 12.66+0.46 | 311£38 | 15.72+£1.89 | 1516790
HierCorrPool | 12.18+0.13 | 250+15 | 13.08+0.13 75449 12.04+0.07 | 218+14 | 14.23+£0.20 | 928+48
MAGNN 12.79£0.22 | 256422 | 13.35+£0.21 | 798433 | 12.28+0.18 | 302+41 | 14.46+£0.29 | 1045£79
FCSTGNN 12.08+0.17 | 253+18 | 13.27+0.24 | 777451 | 11.96+0.26 | 254+37 | 14.06+0.28 | 899+54
CMAGIN 10.99+0.18 | 206+17 | 12.80+0.18 | 711+26 | 11.09+0.15 | 199+15 | 13.58+0.24 | 759+36
Table 3. Comparison with SOTA models on the C-MAPSS dataset
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Figure 4. Comparative box plots of model performance

dependencies under non-stationary and variable operating
conditions.

Advanced GNN-based methods, such as MAGNN(L. Chen
etal., 2023) and FCSTGNN, integrate structural and temporal
information to some extent. MAGNN enhances spatial
modeling by incorporating heterogeneous semantic
information, but its complex architecture is prone to
overfitting on small- and medium-scale industrial datasets.
Graph pooling-based methods, including iPool (X. Gao et al.,
2021), TAP (Gao, Liu, & Ji, 2021), and HierCorrPool (Y.
Wang, Wu, Li, Xie, & Chen, 2023), achieve better
performance than GCN in some scenarios, but still fail to
stably model complex structures. This limitation is mainly
due to the inevitable loss of critical node information during
graph pooling, which becomes particularly pronounced under
multi-operating conditions or compound fault scenarios,
leading to performance degradation. Although FCSTGNN

CMAGIN enhances the expressive power of central nodes
across different feature channels, enabling precise
characterization of critical node information across time and
channels.

In summary, experimental results across multiple C-MAPSS
subsets demonstrate that the proposed model consistently
surpasses compared methods in terms of prediction accuracy
and engineering adaptability, particularly under complex
operational scenarios. Future work may further explore its
performance in cost-sensitive tasks and investigate structural
compression and lightweight deployment strategies to
support efficient application in real-world industrial
environments.

To validate the reliability of the observed performance
improvement, paired t-tests are conducted between
CMAGIN and the best-performing baseline method
(FCSTGNN) across 10 independent experimental runs. The
results show statistically significant improvements in both
RMSE and Score metrics (p < 0.05), confirming that the
performance gains are not due to random variations.

4.3. Ablation Study

This section conducts ablation experiments to verify the
effectiveness of the key modules proposed in this work,
including the MV-LDGC module, the GAGE module, and
the CACE module. Under the same experimental settings,
each of these modules is sequentially removed or replaced to
observe its impact on the overall model performance. The
specific configurations are as follows.

(1) “w/o GAGE” denotes the removal of the GAGE module,
retaining only the MV-LDGC module for graph structure
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Datasets FDO001 FDO002 FDO003 FD004
Index RMSE Score RMSE Score RMSE Score RMSE Score
w/o GAGE 11.38+0.21 | 214417 | 12.98+0.19 | 752422 | 11.40+0.19 | 228+19 | 13.76+0.17 | 762445
w/o MV 11.28+0.19 | 219415 | 13.01£0.21 | 791+18 | 11.47+0.18 | 297+18 | 13.68+0.20 | 811439
w/o CACE 11.47£0.20 | 233+18 | 13.03+0.24 | 819420 | 11.24+40.17 | 224+15 | 13.89+£0.19 | 87142
w/o DA&CA | 11.87+0.23 | 248422 | 13.15+0.22 | 720424 | 11.75+0.21 | 232420 | 13.94+0.22 | 893+51
CMAGIN 10.99+0.18 | 206+17 | 12.80+0.18 | 71126 | 11.09+0.15 | 199+15 | 13.58+0.24 | 759+36

Table 4. Ablation Study on the C-MAPSS Dataset

building, to evaluate the role of the global attention
mechanism in capturing long-range node dependencies.

(2) “w/o MV” indicates the removal of the MV-LDGC
module while keeping the GAGE module, aimed at
examining the model performance in the absence of local
perceptual capability.

(3) “w/o CACE?” refers to retaining both the MV-LDGC and
GAGE modules, but replacing the CACE module with a
conventional graph convolutional network, to assess the
contribution of CACE in characterizing key node
representations across channels.

