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ABSTRACT

Infrastructures globally are nearing or surpassing their desig-
nated lifespans, with recent structural failures serving as a re-
minder. The aging of infrastructure is a natural eventuality
that causes a decline in the structures’ mechanical character-
istics, consequently affecting their serviceability. The rapid
aging of global infrastructure necessitates the development of
precise and effective damage detection techniques to pre-
serve public safety. Traditional inspection techniques cannot
adequately address modern structural issues, which calls for
more sophisticated methods. This study proposes a novel hy-
brid wavelet-CNN-Transformer framework for structural
damage detection that simultaneously extracts localized dam-
age signs and gradual changes in the overall behavior of
structural vibrations. Our proposed framework uses the Ben
wavelet transform to convert raw acceleration signals into
time-frequency representations, which are then processed
through a parallel CNN and Transformer branches to extract
spatial and temporal features before fusion. We validated this
approach on two datasets: the Z24 Bridge dataset and the Qa-
tar University Grandstand Simulator (QUGS) dataset. Our
proposed framework achieved 98.85% on the Z24 Bridge da-
taset and 97.9% on the QUGS dataset, representing a 1.35%
improvement over state-of-the-art methods. The proposed
framework identifies both the sharp structural discontinuities
and the subtle shift in the global behavior of the structure.
Furthermore, the model successfully performed multi-class
damage classification with 91% accuracy.
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1. INTRODUCTION

Infrastructures globally are exposed to extreme stressors,
whether from increased traffic loads or extreme environmen-
tal events, accelerating the natural and unavoidable aging of
structures much earlier than expected. Recent studies of
structural failures demonstrated that structures all over the
world are failing faster than their designed life span, which
underlines the need for sophisticated and targeted assessment
methods (Garg et al., 2022). Visual inspections, as one of the
first structural evaluation techniques, were proven to be in-
sufficient since they rely on the personnel’s expertise and
can’t detect internal defects.

Non-destructive testing (NDT) techniques such as thermog-
raphy, magnetic waves, and ultrasound were presented as al-
ternatives that go beyond surface-level damage in structures
(Schabowicz, 2019). NDTs, although they present several ad-
vantages over visual inspections, were also proven to be sen-
sitive to external factors such as environmental conditions.
They also remain periodic inspections that lack real-time
monitoring capabilities, therefore lack early warning signs.

Structural Health Monitoring (SHM) systems, containing
sensor networks, were able to address this issue by enabling
real-time, continuous monitoring of structures (Sun et al.,
2020). Different types of sensors, depending on the moni-
tored parameter, either mounted on or embedded within a
structure, acquire data, which is then processed and inter-
preted for structural damage detection (Deng et al., 2023).
The large amount of data gathered by sensors in different lo-
cations of the structure contributes to having accurate results
and making knowledgeable decisions about the structural
conditions, the additional tests to be conducted, or the correc-
tive measures to be taken (He et al., 2022).
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One of the most utilized techniques in SHM is vibration-
based approaches, as they can identify internal damage before
it visibly appears on the structure (Saidin et al., 2022). This
technique builds on the structural definition of damage, stat-
ing that damage alters the structural characteristics; therefore,
a behavior change indicates the existence of damage in the
monitored structure (Rabi et al., 2024). Vibration-based
SHM uses signal processing techniques to detect damage-
sensitive features from acceleration data. Methods like Fast
Fourier Transform (FFT), Short-Time Fourier Transform are
traditional methods that are powerful for analyzing stationary
signal. However, they present significant challenges when
applied to nonlinear and non-stationary signals, which is
problematic in real-world applications, given that structures
are inherently exposed to dynamic loads (Xu et al., 2022).

Wavelet Transforms (WT) represent the time signals in the
frequency domain. It has been one of the most used signal
processing techniques in recent years for damage detection of
civil structures. Demirlioglu and Erduran (Demirlioglu & Er-
duran, 2024) demonstrated that wavelet processing identifies
damage without prior knowledge of the undamaged state us-
ing accelerometers mounted on a vehicle. Among wavelet
types, the Mexican Hat wavelet is excellent at detecting lo-
calized abrupt changes in the signal. For instance, Tan et al.
(Tan et al., 2022) identified damage by analyzing axle accel-
eration using the Mexican Hat Wavelet. Hester et Gonzélez
(Hester & Gonzalez, 2017) used the Continuous Wavelet
Transform (CWT) with the Mexican hat wavelet to detect lo-
calized stiffness loss for a drive-by bridge monitoring
method. Another wavelet type is the Morlet wavelet, which
is useful for global pattern identification of non-stationary
signals. Qiu et al. (Qiu et al., 2024) employed the Morlet
wavelet on the KW51 bridge vibration data, accurately local-
izing damage on the bridge.

The Ben Wavelet is a complex-valued Wavelet Transform
that combines the intrinsic properties of both the Mexican Hat
wavelet and the Morlet wavelet. Similar to the Morlet wave-
let, the Ben wavelet captures both amplitude and phase data,
while also remaining sensitive to the signal’s continuities like
the Mexican Hat wavelet (Benbrahim et al., 2005).

