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ABSTRACT 

Infrastructures globally are nearing or surpassing their desig-
nated lifespans, with recent structural failures serving as a re-
minder. The aging of infrastructure is a natural eventuality 
that causes a decline in the structures’ mechanical character-
istics, consequently affecting their serviceability. The rapid 
aging of global infrastructure necessitates the development of 
precise and effective damage detection techniques to pre-
serve public safety. Traditional inspection techniques cannot 
adequately address modern structural issues, which calls for 
more sophisticated methods. This study proposes a novel hy-
brid wavelet-CNN-Transformer framework for structural 
damage detection that simultaneously extracts localized dam-
age signs and gradual changes in the overall behavior of 
structural vibrations.  Our proposed framework uses the Ben 
wavelet transform to convert raw acceleration signals into 
time-frequency representations, which are then processed 
through a parallel CNN and Transformer branches to extract 
spatial and temporal features before fusion. We validated this 
approach on two datasets: the Z24 Bridge dataset and the Qa-
tar University Grandstand Simulator (QUGS) dataset. Our 
proposed framework achieved 98.85% on the Z24 Bridge da-
taset and 97.9% on the QUGS dataset, representing a 1.35% 
improvement over state-of-the-art methods. The proposed 
framework identifies both the sharp structural discontinuities 
and the subtle shift in the global behavior of the structure. 
Furthermore, the model successfully performed multi-class 
damage classification with 91% accuracy.  

 

Oumayma Najem et al. This is an open-access article distributed un-
der the terms of the Creative Commons Attribution 3.0 United States 
License, which permits unrestricted use, distribution, and reproduc-
tion in any medium, provided the original author and source are 
credited. 

1. INTRODUCTION 

Infrastructures globally are exposed to extreme stressors, 
whether from increased traffic loads or extreme environmen-
tal events, accelerating the natural and unavoidable aging of 
structures much earlier than expected. Recent studies of 
structural failures demonstrated that structures all over the 
world are failing faster than their designed life span, which 
underlines the need for sophisticated and targeted assessment 
methods (Garg et al., 2022). Visual inspections, as one of the 
first structural evaluation techniques, were proven to be in-
sufficient since they rely on the personnel’s expertise and 
can’t detect internal defects.  

Non-destructive testing (NDT) techniques such as thermog-
raphy, magnetic waves, and ultrasound were presented as al-
ternatives that go beyond surface-level damage in structures 
(Schabowicz, 2019). NDTs, although they present several ad-
vantages over visual inspections, were also proven to be sen-
sitive to external factors such as environmental conditions. 
They also remain periodic inspections that lack real-time 
monitoring capabilities, therefore lack early warning signs.  

Structural Health Monitoring (SHM) systems, containing 
sensor networks, were able to address this issue by enabling 
real-time, continuous monitoring of structures (Sun et al., 
2020). Different types of sensors, depending on the moni-
tored parameter, either mounted on or embedded within a 
structure, acquire data, which is then processed and inter-
preted for structural damage detection (Deng et al., 2023). 
The large amount of data gathered by sensors in different lo-
cations of the structure contributes to having accurate results 
and making knowledgeable decisions about the structural 
conditions, the additional tests to be conducted, or the correc-
tive measures to be taken (He et al., 2022).   
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One of the most utilized techniques in SHM is vibration-
based approaches, as they can identify internal damage before 
it visibly appears on the structure (Saidin et al., 2022). This 
technique builds on the structural definition of damage, stat-
ing that damage alters the structural characteristics; therefore, 
a behavior change indicates the existence of damage in the 
monitored structure (Rabi et al., 2024).  Vibration-based 
SHM uses signal processing techniques to detect damage-
sensitive features from acceleration data. Methods like Fast 
Fourier Transform (FFT), Short-Time Fourier Transform are 
traditional methods that are powerful for analyzing stationary 
signal. However, they present significant challenges when 
applied to nonlinear and non-stationary signals, which is 
problematic in real-world applications, given that structures 
are inherently exposed to dynamic loads (Xu et al., 2022).  

Wavelet Transforms (WT) represent the time signals in the 
frequency domain. It has been one of the most used signal 
processing techniques in recent years for damage detection of 
civil structures. Demirlioglu and Erduran (Demirlioglu & Er-
duran, 2024) demonstrated that wavelet processing identifies 
damage without prior knowledge of the undamaged state us-
ing accelerometers mounted on a vehicle. Among wavelet 
types, the Mexican Hat wavelet is excellent at detecting lo-
calized abrupt changes in the signal. For instance, Tan et al. 
(Tan et al., 2022) identified damage by analyzing axle accel-
eration using the Mexican Hat Wavelet. Hester et González 
(Hester & González, 2017) used the Continuous Wavelet 
Transform (CWT) with the Mexican hat wavelet to detect lo-
calized stiffness loss for a drive-by bridge monitoring 
method. Another wavelet type is the Morlet wavelet, which 
is useful for global pattern identification of non-stationary 
signals. Qiu et al. (Qiu et al., 2024) employed the Morlet 
wavelet on the KW51 bridge vibration data, accurately local-
izing damage on the bridge.  

The Ben Wavelet is a complex-valued Wavelet Transform 
that combines the intrinsic properties of both the Mexican Hat 
wavelet and the Morlet wavelet. Similar to the Morlet wave-
let, the Ben wavelet captures both amplitude and phase data, 
while also remaining sensitive to the signal’s continuities like 
the Mexican Hat wavelet (Benbrahim et al., 2005).  