(4) “w/o DA&CA” involves simultaneously removing the
MV-LDGC module, the GAGE module, and the CACE
module, substituting them with dot-product attention-based
graph construction and standard graph convolutional
networks, to evaluate the overall effectiveness and
synergistic benefits of the proposed method.

Table 4 presents the comparative results of these model
variants against the full model across multiple evaluation
metrics.

The ablation results for “w/o GAGE” show that removing the
GAGE module leads to varying degrees of performance
degradation across all subsets compared to the full model.
Notably, on the multi-fault subset FD003, the Score metric
increases from 199 to 228, a rise of approximately 14.6%.
This indicates that the GAGE module plays a significant role
in modeling long-range dependencies across nodes, thereby
enhancing the model’s representational capacity under
complex fault conditions. A similar performance decline is
also observed on the multi-condition, multi-fault subset
FDO004, further demonstrating the positive impact of global
structure modeling on overall model performance.

Analysis of the “w/o MV” results reveals that the Score
values on the multi-condition datasets FD002 and FD004
increase from 711 and 759 to 791 and 811, respectively,
suggesting that removing the MV-LDGC module weakens
the model’s adaptability to varying operating conditions. This
indicates the module’s contribution to modeling
heterogeneity across conditions. In contrast, performance
changes on the single-condition datasets FD0OO1 and FD003
are relatively minor, implying that this module has a lesser
impact on tasks with limited condition variability.

Additionally, on FD001, the “w/o MV” configuration slightly
outperforms “w/o GAGE” in terms of RMSE, suggesting that
the global attention mechanism may be more beneficial in
simpler, single-condition scenarios.

In the “w/o CACE” experiment, replacing the CACE
mechanism with a conventional graph convolution results in
overall performance decline across all subsets. For instance,
the Score on FD004 rises from 759 to 871, an increase of
about 14.7%. This result indicates that the CACE module,
through  channel-wise modulation and multi-scale
aggregation, enhances the model’s ability to emphasize
important node features, thereby improving overall
prediction accuracy. Although the RMSE on FDO003 is
slightly better than some other variants, the overall trend
confirms the module’s advantage in modeling complex
spatiotemporal features.

When the GAGE, MV-LDGC, and CACE modules are all
removed simultaneously, the model’s performance
deteriorates substantially, achieving the worst results across
all subsets. For example, on FD001, the Score increases from
206 to 248, highlighting the indispensable role of these key
modules in structural modeling and feature learning.
Compared with the “w/o DA&CA” configuration, the whole
model achieves a 20.4% improvement in Score on FD0O1 and
attains the best performance across all datasets, confirming
the effectiveness and stability of the multi-module integrated
design under diverse scenarios.

In summary, the three key modules proposed in this study
demonstrate notable effectiveness in MTS modeling tasks.

(1) The GAGE mechanism introduces global contextual
information, thereby enhancing the modeling of long-range
dependencies among nodes. This is particularly beneficial in
subsets characterized by multiple fault interferences and
complex feature correlations, as it improves the model’s
capability to capture critical fault-related information.

(2) The MV-LDGC module contributes to the model's
adaptability to varying operating conditions, offering
advantages in scenarios involving diverse working
environments.

(3) The CACE mechanism, through the integration of
channel-weight modulation and multi-scale aggregation

10
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strategies, further strengthens the representation of key nodes
across channels during the feature fusion process.

Collectively, the integration of these three modules enables
the proposed model to achieve stable and accurate prediction
performance under varying fault types and operational
conditions.

4.4. Parameter Sensitivity Analysis

To further investigate the impact of key parameters on the
performance of CMAGIN, this work conducts a systematic
sensitivity analysis using the C-MAPSS aircraft engine
degradation datasets (FDO01-FD004). Specifically, the
effects of three parameters are examined: the number of
subgraphs (default value: 3), the number of attention heads
(default value: 4), and the top-k sparsification degree (default
value: 5). Under a controlled experimental setup where all
other configurations remain unchanged, each parameter is
varied individually following a univariate control strategy.
The model's performance on each subset is recorded across
different parameter settings to evaluate the sensitivity and
identify the optimal configuration for each parameter.

4.4.1. Number of Subgraphs

To evaluate the effect of the number of subgraphs on model
performance within the dynamic multi-graph construction
module, the number of subgraphs is systematically varied.
Here, “1 graph” corresponds to a single global graph, while
“3/5 graphs” represent the construction of fused multi-graph
structures. Under consistent training settings, comparative
experiments are conducted on the four C-MAPSS subsets
(FDO01-FD004), using RMSE and Score as evaluation
metrics to assess predictive performance. The grouped
column chart in Figure 5 reveals the optimal performance
variation patterns of the model under different subgraph
configurations.