While WTs improve feature extraction, employing them as
standalone techniques lacks automation. Hence, supervised
deep learning algorithms are increasingly employed for dam-
age identification, localization, and classification. CNNs are
deep learning models that process time-frequency represen-
tations to automatically extract damage-sensitive features
from the data. CNNs, with one or multiple layers, are capable
of effectively extracting spatial hierarchies within images and
time-frequency representations. The early layers detect sim-
ple damage while deeper layers detect complex patterns in
the data. Wu et al. (Wu et al., 2022) used wavelet packet de-
composition (WPD) for feature extraction in acceleration sig-
nals and CNN for damage detection. Nguyen et al. (Nguyen
etal., 2024) integrated CWT with CNN to automate structural

damage detection. Chen et al. (Chen et al., 2024) combined
CWT and 2D-CNN to indirectly detect bridge damage from
vehicle vibrations. Najdi et al. (Najdi et al., 2025) used Syn-
chrosqueezing Wavelet Transform (SSWT) with ResNet-
based CNN for an effective time-frequency feature extrac-
tion. Song et al. (Song et al., 2024) used the Morlet wavelet
transform to convert acceleration data into time-frequency
scalograms, which are then analyzed with pre-trained CNNs.
However, one limitation is that CNN algorithms process data
locally, which can affect their overall data interpretation, as
they may miss the broader relationships between data points.

Transformers have emerged as an alternative to recurrent
models by utilizing self-attention mechanisms to process
time sequences of data. Additionally, Transformers process
data simultaneously rather than sequentially, which allows
them to capture relationships between data regardless of their
location or timing (Wan et al., 2023). Fukuoka et Fujiu (Fu-
kuoka & Fujiu, 2023) employ a transformer-based image pro-
cessing model for bridge damage detection, specifically de-
lamination and rebar exposure. However, their ability to pro-
cess data as a whole comes at the cost of their inability to
detect localized anomalies in data and consequently miss the
subtle damage signs in structural data.

To address these issues, we propose in this paper a novel ap-
proach combining the Ben wavelet transform, CNN, and
Transformers to improve feature extraction and state classifi-
cation accuracy. The CNN extracts spatial local features from
the vibration signals, while the Transformers extract global
temporal dependencies, effectively detecting small damage
as well as changes that manifest themselves in the structure's
global behavior. The features extracted from both branches
are fused through a concatenation layer, followed by a fully
connected layer for final classification. Our experimental re-
sults, validated on two renowned datasets, the Z-24 bridge
dataset and the Qatar University Grandstand Simulator
(QUGS) dataset, demonstrate that this hybrid approach out-
performs both traditional methods and state-of-the-art deep
learning techniques for structural health monitoring.

Despite these advances, the existing vibration-based methods
address either the detection of localized damage features, like
sharp discontinuities, or the global behavioral change of the
structure, like the gradual loss of stiffness, but not both sim-
ultaneously. CNN-based approaches capture spatial anoma-
lies in the time-frequency representations, but miss the tem-
poral dependencies. In contrast, the Transformer-based meth-
ods capture global behavioral shifts but lack the spatial reso-
lution needed for damage detection. Real-world structural
damage manifests simultaneously through both mechanisms.
Existing methods address these separately or sequentially.

To adress this gap, we propose a novel hybrid CNN-Trans-
former framework that processes wavelet-transformed vibra-
tion signals through parallel branches, to extract both the lo-
cal spatial anomalies and the global temporal patterns,
providing a comprehensive dual-scale damage detection.
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This research paper will contribute the following:

- Advanced feature extraction: using the Ben wave-
let transform to extract features from vibration sig-
nals to address the limitations of standard wavelet
transforms.

- Novel damage detection: Unlike traditional ap-
proaches that rely solely on one method, we intro-
duce a parallel processing structure that combines
the strengths of CNNs with Transformers. We use
CNNs and Transformers to capture both localized
disruptions in the time-frequency representation of
vibration signals and global effects that damage has
on the overall behavior of the structure through
changes in the initial vibration signals.

The content of this paper is organized as follows: Section 2
is dedicated to the theoretical background of the proposed hy-
brid method. Section 3 presents the real-world validation and
its results through two bridge vibration datasets. Finally, sec-
tion 4 concludes the article and presents the limitations.

2. METHODOLOGY

This section presents our novel local-global detection frame-
work, which combines wavelet transforms with a hybrid deep
learning architecture. Figure 1 illustrates the complete meth-
odology, starting with raw vibration signals from civil struc-
tures and ending with damage classification.

Our proposed framework addresses a current limitation in the
literature approaches of structural health monitoring, which
is the simultaneous detection of localized damage signs and
the changes in the global behavior of the structure’s vibra-
tions. This multi-scale detection of damage is not fully cap-
tured by traditional single-scale methods, which are only
adept at either subtle or major damage detection.

2.1 Wavelet Transform

We chose to apply the Ben wavelet, originally developed by
Benbrahim et al. (Benbrahim et al., 2005) for seismic signal
classification, to civil structural health monitoring applica-
tions. Wavelet Transforms extract features from non-station-
ary signals that are missed when Fourier Transforms are used
(Kim & Melhem, 2004). This Ben wavelet combines Mexi-
can Hat localization properties with the Morlet phase preser-
vation capabilities, both needed for sharp discontinuities like
cracks and bolt loosening, and gradual changes in structural
behavior as stiffness loss and energy redistribution. The Ben
wavelet is an asymptotically admissible wavelet defined as
(Benbrahim et al., 2005), where w is the central frequency
of the wavelet.:

2

! o
Upen(t) = NG m (1l — tz)elwote t2/2 0

The Ben Wavelet combines properties from two classic
wavelets, the Mexican Hat Wavelet (Mallat, 1989) and the
Morlet Wavelet (Goupillaud et al., 1984). Each component
of the wavelet has a specific functional purpose. The term

2 1 . .
" T+ is a normalization constant that ensures the unit en-

ergy. The term (1 — £2) offers localized sensitivity, similarly
to the Mexican Hat wavelet, and e!®o? | inherited from the
Morlet Wavelet, provides amplitude and phase information
preservation. Finally, the Gaussian envelope e t*/2 ensures
a minimal Time-Bandwidth Product as per the Heisenberg-
Gabor limit to balance the time localization and frequency
resolution (Papoulis, 1977).

