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ABSTRACT 

Rotating machinery plays a crucial role in industrial 

operations, but its reliability is frequently threatened by 

unexpected failures, leading to costly downtime and safety 

hazards. To address this problem, proactive maintenance 

strategies, underpinned by advanced fault detection 

techniques, have become essential for improving equipment 

performance and operational efficiency. This systematic 

review assesses different fault detection methods, such as 

vibration analysis, thermal imaging, acoustic emission 

monitoring, oil analysis, electrical signature analysis, and 

IoT-enabled real-time monitoring. It highlights their 

applications, strengths, limitations, and potential for 

integration across various industries, including oil and gas, 

manufacturing, aerospace, automotive, and power 

generation. The review followed the PRISMA 2020 

framework, systematically analyzing 64 peer-reviewed 

studies published between 2013 and 2025. Findings reveal 

that vibration analysis remains the most researched and 

extensively applied technique, though emerging AI-driven 

models, IoT-based monitoring, and multimodal approaches 

are increasingly shaping predictive maintenance practices. 

Proactive maintenance was found to improve equipment 

reliability, reduce downtime by up to 50%, extend machinery 

lifespan, and enhance safety and cost efficiency. However, 

widespread adoption is hindered by high implementation 

costs, data management complexities, skill gaps, and the 

absence of standardized performance metrics. The study 

concludes by emphasizing the need for hybrid, AI-enabled, 

and Industry 5.0–aligned solutions, while providing 

recommendations for integrating fault detection methods to 

optimize proactive maintenance strategies and ensure 

resilient industrial operations. 

1. INTRODUCTION 

Rotating machinery such as pumps, compressors, turbines, 

and motors plays a vital role in various industrial production 

processes. These systems are essential for smooth operations 

in manufacturing, oil and gas, energy production, and 

transportation. However, the reliability and efficiency of 

rotating machinery can be compromised by failures due to 

inadequate maintenance practices, poor planning, and 

inefficient management strategies (Kumar, Raj, Cirrincione, 

Cirrincione, Franzitta, & Kumar, 2020). Such failures can 

lead to unplanned downtime, reduced operational efficiency, 

increased costs, and heightened safety risks (Okirie, 

Saturday, Gift, & Ewe, 2025), all of which significantly 

impact industrial productivity. 

The components of rotating machinery include bearings, 

shafts, gears, impellers, and rotors. Bearings support and 

reduce friction between moving parts while shafts transmit 

power from the motor to the rotating elements. Gears are 

crucial for transferring motion and power between shafts, and 

impellers facilitate fluid movement within pumps and 

compressors. Rotors are central to turbines and motors, 

converting energy into mechanical work. The importance of 

these components lies in their essential contribution to the 

overall performance and reliability of rotating machinery 

(Isham, Kamal, Raheimi, Saufi, Lim, Leong, & Waziralilah, 

2025). A failure in any of these components can result in 

downtime, production losses, and safety hazards. Therefore, 

maintaining the health and integrity of these components is 

crucial for sustainable operations. 

Regular maintenance practices are essential for preventing 

unexpected breakdowns, optimizing performance, and 

extending the lifespan of rotating machinery. Real-time 

monitoring of critical parameters, such as vibration, helps 

identify potential failures before they occur, thereby 

minimizing unplanned breakdowns (Emagbetere, Uwatse, & 

Okoidigun, 2025). Utilizing predictive maintenance 

strategies driven by machine learning models allows for 

proactive maintenance actions based on the actual condition 

of the equipment rather than pre-set schedules (Okirie, 
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Barnabas, & Obinichi, 2024), thus reducing disruptions and 

enhancing reliability. Key maintenance tasks include 

lubricating bearings, aligning shafts, inspecting gears for 

wear, balancing impellers, and performing vibration analysis 

of rotors. These activities help identify potential issues early, 

enabling remedial action before significant damage occurs. 

Early fault detection is paramount in maintaining rotating 

machinery as it allows for the identification of emerging 

issues at an early stage. By detecting faults early, 

organizations can proactively address problems, reduce the 

risk of catastrophic failures, minimize downtime, and 

optimize equipment performance (Erhueh, Nwakile, Akano, 

Aderamo, & Hanson, 2024). Additionally, early fault 

detection contributes to cost savings by preventing expensive 

repairs and production losses. 

Several fault detection techniques are used to monitor 

rotating machinery and identify potential issues. These 

techniques include vibration analysis, thermal imaging, oil 

analysis, acoustic monitoring, and motor current analysis. 

Vibration analysis is particularly popular, as changes in 

vibration patterns can signal abnormalities in rotating 

components. Thermal imaging helps detect overheating in 

machinery parts, while oil analysis identifies contaminants 

and wear particles. Acoustic monitoring captures abnormal 

noise levels, and motor current analysis evaluates the 

electrical performance of motors. 

Modern industrial systems' increasing complexity and 

demands underscore the importance of proactive 

maintenance strategies (Yazdi, 2024). Unlike reactive 

approaches that respond to failures after they occur, proactive 

maintenance aims to anticipate potential problems and 

address them before they disrupt operations (Okirie, 

Barnabas, Ejomarie, & Asomie, 2024). Central to this 

strategy is fault detection techniques, which allow for real-

time monitoring, analysis, and intervention to improve 

machinery performance and extend its lifespan. 

This study explores the integration of fault detection 

techniques within proactive maintenance frameworks, 

offering a systematic review of both existing research and 

practical applications. Techniques such as condition 

monitoring, predictive analytics, and preventive maintenance 

are essential for the early identification and resolution of 

machinery anomalies. For instance, condition monitoring 

continuously evaluates parameters like vibration, 

temperature, and acoustic emissions to detect irregular 

patterns. Predictive analytics employs advanced algorithms 

and machine learning to anticipate potential failures, while 

preventive maintenance encompasses routine inspections and 

minor repairs to avert major breakdowns. 

The adoption of proactive maintenance has proven highly 

advantageous, resulting in increased equipment reliability, 

reduced operational downtime, and enhanced safety 

standards. By leveraging real-time sensor data, machine 

learning, and advanced analytics, predictive maintenance 

improves equipment health monitoring by identifying 

potential failures before they (Virginia, Obada, Oke, & 

Oluwaseun, 2025). These strategies not only optimize 

maintenance practices but also enhance cost efficiency by 

extending machinery lifespan and minimizing unplanned 

repairs. However, challenges remain in effectively 

integrating and scaling fault detection technologies across 

various industrial environments (Sun, Sheng, Song, Sun, 

Wang, Sun, & Liu, 2025). Barriers such as high 

implementation costs, data management complexities, and 

the need for specialized expertise often hinder widespread 

adoption.  

Despite the growing advancements in fault detection methods 

for rotating machinery, there remains a limited comparative 

analysis of existing techniques, making it difficult for 

industries to determine the most effective approach for their 

specific applications. Moreso, while proactive maintenance 

strategies have gained recognition for improving equipment 

reliability and reducing unplanned downtime, there is a lack 

of research on the integration of fault detection techniques 

within proactive maintenance frameworks, hindering their 

seamless adoption in industrial settings. Another critical 

challenge is the absence of standardized metrics for 

evaluating the effectiveness of proactive maintenance 

strategies, leading to inconsistencies in assessing their true 

impact on operational efficiency and cost savings. 

Furthermore, insufficient cost-benefit analyses for proactive 

maintenance adoption in industrial settings create uncertainty 

regarding the economic feasibility of investing in these 

strategies. Addressing these gaps is essential for optimizing 

maintenance practices, enhancing equipment reliability, and 

improving decision-making in industry. 

1.1. Research Aim 

This study aims to systematically review and evaluate 

existing research on proactive maintenance practices for 

rotating machinery with a specific focus on fault detection 

techniques. The goal is to provide a comprehensive 

understanding of how these techniques contribute to 

optimizing maintenance strategies, improving equipment 

reliability, reducing downtime, and enhancing safety in 

industrial production environments. 

1.2. Research Objectives, Questions, and Gaps 

The study identified relevant research objectives, questions, 

and gaps. Table 1 displays these objectives, questions, and 

gaps.    
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S/No. Research Objectives 

 

Research Questions Research Gaps 

1. To identify the most 

researched fault detection 

techniques for rotating 

machinery.  

What are the most researched 

fault detection techniques for 

rotating machinery? 

There is a need to identify and 

synthesize the most widely 

studied techniques across various 

industrial applications. 

2. To compare and evaluate fault 

detection methods for rotating 

machinery. 

What are the most effective 

and widely used fault 

detection methods for rotating 

machinery? 

Limited comparative analysis of 

existing fault detection methods 

for rotating machinery. 

3. To analyze the challenges and 

limitations affecting the 

adoption of fault detection 

techniques in industrial 

settings. 

What challenges and 

limitations hinder the adoption 

of fault detection techniques in 

industrial maintenance? 

Lack of research on the 

integration of fault detection 

techniques within proactive 

maintenance frameworks. 

4. To assess the quantifiable 

benefits of proactive 

maintenance strategies for 

industrial production. 

How can the impact of 

proactive maintenance 

strategies be quantitatively 

assessed in industrial 

production? 

Absence of standardized metrics 

for evaluating the effectiveness of 

proactive maintenance strategies. 

5. To develop actionable 

recommendations for 

optimizing maintenance 

strategies in industrial 

operations. 

What strategic 

recommendations can enhance 

the effectiveness of 

maintenance approaches in 

industrial operations? 

Insufficient cost-benefit analyses 

for proactive maintenance 

adoption in industrial settings. 

Table 1. Research objectives, questions, and gaps 
 

1.3. Literature Review 

Recent advancements in multi-fault diagnosis techniques for 

industrial rotating machinery have expanded the capabilities 

of predictive maintenance. However, while numerous 

methods have demonstrated potential, their effectiveness, 

limitations, and context-specific applicability remain varied. 

Gawde, Patil, Kumar, Kamat, Kotecha, & Abraham (2023) 

highlighted vibration analysis as a foundational technique for 

machine condition monitoring, particularly through methods 

such as Fourier transforms, wavelet analysis, and machine 

learning. While the study effectively demonstrates the 

benefits of multi-sensor data fusion and AI in improving 

diagnostic performance, it does not address the practical 

limitations of these techniques in noisy industrial 

environments or resource-constrained systems. In real-world 

applications, vibration signal interpretation often suffers 

from signal overlap and ambient interference, which limits 

fault isolation accuracy. 

In a focused study on bearing diagnostics, Zhang, Che, Cao, 

et al, (2025) identified wear, corrosion, and improper 

lubrication as common issues. Their analysis supports the 

integration of AI-driven fault detection and digital twins for 

real-time monitoring. However, their findings reveal that 

model adaptability remains a challenge, particularly in 

dynamically changing operating conditions. The paper lacks 

discussion on how these AI models perform when confronted 

with limited training data or evolving fault patterns, a 

common issue in field applications. 

Furthering this discussion, Ghazal & Rahiman (2021) 

categorized vibration-based techniques into time-domain, 

frequency-domain, and AI-based methods, noting that AI 

approaches such as support vector machines (SVMs) and 

deep learning models yield higher classification accuracy. 

However, while AI improves precision, the study did not 

thoroughly evaluate the trade-offs between computational 

demand and deployment feasibility, especially for SMEs or 

edge devices with limited processing capabilities. 

Complementarily, Bagri, Tahiry, Hraiba, Touil, & Mousrij 

(2024) emphasized AI applications in diagnostics, 

particularly through innovations in data pre-processing and 

transformer-based models for predicting the remaining useful 

life (RUL) of components. While the paper supports AI’s 

growing role in predictive maintenance, it gives limited 

attention to the risks of overfitting, and does not discuss the 

interpretability of complex models, an essential factor for 

industrial adoption. 
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Beyond vibration analysis, Kumar, Gandhi, Tang, Sun, & 

Xiang (2023) expanded the conversation to include condition 

monitoring (CM) techniques for electric machines, including 

the detection of mechanical, electrical, and magnetic faults. 