While WTs improve feature extraction, employing them as 
standalone techniques lacks automation. Hence, supervised 
deep learning algorithms are increasingly employed for dam-
age identification, localization, and classification.  CNNs are 
deep learning models that process time-frequency represen-
tations to automatically extract damage-sensitive features 
from the data. CNNs, with one or multiple layers, are capable 
of effectively extracting spatial hierarchies within images and 
time-frequency representations. The early layers detect sim-
ple damage while deeper layers detect complex patterns in 
the data. Wu et al. (Wu et al., 2022) used wavelet packet de-
composition (WPD) for feature extraction in acceleration sig-
nals and CNN for damage detection. Nguyen et al. (Nguyen 
et al., 2024) integrated CWT with CNN to automate structural 

damage detection. Chen et al. (Chen et al., 2024) combined 
CWT and 2D-CNN to indirectly detect bridge damage from 
vehicle vibrations. Najdi et al. (Najdi et al., 2025) used Syn-
chrosqueezing Wavelet Transform (SSWT) with ResNet-
based CNN for an effective time-frequency feature extrac-
tion. Song et al. (Song et al., 2024) used the Morlet wavelet 
transform to convert acceleration data into time-frequency 
scalograms, which are then analyzed with pre-trained CNNs. 
However, one limitation is that CNN algorithms process data 
locally, which can affect their overall data interpretation, as 
they may miss the broader relationships between data points.  

Transformers have emerged as an alternative to recurrent 
models by utilizing self-attention mechanisms to process 
time sequences of data. Additionally, Transformers process 
data simultaneously rather than sequentially, which allows 
them to capture relationships between data regardless of their 
location or timing (Wan et al., 2023). Fukuoka et Fujiu (Fu-
kuoka & Fujiu, 2023) employ a transformer-based image pro-
cessing model for bridge damage detection, specifically de-
lamination and rebar exposure. However, their ability to pro-
cess data as a whole comes at the cost of their inability to 
detect localized anomalies in data and consequently miss the 
subtle damage signs in structural data. 

To address these issues, we propose in this paper a novel ap-
proach combining the Ben wavelet transform, CNN, and 
Transformers to improve feature extraction and state classifi-
cation accuracy. The CNN extracts spatial local features from 
the vibration signals, while the Transformers extract global 
temporal dependencies, effectively detecting small damage 
as well as changes that manifest themselves in the structure's 
global behavior. The features extracted from both branches 
are fused through a concatenation layer, followed by a fully 
connected layer for final classification. Our experimental re-
sults, validated on two renowned datasets, the Z-24 bridge 
dataset and the Qatar University Grandstand Simulator 
(QUGS) dataset, demonstrate that this hybrid approach out-
performs both traditional methods and state-of-the-art deep 
learning techniques for structural health monitoring. 

Despite these advances, the existing vibration-based methods 
address either the detection of localized damage features, like 
sharp discontinuities, or the global behavioral change of the 
structure, like the gradual loss of stiffness, but not both sim-
ultaneously. CNN-based approaches capture spatial anoma-
lies in the time-frequency representations, but miss the tem-
poral dependencies. In contrast, the Transformer-based meth-
ods capture global behavioral shifts but lack the spatial reso-
lution needed for damage detection. Real-world structural 
damage manifests simultaneously through both mechanisms. 
Existing methods address these separately or sequentially.  

To adress this gap, we propose a novel hybrid CNN-Trans-
former framework that processes wavelet-transformed vibra-
tion signals through parallel branches, to extract both the lo-
cal spatial anomalies and the global temporal patterns, 
providing a comprehensive dual-scale damage detection.  
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This research paper will contribute the following: 

- Advanced feature extraction: using the Ben wave-
let transform to extract features from vibration sig-
nals to address the limitations of standard wavelet 
transforms.   

- Novel damage detection: Unlike traditional ap-
proaches that rely solely on one method, we intro-
duce a parallel processing structure that combines 
the strengths of CNNs with Transformers. We use 
CNNs and Transformers to capture both localized 
disruptions in the time-frequency representation of 
vibration signals and global effects that damage has 
on the overall behavior of the structure through 
changes in the initial vibration signals.  

The content of this paper is organized as follows: Section 2 
is dedicated to the theoretical background of the proposed hy-
brid method. Section 3 presents the real-world validation and 
its results through two bridge vibration datasets. Finally, sec-
tion 4 concludes the article and presents the limitations.  

2. METHODOLOGY 

This section presents our novel local-global detection frame-
work, which combines wavelet transforms with a hybrid deep 
learning architecture. Figure 1 illustrates the complete meth-
odology, starting with raw vibration signals from civil struc-
tures and ending with damage classification. 

Our proposed framework addresses a current limitation in the 
literature approaches of structural health monitoring, which 
is the simultaneous detection of localized damage signs and 
the changes in the global behavior of the structure’s vibra-
tions. This multi-scale detection of damage is not fully cap-
tured by traditional single-scale methods, which are only 
adept at either subtle or major damage detection. 