The Ben wavelet satisfies the admissibility condition re-
quired for continuous wavelet transform analysis. The Ben
wavelet possesses zero mean, [ Y,e, (t)dt — Oas wy—> o,
and Ype,(t)dt € L*( R)Nn L'( R) , ensuring Cy =

2
fM < +oo (Benbrahim et al., 2005).

lwldw

The Ben wavelet is not symmetric overall, and that is due to
its complex term e‘“of. This asymmetry is essential for phase
analysis and detecting directional frequency shifts. However,
the real part of the Ben Wavelet remains symmetric to main-
tain a good temporal localization. Additionally, for a bal-
anced oscillatory behavior with time localization, the admis-
sibility condition for the central frequency is wqy > 7.

This hybrid formulation allows the detection of both abrupt
and gradual changes. The Continuous Wavelet Transform
with the Ben wavelet generates scalograms that present the
energy redistribution signs indicative of structural damage:

2
SCAL(a,t) = |CWTY (a,t)] 2)

Where damaged structures display energy distribution across
a broad frequency band compared to the concentrated energy
signatures of undamaged states.

2.2 Hybrid CNN-Transformer Architecture

2.2.1. Architecture

Our hybrid architecture addresses the limitations of CNNs
and Transformers for structural damage detection. CNNs de-
tect frequency discontinuities in scalograms using hierar-
chical feature extraction; however, they are unable to inter-
pret these structural changes on the global scale. Transform-
ers can extract long-range temporal correlations through self-
attention mechanisms; however, they lack spatial resolution
for sudden time-frequency changes. The purpose of our par-
allel processing design is to extract both feature types for a
complete picture of the damage.
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2.2.2. CNN Branch: Parallel local damage feature ex-
traction

The CNN branch works in parallel to capture spatial features
from the wavelet’s resulting scalograms (Lecun et al., 1998).
The CNN architecture uses four progressive convolutional
layers (16, 32, 64, 128) and max pooling to reduce dimen-
sionality while retaining key features.

To extract local patterns, each convolutional layer uses
learned filters. We also employed ReLU activation to main-
tain training stability.

’ _ ks kT
Ss',t',f - Zi:l Zj=1Wi,i.f 'Ss’+i—1,t’+j—1 3)

This branch is especially employed for spatial damage signa-
tures extraction, such as shifts and spectral anomalies, while
the Transformer branch processes structure-wide damage
patterns simultaneously.

2.2.3. Transformer Branch: Parallel Global Feature
Extraction

The Transformer branch processes reshaped scalograms to
extract global temporal dependencies (Vaswani et al., 2017),
while operating in parallel with the CNN Branch. We first
reshaped the input scalograms from 2D time-frequency rep-
resentations to sequential tokens to process them as time se-
ries.
The Transformer architecture uses a multi-head self-attention
mechanism with 8 attention heads and a key dimension
di=128, to capture long-range patterns in structural vibra-
tions:
. kT
Attention(Q,K,V) = softmax (—) %4 4
Vi
This configuration computes attention weights across the en-
tire time-frequency representation to facilitate the detection
of gradual energy shifts that happen over long periods. This
parallel design captures long-range dependencies manifest-

ing as gradual energy shifts throughout the entire time-fre-
quency domain. We employed Layer Normalization (Ba et
al., 2016) and dropout (Salehin & Kang, 2023) to maintain

training stability, while Global Average Pooling aggregates
aggregates temporal features into vectors for fusion with spa-
tial features extracted by the parallel CNN branch.

2.2.4. Hyperparameter ablation study

We optimized the number of layers by testing various config-
urations to identify the optimal performance configuration, as
shown in table 1. For the CNN branch, we tested multiple
combinations of CNN architectures, from 2 to 5 convolu-
tional layers, paired with different Transformer configura-
tions, 1 and 2 layers, with varying attention heads and key
dimensions. The 4-layer configuration (16-32-64-128 filters)
with 1 layer, 8 head, key dimension 128, reached the highest
accuracy of 98.85%.