Their work stressed the need for improved motor current 

signature analysis (MCSA). However, a recurring challenge 

across studies like Kumar et al. (2024) is the difficulty in 

isolating concurrent faults in machines where electrical and 

mechanical systems are highly interdependent. 

In the domain of renewable energy, Sarma, Tuohy, & 

Djurovic (2022) examined CM strategies for wind turbines, 

advocating for AI-based systems to correlate sensor inputs 

with operational parameters. While their study underscores 

AI’s contribution to maintenance scheduling and downtime 

reduction, it omits discussion on data integration complexity, 

especially when dealing with heterogeneous sensor platforms 

in remote or offshore locations. 

Bearing diagnostics were further explored by Moeini, 

Entezami, Ratkovac, Tricoli, Hemida, & Hoeffer (2018), who 

classified techniques into model-based, knowledge-based, 

and pattern-recognition approaches. They strongly advocated 

for real-time AI-based methods for fault classification and 

RUL estimation. However, the study concedes that data 

acquisition limitations, such as low sampling frequency or 

incomplete signal windows, often reduce model 

effectiveness. 

These insights align with Raj, Kumar, Kumar (2024), who 

reinforced vibration analysis as central to condition-based 

maintenance (CBM). Yet, while they highlight its impact on 

equipment reliability and operational efficiency, their review 

does not differentiate the suitability of vibration analysis 

across fault types (e.g., misalignment vs. internal cracks) or 

address cases where it may miss incipient faults that don’t 

produce strong vibrational signatures. 

In the realm of prognostics and health management (PHM), 

Su & Lee (2024) examined fault detection and data challenge 

competitions, categorizing key problems, challenges, and 

advancements. It highlights ongoing issues such as data 

quality, model robustness, and interpretability, while 

recommending the use of open-source multimodal datasets, 

advanced multimodal ML techniques, and the exploration of 

LLMs for the future of PHM. In parallel, industrial AI 

research by Lee & Su (2025) proposed a foundational 

framework that integrates data-driven intelligence, domain 

expertise, and human-machine collaboration to support 

sustainable AI adoption. This framework emphasizes the 

importance of transformer-based models, LLMs, and 

interpretability, aligning with the human-centric, reliability, 

and cross-domain vision of Industry 5.0. 

Across the reviewed literature, AI-enhanced diagnostics 

consistently demonstrate superior detection accuracy 

compared to traditional methods. However, most studies 

neglect to adequately address their substantial computational 

demands, extensive data volume requirements, and 

challenges related to interpretability. Vibration analysis 

remains a widely adopted technique but shows limited 

effectiveness in high-noise or transient operating 

environments. Moreover, its dependency on skilled personnel 

for signal interpretation is often overlooked. Few studies 

undertake comprehensive comparative evaluations of these 

techniques under similar conditions, resulting in overlooked 

contextual performance trade-offs. Abstract mentions of cost, 

data quality issues, and barriers to real-time processing are 

prevalent, with only a minority of studies, such as Ghazali et 

al. (2025) and Moeini et al. (2018), providing quantitative or 

detailed analyses of these critical factors. 

Artificial Intelligence advancements are transforming fault 

detection and predictive maintenance. Transformer 

architectures, initially developed for NLP, excel at analyzing 

time-series data and detecting anomalies by modeling long-

range dependencies and complex interactions. They often 

outperform CNNs and RNNs in remaining useful life (RUL) 

prediction, especially with diverse sensor signals and high-

dimensional data, enabling more robust early fault detection 

even in noisy environments. Additionally, large language 

models (LLMs) and foundation models are emerging as 

powerful tools, integrating structured sensor data with 

unstructured sources such as logs and manuals for 

multimodal analysis. These models leverage transfer learning 

and few-shot or zero-shot classification, reducing reliance on 

large labeled datasets—addressing a key challenge—while 

improving fault diagnosis and decision-making in industrial 

settings.. 

While these emerging approaches are not yet widely adopted 

in industrial practice, their potential is considerable. By 

enabling knowledge transfer across domains, improving 

anomaly detection accuracy, and providing explainable 

diagnostics, these models align with the future vision of 

Industry 5.0, where human-centric and intelligent systems 

collaborate for resilient and sustainable operations. Therefore 

transformer models, LLMs, and foundation models as critical 

areas for future research in rotating machinery fault detection, 

complementing the more established methods reviewed in 

this study. 

1.4. Significance of the Study 

This research is important because it addresses critical 

challenges in maintaining rotating machinery and provides 

valuable insights into enhancing reliability, safety, and 

operational efficiency. It contributes to the advancement of 

industrial production practices. This significance can be 

highlighted in several ways:  

• Enhancing the reliability of rotating equipment: The 

research emphasizes proactive maintenance and fault 

detection techniques, underscoring the need to ensure 

the reliability and continuous operation of rotating 

machinery in the production industry. This focus can 
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lead to fewer unexpected breakdowns and a more stable 

production process. 

• Reduction of downtime: Identifying effective 

maintenance strategies directly minimizes downtime. 

The review provides data-driven insights on how 

proactive maintenance can decrease the frequency and 

duration of equipment failures, which is crucial for 

industrial operations where time is essential. 

• Cost efficiency: Integrating fault detection methods like 

condition monitoring and predictive analytics can yield 

significant cost savings. By preventing major failures 

and optimizing maintenance interventions, 

organizations can reduce operational costs associated 

with emergency repairs and lost productivity. 

• Safety improvements: Implementing proactive 

maintenance strategies enhances equipment safety by 

reducing the likelihood of catastrophic failures that 

could endanger personnel and operations. This is 

particularly vital in industries where rotating machinery 

is prevalent and safety standards are critical. 

• Guidance for future research and practice: Through a 

systematic review of existing literature, this research 

identifies gaps in the current knowledge base, alongside 

key challenges and limitations in the field of proactive 

maintenance. This can inform future studies and guide 

industry practitioners on best practices and emerging 

trends in fault detection and maintenance strategies. 

• Strategic planning and management: The findings can 

help organizations develop more strategic approaches to 

maintenance planning and management. Organizations 

can better allocate resources, optimize workflows, and 

enhance overall operational efficiency by understanding 

the effectiveness of various fault detection techniques. 

• Contribution to industrial advancement: This review 

supports the broader industrial landscape by advocating 

for the adoption of advanced maintenance 

methodologies. By promoting proactive maintenance, 

the research encourages innovation and technological 

advancement in maintenance practices, which are 

crucial for enhancing productivity and competitiveness 

in the manufacturing sector. 

2. METHODOLOGY 

This research conducted a systematic review of the literature 

to explore proactive maintenance strategies that incorporate 

fault detection methods for rotating machinery. Systematic 

literature reviews, as described by Lame (2019), offer a 

structured approach to synthesizing complex data from 

various studies, ensuring thoroughness and reproducibility. 

The objective was to identify both widely accepted and 

emerging fault detection methods, evaluate their practical 

applications, and assess their effects on equipment reliability, 

operational efficiency, and maintenance performance in 

industrial settings. Figure 1 presents a flowchart that 

summarizes the steps involved in the review process, 

including database selection, search query formulation, data 

extraction, and analysis, as well as the use of tools like 

Mendeley for reference management and Excel for data 

analysis and visualization. This visual representation 

enhances the transparency and reproducibility of the review 

methodology, providing readers with a clear overview of the 

systematic process followed. 

 

 
 

Figure 1. Methodological flowchart 

2.1. Research Design and Approach 

A qualitative design method was selected to enable a 

comprehensive synthesis of research findings, adhering to the 

PRISMA 2020 framework to ensure transparency, 

replicability, and methodological rigor. 

2.1.1 Approach (How the Review was conducted) 

The review followed a structured and systematic approach 

that began with the formulation of a clearly defined research 

question and the development of a comprehensive search 

strategy. Literature searches were conducted across four 

major academic databases, IEEE Xplore, ScienceDirect, 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

6 

SpringerLink, and Google Scholar, employing precise 

keyword combinations and Boolean operators. Search terms 

included “Fault detection” AND “rotating machinery,” 

“Predictive maintenance” AND “vibration analysis,” and 

“Condition monitoring” AND “thermal imaging,” among 

others. The search focused on studies published between 

2013 and 2025 to incorporate recent advancements and 

ensure relevance to current industrial practices. Initially, a 

total of 248 articles were retrieved. Reference management 

software (Mendeley) was then used to identify and eliminate 

48 duplicates, resulting in 200 unique articles. Two 

independent reviewers screened the titles and abstracts based 

on predefined inclusion and exclusion criteria. Studies were 

excluded if they did not address fault detection in rotating 

machinery, lacked methodological rigor or clear findings, or 

focused on non-industrial or irrelevant applications. After 

this screening, 80 full-text articles were reviewed in detail, 

with 64 ultimately meeting the inclusion criteria for the final 

analysis. 
 

2.1.2. Purpose (What the Review Aimed to Achieve) 

The primary aim of this review was to identify and evaluate 

the most commonly researched and implemented fault 

detection techniques for rotating machinery. Key techniques 

examined include vibration analysis, thermal imaging, 

acoustic emission monitoring, and electrical signature 

analysis. The review assessed how these techniques are 

applied across various industrial sectors, including oil and 

gas, manufacturing, and power generation. Additionally, it 

sought to identify barriers to implementation, such as high 

costs, the need for skilled labor, and complexities in data 

management. By synthesizing these findings, the review 

offered industry-specific recommendations to enhance the 

reliability, cost-efficiency, and safety of maintenance 

practices. Data were extracted using a standardized form and 

categorized by method type, industrial application, and 

reported benefits. Analytical techniques, including 

comparative analysis, trend analysis, and thematic analysis, 

were conducted using Microsoft Excel. This approach 

facilitated tracking method prevalence, identifying research 

gaps, and benchmarking key outcomes such as downtime 

reduction and cost savings. 

 

2.1.3. Framework (How PRISMA was Applied) 

The review strictly followed the PRISMA 2020 guidelines, 

which prioritize transparency, completeness, and 

methodological rigor in conducting and reporting systematic 

reviews and meta-analyses. A PRISMA flow diagram was 

created to illustrate each stage of the review process, 

including identification, screening, eligibility assessment, 

and final inclusion.  

Clear inclusion criteria were defined, focusing on studies 

related to fault detection in rotating equipment published 

between 2013 and 2025 and sourced from peer-reviewed 

journals. Exclusion criteria were also established, eliminating 

studies that lacked methodological detail or focused on 

unrelated mechanical systems. To reduce selection bias, a 

dual-reviewer screening process was implemented, with any 

disagreements resolved through discussion or adjudication by 

a third reviewer.  

Additionally, a structured quality appraisal tool was utilized 

to evaluate each study based on the clarity of objectives, 

methodological rigor, industrial relevance, data transparency, 

and documentation of outcomes. This rigorous 

methodological framework ensured the credibility, 

reliability, and practical relevance of the findings, ultimately 

allowing the review to provide evidence-based 

recommendations for optimizing maintenance strategies 

through advanced fault detection techniques.. 

2.2. Study Selection and Appraisal 

To enhance rigor and impartiality, two independent reviewers 

evaluated titles, abstracts, and full texts using established 

criteria. This dual-review process minimized bias and 

increased reliability. Discrepancies were resolved through 

discussion or, if needed, by consulting a third reviewer for 

final judgment. This collaborative approach ensured a 

consistent, transparent, and thorough selection process for the 

study. To further reduce selection bias, eligibility criteria 

were predefined and transparently applied, covering studies 

published between 2013 and 2025, including foundational 

and recent research. Citation snowballing was employed to 

identify influential studies potentially missed in initial 

searches, broadening the scope across industries like oil and 

gas, manufacturing, and power generation. The literature 

selection process was visually summarized with the PRISMA 

2020 flow diagram (see Figure 2), ensuring transparency and 

methodological integrity. These safeguards collectively 

contributed to a comprehensive, balanced, and reproducible 

review, aligning with best practices for systematic reviews 

and enhancing the validity of the findings. 