2.1 Wavelet Transform 

We chose to apply the Ben wavelet, originally developed by 
Benbrahim et al. (Benbrahim et al., 2005) for seismic signal 
classification, to civil structural health monitoring applica-
tions. Wavelet Transforms extract features from non-station-
ary signals that are missed when Fourier Transforms are used 
(Kim & Melhem, 2004). This Ben wavelet combines Mexi-
can Hat localization properties with the Morlet phase preser-
vation capabilities, both needed for sharp discontinuities like 
cracks and bolt loosening, and gradual changes in structural 
behavior as stiffness loss and energy redistribution. The Ben 
wavelet is an asymptotically admissible wavelet defined as 
(Benbrahim et al., 2005), where 𝜔0 is the central frequency 
of the wavelet.:  

ψ𝑏𝑒𝑛(𝑡) =  2
√3

 𝜋−1
4(1 − 𝑡2)𝑒𝑖𝜔0𝑡𝑒−𝑡2/2                           (1) 

The Ben Wavelet combines properties from two classic 
wavelets, the Mexican Hat Wavelet (Mallat, 1989) and the 
Morlet Wavelet (Goupillaud et al., 1984).  Each component 
of the wavelet has a specific functional purpose. The term  
2

√3
 𝜋−1

4  is a normalization constant that ensures the unit en-
ergy. The term (1 − 𝑡2) offers localized sensitivity, similarly 
to the Mexican Hat wavelet, and 𝑒𝑖𝜔0𝑡 , inherited from the 
Morlet Wavelet, provides amplitude and phase information 
preservation. Finally, the Gaussian envelope 𝑒−𝑡2/2  ensures 
a minimal Time-Bandwidth Product as per the Heisenberg-
Gabor limit to balance the time localization and frequency 
resolution (Papoulis, 1977). 

The Ben wavelet satisfies the admissibility condition re-
quired for continuous wavelet transform analysis. The Ben 
wavelet possesses zero mean, ∫ ψ𝑏𝑒𝑛(𝑡)𝑑𝑡 →  0as 𝜔0 ∞, 
and ψ𝑏𝑒𝑛(𝑡)𝑑𝑡  ∈ L2( ℝ) ∩  L1( ℝ) , ensuring 𝐶ψ =

 ∫
|𝐹𝑇ψ(𝜔)|

2

|𝜔|𝑑𝜔
<  +∞ (Benbrahim et al., 2005). 

The Ben wavelet is not symmetric overall, and that is due to 
its complex term 𝑒𝑖𝜔0𝑡. This asymmetry is essential for phase 
analysis and detecting directional frequency shifts. However, 
the real part of the Ben Wavelet remains symmetric to main-
tain a good temporal localization. Additionally, for a bal-
anced oscillatory behavior with time localization, the admis-
sibility condition for the central frequency is 𝜔0 ≥ 7.  

This hybrid formulation allows the detection of both abrupt 
and gradual changes. The Continuous Wavelet Transform 
with the Ben wavelet generates scalograms that present the 
energy redistribution signs indicative of structural damage: 

𝑆𝐶𝐴𝐿(𝑎, 𝑡) =  |𝐶𝑊𝑇𝑥
ψ(𝑎, 𝑡)|

2
                       (2) 

Where damaged structures display energy distribution across 
a broad frequency band compared to the concentrated energy 
signatures of undamaged states.  

2.2 Hybrid CNN-Transformer Architecture 

2.2.1. Architecture 

Our hybrid architecture addresses the limitations of CNNs 
and Transformers for structural damage detection. CNNs de-
tect frequency discontinuities in scalograms using hierar-
chical feature extraction; however, they are unable to inter-
pret these structural changes on the global scale. Transform-
ers can extract long-range temporal correlations through self-
attention mechanisms; however, they lack spatial resolution 
for sudden time-frequency changes. The purpose of our par-
allel processing design is to extract both feature types for a 
complete picture of the damage.  
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2.2.2. CNN Branch: Parallel local damage feature ex-
traction 

The CNN branch works in parallel to capture spatial features 
from the wavelet’s resulting scalograms (Lecun et al., 1998). 
The CNN architecture uses four progressive convolutional 
layers (16, 32, 64, 128) and max pooling to reduce dimen-
sionality while retaining key features.   

To extract local patterns, each convolutional layer uses 
learned filters. We also employed ReLU activation to main-
tain training stability. 

𝑆𝑠′,𝑡′,𝑓
′ =  ∑ ∑ 𝑊𝑖,𝑗,𝑓

𝑘𝑇
𝑗=1

𝑘𝑆
𝑖=1 ∙ 𝑆𝑠′+𝑖−1,𝑡′+𝑗−1           (3) 

This branch is especially employed for spatial damage signa-
tures extraction, such as shifts and spectral anomalies, while 
the Transformer branch processes structure-wide damage 
patterns simultaneously. 

2.2.3. Transformer Branch: Parallel Global Feature 
Extraction 

The Transformer branch processes reshaped scalograms to 
extract global temporal dependencies (Vaswani et al., 2017), 
while operating in parallel with the CNN Branch. We first 
reshaped the input scalograms from 2D time-frequency rep-
resentations to sequential tokens to process them as time se-
ries.  
The Transformer architecture uses a multi-head self-attention 
mechanism with 8 attention heads and a key dimension 
dk=128, to capture long-range patterns in structural vibra-
tions:  

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑄𝐾𝑇

√𝑑𝑘
) 𝑉          (4) 

This configuration computes attention weights across the en-
tire time-frequency representation to facilitate the detection 
of gradual energy shifts that happen over long periods. This 
parallel design captures long-range dependencies manifest-

ing as gradual energy shifts throughout the entire time-fre-
quency domain. We employed Layer Normalization (Ba et 
al., 2016) and dropout (Salehin & Kang, 2023) to maintain 

training stability, while Global Average Pooling aggregates 
aggregates temporal features into vectors for fusion with spa-
tial features extracted by the parallel CNN branch. 