Table 1 Hyperparameter ablation study results

CNN ' Transform-er Accuracy
Configuration Configuration
%1?3?]8 1 layer, 4 heads, key=64 | 92.19%
[13 61,?;21] 1 layer, 4 heads, key=64 96.09%
[165‘;;2,%/2? 28] 1 layer, 4 heads, key=64 98.16%
[16,43;2,122;8] 1 layer, 4 heads, key=128 | 98.66%
[1623}%]2? 28] 1 layer, 8 heads, key=64 | 98.77%
[16,43;&}ng?28] 1 layer, 8 heads, key=128 | 98.85%
[16,43;&}ng?28] 2 layer, 8 heads, key=128 | 97.55%
[16,3;,1634{66?,128] 2 layer, 8 heads, key=128 | 92.19%

Civil Structure Wavelet Scalogram Classification

-1

N

Acceleration signal CNN
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L
| [
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Time

Feature Fusion
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Figure 1 The proposed hybrid CNN-Transformer model
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2.2.5. Feature Fusion

Feature fusion combines outputs from both the CNN and
Transformer branches to create a complete and complemen-
tary representation. We employed concatenation fusion to
preserve the features extracted from both branches while
avoiding information loss. The fusion layer directly concate-
nated the feature vectors extracted from both branches:
Zconcat = Concatenate (ZenN, Zrans) &)
Where the Zcnn are the spatial features extracted by the CNN
branch, and the Zrmns are the temporal features extracted by
the Transformer branch. The CNN branch outputs feature
vectors that encode local spatial patterns and frequency do-
main signatures, while the Transformer branch outputs tem-
poral dependencies and long-range correlations, resulting in
a fused feature vector that contains spatial and temporal dam-
age signs.
We selected Concatenation fusion over alternative feature
techniques, such as element-wise addition or weighted fu-
sion, because it keeps the full information content of both
branches. This ensures that the spatial features extracted by
the CNN and the contextual changes extracted by the Trans-
formers contribute equally to the classification decision. We
processed the concatenation features through a fully con-
nected layer with dropout regularization (Salehin & Kang,
2023) to allow binary classification between damaged and
undamaged structural states. Figure 2 details the hybrid par-
allel CNN-Transformer process.

Wavelet
Scal

(200x256x1)

Conv2D
16 filters (3x3) Reshape

s (200, 256)
M l
Conv2D
32 filters (3x3) Multi-Head Attention
ReLU 8 heads, dk=128
+
Conv2D l
64 filters (3x3)
ReLU Layer Normalization
+ + Dropout(0.1)
Conv2D l
128 filters (3x3)
ReLU GlobalAvgPool1D
L 2 (256.)
GlobalAvgPool2D

(128,)

L.

Feature Fusion
Concatenate
(384,

L4

Dense(64) + ReLU
(Dropout)

+

Dense(1) + Sigmoid
Damage Classification

Figure 2 Hybrid CNN-Transformer architecture for struc-
tural damage detection.

2.3. Performance evaluation

2.3.1. Classification metrics

Hybrid CNN-Transformer architecture for structural damage
detection.

Accuracy measures the correct predictions by the model:

TP+TN

Accuracy = —
y TP+TN+FP+FN

(6)

Precision calculates the proportion of the correctly predicted
damage cases among all predicted positive cases:

.. TP
Precision =
TP + FP

(7

Recall calculates how many true damage cases are identified:

TP
TP + FN

Recall =

®)

Fl-score is a metric that accounts for both precision and re-
call for error quantification.

Precision X Recall
Fl-score=2 X —— (9)

Precision+Recall

Where, TP and TN are the true positives and true negatives,
respectively. And, FP and FN are the false positives, and false
negatives, respectively.

2.3.2.

We employed t-distributed Stochastic Neighbor Embedding
(t-SNE) (Kobak & Berens, 2019) to validate the discrimina-
tive capacities of the learned features extracted by our paral-
lel processing architecture. t-SNE maps the high-dimensional
learned features to a 2D space to visually validate the class
separability between the damaged and undamaged states.
This constitutes a qualitative validation of our parallel archi-
tecture’s capability of creating separate clusters for different
structural states.

Feature Space Visualization

3. RESULTS

We demonstrated the effectiveness and advantages of the
proposed method for bridge damage detection on two bench-
mark datasets: the Z24 Bridge dataset and the Qatar Univer-
sity Grandstand Simulator (QUGS) dataset. We employed the
724 dataset, consisting of progressive pier settlement scenar-
i0s, to evaluate performance against several established tech-
niques. Additionally, the QUGS dataset, providing compre-
hensive data on steel frame joint loosening, was used to fur-
ther validate the method's detection capabilities across differ-
ent structural materials and damage mechanisms.

International Journal of Prognostics and Health Management, ISSN 2153-2648, 2025 ***
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3.1. Dataset 1: Z24 Bridge Dataset

3.1.1. Experimental Setup

The Z24 bridge was a post-tensioned concrete bridge with a
two-cell box-girder cross-section, located on the A1 highway
between Bern and Ziirich in Switzerland (Maeck & De
Roeck, 2003). The monitoring was conducted as part of the
European Brite EuRam research project BE-3157, titled 'Sys-
tem Identification to Monitor Civil Engineering Structures'
(SIMCES). Figure 3 shows the Z24 Bridge structure.

16 accelerometers were mounted on the bridge to measure
accelerations in multiple directions. Data was acquired at a
sampling frequency of 100 Hz with an anti-aliasing filter set
to a cutoff frequency of 30 Hz. One month before the bridge
demolition, progressive damage was collected under multiple
damage scenarios such as pier settlements, foundation tilt,
and concrete spalling. Progressive damage was introduced
through pier settlement scenarios, starting with 20 mm to 95
mm lowering. Table 1 summarizes the damage scenarios used
in this study.