 

 

Figure 2. PRISMA   
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248 records were initially identified through comprehensive 

searches of major academic databases, including IEEE 

Xplore, ScienceDirect, SpringerLink, and Google Scholar, 

using carefully selected keywords related to fault detection, 

condition monitoring, and proactive maintenance in rotating 

machinery. 48 duplicate articles were identified and 

removed, resulting in 200 unique records available for 

screening. 

The titles and abstracts of these 200 articles were 

independently screened by two reviewers to assess 

preliminary relevance. At this stage, 120 articles were 

excluded due to misalignment with the study’s focus (e.g., 

non-industrial applications, general mechanical systems) or 

insufficient methodological detail. The remaining 80 articles 

underwent a full-text review to evaluate their eligibility based 

on the inclusion criteria, specifically their focus on fault 

detection methods, proactive maintenance strategies, and 

industrial applications involving rotating equipment. After a 

thorough evaluation, 64 studies were deemed eligible and 

included in the final systematic review. These studies 

provided strong empirical or theoretical insights into fault 

detection techniques, predictive maintenance strategies, and 

condition monitoring systems in industrial settings. 

By incorporating the PRISMA 2020 diagram alongside this 

detailed narrative, the study ensures that each phase of the 

review process—from initial identification to final inclusion- 

is transparent, systematic, and reproducible. This approach 

not only reinforces the credibility of the findings but also 

enables other researchers to replicate or extend the review 

using the same methodological framework. The use of dual 

reviewers, predefined inclusion/exclusion criteria, and 

structured appraisal further enhances the integrity and 

objectivity of the literature selection process.    

2.3. Quality Appraisal of Included Studies 

Each study was assessed based on five key criteria. First, 

objective clarity was examined to determine whether the 

study had clearly defined goals related to fault detection or 

proactive maintenance. Second, methodological rigor was 

evaluated by reviewing the structure and scientific soundness 

of the methods used, including the implementation of 

techniques such as vibration analysis, electrical signature 

analysis (ESA), thermal imaging (TI), and IoT-enabled 

monitoring. Third, industrial relevance was considered by 

assessing the applicability of the findings to real-world 

industrial settings such as oil and gas, power generation, 

aerospace, and manufacturing. Fourth, data transparency and 

replicability were judged based on the availability of 

performance metrics, data sets, or experimental validation to 

support the study’s conclusions. Finally, practical outcomes 

were assessed by identifying clear evidence of benefits such 

as downtime reduction, improved equipment reliability, or 

cost savings. 

Each criterion was scored using a three-point scale: 2 for fully 

addressed, 1 for partially addressed, and 0 for not addressed. 

The total scores for each study were then used to categorize 

them into three quality tiers: high quality (scores of 8–10), 

moderate quality (5–7), and low quality (0–4). This 

systematic appraisal ensured that only studies with adequate 

methodological and practical merit were considered in 

drawing conclusions, thereby reinforcing the validity of the 

review's findings. 

Among the 64 reviewed studies, 32 studies (50%) were rated 

as high quality, demonstrating strong methodological 

structure and industrial relevance (e.g., those incorporating 

vibration analysis with AI or IoT-based diagnostics). 24 

studies (38%) received a moderate quality rating, typically 

due to limited real-world validation or a lack of detailed 

performance metrics. 8 studies (12%) were classified as low 

quality, often lacking key methodological details or industrial 

context. 

2.4. Data Collection and Organization 

After selecting 64 eligible studies, key data were manually 

selected using a predetermined template in Microsoft Excel, 

designed for systematic analysis. For each study, information 

was recorded on the fault detection techniques employed 

(e.g., vibration analysis, acoustic emission, oil analysis), the 

industry or application environment (e.g., oil and gas, power 

generation, manufacturing), and the documented outcomes 

such as reduced downtime, improved equipment reliability, 

or cost savings. Challenges faced during implementation, like 

data complexity, costs, or skill requirements, were also noted. 

Additionally, the integration of enabling technologies such as 

AI, IoT, and ML was recorded. Data were organized into 

three core dimensions: the working principles and detection 

modes of techniques, industry application sectors with 

adoption trends and sector-specific challenges, and outcome 

metrics evaluating benefits like failure reduction, safety 

improvements, and maintenance optimization. This 

structured approach ensured consistency and minimized 

omissions across all reviewed articles.. 

Table 2 provides a clear summary of the synthesized findings, 

outlining various fault detection techniques, including their 

working principles, classification as predictive or condition-

based, typical industrial applications, and associated 

advantages and limitations. Following this, Table 3 offers a 

comparative overview of the application of these techniques 

across different industrial sectors. This table highlights 

sector-specific challenges, emerging trends, and the level of 

technological adoption in each domain. By applying this 

systematic extraction and categorization method, the study 

ensures that all analyzed data are traceable to their sources, 

contextually relevant, and valuable to both practitioners and 

researchers seeking to improve proactive maintenance 

strategies in real-world industrial environments.
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Data 

Acquisition 

Technique 

Working Mode Fault 

Detection 

Category 

Detection Mode Applications Strengths  Limitations 

Vibration 

analysis 

Uses accelerometers 

and proximity probes 

to measure vibration 

levels in rotating 

machinery, detecting 

faults like imbalance 

and misalignment. 

Predictive 

approach 

Used to detect 

faults in rotating 

equipment and 

machinery by 

monitoring 

changes in 

vibration 

patterns over 

time. 

Turbines, 

compressors, 

and electric 

motors 

Real-time fault 

detection and 

precise 

frequency 

analysis. 

Requires skilled 

personnel for 

interpretation; 

susceptible to 

external machine 

noise. 

Acoustic 

emission 

monitoring 

Utilizes ultrasonic 

sensors and 

microphones to capture 

high-frequency sound 

waves emitted by 

machinery, identifying 

defects such as bearing 

failures and lubrication 

issues. 

Condition 

monitoring 

Detects the 

release of energy 

from materials 

when they 

undergo stress. It 

is used to 

monitor the 

initiation and 

propagation of 

defects, cracks, 

or leaks. 

Bearings, 

gearboxes, 

pumps. 

Non-invasive, 

less affected by 

ambient noise. 

 

Background noise 

can affect 

accuracy; 

advanced signal 

filtering may be 

needed. 

Thermal 

imaging 

Infrared thermography 

uses IR sensors and 

cameras to detect heat 

patterns on machine 

surfaces, indicating 

issues like 

misalignment and 

electrical faults. 

Predictive 

approach 

Detects 

abnormal 

temperature 

patterns in 

equipment, 

which can 

indicate 

overheating, 

wear, or 

electrical faults 

before they lead 

to failure. 

Motors, 

bearings, and 

electrical 

panels. 

Non-contact, 

detects issues in 

inaccessible 

areas. 

External 

environmental 

factors may 

impact readings 

and initial setup 

costs. 

Oil analysis Involves spectroscopy 

and ferrography to 

analyze lubricants for 

contaminants and wear 

particles, indicating 

equipment degradation. 

Condition 

monitoring 

Monitors the 

condition of 

lubricants in 

machinery to 

detect 

contaminants, 

wear particles, 

and degradation, 

which can 

indicate 

impending 

component 

failures. 

Gearboxes, 

turbines, 

hydraulic 

systems. 

 

Non-intrusive; 

detects internal 

wear without 

disassembly 

Requires periodic 

sampling and lab 

analysis; delays in 

obtaining real-

time results. 

 

IoT-enabled 

real-time 

monitoring 

Utilizes wireless 

sensors and cloud-

based analytics for 

continuous monitoring 

and predictive 

Condition 

monitoring 

Monitoring that 

involves 

continuous data 

collection and 

analysis from 

Smart 

factories, 

remote oil 

rigs, 

Real-time 

insights, faster 

decision-

making, 

enhances 

Requires stable 

network 

infrastructure; 
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maintenance of 

equipment, leveraging 

AI and machine 

learning for early fault 

detection. 

sensors across 

equipment, 

allowing for 

real-time 

detection of 

anomalies and 

potential failures 

automated 

manufacturing 

workplace 

safety. 

high initial setup 

costs 

Electrical 

signature 

Analysis 

Analyzes current and 

voltage waveforms 

using sensors to detect 

electrical and 

mechanical faults in 

motors and generators. 

Predictive 

approach 

Monitors 

electrical signals 

to detect 

abnormalities 

such as motor 

faults, bearing 

defects, or 

insulation 

degradation in 

electrical 

equipment. 

Electric 

motors, 

generators, 

VFDs. 

Non-invasive, 

detects both 

electrical and 

mechanical 

issues. 

Requires 

specialized 

expertise for 

interpretation; not 

suitable for non-

electric 

machinery. 

Routine 

maintenance  

Involves regular, day-

to-day tasks such as 

lubrication, tightening, 

and minor inspections 

to keep machinery 

running efficiently. 

Routine 

maintenance  

 Pumps, 

compressors, 

turbines, 

motors, and 

conveyors. 

Prevents minor 

issues from 

escalating and 

extends 

equipment 

lifespan. 

Does not address 

hidden or 

progressive 

failures; may not 

prevent 

unexpected 

breakdowns 

Scheduled 

maintenance\ 

Planned maintenance 

activities based on time 

intervals or usage 

metrics, including part 

replacements, detailed 

inspections, and 

overhauls. 

Scheduled 

maintenance  

 Power plants, 

oil refineries, 

manufacturing 

lines, heavy-

duty 

machinery. 

Reduces 

unplanned 

downtime and 

allows for 

proper resource 

allocation. 

Can be costly and 

time-consuming; 

unnecessary 

maintenance may 

be performed if 

not data-driven. 

Table 2. Comparison of different fault detection methods 

 

Sector 

 

Overview 

 

Significance 

 

Challenges 

 

Emerging Trends 

 

Oil and gas  

 

Involves 

exploration, 

extraction, refining, 

transportation, and 

distribution of 

petroleum and 

natural gas 

• Primary global 

energy source. 

• Drives economic 

growth and 

Infrastructure 

development. 

• Adoption of AI, 

IoT, and 

automation for 

operational 

efficiency. 

• Market volatility 

and fluctuating 

oil prices. 

• Environmental 

concerns and 

regulatory 

compliance. 

• Transition to 

cleaner energy. 

 

• Industry 4.0 and 5.0 

adoption (AI, IoT, 

big data). 

• Increased investment 

in hydrogen and 

carbon capture 

technology. 

• Digital oilfields and 

smart pipelines for 

real-time asset 

monitoring. 
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Power generation Produces electricity 

from fossil fuels, 

nuclear, hydro, 

wind, solar, and 

geothermal energy. 

• Essential for 

industrial and 

residential 

energy supply. 

• Technological 

integration for 

smart grids and 

AI-driven 

maintenance. 

• Expansion of 

renewable energy 

sources. 

• Energy 

transition 

challenges. 

• Grid reliability 

and stability 

concerns. 

• Stringent 

emission 

regulations. 

• Growth in 

renewable energy 

(solar, wind, hydro). 

• AI and IoT for smart 

grid management. 

• Advanced battery 

storage solutions for 

enhanced grid 

stability. 

Manufacturing Encompasses the 

production of goods 

using labour, 

machinery, and 

automation. 

 

• Contributes 

significantly to 

GDP and job 

creation. 

• Backbone of 

global supply 

chains. 

• Smart 

manufacturing 

enhances 

productivity. 

• Labour 

shortages due to 

digital 

transformation. 

• Supply chain 

disruptions. 

• Need for 

sustainable 

production 

• Smart factories 

using IoT and 

automation. 

• Growth of 3D 

printing and 

additive 

manufacturing. 

• Sustainable 

practices for waste 

reduction 

Aerospace  Involves design, 

production, and 

maintenance of 

aircraft, satellites, 

and defense 

systems. 

• Crucial for 

global mobility 

and defense. 