2.2.4. Hyperparameter ablation study 

We optimized the number of layers by testing various config-
urations to identify the optimal performance configuration, as 
shown in table 1. For the CNN branch, we tested multiple 
combinations of CNN architectures, from 2 to 5 convolu-
tional layers, paired with different Transformer configura-
tions, 1 and 2 layers, with varying attention heads and key 
dimensions. The 4-layer configuration (16-32-64-128 filters) 
with 1 layer, 8 head, key dimension 128, reached the highest 
accuracy of 98.85%.  

Table 1 Hyperparameter ablation study results 

 

 
Figure 1 The proposed hybrid CNN-Transformer model 

CNN 
Configuration 

Transformer 
Configuration Accuracy 

2 layers 
[16,32] 1 layer, 4 heads, key=64 92.19% 

3 layers 
[16,32,64] 1 layer, 4 heads, key=64 96.09% 

4 layers 
[16,32,64,128] 1 layer, 4 heads, key=64 98.16% 

4 layers 
[16,32,64,128] 1 layer, 4 heads, key=128 98.66% 

4 layers 
[16,32,64,128] 1 layer, 8 heads, key=64 98.77% 

4 layers 
[16,32,64,128] 1 layer, 8 heads, key=128 98.85% 

4 layers 
[16,32,64,128] 2 layer, 8 heads, key=128 97.55% 

5 layers 
[16,32,64,64,128] 2 layer, 8 heads, key=128 92.19% 
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2.2.5. Feature Fusion 

Feature fusion combines outputs from both the CNN and 
Transformer branches to create a complete and complemen-
tary representation. We employed concatenation fusion to 
preserve the features extracted from both branches while 
avoiding information loss. The fusion layer directly concate-
nated the feature vectors extracted from both branches:  

Zconcat = Concatenate (ZCNN, ZTrans)   (5) 
Where the ZCNN are the spatial features extracted by the CNN 
branch, and the ZTrans are the temporal features extracted by 
the Transformer branch. The CNN branch outputs feature 
vectors that encode local spatial patterns and frequency do-
main signatures, while the Transformer branch outputs tem-
poral dependencies and long-range correlations, resulting in 
a fused feature vector that contains spatial and temporal dam-
age signs.   
We selected Concatenation fusion over alternative feature 
techniques, such as element-wise addition or weighted fu-
sion, because it keeps the full information content of both 
branches. This ensures that the spatial features extracted by 
the CNN and the contextual changes extracted by the Trans-
formers contribute equally to the classification decision. We 
processed the concatenation features through a fully con-
nected layer with dropout regularization (Salehin & Kang, 
2023) to allow binary classification between damaged and 
undamaged structural states. Figure 2 details the hybrid par-
allel CNN-Transformer process. 

 

Figure 2 Hybrid CNN-Transformer architecture for struc-
tural damage detection. 

2.3. Performance evaluation  

2.3.1. Classification metrics 

Hybrid CNN-Transformer architecture for structural damage 
detection.  

Accuracy measures the correct predictions by the model: 

Accuracy = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

                                                   (6) 

Precision calculates the proportion of the correctly predicted 
damage cases among all predicted positive cases: 

Precision = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

                                                              (7) 

Recall calculates how many true damage cases are identified: 

Recall = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

                                                                   (8) 

F1-score is a metric that accounts for both precision and re-
call for error quantification. 

F1-score = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

                                          (9) 

Where, TP and TN are the true positives and true negatives, 
respectively. And, FP and FN are the false positives, and false 
negatives, respectively. 

2.3.2. Feature Space Visualization 

We employed t-distributed Stochastic Neighbor Embedding 
(t-SNE) (Kobak & Berens, 2019) to validate the discrimina-
tive capacities of the learned features extracted by our paral-
lel processing architecture. t-SNE maps the high-dimensional 
learned features to a 2D space to visually validate the class 
separability between the damaged and undamaged states. 
This constitutes a qualitative validation of our parallel archi-
tecture’s capability of creating separate clusters for different 
structural states.  

3. RESULTS 

We demonstrated the effectiveness and advantages of the 
proposed method for bridge damage detection on two bench-
mark datasets: the Z24 Bridge dataset and the Qatar Univer-
sity Grandstand Simulator (QUGS) dataset. We employed the 
Z24 dataset, consisting of progressive pier settlement scenar-
ios, to evaluate performance against several established tech-
niques. Additionally, the QUGS dataset, providing compre-
hensive data on steel frame joint loosening, was used to fur-
ther validate the method's detection capabilities across differ-
ent structural materials and damage mechanisms. 
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3.1. Dataset 1: Z24 Bridge Dataset  

3.1.1. Experimental Setup  

The Z24 bridge was a post-tensioned concrete bridge with a 
two-cell box-girder cross-section, located on the A1 highway 
between Bern and Zürich in Switzerland (Maeck & De 
Roeck, 2003). The monitoring was conducted as part of the 
European Brite EuRam research project BE-3157, titled 'Sys-
tem Identification to Monitor Civil Engineering Structures' 
(SIMCES). Figure 3 shows the Z24 Bridge structure. 