= Utzenstorf Koppigen =3»

270 p—+ 14.00 + 30.00 + 14.00 +—42.70

A T 7 A

& "
& Highway A1

S
[ North ¢ | .
- as0 | ‘ i | Zunch:

/
=== South | Bem /

Figure 3 (Maeck & De Roeck, 2003)724 Bridge

structure

/ 4

3.1.2. Hybrid Model Architecture Configuration

The implemented Hybrid CNN-Transformer model follows a
parallel-branch architecture that detects both local and global
characteristics. Table 2 shows the hybrid model’s implemen-
tation details.

Table 3 Hybrid model implementation details

Component Configuration

Input Layer Scalogram (S x T x 1)

CNN Branch (Local Feature Extraction)

16 filters, (3,3), ReLU, same pad-

Conv2D-1 .
ding

MaxPool2D-1 (2,2) pooling

32 filters, (3,3), ReLU, same pad-

Conv2D-2 .
ding

MaxPool2D-2 (2,2) pooling

64 filters, (3,3), ReLU, same pad-

Conv2D-3 .
ding

MaxPool2D-3 (2,2) pooling

128 filters, (3,3), ReLU, same pad-

Conv2D-4 .
ding

MaxPool2D-4 (2,2) pooling

GlobalAvgPool2D Average pooling

Transformer Branch (Global Feature Extraction)

Reshape (height, width x channels)
Table 2 The Z24 b.rldge Pier ;ettlement damage sce- MultleeadAtten- $ heads, key dim=128
narios and their dates. tion -
Class . Settle- Dropout rate=0.1
Date (1998) | |5pe | Damage Scenario ment LayerNormaliza- .
. epsilon=1e-6
(mm) tion
4 August 0 Undamaged bridge 0 GlobalAvgPool1D Average pooling
10 August 1 Pier Lowering 20
. i Local-Global Fusion & Classification
12 August 2 Pier Lowering 40
17 August 3 Pier Lowering 30 Concatenate CNN + Transformer features
18 August 4 Pier Lowering 95 Dense 64 neurons, ReLU, L2
Dropout rate=0.3
Dense (Output) 1 neuron, sigmoid
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We trained the model using binary cross-entropy as the loss
function with Adam Optimizer at a learning rate of 0.001.
Additionally, we used a batch size of 16 over 100 epochs and
included early stopping with a patience of 3 epochs to track
the validation loss to prevent overfitting. The dataset is split
using stratified sampling, with 80% assigned for training and
20% for testing for balanced class representation across both
sets.

3.1.3.
(0]
The Ben wavelet transform efficiently extracts damage sig-
natures in the time-frequency domain. Figure 4 shows a clear
distinction between undamaged and damaged states. The pier
settlement produces a redistribution of energy across fre-
quency bands, with damaged conditions (Fig. 4d) showing a
spread energy pattern when compared to the concentrated
signatures of the undamaged state of the structures (Fig. 4c).
The implementation generates scalograms of 200 scales X
256 time points, capturing both high-frequency transient
events and low-frequency structural changes, creating com-
plementary input for parallel CNN and Transformer pro-
cessing.

(i)

We applied t-SNE dimensionality reduction to visualize the
learned feature representations. Figure 5 shows a clear class

Results

Scalogram Visualization and Feature Analysis

Feature Space

separation in the 2D feature space between undamaged (Class
0, blue) and damaged (Class 1, green) structural states across
all pier settlement scenarios (20mm, 40mm, 80mm, 95mm),
forming distinct clusters. This clear separation demonstrated
the hybrid CNN-Transformer architecture’s ability to cor-
rectly learn discriminative features for the detection of struc-
tural damage.

(iii)
The hybrid model shows strong training characteristics,
achieving convergence within 15-25 epochs while training
accuracies reach 99% and validation accuracies are main-
tained above 98%. The early stopping mechanism activates
at epoch 2243 across damage scenarios which prevents over-

fitting and confirms effective parameter learning. Figure 6
shows the training and validation curves.

@iv)

Table 4 shows a stable performance of the proposed hybrid
method across all settlement scenarios of the settlement mag-
nitude. The Precision-recall balance (98.38% vs 98.32%) in-
dicate low false positive/negative rates. The 80mm settlement
case shows a slightly lower precision (96.63%) with high re-
call (98.85%), which suggests the models sensitivity to
changes in intermediate damage scenarios.

Training performance

Detection performance results

Amplitude

b

Amplitude

o

L
IS

[ 2000 4000

Time (samples)

(a)

(©)

o 2000 4000

Time (samples)

(b)

8000

(@

Figure 4 Ben wavelet scalogram comparison showing damage detection capability. (a) Undamaged case acceleration signal
showing normal structural response, (b) Damaged signal (80mm pier settlement) showing increased amplitude and altered
vibration characteristics, (c) Baseline scalogram with concentrated energy distribution, (d) Damaged scalogram revealing clear
energy redistribution and additional frequency components. This representative comparison demonstrates the method's ability
to distinguish between undamaged and damaged structural states.
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Feature Space: Class Separation

Feature Space: Class Separation
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Figure 5 t-SNE visualization of learned feature representations from the hybrid CNN-Transformer model on the Z24 Bridge
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Figure 6 (a) Training and validation loss convergence over epochs, (b) Training and validation accuracy progression over

epochs.

Table 4 Z24 Bridge Implementation Results.