• Drives space 

exploration and 

technological 

advancement. 

• Investments in 

autonomous 

flight and AI-

driven air traffic 

management. 

• High research 

and development 

costs. 

• Stringent safety 

regulations. 

• Component 

supply chain 

issues. 

• Electric and hybrid 

aircraft for 

sustainable 

aviation. 

• Increased focus on 

satellite and space 

exploration. 

• AI and automation 

for enhanced pilot 

assistance. 

Automotive 

 

Covers the 

production of 

passenger cars, 

commercial trucks, 

and 

electric/autonomous 

vehicles. 

• Global 

transportation 

backbone. 

• Technological 

advancements in 

EVs and 

autonomous 

driving. 

• Significant 

employment 

generator. 

• Transition to 

electric vehicles 

(EVs). 

• Supply chain 

disruptions (chip 

shortages, 

material 

constraints). 

• Emission control 

regulations. 

• Expansion of EV 

infrastructure. 

• AI-powered 

autonomous 

driving. 

• Integration of IoT-

enabled smart car 

diagnostics. 

 

Table 3. Comparison of key industrial sectors 
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2.5. Study Analysis and Technique 

The analysis of the selected studies was carried out using a 

combination of descriptive, comparative, trend, thematic, and 

critical evaluation methods, all grounded in the practical 

review process. 

• Descriptive analysis: Quantitative data on fault 

detection methods were summarized to determine their 

frequency of use across industries. Using Microsoft 

Excel, each of the 64 selected articles was coded based 

on the technique discussed (e.g., vibration analysis, 

thermography), and tallied to reveal the most commonly 

applied methods. This allowed us to identify adoption 

patterns across sectors such as oil and gas, power 

generation, and manufacturing. 

• Comparative analysis: Techniques were compared 

based on real-world variables, including detection 

accuracy, cost-effectiveness, ease of integration, and 

required expertise. Data extracted from the literature 

were reviewed side-by-side to assess which techniques 

offered the best trade-offs for various industrial 

environments. This analysis was structured in Excel 

tables and supported by qualitative insights from case 

studies. 

• Thematic analysis: Textual data from the included 

studies were manually reviewed to identify recurring 

themes. Patterns related to implementation challenges 

(e.g., cost, data complexity, training needs) and reported 

benefits (e.g., reduced downtime, increased reliability) 

were extracted and categorized. Themes were organized 

into clusters to reflect industry concerns and strategic 

drivers behind the adoption of specific fault detection 

methods. 

• Trend analysis: Each literature was assigned to a single 

fault detection technique based on its dominant focus. 

In cases where multiple techniques were mentioned, the 

method that was most thoroughly analyzed, 

experimentally validated, or centrally featured in the 

study was selected. This was done to avoid double-

counting across techniques and to simplify categorical 

analysis. We acknowledge that this approach may 

underrepresent studies that explore multiple diagnostic 

strategies, and future reviews may benefit from multi-

label categorization to more accurately reflect such 

overlaps. 

• Critical evaluation: Each method’s real-world relevance 

and integration potential were assessed based on case 

examples reported in the literature. Factors such as 

adaptability to legacy systems, compatibility with IoT-

based monitoring, and long-term return on investment 

were considered. This helped ensure that findings 

translated into practical guidance for industry 

stakeholders. 

2.6. Synthesis of Findings 

Findings from the review were synthesized through a 

structured process of data integration and thematic 

consolidation to produce a comprehensive evaluation of fault 

detection techniques within proactive maintenance 

frameworks. 

• Effectiveness of fault detection techniques: Data from 

the 64 included studies were consolidated to assess each 

method's capacity to detect specific fault types, such as 

misalignment, bearing defects, gear wear, and 

unbalanced rotors. The performance of techniques like 

vibration analysis, oil analysis, and electrical signature 

analysis was evaluated in terms of reliability, accuracy, 

and early fault detection capabilities. 

• Integration of advanced technologies: Studies 

incorporating ML, AI, and IoT-enabled monitoring 

were identified and analyzed separately. These 

technologies were evaluated for their impact on real-

time fault detection, predictive accuracy, and their 

ability to reduce human error. The synthesis highlighted 

how AI-based models improved diagnosis precision and 

helped automate maintenance scheduling. 

• Barriers to implementation: A recurring set of barriers 

was observed across the literature, including high initial 

costs, system complexity, data handling issues, and 

workforce limitations. These were coded and quantified 

where applicable, and practical recommendations for 

overcoming them, such as modular adoption, cloud-

based data platforms, and cross-training of staff, were 

drawn from reported success cases. 

• Empirical results: They were cited directly from 

individual studies to illustrate commonly reported 

performance metrics (e.g., accuracy, cost savings). 

These values were not aggregated across studies but 

were selected to reflect the diversity of reported 

outcomes. A citation to its source study now 

accompanies each figure. While informative, we 

acknowledge that these values may represent peak or 

context-specific results and should not be generalized 

without caution. A future meta-analysis could compute 

ranges, means, and standard deviations for more robust 

interpretation. 

• Outcome assessment: The review systematically 

documented the outcomes associated with various fault 

detection strategies. 

2.7. Validation of Findings 

To validate the relevance and applicability of the synthesized 

findings, the study cross-referenced academic literature with 

documented real-world case studies and industrial reports 

included in the review. Validation sources encompassed case 

studies from the oil and gas sector showcasing the use of 
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vibration and acoustic monitoring in offshore compressor 

units, reports on predictive maintenance in power generation 

facilities utilizing thermal imaging and current analysis, and 

manufacturing plant audits documenting the transition from 

reactive to proactive strategies through condition-based 

monitoring. Each case was analyzed based on the specific 

fault detection method employed, the challenges encountered 

during implementation, and measurable outcomes such as 

reduced downtime and maintenance cost savings. This 

comprehensive approach grounded the study’s conclusions in 

actual industrial practices and demonstrated the applicability 

of the reviewed methods across diverse operational contexts. 

2.8. Ethical Consideration 

Although the study did not involve human participants or 

experimental procedures, ethical standards were upheld 

throughout the research process. 

• Integrity: All studies included in the review were 

properly cited and sourced from reputable academic 

databases. No unpublished or proprietary data were 

used without attribution. The screening, selection, and 

analysis of data were conducted objectively and free 

from bias. 

• Transparency: Each step of the review process, 

including search strategy, inclusion/exclusion criteria, 

data extraction, and analysis methods, was documented 

and presented in the methodology and PRISMA flow 

diagram. This ensures that the review is fully 

reproducible and that future researchers can verify or 

expand upon its findings with confidence. 

2.9. Limitations 

The study acknowledges the following practical limitations: 

• Scope: The review was limited to peer-reviewed journal 

articles, conference proceedings, and publicly available 

industrial reports published between 2013 and 2025. 

Internal corporate documents and proprietary datasets 

were not accessible, which may have excluded valuable 

insights into some real-time applications of fault 

detection systems. 

• Bias: Despite conducting a comprehensive search 

across four major databases (IEEE Xplore, 

ScienceDirect, SpringerLink, and Google Scholar), the 

study recognizes the potential for publication bias, 

where studies with positive results are more likely to be 

published. Efforts to mitigate this included using 

multiple databases, diverse keywords, and broad search 

strings. 

While these limitations exist, they were addressed through 

robust methodology, dual screening, and triangulation with 

industry cases, allowing the study to offer credible and 

actionable findings. 

2.10. Tools and Software 

The following tools were used to support data management, 

analysis, and reporting: 

• Data processing: Python was used to handle and pre-

process raw data from literature where datasets were 

publicly available. This included parsing numerical 

values, cleaning structured data, and generating 

summary statistics for descriptive analysis. 

• Reference management: Mendeley was utilized to 

organize and manage all references. The software 

enabled duplicate removal, citation formatting, and 

efficient tracking of article metadata during the 

screening and selection phases. 

• Data analysis and visualization: Microsoft Excel was 

employed for qualitative data analysis. Extracted 

information was categorized, summarized, and 

visualized through pivot tables, charts, and comparison 

matrices. Excel also supported the thematic coding of 

challenges and benefits across various studies. 

These tools facilitated a structured, traceable workflow and 

ensured that the study’s findings were data-driven, well-

documented, and reproducible.  

3. RESULTS AND DISCUSION 

3.1. Searched Literature

 

Literature Year Rotating Machinery Fault Detection Categorization 

 

Predictive Analytics Condition Monitoring Preventive 

Maintenance  

Industry of Application 
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Al-Khafaji & Jaber 2022 x        x     

Yang et al 2024     x    x     

Rong et al 2024 x        x     

Chehri et al 2021 x            x 

Li et al 2023 x        x     

Mehta et al 2021   x      x     

Ratnam et al 2018    x     x     

Deshmukh & 

Askhedkar 

2017  x       x     

Li et al. 2019   x       x    

Zhang et al 2017 x           x  

Pedram & 

Chaibakhsh 

2023 x        x     

Zhuang et al 2024 x           x  

Ferrando  2015    x     x     

Gawde et al 2024 x        x     

Guo et al 2024 x        x     

Singh & Yelve 2024 x        x     

Zhao et al 2024 x           x  

Sangeetha et al 2024 x            x 

Orman et al 2024    x     x     

Zurita et al  2013    x     x     

Salazar-Villanueva et 

al 

2013    x     x     

Zhou et al 2022 x            x 

Azeez et al 2020   x      x     

Shubita et al 2023    x     x     

Da Costa et al 2023 x        x     

Noman et al 2024 x          x   

Kiranyas et al 2024    x     x     

Mueller et al 2023 x           x  

Nayak et al 2024 x        x     

Kala et al 2024   x      x     

Grebenik et al 2023   x         x  

Song et al 2020  x          x  

He et al 2017 x           x  

Kang et al 2023 x        x     

Sameh et al 2020  x       x     

Glowacz & Glowacz 2017   x      x     

Qian & Liu  2022 x           x  

Li et al 2022 x        x     

kolar et al  2021 x        x     

Kramti et al 2021 x           x  

Shrivastava & 

Wadhwani 

2014 x        x     

Zhang et al 2023     x    x     

Parthiban 2024 x        x     

Yousuf et al 2024     x    x     

Muthanandan & Nor 2019        x     x 

Chacon 2015    x     x     

Radonjic et al 2022    x        x  

El Mahdi et al 2022     x    x     

Salomon et al 2019  x          x  

Chen & Feng 2023  x          x  

Cablea et al 2017  x          x  

Khan et al 2023 x           x  

Janssens et al 2015   x         x  

Javed et al 2022   x         x  

Bai et al 2016   x         x  
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Table 4. Reviewed literature, their fault detection study area, and industry of application 

 

Table 4 provides a comprehensive analysis of fault detection 

techniques for rotating equipment, categorizing them based 

on industry applications, research trends, and existing 

literature. It classifies fault detection methods into three 

primary categories:  

Predictive maintenance approaches, condition monitoring 

techniques, and preventive maintenance strategies. Predictive 

maintenance methods, such as vibration analysis, electrical 

signature analysis, thermal imaging, and acoustic emission 

monitoring, are commonly employed to identify faults before 

they result in equipment failure. Condition monitoring 

techniques, which include IoT-enabled real-time monitoring 

and oil analysis, leverage sensors and data analytics for 

continuous tracking of equipment health. Preventive 

maintenance strategies emphasize routine and scheduled 

maintenance, ensuring inspections and servicing are 

performed at designated intervals to avert unexpected 

breakdowns. 

The literature covered in the table spans from 2013 to 2025, 

striking a balance between historical insights and recent 

advancements. The inclusion of publications from 2023 to 

2025 highlights the growing emphasis on AI and IoT-driven 

fault detection, while older studies provide foundational 

knowledge. However, some of the earlier references may not 

address modern advancements such as Industry 5.0. 