16 accelerometers were mounted on the bridge to measure 
accelerations in multiple directions. Data was acquired at a 
sampling frequency of 100 Hz with an anti-aliasing filter set 
to a cutoff frequency of 30 Hz. One month before the bridge 
demolition, progressive damage was collected under multiple 
damage scenarios such as pier settlements, foundation tilt, 
and concrete spalling. Progressive damage was introduced 
through pier settlement scenarios, starting with 20 mm to 95 
mm lowering. Table 1 summarizes the damage scenarios used 
in this study.  
 

 

Figure 3 (Maeck & De Roeck, 2003)Z24 Bridge 
structure 

 
Table 2 The Z24 bridge Pier settlement damage sce-

narios and their dates. 

Date (1998) 
Class 
label Damage Scenario 

Settle-
ment 
 (mm) 

4 August 0 Undamaged bridge 0 
10 August 1 Pier Lowering 20 
12 August 2 Pier Lowering 40 
17 August 3 Pier Lowering 80 
18 August 4 Pier Lowering 95 

3.1.2. Hybrid Model Architecture Configuration 

The implemented Hybrid CNN-Transformer model follows a 
parallel-branch architecture that detects both local and global 
characteristics. Table 2 shows the hybrid model’s implemen-
tation details.  

Table 3 Hybrid model implementation details 
Component Configuration 

Input Layer Scalogram  (S × T × 1) 

CNN Branch (Local Feature Extraction) 

Conv2D-1 16 filters, (3,3), ReLU, same pad-
ding 

MaxPool2D-1 (2,2) pooling 

Conv2D-2 32 filters, (3,3), ReLU, same pad-
ding 

MaxPool2D-2 (2,2) pooling 

Conv2D-3 64 filters, (3,3), ReLU, same pad-
ding 

MaxPool2D-3 (2,2) pooling 

Conv2D-4 128 filters, (3,3), ReLU, same pad-
ding 

MaxPool2D-4 (2,2) pooling 

GlobalAvgPool2D Average pooling 

Transformer Branch (Global Feature Extraction) 

Reshape (height, width × channels) 
MultiHeadAtten-

tion 8 heads, key_dim=128 

Dropout rate=0.1 
LayerNormaliza-

tion epsilon=1e-6 

GlobalAvgPool1D Average pooling 

Local-Global Fusion & Classification 

Concatenate CNN + Transformer features 

Dense 64 neurons, ReLU, L2 

Dropout rate=0.3 

Dense (Output) 1 neuron, sigmoid 
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We trained the model using binary cross-entropy as the loss 
function with Adam Optimizer at a learning rate of 0.001. 
Additionally, we used a batch size of 16 over 100 epochs and 
included early stopping with a patience of 3 epochs to track 
the validation loss to prevent overfitting. The dataset is split 
using stratified sampling, with 80% assigned for training and 
20% for testing for balanced class representation across both 
sets. 

3.1.3. Results 

(i) Scalogram Visualization and Feature Analysis 

The Ben wavelet transform efficiently extracts damage sig-
natures in the time-frequency domain. Figure 4 shows a clear 
distinction between undamaged and damaged states. The pier 
settlement produces a redistribution of energy across fre-
quency bands, with damaged conditions (Fig. 4d) showing a 
spread energy pattern when compared to the concentrated 
signatures of the undamaged state of the structures (Fig. 4c). 
The implementation generates scalograms of 200 scales × 
256 time points, capturing both high-frequency transient 
events and low-frequency structural changes, creating com-
plementary input for parallel CNN and Transformer pro-
cessing.  

(ii) Feature Space 

We applied t-SNE dimensionality reduction to visualize the 
learned feature representations. Figure 5 shows a clear class 

separation in the 2D feature space between undamaged (Class 
0, blue) and damaged (Class 1, green) structural states across 
all pier settlement scenarios (20mm, 40mm, 80mm, 95mm), 
forming distinct clusters. This clear separation demonstrated 
the hybrid CNN-Transformer architecture’s ability to cor-
rectly learn discriminative features for the detection of struc-
tural damage. 

(iii) Training performance 

The hybrid model shows strong training characteristics, 
achieving convergence within 15-25 epochs while training 
accuracies reach 99% and validation accuracies are main-
tained above 98%. The early stopping mechanism activates 
at epoch 22±3 across damage scenarios  which prevents over-
fitting and confirms effective parameter learning. Figure 6 
shows the training and validation curves. 

(iv) Detection performance results  

Table 4 shows a stable performance of the proposed hybrid 
method across all settlement scenarios of the settlement mag-
nitude. The Precision-recall balance (98.38% vs 98.32%) in-
dicate low false positive/negative rates. The 80mm settlement 
case shows a slightly lower precision (96.63%) with high re-
call (98.85%), which suggests the models sensitivity to 
changes in intermediate damage scenarios.  
 
 
 

 
Figure 4 Ben wavelet scalogram comparison showing damage detection capability. (a) Undamaged case acceleration signal 
showing normal structural response, (b) Damaged signal (80mm pier settlement) showing increased amplitude and altered 
vibration characteristics, (c) Baseline scalogram with concentrated energy distribution, (d) Damaged scalogram revealing clear 
energy redistribution and additional frequency components. This representative comparison demonstrates the method's ability 
to distinguish between undamaged and damaged structural states. 
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Figure 5 t-SNE visualization of learned feature representations from the hybrid CNN-Transformer model on the Z24 Bridge 

dataset. 

 
Figure 6 (a) Training and validation loss convergence over epochs, (b) Training and validation accuracy progression over 
epochs. 
 