Damage scenario Accuracy Precision Recall F1-Score

20 mm Settlement 98.85% 98.85% 98.85% 98.85%

40 mm Settlement 98.28% 98.84% 97.70% 98.27%

80 mm Settlement 97.70% 96.63% 98.85% 97.73%

95 mm Settlement 98.28% 97.73% 98.85% 98.29%
Mean + Std 98.35+0.36% 98.38 + 0.44% 98.32 £ 0.42% 98.35+0.36%
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3.1.4. Comparison and analysis of detection methods.

To evaluate the performance of our proposed hybrid CNN-
Transformer method within the existing SHM techniques.
We reviewed state-of-the-art methods applied to the Z-24
bridge dataset to underline our proposed method’s superior-
ity. The experimental results in Table 4 summarize the per-
formance of the nine detection methods on the Z-24 bridge
dataset. We chose to compare our method to the following
papers:

- Santaniello et Russo (Santaniello & Russo, 2023)
convert 1D acceleration signals into time-frequency
images with synchrosqueezing continuous wavelet
transform (SCWT). The authors evaluate several
CNN architectures including ResNet50, MobileNet
vl, and DenseNet121, and propose two refinement
techniques: image-splitting and signal-splitting.

- Sony et al. (Sony et al., 2022b) proposes a win-
dowed Long Short-Term Memory (LSTM) net-
work method for vibration-based multiclass dam-
age detection and localization in civil structures.

- Sony et al. (Sony et al., 2022a) proposes an opti-
mally-tuned windowed 1D CNN approach for mul-
ticlass damage identification using vibration re-

Table 4 and Figure 7 demonstrate our hybrid model’s outper-
formance within the literature. Our hybrid model achieves an
accuracy improvement of 1.35% over signal-splitting Res-
Net50, representing a 36% reduction in error rate (from 2.5%
to 1.15%). Deep learning methods' accuracies range from 95-
97%, while traditional approaches vary from 72% to 94%.
This performance gap defines three method categories: our
hybrid method at 98.85% accuracy, advanced deep learning
from 95-97%, and convolutional techniques 72-94%.

3.1.5.

To further validate our hybrid CNN-Transformer architec-
ture, we performed ablation studies by comparing each com-
ponent against the complete hybrid model. For the 20mm pier
settlement damage scenario, we used the Ben wavelet trans-
form to test three different configurations. The Transformer-
only branch used Transformer components without the CNN
components, whereas the CNN-only branch used CNN fea-
ture extraction without the Transformer components. The hy-
brid CNN-Transformer configuration represents our parallel
processing architecture.

Figure 8 shows the performance comparison across the three
architectural configurations. The ablation results show how

Architecture Ablation Study

sponses
Table 5 Comparison with State-of-art Methods' Results
Method Accuracy | Precision | Recall | Fl-score Reference
Proposed hybrid method 98.85% 98.85% 98.85% | 98.85% Our
Signal-splitting (SST with ResNet50) 97.5% 97.77% 97.34% | 97.51% (Santaniello & Russo, 2023)
Image-splitting (SST with ResNet50) 97.47% 97.39% | 97.17% | 97.27% (Santaniello & Russo, 2023)
ResNet50 (with SST) 97.08% 97.22% 97.22% | 97.22% (Santaniello & Russo, 2023)
MobileNet vl with SST 95.36% - - - (Santaniello & Russo, 2023)
LSTM 94% 95% 94% 94% (Sony et al., 2022b)
DenseNet121 with SST 90.21% - - - (Santaniello & Russo, 2023)
IDCNN 83% 83% 83% 83% (Sony et al., 2022a)
MLP 72.05% 73.17% | 71.31% | 71.42% (Santaniello & Russo, 2023)
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Figure 7 Performance comparison of the proposed hybrid method against traditional and advanced deep learning approaches.

100

98.85%

Accuracy (%)

90

CNN-only

Transformer-only Hybrid
CNN-Transformer

Figure 8 Architecture Ablation Study Results (20mm dam-
age case)

the CNN and Transformer components are complementary.
The Transformer-only method shows lower accuracy
(92.97%) as it focuses on capturing global patterns, while the
CNN-only method achieved good performance (97.66%) by
capturing local damage features. The hybrid method per-
forms better than both of its separate parts do, which demon-
strates that the parallel processing of global and local features
show in higher damage detection accuracy.

3.1.6. Wavelet Transform Comparison Study.

We compared three wavelets — the Morlet, Mexican Hat, and
Cauchy — to justify the choice of the Ben Wavelet transform
for time-frequency feature extraction. The Hybrid CNN-
Transformer was applied to the 20mm settling case in all ex-
periments.

Figure 9 presents the performance comparison across differ-
ent wavelet transforms. The Ben wavelet achieves the highest
accuracy value of 98.85%, surpassing the Cauchy (96.09%),
Morlet (94.53%), and Mexican Hat (82.81%) wavelets. The
Ben wavelet's effectiveness comes from its time-frequency
localization features, which identify both localized and global
damage features. The performance gaps between the different
wavelets confirm that the wavelet choice influences the dam-
age detection accuracy.

1000 98.85%

97.5
96.09%

95.0 94.53%

Accuracy (%)
8
o

Ben Cau'chy Morlet

Mexican Hat

Figure 9 Wavelet Transform Comparison Results (20mm
damage case)
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3.1.7. Multi-class Damage Identification Results
Beyond the model’s ability of binary classification of each
damage level independently, we evaluated the hybrid
model’s capabilities for damage assessment through a multi-
class classification task to identify damage severity levels.
We tested the model on the task of simultaneously classifying
all five damage scenarios of the Z24 bridge: Undamaged, 20
mm settlement, 40mm settlement, 80mm settlement, and
95mm settlement.