The table categorizes various industries that utilize fault 

detection techniques. In the oil and gas sector, predictive 

analytics and IoT monitoring enhance equipment reliability, 

while the power generation industry relies on vibration and 

electrical signature analysis to maintain turbines and 

generators. The manufacturing sector employs preventive 

maintenance strategies and real-time monitoring to optimize 

production efficiency, whereas aerospace applications use 

advanced diagnostic tools, like acoustic emission monitoring, 

to evaluate aircraft component integrity. The automotive 

industry utilizes thermal imaging and AI-driven fault 

detection to enhance assembly line operations. Key research 

trends indicate that vibration analysis is the most studied 

method due to its effectiveness in identifying misalignment, 

imbalance, and bearing defects. The rising adoption of IoT-

based monitoring aligns with advancements in Industry 4.0 

and 5.0, facilitating predictive maintenance through cloud-

based analytics. Thermal imaging is prevalent in high-

temperature industries such as power generation and 

automotive manufacturing, while acoustic emission 

monitoring plays a critical role in aerospace for early 

detection of material fatigue and structural defects. 

Despite these advancements, the table reveals several 

research gaps that warrant further investigation. One 

significant gap is the limited number of studies on preventive 

maintenance strategies (RM and SM), as much of the 

research concentrates on predictive and condition-based 

monitoring. Additionally, there are industry-specific gaps, 

with the oil and gas and power generation sectors being well-

researched, while the aerospace and automotive industries 

have fewer documented studies on fault detection techniques. 

Another notable gap is the lack of sufficient comparative 

studies that assess the effectiveness of various fault detection 

techniques in terms of cost-efficiency, accuracy, and 

implementation challenges. 

3.2. Comparative Analysis of Fault Detection 

Techniques 

Figure 3 illustrates a comparison of various fault detection 

techniques used in rotating machinery, indicating the number 

of literature sources reviewed for each method. A total of 64 

sources were examined, with vibration analysis being the 

most extensively covered technique, cited in 29 studies. 

Thermal imaging was followed by 11 sources, while acoustic 

emission monitoring accounted for 9 studies. Electrical 

signature analysis was referenced in 7 studies, and IoT-

enabled real-time monitoring appeared in 5. Oil analysis was 

discussed in only 2 sources, and scheduled maintenance was 

cited in just 1 study, with no representation of routine 

maintenance. Also, Table 5 offers a comprehensive overview 

of research trends in fault detection for rotating machinery, 

tracking the number of published studies from 2013 to 2025 

Duan et al 2016   x         x  

Islam et al 2021      x      x  

Salgueiro et al 2013      x   x     

Chen et al 2025 x        x     

Alshorman et al 2024   x      x     

Das et al 2023     x    x     

Kumar & Anand 2024  x          x  

Khalili & Rostam  2024 x        x     

Wang et al 2020 x        x     

Total number 64 29 7 11 9 5 2 0 1 38 1 1 20 4 
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and categorizing them by specific techniques. These trends 

are further visualized in Figure 4. 

It is important to point out that while many studies discussed 

multiple fault detection techniques, each was assigned to one 

primary category based on its main methodological focus. 

This may result in underreporting of complementary 

techniques present in the same study. Nonetheless, this 

approach ensured clarity in trend analysis and avoided 

inflation of technique-specific counts due to overlap. 

 

 
 

Figure 3. Fault detection type versus the number of reviewed 

literature: Counts specific to each technique (e.g., 29 studies 

on vibration analysis) reflect the frequency of discussion in 

literature reviews, serving as indicators of research focus 

rather than comparative effectiveness. These figures reveal 

prevalent practices, highlight underexplored methods, and 

point to areas needing further investigation. For instance, the 

sparse attention to oil analysis indicates a significant research 

gap despite its practical importance in wear detection. 

 

Rotating Machinery Fault Detection Techniques 

Literature 

Literature 

publishing 

year 

Number of 

rotating 

machinery 

fault 

detection 

literature 

published 

Specific fault 

detection technique 

2013 3 AEM, AEM, OA 

2014 1 VA 

2015 3 AEM, TI, AEM 

2016 3 AEM, TI, TI 

2017 4 VA, VA, TI, ESA 

2019 4 TI, VA, SM, ESA 

2020 4 ESA, ESA, VA, TI 

 2021 5 VA, TI, VA, OA, VA  

2022 7 VA, VA, VA, VA, 

AEM, TI, IoTERTM  

2023 12 IoTERTM, IoTERTM, 

VA, VA, VA, AEM, 

VA, TI, , ESA, VA, 

VA, VA 

2024 17 VA, AEM,VA, TI, 

IoTERTM, TI, VA, 

ESA, IoTERTM, 

AEM, VA, VA, VA, 

VA, VA, VA, VA   

2025 1 VA 

Total  64 64 
 

Table 5. Yearly publication trend 

 

 
 

Figure 4. Research trends in rotating machinery fault 

detection from 2013 to 2025 

A notable trend in recent years is the increasing emphasis on 

fault detection techniques, with publications rising steadily 

from 2021 to 2024, peaking at 17 studies in 2024. This 

growth reflects the influence of Industry 4.0 and 5.0, where 

AI-driven analytics, IoT sensors, and machine learning are 

transforming maintenance strategies. While VA continues to 

be the most researched method, accounting for over 50% of 

studies in 2024, its dominance might overshadow other 

valuable techniques. The late emergence of IoTERTM in 

2022 indicates a shift toward digitalization; however, its 

limited adoption highlights the need for further research to 

fully integrate IoT and AI into fault detection frameworks. 

The review also reveals significant gaps in research coverage 

for certain fault detection techniques. Despite its crucial role 

in early-stage failure detection through lubricant condition 

monitoring, oil analysis appears in only two studies (2013 

and 2021). Given its importance in sectors such as power 

generation, aviation, and manufacturing, this lack of research 
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on OA suggests an underutilization of lubricant-based 

diagnostics in predictive maintenance models. Additionally, 

routine maintenance is not mentioned, while scheduled 

maintenance is only referenced in a single study from 2019. 

This suggests that researchers are prioritizing fault detection 

techniques over structured maintenance planning, even 

though routine and scheduled maintenance are essential for 

long-term equipment reliability. The shift toward predictive 

maintenance indicates that industries are moving away from 

fixed-schedule maintenance models in favour of real-time 

monitoring and failure prediction techniques. 

While this review comprehensively covers trends in fault 

detection research, its overemphasis on vibration analysis 

may limit the development of holistic maintenance strategies. 

Future research should investigate hybrid fault detection 

models that incorporate multiple techniques instead of 

relying solely on VA. By combining VA, OA, ESA, AEM, 

and TI, researchers can create multi-sensor fault detection 

frameworks that enhance both accuracy and reliability. 

Moreover, the lack of attention to routine and scheduled 

maintenance strategies highlights a critical gap in research, 

suggesting a need for more studies to explore how traditional 

maintenance approaches can complement modern fault 

detection methods.. 

To address these gaps, future research should broaden its 

focus on underrepresented fault detection techniques. Oil 

analysis, acoustic emission monitoring, and electrical 

signature analysis require more attention as they offer early-

stage failure detection capabilities that vibration analysis may 

overlook. Additionally, incorporating routine and scheduled 

maintenance into fault detection research would provide a 

more comprehensive approach to equipment reliability. 

Given the increasing importance of IoT and AI in predictive 

maintenance, it is essential to dedicate more research to real-

time data processing, anomaly detection algorithms, and 

cloud-based diagnostics. 

Another critical recommendation is the development of 

multi-sensor fault detection frameworks. Future studies 

should examine how vibration analysis, oil analysis, 

electrical signature analysis, acoustic emission monitoring, 

and thermal imaging can be integrated to improve fault 

detection accuracy. Combining these methods would enable 

industries to capture various failure modes more effectively, 

reducing unexpected breakdowns and enhancing predictive 

maintenance capabilities. Furthermore, greater collaboration 

between researchers and industries is necessary to validate 

fault detection models in real-world operational 

environments. More case studies and practical applications of 

these techniques would boost their effectiveness in industrial 

settings. 

3.3. Summary of Reviewed Fault Detection Techniques 

Effectiveness, limitations, and industrial applications of these 

techniques were compared. Emerging trends emphasize 

predictive maintenance, real-time monitoring, and data-

driven models, enhancing fault diagnosis accuracy and 

optimizing machinery reliability and performance. 

3.3.1. Vibration Analysis 

Vibration analysis is the most frequently referenced method 

in the reviewed literature, with many studies highlighting its 

exceptional accuracy in fault detection. For example, Li et al. 

(2023) and Kola et al. (2021) reported detection rates above 

99% when utilizing advanced artificial intelligence models 

like convolutional neural networks (CNNs). Also, entropy-

based techniques such as WSEDisE have been developed to 

improve fault detection performance in noisy environments 

(Norman et al., 2024), offering advantages over conventional 

dispersion entropy approaches. However, this strong 

performance is not universal. Several studies, including Rong 

et al. (2024) and Gawde et al. (2024) highlighted the 

technique's susceptibility to background noise, signal 

overlap, and sensitivity to sensor placement. In contrast, 

Zhuang et al. (2024) proposed an edge detection method 

using grayscale morphology that improved feature clarity 

under noisy conditions, but this approach was limited to 

controlled lab environments. Moreover, while Zhang et al. 

(2017) emphasized the success of vibration monitoring in 

real-time gas turbine diagnostics, Orman et al. (2015) found 

that low-cost acoustic-based approaches using smartphone 

microphones could achieve similar results in non-critical 

applications at a fraction of the cost.  

Despite its positive characteristics, VA also faces several 

limitations. It is highly vulnerable to environmental noise and 

overlapping signals, which can obscure fault signatures and 

reduce diagnostic accuracy in complex industrial settings. 

Reliable outcomes also depend on proper sensor placement 

and skilled interpretation, posing challenges for 

organizations with limited technical expertise. Moreover, 

vibration analysis may struggle to detect incipient or non-

mechanical faults that produce weak or no vibrational 

signatures, limiting its effectiveness for comprehensive 

health monitoring. Finally, the cost and scalability of 

deploying and maintaining sensors across multiple assets can 

be prohibitive, particularly in large-scale or resource-

constrained environments, further restricting its practical 

application. 

3.3.2. Electrical Signature Analysis 

Electrical Signature Analysis has gained recognition for its 

non-intrusive diagnostic potential, particularly in motor and 

generator fault detection. Studies such as Deshmukh & 

Askhedkar (2017) and Salomon et al. (2019) demonstrated 

the method's ability to detect rotor bar defects and phase 

imbalances with high sensitivity using FFT and EPVA 

techniques. However, Sameh et al. 2020 and Chen & Feng et 

al. (2023) noted that traditional ESA methods often struggle 

with weak fault signatures, especially when using stator 
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current alone. To overcome these limitations, they proposed 

analyzing additional signals such as rotor current and shaft 

voltage, achieving better accuracy. Furthermore, AI 

integration with ESA, as shown in Sameh et al. (2020), 

significantly enhanced fault classification, though it required 

substantial training data and computational resources. The 

contrast between traditional signal processing and AI-

enhanced ESA highlights a trade-off between accessibility 

and performance. While ESA is effective for early fault 

detection, its practical success hinges on the complexity of 

signal processing and the integration of intelligent models, 

making it more suitable for facilities with the necessary 

infrastructure. 

3.3.3. Thermal Imaging 

Thermal imaging is valued for its non-contact, real-time 

detection of overheating and insulation faults. Studies such as 

Mehta et al. (2021) and Li et al. (2019) achieved 

classification accuracies above 99% using machine learning 

algorithms applied to thermal images. However, these results 

are often achieved in controlled environments. In practical 

applications, Kala et al. (2024) and Bai et al. (2016) observed 

that external lighting conditions, low image contrast, and 

thermal noise can degrade diagnostic accuracy. Moreover, 

while Janssens et al. (2015) highlighted the effectiveness of 

temperature variance metrics in classifying bearing faults, 

Duan et al. (2016) emphasized that segmented image analysis 

provided superior feature extraction and fault isolation. These 

contrasting methodologies suggest that the accuracy of TI is 

highly dependent on preprocessing techniques and 

environmental control. In high-noise or thermally 

homogeneous environments, TI may underperform unless 

combined with techniques like vibration or acoustic 

monitoring. Hence, while TI is promising, its full potential is 

realized only when paired with advanced imaging and hybrid 

condition monitoring approaches. 