Table 4 Z24 Bridge Implementation Results. 
Damage scenario Accuracy Precision Recall F1-Score 
20 mm Settlement 98.85% 98.85% 98.85% 98.85% 
40 mm Settlement 98.28% 98.84% 97.70% 98.27% 
80 mm Settlement 97.70% 96.63% 98.85% 97.73% 
95 mm Settlement 98.28% 97.73% 98.85% 98.29% 

Mean ± Std 98.35 ± 0.36% 98.38 ± 0.44% 98.32 ± 0.42% 98.35 ± 0.36% 
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3.1.4. Comparison and analysis of detection methods. 

To evaluate the performance of our proposed hybrid CNN-
Transformer method within the existing SHM techniques. 
We reviewed state-of-the-art methods applied to the Z-24 
bridge dataset to underline our proposed method’s superior-
ity. The experimental results in Table 4 summarize the per-
formance of the nine detection methods on the Z-24 bridge 
dataset. We chose to compare our method to the following 
papers: 

- Santaniello et Russo (Santaniello & Russo, 2023) 
convert 1D acceleration signals into time-frequency 
images with synchrosqueezing continuous wavelet 
transform (SCWT). The authors evaluate several 
CNN architectures including ResNet50, MobileNet 
v1, and DenseNet121, and propose two refinement 
techniques: image-splitting and signal-splitting. 

- Sony et al. (Sony et al., 2022b) proposes a win-
dowed Long Short-Term Memory (LSTM) net-
work method for vibration-based multiclass dam-
age detection and localization in civil structures. 

- Sony et al. (Sony et al., 2022a) proposes an opti-
mally-tuned windowed 1D CNN approach for mul-
ticlass damage identification using vibration re-
sponses 
 

Table 4 and Figure 7 demonstrate our hybrid model’s outper-
formance within the literature. Our hybrid model achieves an 
accuracy improvement of 1.35% over signal-splitting Res-
Net50, representing a 36% reduction in error rate (from 2.5% 
to 1.15%). Deep learning methods' accuracies range from 95-
97%, while traditional approaches vary from 72% to 94%. 
This performance gap defines three method categories: our 
hybrid method at 98.85% accuracy, advanced deep learning 
from 95-97%, and convolutional techniques 72-94%. 

3.1.5. Architecture Ablation Study 

To further validate our hybrid CNN-Transformer architec-
ture, we performed ablation studies by comparing each com-
ponent against the complete hybrid model. For the 20mm pier 
settlement damage scenario, we used the Ben wavelet trans-
form to test three different configurations. The Transformer-
only branch used Transformer components without the CNN 
components, whereas the CNN-only branch used CNN fea-
ture extraction without the Transformer components. The hy-
brid CNN-Transformer configuration represents our parallel 
processing architecture.  
Figure 8 shows the performance comparison across the three 
architectural configurations. The ablation results show how  
 
 
 
 

Table 5 Comparison with State-of-art Methods' Results 
Method Accuracy Precision Recall F1-score Reference 

Proposed hybrid method 98.85% 98.85% 98.85% 98.85% Our 

Signal-splitting (SST with ResNet50) 97.5% 97.77% 97.34% 97.51% (Santaniello & Russo, 2023) 

Image-splitting (SST with ResNet50) 97.47% 97.39% 97.17% 97.27% (Santaniello & Russo, 2023) 

ResNet50 (with SST) 97.08% 97.22% 97.22% 97.22% (Santaniello & Russo, 2023) 
MobileNet v1 with SST 95.36% - - - (Santaniello & Russo, 2023) 

LSTM 94% 95% 94% 94% (Sony et al., 2022b) 
DenseNet121 with SST 90.21% - - - (Santaniello & Russo, 2023) 

1DCNN 83% 83% 83% 83% (Sony et al., 2022a) 
MLP 72.05% 73.17% 71.31% 71.42% (Santaniello & Russo, 2023) 
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Figure 7 Performance comparison of the proposed hybrid method against traditional and advanced deep learning approaches. 

 
Figure 8 Architecture Ablation Study Results (20mm dam-

age case) 

the CNN and Transformer components are complementary. 
The Transformer-only method shows lower accuracy 
(92.97%) as it focuses on capturing global patterns, while the 
CNN-only method achieved good performance (97.66%) by 
capturing local damage features. The hybrid method per-
forms better than both of its separate parts do, which demon-
strates that the parallel processing of global and local features 
show in higher damage detection accuracy.  

3.1.6. Wavelet Transform Comparison Study. 

We compared three wavelets – the Morlet, Mexican Hat, and 
Cauchy – to justify the choice of the Ben Wavelet transform 
for time-frequency feature extraction. The Hybrid CNN-
Transformer was applied to the 20mm settling case in all ex-
periments.  
 

Figure 9 presents the performance comparison across differ-
ent wavelet transforms. The Ben wavelet achieves the highest 
accuracy value of 98.85%, surpassing the Cauchy  (96.09%), 
Morlet (94.53%), and Mexican Hat (82.81%) wavelets. The 
Ben wavelet's effectiveness comes from its time-frequency 
localization features, which identify both localized and global 
damage features. The performance gaps between the different 
wavelets confirm that the wavelet choice influences the dam-
age detection accuracy. 

 

Figure 9 Wavelet Transform Comparison Results (20mm 
damage case) 
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3.1.7. Multi-class Damage Identification Results 

Beyond the model’s ability of binary classification of each 
damage level independently, we evaluated the hybrid 
model’s capabilities for damage assessment through a multi-
class classification task to identify damage severity levels. 
We tested the model on the task of simultaneously classifying 
all five damage scenarios of the Z24 bridge: Undamaged, 20 
mm settlement, 40mm settlement, 80mm settlement, and 
95mm settlement.  