The model architecture remained unchanged except for the
final output layer, which we modified from binary classifica-
tion (sigmoid activation, 1 neuron) to multi-class classifica-
tion (softmax activation, 5 neurons). We changed the func-
tion from binary cross-entropy to sparse categorical cross-en-
tropy to accommodate integer class labels. We utilized train-
ing the same hyperparameters as binary classification: Adam
optimizer (learning rate 0.001), batch size 16, early stopping
with patience 10.

The evaluation of the multi-class performance achieved an
overall accuracy of 91%, demonstrated the model’s ability to
not only detect damage presence but also assess the damage
severity levels. As expected, the model shows systematic
confusion between the adjacent damage levels. While per-
scenario binary validation of the model achieved 98.85% as
the best accuracy, this 5-class damage classification model
shows the model’s practical capability of identifying damage
states without prior knowledge of the severity level. Table 6
reveals the detailed performance metrics.

Table 6 Multi-class Damage Identification Results

damage scenario |accuracy | precision | recall | F1-score
Undamaged 93.8% 95% 94% |  94%
20mm Settlement | 90.1% 85% 90% | 87%
40mm Settlement | 88.9% 87% 89% | 88%
80mm Settlement | 86.6% 96% 87% | 91%
95mm Settlement | 95.1% 93% 95% | 94%

The confusion matrix, shown in figure 10, reveals expected
patterns, most misclassifications occur between adjacent
damage levels. The undamaged state and the 95mm settle-
ment are the most distinct structural damage states with clear
feature separation, therefore reaching the highest accuracies,
93.8% and 95.1% respectively.

The intermediate damage levels achieved lower accuracies;
80mm settlement achieved 86.6% accuracy as the model oc-
casionally confused it with 40mm or 95mm. additionally, the
high precision of 96% and low recall of 87% indicate that
other classes are rarely misidentified as the 80mm settlement,

preventing false alarms while maintaining an overall the de-
tection capability.

Figure 10 Multi-class confusion matrix

3.2. Dataset 2: Qatar University Grandstand Simulator
(QUGS)

3.2.1. Experimental Setup and Data Preparation

The Qatar University Grandstand Simulator (QUGS) (Avci
et al., 2022) is a laboratory-scale steel structure designed to
simulate the behavior of modern stadium seating facilities
(M.ASCE, 2018), (Abdeljaber et al., 2017). The dataset was
developed to verify structural health monitoring techniques
in a controlled environment before applying to real-life stadi-
ums.

The structure has of a hot-rolled steel frame with footprint
dimensions of 4.2mx4.2m, designed to carry 30 spectators.
The steel frame has 8 girders, each 4.6m long, and 25 filler
beams supported on 4 columns. The damage mechanism is
based on loosening joints in the truss structure at specific lo-
cations, providing both undamaged and damaged state data.
Figure 11 shows the QUGS Structure and Joint Locations.

30 accelerometers were place on the main girders at the 30
joints of the steel structure. Vibration signals from each joint
location are processed similarly to the Z24 dataset. Signals
are normalized, transformed using the spatial and temporal
Ben Wavelet Transform into scalograms, and fed into the hy-
brid CNN-Transformer model for binary classification of
joint damage states.

The QUGS dataset provides two independent datasets, col-
lected in separate experimental runs to ensure that the model

is evaluated on unseen data:

- Dataset A: For training and validation.
- Dataset B: for testing.

A random split is created with Dataset A to create a validation
set for hyperparameter tuning and early stopping.
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(i) Implementation results

Figure 12 shows high performance accuracies around 94-
99% across the majority of joints, with joint 29 presenting a
considerable performance outlier at 94.70%. The validation
results show an average accuracy of 97.9% and a median of
98%, with most joints exhibiting high accuracy values, while
a few others show lower values. Table 5 shows the details of
this performance variation, revealing that the best performing
near a perfect score above 98.9%, while challenging joints
show balanced precision-recall values even with low accura-
cies.

3.2.2. Comparison analysis

To validate our approach, we compared our hybrid CNN-
Transformer model with leading methods from the literature
applied to the same QUGS dataset:

.Y
2
L

Figure 11 (Ave

Mean: 97.9%
Median: 98.0%
Range: 94% - 99%

- Kuo and Lee, 2023 (Kuo & Lee, 2023) uses signals
differences and a 1D fusion CNN (1D-FCNND) for
structural damage detection.

- Truong et al., 2022 (Truong et al., 2022) uses a hy-
brid framework of 1D-CNN and GRU to learn spa-
tial and temporal relationships from structural vi-
bration signals.

Figure 13 shows validation results on joints 1-5. On this sub-
set, our method achieves 98.2% of average accuracy com-
pared to 96.7% for 1D-FCNND, which shows our method’s
superiority.
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Figure 12 Detection accuracy across all 30 QUGS joint damage cases.
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Table 7 Performance metrics for representative QUGS joints across different accuracy tiers.