3.3.4. Acoustic Emission Monitoring 

Acoustic emission monitoring has proven useful in detecting 

early-stage faults such as micro-crack propagation and 

lubrication failure. It continues to improve bearing fault 

detection, as shown in recent work using techniques like 

spectral kurtosis and envelope analysis Azeez et al., 2020). 

Studies like Ratnam et al. (2018) and Chacon (2015) have 

also demonstrated its high sensitivity using ANN and 

wavelet-based signal enhancement. Nevertheless, AEM’s 

performance is frequently hindered by ambient acoustic noise 

and signal reflection issues, as noted by Zhuang et al. (2024) 

and Orman et al. (2015). While Orman et al. (2015) 

successfully used low-cost mobile devices to capture AE 

signals for fault diagnosis, Zurita et al. (2013) developed an 

autonomous AE-based system that required sophisticated 

time-domain analysis and wireless communication for real-

time feedback. This contrast highlights AEM’s scalability: it 

is suitable for both low-cost diagnostics and advanced 

automated systems, depending on implementation. However, 

the method’s reliance on accurate sensor placement and 

sophisticated filtering tools necessitates careful calibration. 

In high-noise environments, it often needs to be combined 

with vibration analysis or machine learning classifiers to 

avoid false positives. 

3.3.5. IoT-Enabled Real-Time Monitoring 

IoT-enabled real-time monitoring offers significant promise 

for proactive maintenance by continuously collecting and 

analyzing operational data via smart sensors. Studies such as 

Parthiban et al. (2024), and Yousuf et al. (2024) highlighted 

how IoTERTM enables early fault detection, predictive 

analytics, and integration with AI models to automate 

maintenance scheduling. These systems provide real-time 

insights that improve decision-making and reduce unplanned 

downtime. However, Kala et al. (2024) and javed et al. (2022) 

pointed out that the success of IoTERTM is contingent on 

stable network infrastructure, cybersecurity protocols, and 

high data integrity. Moreover, Orman et al. (2015) 

emphasized that while IoT systems offer scalability, their 

deployment in remote or hazardous environments can be 

constrained by connectivity issues and data overload. 

Additionally, while IoTERTM can detect anomalies quickly, 

its effectiveness relies on properly trained machine learning 

algorithms and high-quality data. Inconsistent sensor 

calibration or data noise can lead to false positives or missed 

detections, as observed in Janssens et al. 2015). These 

challenges highlight the need for robust data preprocessing, 

secure transmission protocols, and ongoing model updates. 

Despite these challenges, IoTERTM stands out for its 

versatility and ability to interface with other diagnostic 

techniques like vibration analysis and ESA. When 

implemented effectively, it enhances predictive maintenance, 

facilitates asset tracking, and supports Industry 4.0 and 5.0 

initiatives. Yet, its high initial setup costs and technical 

complexity suggest that smaller enterprises may need 

modular or cloud-based alternatives to fully leverage its 

benefits. 

3.3.6. Oil Analysis 

Oil analysis remains underrepresented in the reviewed 

literature despite its proven capability for detecting internal 

wear, contamination, and fluid degradation. Only two 

studies, Singh & Yelve (2024) and Khan et al. (2023), 

highlighted its value. Singh & Yelve (2024) emphasized 

OA’s ability to identify metal particulates linked to bearing 

wear, while Khan et al. (2023) discussed its utility in 

identifying lubricant degradation trends. However, OA 

typically requires off-site laboratory analysis, leading to 

delays in fault detection. This was seen in Singh & Yelve 

(2024), where time lag limited its applicability in fast-paced 

production environments. Unlike vibration or acoustic 

techniques, OA does not provide real-time feedback. 

Nevertheless, it offers unique insights that other techniques 
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might miss—especially for internal degradation. When 

integrated into a hybrid diagnostic system with VA or ESA, 

OA can enhance fault confirmation and extend equipment 

lifespan. The lack of recent, real-time oil analysis solutions 

remains a research gap and opportunity. 

3.3.7. Routine Maintenance 

Routine maintenance involves regularly scheduled activities 

designed to ensure the optimal performance and reliability of 

rotating machinery. Unlike corrective maintenance, which is 

conducted after a failure has occurred, routine maintenance is 

a proactive strategy aimed at preventing failures before they 

arise. This preventive approach enables early detection of 

potential faults, thereby minimizing downtime, reducing 

repair costs, and enhancing operational safety. Key aspects of 

routine maintenance include: visual and manual inspections, 

lubrication management and contamination control, 

alignment and balancing checks, bearings and gearbox 

monitoring, belt and chain tension management, cleaning and 

contamination control, temperature monitoring for fault 

detection. By implementing a comprehensive routine 

maintenance strategy, industries can significantly enhance 

the reliability, efficiency, and lifespan of their rotating 

machinery while minimizing operational disruptions and 

maintenance costs. 

3.3.8. Scheduled Maintenance 

Planned maintenance involves scheduled inspections, 

predictive tasks, and detailed documentation to ensure 

equipment reliability and efficiency. Regular inspections 

identify wear, lubrication needs, and overall equipment 

condition, while predictive tasks, guided by historical data 

and manufacturer guidelines, entail replacing parts, adjusting 

settings, or cleaning components.  

This strategy enhances equipment lifespan, operational 

efficiency, and safety by preventing unexpected failures and 

reducing downtime. However, challenges include labor costs, 

spare parts, and the complexity of aligning maintenance with 

production schedules. Adjustments may be needed based on 

real-time performance data. 

Planned maintenance is applied in various sectors, ensuring 

manufacturing equipment reliability, improving 

transportation safety, and sustaining utility infrastructure. 

Recent studies emphasize the role of AI, machine learning, 

and IoT in evolving maintenance practices, highlighting tools 

like acoustic analysis, thermal imaging, and vibration 

monitoring. These advances support multi-sensor diagnostics 

and context-driven strategies for improved fault detection 

and industrial sustainability. 

3.4. Key Findings From the Review and Current State-

of-the-Art Fault Detection Methods Applicable to 

Rotating Machinery 

The findings highlight several key fault detection methods 

that enhance proactive maintenance. Vibration analysis is the 

most widely used and researched technique, providing 

effectiveness in detecting misalignment, imbalance, and 

bearing defects. Electrical signature analysis monitors 

current and voltage waveforms to identify electrical and 

mechanical faults, with increasing integration of AI-driven 

diagnostics to enhance accuracy. Thermal imaging utilizes 

infrared thermography to detect overheating, misalignment, 

and electrical faults, with advancements in AI improving 

fault classification and predictive accuracy. Acoustic 

emission monitoring captures high-frequency sound waves to 

detect early-stage bearing wear and lubrication issues, 

making it a valuable tool for condition monitoring. Oil 

analysis, which identifies contaminants and wear particles, 

remains underutilized despite its effectiveness in predictive 

maintenance strategies. IoT-enabled real-time monitoring 

employs wireless sensors, AI, and cloud-based analytics to 

facilitate predictive maintenance, reducing the need for 

human intervention and improving early fault detection. 

These techniques collectively contribute to enhancing 

equipment reliability, minimizing downtime, and optimizing 

industrial maintenance practices. 

Table 6 provides a comprehensive and structured overview 

of the state-of-the-art fault detection methods for rotating 

machinery.

 

Fault Detection 

Method 

 

Operating Mode 

 

 

Applicable Industry 

Vibration analysis Uses Spectral Kurtosis (SK) and Frequency Band Entropy (FBE) for 

resonance demodulation and early fault detection. AI-based 

techniques such as Artificial Neural Networks (ANN), K-Nearest 

Neighbor (KNN), and Support Vector Machines (SVM) enhance 

fault classification. The FD-MSAFF model improves detection by 

integrating multi-scale feature extraction. 
 

Manufacturing, oil 

and gas, power 

generation 

Electrical signature 

analysis  

Utilizes Motor Current Signature Analysis (MCSA) to detect motor 

faults. AI-based techniques like Radial Basis Function Networks 

(RBF) and Probabilistic Neural Networks (PNN) enhance 

Manufacturing, 

power generation 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

19 

classification. Extended Park’s Vector Approach (EPVA) detects 

short circuits and misalignment.  

Thermal Imaging Uses machine learning-enhanced models, including ANN, Fuzzy 

Logic (FL), and Support Vector Machines (SVM), for fault 

classification. 2D Discrete Wavelet Transform (2D-DWT) and 

Independent Component Analysis (ICA) improve feature extraction.  

Power generation, 

manufacturing  

Acoustic emission 

monitoring 

Wavelet Packets (WP) and Hilbert Transform (HT) improve signal 

decomposition for enhanced fault detection. AI-based classifiers such 

as decision trees, KNN, and SVM improve accuracy. IoT-enabled AE 

systems use portable AE sensors, discrete wavelet transform (DWT), 

neural networks (NN), and genetic algorithms (GA) for real-time 

monitoring.  

Aerospace, 

manufacturing, oil 

and gas. 

IoT-based real-time 

monitoring 

Advanced millimeter-wave (mmWave) sensing enhances angular 

velocity measurement. IoT-based monitoring using Arduino 

controllers, cloud analytics, and AI-driven diagnostics enables 

continuous real-time condition monitoring.  

Manufacturing 

Oil analysis and 

lubrication 

monitoring 

Online oil monitoring systems (SOOA) use multiple sensors and 

diagnostic algorithms to evaluate lubricant conditions in real-time, 

allowing early gearbox fault detection. Wear particle analysis applies 

spectral techniques to predict mechanical wear before failure.  

Automotive, 

manufacturing, power 

generation 

 

Table 6. Current state-of-the-art fault detection methods and their operating mode: Note: Applicable Industries: Indicates the 

primary industries where these techniques are commonly applied. 

 

 

While cost and complexity are frequently mentioned 

challenges, this study connects these barriers to specific 

findings. For example, [24] and [31] reported high initial 

capital costs for deploying thermal cameras and IoT-enabled 

vibration sensors in small- to mid-scale facilities. Studies 

such as [36] and [49] highlighted the data volume and 

processing challenges associated with machine learning 

algorithms, where inadequate infrastructure and unclean data 

led to poor model performance. Furthermore, [22] discussed 

training requirements for operators interpreting acoustic 

emission data and identified the lack of skilled personnel as 

a significant implementation bottleneck. This evidence 

reinforces the need for thorough cost-benefit evaluations and 

the development of simplified user interfaces to facilitate 

broader adoption. 

3.5. Primary Challenges Faced by Industries in 

Adopting Fault Detection Techniques for Rotating 

Machinery 

Adopting fault detection techniques for rotating machinery in 

industrial settings presents several key challenges, ranging 

from technical and operational constraints to economic and 

organizational barriers. Table 7 presents challenges 

encountered by industries when adopting fault detection 

techniques for rotating machinery. 

Primary Challenges 

 

Narratives 

 

Data acquisition and 

processing complexity 

 

Advanced fault detection 

methods require high-quality 

data, but industries face 

 

 

 

 

 

 

 

 

 

challenges with noise 

contamination, data sparsity, 

and variability in operating 

conditions. Real-time data 

processing demands robust 

computational resources, 

which legacy systems may 

lack. 
 

Integration with 

existing industrial 

processes 

 

 

 

 

 

Many industries operate on 

legacy equipment without 

built-in sensors, making 

retrofitting costly. IoT-based 

monitoring requires reliable 

network infrastructure, which 

may be unavailable in remote 

locations. 
 