The model architecture remained unchanged except for the 
final output layer, which we modified from binary classifica-
tion (sigmoid activation, 1 neuron) to multi-class classifica-
tion (softmax activation, 5 neurons). We changed the func-
tion from binary cross-entropy to sparse categorical cross-en-
tropy to accommodate integer class labels. We utilized train-
ing the same hyperparameters as binary classification: Adam 
optimizer (learning rate 0.001), batch size 16, early stopping 
with patience 10.  

The evaluation of the multi-class performance achieved an 
overall accuracy of 91%, demonstrated the model’s ability to 
not only detect damage presence but also assess the damage 
severity levels. As expected, the model shows systematic 
confusion between the adjacent damage levels. While per-
scenario binary validation of the model achieved 98.85% as 
the best accuracy, this 5-class damage classification model 
shows the model’s practical capability of identifying damage 
states without prior knowledge of the severity level. Table 6 
reveals the detailed performance metrics.  

Table 6 Multi-class Damage Identification Results 
damage scenario accuracy precision recall F1-score 

Undamaged 93.8% 95% 94% 94% 
20mm Settlement 90.1% 85% 90% 87% 
40mm Settlement 88.9% 87% 89% 88% 
80mm Settlement 86.6% 96% 87% 91% 
95mm Settlement 95.1% 93% 95% 94% 

The confusion matrix, shown in figure 10, reveals expected 
patterns, most misclassifications occur between adjacent 
damage levels. The undamaged state and the 95mm settle-
ment are the most distinct structural damage states with clear 
feature separation, therefore reaching the highest accuracies, 
93.8% and 95.1% respectively.  

The intermediate damage levels achieved lower accuracies; 
80mm settlement achieved 86.6% accuracy as the model oc-
casionally confused it with 40mm or 95mm. additionally, the 
high precision of 96% and low recall of 87% indicate that 
other classes are rarely misidentified as the 80mm settlement, 

preventing false alarms while maintaining an overall the de-
tection capability. 

 

Figure 10 Multi-class confusion matrix 

3.2. Dataset 2: Qatar University Grandstand Simulator 
(QUGS) 

3.2.1. Experimental Setup and Data Preparation 

The Qatar University Grandstand Simulator (QUGS) (Avci 
et al., 2022) is a laboratory-scale steel structure designed to 
simulate the behavior of modern stadium seating facilities 
(M.ASCE, 2018), (Abdeljaber et al., 2017). The dataset was 
developed to verify structural health monitoring techniques 
in a controlled environment before applying to real-life stadi-
ums.  

The structure has of a hot-rolled steel frame with footprint 
dimensions of 4.2m×4.2m, designed to carry 30 spectators. 
The steel frame has 8 girders, each 4.6m long, and 25 filler 
beams supported on 4 columns. The damage mechanism is 
based on loosening joints in the truss structure at specific lo-
cations, providing both undamaged and damaged state data. 
Figure 11 shows the QUGS Structure and Joint Locations. 

30 accelerometers were place on the main girders at the 30 
joints of the steel structure. Vibration signals from each joint 
location are processed similarly to the Z24 dataset. Signals 
are normalized, transformed using the spatial and temporal 
Ben Wavelet Transform into scalograms, and fed into the hy-
brid CNN-Transformer model for binary classification of 
joint damage states. 

The QUGS dataset  provides two independent datasets, col-
lected in separate experimental runs to ensure that the model 
is evaluated on unseen data: 

- Dataset A: For training and validation. 
- Dataset B: for testing. 

A random split is created with Dataset A to create a validation 
set for hyperparameter tuning and early stopping. 
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(i) Implementation results 

Figure 12 shows high performance accuracies around 94-
99% across the majority of joints, with joint 29 presenting a 
considerable performance outlier at 94.70%. The validation 
results show an average accuracy of 97.9% and a median of 
98%, with most joints exhibiting high accuracy values, while 
a few others show lower values. Table 5 shows the details of 
this performance variation, revealing that the best performing 
near a perfect score above 98.9%, while challenging joints 
show balanced precision-recall values even with low accura-
cies. 

3.2.2. Comparison analysis 

To validate our approach, we compared our hybrid CNN-
Transformer model with leading methods from the literature 
applied to the same QUGS dataset: 

- Kuo and Lee, 2023 (Kuo & Lee, 2023) uses signals 
differences and a 1D fusion CNN (1D-FCNND) for 
structural damage detection.  

- Truong et al., 2022 (Truong et al., 2022) uses a hy-
brid framework of 1D-CNN and GRU to learn spa-
tial and temporal relationships from structural vi-
bration signals. 

Figure 13 shows validation results on joints 1-5. On this sub-
set, our method achieves 98.2% of average accuracy com-
pared to 96.7% for 1D-FCNND, which shows our method’s 
superiority.  
 