Damage scenario Accuracy Precision Recall F1-Score
Joint 04 99.74% 100% 99.47% 99.73%
Joint 13 99.47% 99.47% 99.47% 99.47%
Joint 24 98.94% 99.47% 98.94% 98.94%
Joint 02 96.56% 96.32% 96.83% 96.57%
Joint 11 97.62% 97.37% 97.88% 97.63%
Joint 29 94.72% 95.00% 94.75% 94.87%
S S&
97.096.7 96.7

8

Accuracy (%)
]

75 4

70 4
Joint 1 Joint 2

Joint 3 Joint 4 Joint 5

Joint Number

Figure. 13 Method comparison for Joint 1-5

4. DISCUSSION

Experimental results on two structural datasets demonstrate
that the local-global hybrid framework effectively addresses
the key challenge of detecting damage at multiple scales in
Structural Health Monitoring (SHM). The wavelet scalo-
grams, through time-frequency representations, reveal that
damaged scenarios exhibit a broad frequency distribution, re-
quiring both local analysis with CNN and global analysis
with Transformer to accurately identify damage.

The ablation study shows that the CNN-only processing has
an accuracy of 97.66% as it captures localized damage but
neglects the global behavioral effects, whereas the Trans-
former-only processing has an accuracy of 92.97% as it lacks
spatial resolution for abrupt changes, focusing on temporal
patterns. Combining both capabilities through our hybrid
model results in an accuracy of 98.85%.

The reduced precision of 96.63% of the 80mm pier settlement
case reflects the challenges in structural state classification

caused by the transitional energy patterns of the intermediate
damage scenario. Similarly, QUGS joint 29’s accuracy out-
lier (94.72%) shows variation across joint locations, high-
lighting the need for location-specific analysis in SHM to op-
timize detection strategies.

The proposed framework performs consistently across differ-
ent damage mechanisms — pier settlement, joint loosening,
and materials — concrete and steel, demonstrating its strong
adaptability. The scalogram-based input representations also
prove to be optimal for this dual analysis, as they offer multi-
resolution time-frequency information, which allows the
CNN and Transformer components to detect both localized
changes and gradual shifts accurately.

From a computational perspective, the hybrid CNN-Trans-
former architecture is justified by both theoretical considera-
tions and experimental results. All experiments were con-
ducted on NVIDIA Tesla T4 GPU with 16GB VRAM. The
parallel architecture processes both branches simultaneously
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on GPU hardware, resulting in training times slower than in-
dividual branches, however faster than the sequential training
of the models. Additionally, it shows an improvement of
1.19% over the faster individual model, which is a 44% error
reduction rate, making the time-accuracy trade-off advanta-
geous.

More importantly, the proposed architecture’s complexity
addresses the critical limitation in structural damage detec-
tion, namely the necessity to detect both the localized discon-
tinuities, such as cracks and bolt loosening, and gradual over-
all changes, such as stiffness loss. Our ablation study in Sec-
tion 3.1.7, shows the hybrid model shows better performance
than its individual branches (98.85%), while the CNN-only
model reaches 97.66% by detecting only local shifts, while
Transformer-only achieves 92.97% by capturing global be-
havioral shifts.

The complete computational pipeline consists of two distinct
phases: the scalogram generation and the deep learning
model. The scalogram generation step constitutes the domi-
nant computational cost step. Despite this computational bot-
tleneck, the Ben wavelet’s feature extraction capability of
combining localized sensitivity with phase preservation re-
sults in 4-16% accuracy improvement over alternative wave-
lets (Figure 9), justifying the additional cost.

Table 8 Computational performance analysis

L Inference time
method dataset Tra1'n1ng time per sample
(in min)

(average in ms)
CNN-only 1.5 40
Trans-only 724 2 60
hybrid 3 70
CNN-only 0.2 8
Trans-only QUGS 0.1 10
hybrid 0.4 15

Despite the method’s advantages, several limitations should
be acknowledged. First, external factors such as environmen-
tal conditions, changing operational loads, and measurement
noise were not addressed while validating this method, which
would affect the performance in practical applications. Sec-
ond, the method requires large training data, which limits its
use on new or uncommon structures unless combined with
transfer learning approaches. Third, the computational de-
mands of the hybrid CNN-Transformer model are reasonable
for offline analysis; however, they could present difficulties
for real-time monitoring performance if not optimized further
with strategies such as edge computing implementations.

5. CONCLUSION

We propose a novel multi-scale damage detection framework
that enhances vibration-based structural monitoring by sim-
ultaneously detecting transient events and shifts in the overall
structural behavior. The proposed hybrid CNN-Transformer
achieved superior performance over many state-of-the-art
methods, with an accuracy of 98.85% on the Z24 Bridge da-
taset and 97.9% on the QUGS dataset. Furthermore, the
method achieved 91% accuracy for multi-class damage clas-
sification, proving its capability beyond binary damage de-
tection. The results show that combining the spatial feature
extraction with temporal pattern identification provides com-
plementary insights into the structural damage state.

In this article, our key contributions include parallel pro-
cessing for the simultaneous damage detection at the local
and global scales. Additionally, the Ben wavelet combines
time-frequency localization and phase preservation for opti-
mal feature extraction from structural vibration signals.
Lastly, hybrid architectures are used to learn damage charac-
teristics, comprehensively capturing both small-scale and
broad-scale damage features.

Future work should address environmental conditions, such
as temperature variations, and optimize real-time processing
for practical applications of the proposed method. This re-
search contributes to the advancement of intelligent structural
monitoring for a continuous assessment of structural health
for safe and reliable structures.
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