It can be observed that the influence of subgraph quantity on
model performance is closely related to the operational
complexity and degradation characteristics of the dataset. On
datasets with relatively simple operating conditions, such as
FDO001 and FDO003, the model achieves the best predictive
performance when three subgraphs are used, with RMSE
values of 10.79 and 10.89 and Score values of 193.3 and
183.35, respectively, outperforming both the single-graph
and five-graph configurations. This indicates that moderate
multi-graph fusion effectively captures multiple degradation
patterns exhibited by the engines under various conditions,
including short-term  local correlations, long-term
dependency trends, and cross-channel commonalities.

However, when the number of subgraphs increases to five, a
noticeable performance drop is observed on FD00O1, which
may be attributed to the introduction of redundant or noisy
information, thereby increasing the risk of overfitting.
Notably, on the more complex FD002 dataset, performance

1 graph " 3 graphs 5 graphs
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12} 600 +

s 400

200
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Figure 5. Sensitivity analysis of the number of subgraphs

differences among different subgraph configurations are
marginal, which aligns with the relatively stable sensor
relationships in this subset. In the larger FD004 dataset,
RMSE and Score exhibit inconsistent trends: while five
subgraphs yield the lowest RMSE, the best Score is still
obtained with three subgraphs. This discrepancy may stem
from the varying sensitivity of these metrics to different
degradation stages.

Overall, the experimental results suggest that using three
subgraphs provides a balanced and effective configuration
across the datasets employed in this study. Therefore, this
setting is adopted as the default in the experiments conducted
in this work.

4.4.2. Number of Attention Heads

A systematic sensitivity analysis was conducted to
investigate the impact of the number of attention heads,
which is a key hyperparameter, on the model's performance
in aircraft engine degradation prediction. As illustrated in
Figure 6, comparative experiments were performed on the
four C-MAPSS subsets (FD00O1 to FD004) under three
configurations with 2, 4, and 8 attention heads, respectively.
The predictive performance was evaluated using both RMSE
and Score metrics.

Experimental results reveal a clear non-linear relationship
between the number of attention heads and model
performance. On the FDO0O1 dataset, the 4 heads
configuration achieved the best results, with an RMSE of
10.79 and a Score of 193.3, showing 2.0% and 3.6%
improvements respectively compared to the 2 heads baseline.
However, further increasing the number to 8 heads led to a
significant performance drop, with RMSE and Score
deteriorating by 6.3% and 9.4%, respectively. This suggests
that a moderate number of attention heads can effectively
model multi-dimensional feature interactions, while an
excessive number may introduce redundancy and increase
the risk of overfitting.

In contrast, the FD002 dataset exhibited a different pattern.
While the lowest RMSE was still achieved with 4 heads
(12.55), the 8 heads configuration yielded the lowest Score
(657.96), outperforming the 4-head setting by approximately
10.6%. This inconsistency between RMSE and Score may
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Figure 6. Sensitivity analysis of the number of attention
heads

stem from the dataset's specific operational characteristics,
where a greater number of attention heads helps capture more
complex feature dependencies, thereby improving overall
predictive quality.

The FD003 dataset showed a similar trend to FD0OO1, with the
4-head configuration delivering the best results. Compared to
the 2 heads setup, RMSE and Score improved by 9.4% and
25.8%, respectively, further confirming the modeling
advantages of a moderate number of attention heads for tasks
with medium-level complexity. However, on the FD004
dataset, model performance deteriorated consistently as the
number of attention heads increased. In particular, the 8 heads
configuration resulted in the worst Score (875.97), likely due
to the higher noise levels and lower effective feature
dimensionality in FD004, which causes multi-head attention
to introduce redundant or interfering information.

In summary, the optimal number of attention heads appears
to be closely related to the complexity and feature
characteristics of the dataset. For the C-MAPSS subsets used
in this study, the 4 heads configuration consistently
demonstrated superior performance and is therefore adopted
as the default setting in the experiments conducted in this
work.

4.4.3. Top-k Sparsification

To investigate the impact of the top-k sparsification strategy
in the dynamic graph construction module on model
performance, this study systematically evaluates the
prediction results under three different sparsity levels (Top-3,
Top-5, and Top-10) on the four C-MAPSS sub-datasets from
FDO001 to FD0O04. As illustrated in Figure 7, the experimental
results reveal that the degree of sparsity in the constructed
graph structure significantly influences degradation
prediction performance, and the effect varies depending on
dataset characteristics.