 
Figure 11 (Avci et al., 2022) QUGS Structure and Joint Locations 

 
Figure 12 Detection accuracy across all 30 QUGS joint damage cases. 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

13 

Table 7 Performance metrics for representative QUGS joints across different accuracy tiers. 
Damage scenario Accuracy Precision Recall F1-Score 

Joint 04 99.74% 100% 99.47% 99.73% 
Joint 13 99.47% 99.47% 99.47% 99.47% 
Joint 24 98.94% 99.47% 98.94% 98.94% 
Joint 02 96.56% 96.32% 96.83% 96.57% 
Joint 11 97.62% 97.37% 97.88% 97.63% 
Joint 29 94.72% 95.00% 94.75% 94.87% 

 

 
Figure. 13 Method comparison for Joint 1-5 

4. DISCUSSION 

Experimental results on two structural datasets demonstrate 
that the local-global hybrid framework effectively addresses 
the key challenge of detecting damage at multiple scales in 
Structural Health Monitoring (SHM). The wavelet scalo-
grams, through time-frequency representations, reveal that 
damaged scenarios exhibit a broad frequency distribution, re-
quiring both local analysis with CNN and global analysis 
with Transformer to accurately identify damage. 

The ablation study shows that the CNN-only processing has 
an accuracy of 97.66% as it captures localized damage but 
neglects the global behavioral effects, whereas the Trans-
former-only processing has an accuracy of 92.97% as it lacks 
spatial resolution for abrupt changes, focusing on temporal 
patterns. Combining both capabilities through our hybrid 
model results in an accuracy of 98.85%.  

The reduced precision of 96.63% of the 80mm pier settlement 
case reflects the challenges in structural state classification 

caused by the transitional energy patterns of the intermediate 
damage scenario. Similarly, QUGS joint 29’s accuracy out-
lier (94.72%) shows variation across joint locations, high-
lighting the need for location-specific analysis in SHM to op-
timize detection strategies.   

The proposed framework performs consistently across differ-
ent damage mechanisms – pier settlement, joint loosening, 
and materials – concrete and steel, demonstrating its strong 
adaptability. The scalogram-based input representations also 
prove to be optimal for this dual analysis, as they offer multi-
resolution time-frequency information, which allows the 
CNN and Transformer components to detect both localized 
changes and gradual shifts accurately.  

From a computational perspective, the hybrid CNN-Trans-
former architecture is justified by both theoretical considera-
tions and experimental results. All experiments were con-
ducted on NVIDIA Tesla T4 GPU with 16GB VRAM. The 
parallel architecture processes both branches simultaneously 
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on GPU hardware, resulting in training times slower than in-
dividual branches, however faster than the sequential training 
of the models.  Additionally, it shows an improvement of 
1.19% over the faster individual model, which is a 44% error 
reduction rate, making the time-accuracy trade-off advanta-
geous. 

More importantly, the proposed architecture’s complexity 
addresses the critical limitation in structural damage detec-
tion, namely the necessity to detect both the localized discon-
tinuities, such as cracks and bolt loosening, and gradual over-
all changes, such as stiffness loss. Our ablation study in Sec-
tion 3.1.7, shows the hybrid model shows better performance 
than its individual branches (98.85%), while the CNN-only 
model reaches 97.66% by detecting only local shifts, while 
Transformer-only achieves 92.97% by capturing global be-
havioral shifts.  

The complete computational pipeline consists of two distinct 
phases: the scalogram generation and the deep learning 
model. The scalogram generation step constitutes the domi-
nant computational cost step. Despite this computational bot-
tleneck, the Ben wavelet’s feature extraction capability of 
combining localized sensitivity with phase preservation re-
sults in 4-16% accuracy improvement over alternative wave-
lets (Figure 9), justifying the additional cost.  

Table 8 Computational performance analysis 

method dataset Training time 
(in min) 

Inference time 
per sample 

(average in ms) 

CNN-only 

Z24 

1.5 40 

Trans-only 2 60 

hybrid 3 70 

CNN-only 

QUGS 

0.2 8 

Trans-only 0.1 10 

hybrid 0.4 15 

Despite the method’s advantages, several limitations should 
be acknowledged. First, external factors such as environmen-
tal conditions, changing operational loads, and measurement 
noise were not addressed while validating this method, which 
would affect the performance in practical applications. Sec-
ond, the method requires large training data, which limits its 
use on new or uncommon structures unless combined with 
transfer learning approaches. Third, the computational de-
mands of the hybrid CNN-Transformer model are reasonable 
for offline analysis; however, they could present difficulties 
for real-time monitoring performance if not optimized further 
with strategies such as edge computing implementations.  

5. CONCLUSION 

We propose a novel multi-scale damage detection framework 
that enhances vibration-based structural monitoring by sim-
ultaneously detecting transient events and shifts in the overall 
structural behavior. The proposed hybrid CNN-Transformer 
achieved superior performance over many state-of-the-art 
methods, with an accuracy of 98.85% on the Z24 Bridge da-
taset and 97.9% on the QUGS dataset. Furthermore, the 
method achieved 91% accuracy for multi-class damage clas-
sification, proving its capability beyond binary damage de-
tection.  The results show that combining the spatial feature 
extraction with temporal pattern identification provides com-
plementary insights into the structural damage state.  
In this article, our key contributions include parallel pro-
cessing for the simultaneous damage detection at the local 
and global scales. Additionally, the Ben wavelet combines 
time-frequency localization and phase preservation for opti-
mal feature extraction from structural vibration signals. 
Lastly, hybrid architectures are used to learn damage charac-
teristics, comprehensively capturing both small-scale and 
broad-scale damage features.  
Future work should address environmental conditions, such 
as temperature variations, and optimize real-time processing 
for practical applications of the proposed method. This re-
search contributes to the advancement of intelligent structural 
monitoring for a continuous assessment of structural health 
for safe and reliable structures.  
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