High costs and ROI 

concerns 

 

 

 

 

 

 

 

The initial investment in 

sensors, data acquisition 

systems, and AI diagnostics is 

expensive, particularly for 

small and medium enterprises 

(SMEs). Industries struggle to 

justify ROI, especially when 

cost savings are not 

immediately visible. 
 

Skill gaps and 

workforce training 

 

Many fault detection 

techniques, such as AI-based 

diagnostics and signal 
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processing, require specialized 

expertise. The shortage of 

trained personnel and 

resistance to AI-driven 

maintenance hinder adoption 

Reliability and 

accuracy of fault 

detection models 

 

 

 

 

 

AI-based fault detection 

models rely on historical data, 

but variations in operating 

conditions and environmental 

factors affect model accuracy. 

This can lead to false positives 

or undetected faults. 
 

Data security and 

privacy concerns 

 

 

 

 

 

 

 

Cloud-based IoT monitoring 

poses cybersecurity risks, as 

sensitive operational data must 

be securely stored and 

transmitted. Industries, 

particularly in critical 

infrastructure sectors, are 

hesitant to adopt fully cloud-

based fault detection. 

 

Table 7. Challenges faced by industries in adopting fault 

detection techniques for rotating machinery. 

While fault detection techniques for rotating machinery offer 

substantial benefits in improving reliability and reducing 

downtime, industries face challenges related to data quality, 

integration with existing systems, high costs, workforce 

skills, model reliability, and cybersecurity. Addressing these 

barriers requires a strategic approach, including investment 

in training, infrastructure upgrades, and the development of 

more adaptable and cost-effective diagnostic solutions. 

3.6. Integration and Adaptability of Fault Detection 

Technologies Across Diverse Industrial 

Environments 

The integration and adaptability of fault detection 

technologies across various industrial environments are 

critical for industries implementing proactive maintenance 

strategies. These technologies enhance operational efficiency 

and equipment reliability by identifying failures before they 

escalate. However, successful implementation requires 

adaptability to diverse industrial needs, overcoming 

integration challenges, and ensuring scalability across 

multiple sites. 

• Diverse industrial applications: Fault detection 

technologies are utilized in various industries, including 

manufacturing, oil and gas, and power generation. Each 

sector has unique operational requirements, 

necessitating customized solutions. In manufacturing, 

these technologies monitor machinery such as 

conveyors, motors, and CNC machines by using sensors 

to collect real-time data on vibrations, temperature, and 

acoustic emissions, thereby identifying failures before 

they impact production. The oil and gas sector benefits 

from predictive analytics and condition monitoring to 

assess the health of critical equipment such as pumps, 

compressors, and turbines. Given the harsh operating 

conditions and remote locations, fault detection 

technologies must be robust and capable of remote data 

analysis. In power generation, integrating fault 

detection systems with energy management systems 

ensures continuous uptime and regulatory compliance, 

making proactive maintenance more effective. 

• Technology integration challenges: The integration of 

fault detection technologies presents several challenges, 

including high implementation costs, complexities in 

data management, and the need for specialized 

expertise. The significant initial investment in sensors, 

software, and training can deter organizations from 

rapid adoption. A detailed cost-benefit analysis is 

essential to justify these expenditures. Furthermore, 

integrating new fault detection systems with existing 

legacy infrastructure complicates data management, 

necessitating advanced solutions for seamless 

interoperability. Another major challenge is the 

requirement for specialized expertise, as many 

organizations lack the in-house capabilities to 

effectively implement and manage these advanced 

technologies. 

• Scalability of technologies: Scalability is crucial for 

organizations seeking to expand operations or 

implement fault detection solutions across multiple 

locations. Modular solutions provide a phased 

approach, allowing organizations to start with critical 

areas and expand incrementally, thereby reducing 

upfront costs. Cloud-based solutions enhance 

scalability by enabling vast data storage and processing, 

allowing organizations to access real-time analytics and 

monitoring from various locations without extensive 

physical infrastructure. Additionally, the IoT enhances 

scalability by creating an interconnected framework 

that facilitates real-time data collection and analysis, 

improving decision-making and operational efficiency. 

Several successful implementations highlight the 

effectiveness of fault detection technologies in industrial 

settings. IoT-based monitoring systems, such as those 

demonstrated by Yousuf et al. (2024), provide real-time 

tracking of AC induction motors, enabling precise fault 

identification. Furthermore, machine learning and AI-driven 

diagnostics enhance fault detection and predictive 

maintenance by analyzing large datasets and identifying 

patterns indicative of potential failures. These technologies 

significantly improve operational reliability and reduce 

downtime. 

To improve the integration and scalability of fault detection 

technologies, future efforts should prioritize standardization, 
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interoperability, and workforce development. Establishing 

standardized methodologies for data communication and 

fault detection will streamline integration across various 

systems and manufacturers. Ensuring that fault detection 

technologies can interoperate with existing manufacturing 

execution systems (MES) and enterprise resource planning 

(ERP) systems will facilitate smoother integration and 

enhance data-driven decision-making. Furthermore, 

investing in training and development programs will provide 

personnel with the essential skills needed to manage and scale 

these technologies. 

Integrating and scaling fault detection technologies across 

diverse industrial environments is crucial for enabling 

proactive maintenance and enhancing operational efficiency. 

By addressing challenges such as high costs, complex data 

management, and the requirement for specialized expertise, 

industries can successfully implement adaptable fault 

detection systems. Utilizing modular solutions, IoT 

integration, and cloud-based technologies will further 

improve scalability, allowing organizations to expand their 

maintenance capabilities while boosting efficiency and 

productivity. 

3.7. Quantifiable Benefits of Implementing Proactive 

Maintenance Strategies 

Implementing proactive maintenance strategies in industrial 

production provides several quantifiable benefits, including 

cost savings, reduced downtime, increased equipment 

lifespan, enhanced safety, and energy efficiency. These 

benefits are well-documented in the reviewed literature and 

demonstrate the value of shifting from reactive to predictive 

and preventive maintenance approaches. Table 8 highlights 

the advantages of adopting proactive maintenance strategies 

in industrial organizations. 

Quantifiable 

Benefits 

Explanation  References 

(respectively) 

Cost savings 

and reduced 

maintenance 

expenditure 

Proactive maintenance 

lowers maintenance 

costs by preventing 

failures and 

minimizing downtime. 

Predictive 

maintenance can 

reduce costs by 30–

40%. Oil analysis and 

wear monitoring 

optimize lubrication, 

extend component life, 

and reduce 

replacement costs. 

Rong et al. 

2024; 

Salomon et 

al., 2019; 

Islam et al., 

2021;   

Reduction in 

unplanned 

downtime 

AI-driven predictive 

maintenance and IoT-

based real-time 

Mehta et al., 

2021; 

Shubuta et 

monitoring can reduce 

unplanned downtime 

by up to 50%. Early 

fault detection through 

infrared thermography 

(IRT) and acoustic 

emission (AE) 

monitoring enables 

scheduled repairs, 

preventing production 

disruptions. 

al., 2023; 

Guo et al., 

2022  

Extended 

equipment 

lifespan and 

asset 

reliability 

Proactive maintenance 

improve MTBF by 

20–25% and extends 

the lifespan of 

machinery; Scheduled 

alignment and 

balancing checks 

increase bearing 

lifespan by 15–20%; 

Vibration-based fault 

detection reduces 

failure rates by 35%. 

Yang et al., 

2025; Gawde 

2024  

Energy 

efficiency and 

reduced 

operational 

costs 

Misaligned or 

unbalanced machinery 

increases energy 

consumption by 10–

15%; IRT and motor 

current signature 

analysis (MCSA) help 

detect inefficiencies; 

AI-driven fault 

detection in motors 

improves energy 

efficiency. 

Zhang et al., 

2023; 

Deshmukh & 

Askhedkar, 

2017; Nayak 

et al., 2024 

Improved 

workplace 

safety and 

compliance 

Early fault detection 

using AE and IRT 

reduces safety 

incidents by 40%; IoT-

based predictive 

maintenance reduces 

safety-related incidents 

by 30–50% by 

preventing hazardous 

failures. 

Chacon, 

2015; 

Radonjic et 

al. 2022  

Increased 

production 

output and 

process 

optimization 

Proactive maintenance 

ensures maximum 

equipment availability, 

leading to a 5–10% 

increase in production 

efficiency; AI-driven 

frameworks such as 

Explainable Predictive 

Maintenance (XAI) 

Yang et al., 

2025; Gawde 

2024  
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improve overall 

equipment 

effectiveness (OEE) 

by 20%. 

 

Table 8. Benefits of implementing proactive maintenance 

strategies in industrial production. 

3.8. Cost-Benefit Analysis of Implementing Proactive 

Maintenance 

Conducting a cost-benefit analysis of proactive maintenance 

is essential for assessing its feasibility and making a strong 

case for its implementation in industrial environments. Based 

on the findings of this paper, the following key economic 

considerations related to proactive maintenance are drwn. 

• Initial investment costs: Implementing proactive 

maintenance strategies usually requires substantial 

upfront investments. These costs encompass acquiring 

equipment and technology, including advanced fault 

detection and monitoring systems such as vibration 

analysis tools, IoT sensors, and AI-driven diagnostic 

tools. Additionally, infrastructure upgrades may be 

necessary to effectively integrate new technologies, 

which could involve enhancements to data management 

systems and software platforms to ensure compatibility 

with existing machinery. Training and expertise also 

represent a significant cost factor, as employees may 

need specialized training to operate new technologies 

and diagnostic tools, leading to direct costs and 

potential productivity losses during the adjustment 

period. 

• Operational cost savings: Despite the high initial costs, 

proactive maintenance can yield considerable 

operational savings over time. One of its most 

significant advantages is the reduction in downtime, as 

early fault detection minimizes unplanned outages and 

enhances operational efficiency. Proactive maintenance 

significantly decreases both the frequency and duration 

of equipment failures, which is crucial in industries 

requiring continuous operation. Another benefit is the 

extension of equipment lifespan; regular monitoring of 

equipment health and addressing minor issues before 

they escalate allows organizations to prolong the life of 

their machinery, thereby lowering long-term capital 

expenditures related to equipment replacement. 

Furthermore, proactive maintenance results in fewer 

emergency repairs, which typically involve unplanned 

labor costs, expedited shipping of parts, and potential 

production losses—expenses that can be minimized 

through a proactive approach. 

• Safety and compliance benefits: Investing in proactive 

maintenance strategies also enhances safety outcomes. 

Reduced accidents stem from proactive monitoring, 

which lowers the risk of catastrophic equipment failures 

that threaten personnel safety. This improvement not 

only bolsters workplace safety but also mitigates 

potential liability costs and legal repercussions. 

Moreover, many industries face stringent regulations 

regarding equipment safety and operational integrity, 

making regulatory compliance a critical factor in 

justifying proactive maintenance. Regular monitoring 

and maintenance help organizations avoid penalties, 

fines, and operational shutdowns due to safety 

violations. 

• Challenges and limitations: While the benefits of 

proactive maintenance are substantial, several 

challenges can hinder its adoption. High 

implementation costs often deter organizations, as they 

may be reluctant to invest significant sums without a 

clear, detailed cost-benefit analysis. A deeper 

understanding of the return on investment (ROI) would 

aid in addressing these concerns and justifying 

expenditures. Additionally, the complexity of data 

management presents another challenge; integrating 

multiple data sources and managing advanced analytics 

platforms can be costly and necessitate specialized 

expertise. If not handled efficiently, this complexity can 

negate potential cost savings and introduce further 

operational burdens. 

• Long-term Financial Implications: A key component of 

the cost-benefit analysis is evaluating long-term 

financial outcomes, particularly through ROI 

calculations. Organizations should assess potential 

long-term savings about initial investment costs by 

quantifying expected reductions in downtime, 

emergency repairs, and the extended lifespan of 

machinery. AI and machine learning-powered 

predictive maintenance models can enhance decision-

making by providing insights into maintenance needs 

and cost projections, enabling more effective resource 

allocation. These models allow organizations to 

accurately forecast failures, optimize spare parts 

inventory, and minimize unnecessary maintenance 

expenses. 