On the FDOO1 dataset, the Top-5 sparsification configuration
achieved optimal performance with an RMSE of 10.79 and a
Score of 193.3, demonstrating 6.6% and 4.7% improvements
over the Top-3 setting, respectively. However, further
increasing k to 10 resulted in performance degradation. This
suggests that a moderate sparsification level can effectively

Top-3~ Top-5  Top-10
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12 600
11+ 4001
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Figure 7. Sensitivity analysis of top-k sparsification

retain critical connections while filtering out noisy edges,
thereby enhancing the model's representational capacity. In
contrast, excessive sparsity (Top-3) or density (Top-10)
could impair performance.

Interestingly, the FD002 dataset exhibited a different trend,
where Top-10 sparsification yielded the best Score of 661.77,
showing a 10.1% improvement over the Top-5 setting. This
may be attributed to the dataset’s more complex global
dependencies, which benefit from preserving a greater
number of edges to capture intricate relationships.

For the FD0OO3 dataset, results were consistent with those
observed on FD0O1. The Top-5 configuration again delivered
superior performance, with RMSE and Score improvements
0f 5.9% and 16.1% over Top-3, respectively, confirming the
advantage of moderate sparsification under moderately
complex operating conditions.

However, for the FDO004 dataset, model performance
declined consistently as k increased, with the Top-10 setting
resulting in the worst Score of 900.86. This indicates that the
dataset may contain substantial noise or ineffective inter-
sensor relationships, and that denser graph structures may
introduce redundant or distracting information, thereby
degrading model stability.

The experimental results demonstrate that the Top-k
sparsification strategy significantly influences prediction
performance, with its optimal configuration depending on the
structural characteristics of the graph and the operational
complexity of the dataset. In most scenarios, the Top-5
setting achieves a favorable balance by retaining informative
connections while reducing noise, making it the default
choice in this study. However, adjusting the sparsification
level based on dataset-specific properties may further
enhance performance in certain cases. These findings reveal
an apparent "moderation effect” between sparsification and
model performance, where both excessively sparse and
overly dense graph structures degrade accuracy. This
underscores the importance of carefully designing and tuning
sparsification strategies in dynamic graph construction
modules.
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Figure 8. Visualization of learned adjacency matrices at different training epochs

4.5. Computational Complexity Analysis

The computational complexity of CMAGIN mainly arises
from the DAGC-LAGA and the CACE modules.

(1) In the MV-LDGC of DAGC-LAGA, building K

subgraphs requires O (K N?)pairwise similarity computations.

After applying the Top-k sparsification, this cost is reduced
to O(KN -k) . In the GAGE, the multi-head attention
mechanism introduces O(hN2d/h) = O(N?d) operations
for 4 attention heads, where d is the feature dimension. Thus,
the overall time complexity of DAGC-LAGA per layer is
approximately O (kKN + N?d), and the corresponding space
complexity is O(N? + Nd).

(2) In the CACE, the channel-wise enhancement mainly
involves multi-scale aggregation and MLP transformations,
whose cost is O (LNd?), where L is the number of scales.

(3) Combining the above, the total computational cost of
CMAGIN per layer can be expressed as O(kKN + N2d +
LNd?), while the memory footprint remains O(N? + Nd).
Given that the C-MAPSS dataset contains only 21 sensor
variables, CMAGIN operates efficiently and is easily
scalable to larger systems. In practical industrial PHM
scenarios, adjusting k, &, or L provides a linear trade-off
between efficiency and accuracy, ensuring real-time
applicability.

4.6. Interpretability Analysis

4.6.1. Channel-wise Interpretability

Compared with other SOTA graph-based forecasting models,
CMAGIN provides stronger interpretability at both structural
and channel levels. The CACE module employs a learnable
vector ¢ to explicitly regulate each channel's central node
influence. Analyzing the trained ¢ values quantifies the
relative importance of different sensor channels. This offers
physical insights into which variables dominate degradation
processes. For example, channels with larger &; values in the
C-MAPSS dataset typically correspond to temperature or
pressure sensors exhibiting stronger degradation trends.

In contrast, most baseline methods like Graph WaveNet,
AGCRN, and MTGNN use shared attention or weight
matrices across all channels. These methods capture inter-

variable correlations but lack explicit interpretability for
individual features. The channel-wise enhancement of
CMAGIN thus provides a clearer, more physically
meaningful explanation of model behavior while maintaining
competitive prediction accuracy. Furthermore, visualizing
the learned adjacency matrices from the DAGC-LAGA
module reveals the evolution of local-to-global dependency
pattern during training, highlighting how the model
progressively refines its structural understanding of the
system dynamics.