• Need for comprehensive case studies: To convincingly 

demonstrate the economic advantages of proactive 

maintenance, more empirical studies that provide 

concrete data on implementation outcomes are needed. 

These case studies should evaluate actual cost savings 

from reduced downtime, compare maintenance 

expenses before and after the implementation of 

proactive strategies, and measure the time taken to 

achieve ROI following initial investments. Such 

research would offer organizations industry    

benchmarks and validated data to support their 

investment decisions in proactive maintenance 

strategies. 
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Organizations must carefully weigh these considerations and 

consider developing tailored financial models to illustrate the 

expected outcomes of adopting proactive maintenance 

strategies. 

 

3.9. Comparative Analysis of Proactive Maintenance 

       Strategies Upfront Costs versus Long-Term Savings 
 

As previously highlighted, preventive and predictive 

approaches require higher initial investment in monitoring 

technologies and analytics platforms, but they significantly 

reduce unplanned breakdowns, crude deferments, and safety-

related incidents, leading to measurable financial benefits 

over time. To strengthen the practical applicability 

 of proactive maintenance, a comparative analysis of the 

economic implications of corrective, preventive, predictive, 

and planned maintenance strategies were conducted.  

Table 9 summarizes the trade-offs between upfront costs and 

long-term savings, offering decision-makers a clearer 

understanding of total cost of ownership (TCO) across 

strategies. The analysis highlights that while predictive and 

hybrid (planned) strategies require higher initial investments, 

they deliver the greatest long-term financial benefits by 

minimizing downtime, extending equipment life, and 

improving safety outcomes. 

 

 

 

 

 

Maintenance 

Strategy 

Upfront Costs Long-term Savings/ Benefits Economic Implications 

Corrective 

maintenance 

Minimal upfront cost; no 

monitoring of equipment or 

specialized training required. 

Very limited; often results in high 

cumulative costs due to 

unplanned downtime, spare parts, 

labor overtime, and production 

losses. 

Appears cost-effective initially but 

leads to the highest total cost of 

ownership (TCO) over time. 

Preventive 

maintenance 

Moderate upfront cost; 

requires scheduled 

inspections, routine part 

replacements, and basic 

planning tools. 

Reduces frequency of failures, 

extends equipment life, and 

minimizes production disruptions. 

Balanced approach; cost-effective 

in stable environments but may 

incur unnecessary replacements if 

intervals are not optimized. 

Predictive 

maintenance 

High upfront cost; 

investment in sensors, 

condition monitoring 

systems, data storage, and 

skilled workforce training. 

Significant savings through early 

fault detection, optimized spare 

parts usage, reduced downtime, 

and improved safety. 

High return on investment (ROI) 

over asset life cycle; economically 

viable for critical, high-value assets. 

Planned 

maintenance 

(Hybrid) 

Moderate to high upfront 

cost; combines preventive 

schedules with selective 

predictive monitoring. 

Offers savings from reduced 

downtime, optimized asset 

availability, and extended 

lifecycle benefits. 

Provides the best balance between 

cost and reliability; increasingly 

favored in modern industrial 

operations. 

Table 9. Comparative economic implications of maintenance strategies

3.10. Key Recommendations for Optimizing    

Maintenance Approaches in Industrial Settings 

Based on the Findings 

 

Based on the findings from the reviewed literature, 

optimizing maintenance strategies in industrial settings 

requires a combination of advanced fault detection 

technologies, predictive analytics, workforce training, and 

cost-effective implementation approaches. The key 

recommendations outlined in Table 9 are designed to 

improve equipment reliability, minimize downtime, and 

enhance overall operational efficiency. 

 

Key 

Recommendations 

Description 
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Integrate predictive 

maintenance with 

AI and IoT 

technologies 

 

 

 

 

AI-driven predictive maintenance 

integrated with IoT-based real-time 

monitoring enhances fault 

detection accuracy and optimizes 

maintenance schedules. 

Explainable AI (XAI) improves 

transparency in predictive 

maintenance. 
 

Implement multi-

sensor data fusion 

for enhanced fault 

detection 

 

 

 

Combining infrared thermography, 

vibration analysis, and motor 

current signature analysis improves 

fault detection accuracy. AI-driven 

Fiber Bragg Grating (FBG) sensor 

fusion enhances early detection. 

Develop cost-

effective 

maintenance 

strategies for SMEs 

 

 

 

 

SMEs face financial constraints in 

adopting predictive maintenance. 

Low-cost condition monitoring 

tools (e.g., mobile-based AE 

analysis) and hybrid maintenance 

models combining preventive and 

predictive approaches provide cost-

effective solutions. 
 

Optimize 

lubrication and oil 

analysis to reduce 

wear and tear 

 

 

 

Oil analysis and wear particle 

detection reduce mechanical 

failures. Online oil monitoring 

systems (SOOA) continuously 

track lubricant conditions for 

timely intervention. 
 

Enhance workforce 

training in 

advanced fault 

detection 

techniques 

 

 

 

Workforce training in signal 

processing, machine learning, and 

predictive analytics is essential for 

adopting modern maintenance 

methods. Edge machine learning 

can support data-driven decision-

making. 
 

Strengthen 

cybersecurity 

measures for IoT-

enabled 

maintenance 

systems 

Cybersecurity risks in IoT-based 

predictive maintenance must be 

mitigated through data encryption, 

firewall protection, and regular 

audits to secure industrial 

operations. 
 

Improve 

maintenance 

scheduling using 

AI-based 

optimization 

models 

 

AI-based maintenance models, 

such as Support Vector Machines 

(SVM) and Extreme Gradient 

Boosting (XGBoost), optimize 

scheduling based on real-time 

equipment conditions, reducing  

downtime and unnecessary costs. 
 

Adopt real-time 

vibration and 

Continuous vibration analysis and 

thermal imaging are essential for 

thermal monitoring 

for high-risk 

equipment 

 

 

critical industries (e.g., oil & gas, 

power generation). Acoustic 

emission monitoring enhances 

early fault detection for gearboxes 

and bearings. 
 

Standardize 

maintenance 

procedures based 

on ISO and 

industry best 

practices 

 

 

Aligning maintenance strategies 

with ISO standards (e.g., ISO 

10816 vibration analysis 

guidelines) and adopting 

reliability-centered maintenance 

(RCM) frameworks improve 

maintenance accuracy and 

consistency. 
 

Leverage digital 

twins for advanced 

predictive 

maintenance 

 

Digital twins create virtual replicas 

of physical assets, enabling failure 

scenario simulation and predictive 

maintenance planning. 

 

 
 

Table 10. Recommendations for optimizing maintenance 

approaches in industrial settings based on the findings. 

3.11. Future Research direction 

The study critically analyzes existing research on predictive 

maintenance, fault detection methodologies, and the 

challenges of industrial implementation. Despite notable 

advancements in AI-driven diagnostics, IoT-enabled 

monitoring, and multi-sensor fusion techniques, several 

research gaps and limitations remain. Future research should 

focus on addressing these gaps by refining current models, 

integrating emerging technologies, and exploring new 

frameworks to enhance the accuracy, reliability, and cost-

effectiveness of fault detection. Future works provide a 

review-based analysis of future research directions, 

organized around key unresolved issues, research gaps, and 

emerging technological trends. The following studies will 

provide deeper insights into the study topic, exploring 

advanced methodologies, emerging technologies, and 

industry best practices to further enhance knowledge, 

innovation, and practical applications. 

• Transformer models, large language models (LLMs), 

and foundation models represent promising frontiers for 

future research in rotating machinery fault detection. 

Their advanced pattern recognition capabilities and 

contextual understanding can enhance predictive 

accuracy, early fault diagnosis, and adaptive 

maintenance strategies, significantly improving 

reliability and operational efficiency in industrial 

applications. 

• Edge computing for real-time fault detection and 

decision-making in rotating machinery: Cloud-based AI 

diagnostics face latency and security challenges. This 
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study will explore edge computing for real-time fault 

detection in rotating machinery, enabling faster 

anomaly detection by processing data locally. By 

integrating machine learning and predictive analytics, it 

will aim to enhance decision-making, optimize 

maintenance strategies, reduce downtime, and improve 

the reliability of industrial rotating equipment. 

• Evaluating the contributions and effectiveness of 

preventive and scheduled maintenance strategies in 

fault diagnosis for rotating machinery: A review. This 

study will assess the contributions and effectiveness of 

preventive and scheduled maintenance strategies in 

diagnosing faults in rotating machinery. By reviewing 

existing diagnostic methods, it will seek to evaluate 

their impact on rotating machinery reliability, failure 

prevention, and operational efficiency. The study will 

also identify key trends, challenges, and areas for 

improvement in maintenance practices to enhance 

machinery performance. 

4. CONCLUSION 

This systematic review examines proactive maintenance 

through failure detection techniques for rotating machinery, 

identifying key fault detection methods, their benefits, and 

associated challenges. The findings highlight that vibration 

analysis, electrical signature analysis, thermal imaging, 

acoustic emission monitoring, oil analysis, and IoT-enabled 

real-time monitoring are critical for ensuring equipment 

reliability and operational efficiency. These methods are 

consistent with existing literature, where vibration analysis 

remains the most widely researched and applied technique 

due to its effectiveness, reliability, and capacity to detect a 

broad range of mechanical faults, but with limitations such as 

vulnerability to environmental noise and overlapping signals, 

which can obscure fault signatures and reduce diagnostic 

accuracy in complex industrial settings. Reliable outcomes 

also depend on proper sensor placement and skilled 

interpretation, posing challenges for organizations with 

limited technical expertise.   

The review highlights that AI and machine learning enhance 

fault detection accuracy and predictive maintenance, with 

studies by Li et al. (2023) and Sangeetha et al. (2024) 

demonstrating advancements in fault classification and false 

alarm reduction. Despite increased adoption, challenges 

remain in data management, costs, and the requirement for 

specialized expertise. Techniques like electrical signature 

analysis show promise but are underused due to data 

complexity and integration issues. The effectiveness of fault 

detection methods varies with operational context, 

infrastructure, and data quality, underscoring the need for 

hybrid and case-specific approaches. The review also 

confirms the benefits of proactive maintenance but notes gaps 

in comparative analyses, cost-benefit assessments, and 

standardized performance metrics. 

The review also identified various fault detection methods 

along with empirical evidence that substantiate the findings. 

Table 11 presents some of these fault detection techniques 

alongside the supporting measurable data. The results 

underscore the practical benefits and cost reductions 

achieved across multiple industries, emphasizing the value 

and efficacy of adopting advanced fault detection techniques 

in industrial operations.  

 

Technique Empirical support 

 

Vibration 

analysis 

 

 

 

Vibration analysis accurately predicted 

up to 85% of potential mechanical 

failures in rotating machinery, 

improving operational reliability (Li et 

al., 2023). 
  

Thermal 

imaging 

 

 

 

 

A systematic review confirmed that 

thermal imaging detects faults with 

over 90% accuracy under controlled 

conditions, proving its importance in 

preventive maintenance (Gawde et al., 

2023) 
 

Acoustic 

emission 

monitoring 

 

 

Research showed that acoustic 

emission monitoring detects early-stage 

failures faster than traditional methods, 

improving operational efficiency in 

aerospace applications (Rong et al., 

2024). 
 

 

Table 11. Fault detection techniques and quantifiable 

empirical evidence that support the findings. 

 

To overcome current challenges, industries should adopt 

hybrid fault detection methods, combining various 

techniques, while expanding research on lesser-used tools 

like oil analysis and acoustic monitoring, and enhancing AI 

diagnostics; future efforts must focus on real-time analytics, 

automated detection, and cross-sector scalability to support 

the shift toward Industry 4.0 and 5.0, optimizing maintenance 

efficiency and ensuring sustained equipment reliability. 
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