4.6.2. Visualization of Graph Structure Evolution

To further enhance the interpretability, the graph evolution
during training is visualized by recording the learned
adjacency matrices at selected epochs (epoch 2, 6, 10, 14, and
18). As shown in Figure 8, the adjacency matrices gradually
evolve from sparse and disordered connections in the early
stages to more structured and semantically meaningful
patterns as training progresses. This indicates that the DAGC-
LAGA progressively captures both local dependencies and
global correlations among sensor nodes. The observed
changes in graph topology provide an intuitive understanding
of how the model refines its structural perception of the
system over time.

Moreover, the learned adjacency matrices exhibit distinct
block-like patterns, where dense submatrices emerge among
specific groups of nodes. In the heatmap visualization,
brighter colors (approaching yellow) represent stronger
learned connection weights between two sensors, while
darker regions (closer to blue or purple) indicate weaker or
negligible interactions. Therefore, the emergence of bright,
compact pixel blocks implies the formation of sensor clusters
with strong mutual dependencies, suggesting that CMAGIN
successfully identifies subsystem-level structures within the
overall system.

This observation aligns with physical intuition. For instance,
sensors measuring similar physical quantities (e.g.,
temperature and pressure within the same engine module)
tend to exhibit higher correlations, forming bright sub-blocks
in the adjacency matrix. The interpretable block structures
highlight the CMAGIN’s ability to uncover hierarchical and
physically meaningful relationships among system variables.
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4.6.3. Dynamics of the Fusion Coefficient a

To further interpret how CMAGIN balances local and global
dependencies during training, the evolution of the learnable
fusion coefficient a is monitored.

As shown in Figure 9, a gradually decreases from
approximately 0.5 to around 0.41, following an exponential
decay trend. Initially, o = 0.5 indicates that both local sparse
graphs and global attention graphs make comparable
contributions. As training proceeds, a steadily decreases and
stabilizes after about 15 epochs, implying that the model
progressively refines its dependency structure and transitions
toward globally informed representations.

This observation reveals that CMAGIN increasingly relies on
globally refined attention graphs rather than local sparse
connections in later training stages, where global contextual
relationships become more influential in predicting system
degradation trends, while local correlations remain
complementary. Such adaptive behavior reflects a dynamic
balance between global contextual learning and local
structural refinement, demonstrating that the fusion
mechanism effectively calibrates the information flow
between heterogeneous graph structures.

The overall trend of a evolution provides intuitive
interpretability for how the model adjusts its reliance on
different structural priors during learning.

5. CONCLUSION

This paper proposes a CMAGIN model for time series
prediction. The model combines a dynamic adaptive graph
construction module with local perception and global
attention, and incorporates a channel-wise adaptive center
enhancement mechanism. Specifically, the DAGC-LAGA
module combines multi-view local dynamic graph
construction with a global attention enhancement mechanism,
enabling dynamic modeling of temporal graph structures and
improving the capacity to capture both local and global
dependencies. The CACE module enhances the

representation of key nodes across multiple channels by
introducing channel-level node importance estimation and
centrality-aware attention mechanisms, thereby
strengthening the model’s ability to capture and represent
critical degradation information.

Experimental results on the four standard C-MAPSS sub-
datasets demonstrate that the proposed model outperforms
baseline methods in both RMSE and Score metrics.
Specifically, on the FD0O0O1 subset, CMAGIN achieves 9.0%
and 18.6% improvements in RMSE and Score compared to
the suboptimal FCSTGNN model, exhibiting superior
prediction accuracy and robustness. Through systematic
comparative analysis, three major limitations of existing
approaches are identified: while AConvLSTM excels at
temporal modeling, it neglects spatial dependencies; static
graph methods (GCN/HAGCN) fail to adapt to dynamic
dependencies during degradation processes; and graph
pooling methods (e.g., iPool) suffer from critical node
information loss. To address these deficiencies, CMAGIN
introduces innovative solutions: the DAGC-LAGA module
employs a dynamic adaptive graph construction strategy that
integrates local awareness with global attention to effectively
capture node interactions and latent dependencies under non-
stationary and variable operating conditions. Simultaneously.
the CACE mechanism enhances the expressive power of
central nodes across different feature channels for precise
characterization of critical node information.

These findings collectively validate the effectiveness and
advancement of the proposed method for complex temporal
graph modeling tasks. Future research could further explore
extending the application of CMAGIN to broader industrial
scenarios to facilitate the practical deployment of intelligent
operation and maintenance systems.
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