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ABSTRACT

The trend is shifting toward hybrid methods that incorporate
prior knowledge into data-driven methods to address chal-
lenges in diagnostics and prognostics such as limited data,
interpretability, and complex system behavior. While system-
specific prior knowledge facilitates accurate, physically plau-
sible modeling, the resulting hybrid model is typically tightly
coupled to an individual engineering system. In contrast, gen-
eral prior knowledge—such as fundamental physical laws or
broadly applicable degradation knowledge—supports scala-
ble, transferable models across various engineering systems.
This opens the door to more adaptable approaches for diag-
nostics and prognostics, but the potential remains underex-
plored. To address this, a taxonomy is proposed that defines
prior knowledge as frequently occurring regularities with four
levels of validity, enabling hybrid methods to be characterized
by their expected transferability. Two approaches are intro-
duced and applied, both aimed at systematically identifying
such regularities: one driven by expert knowledge, the other
by data. Expert interviews further validate both the taxon-
omy and the identified regularities, establishing a foundation
for developing transferable hybrid methods between various
engineering systems.

1. INTRODUCTION

Prognostics and Health Management (PHM), though well-
established, continues to underpin system reliability through
monitoring, diagnosis, and the prediction of future health con-
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ditions (Zio, 2022). In contrast to diagnostics, which identi-
fies current faults, prognostics relies on modeling complex,
often nonlinear degradation processes that evolve under un-
certainty. Accurate modeling of these dynamics is critical for
estimating the Remaining Useful Life (RUL) of Engineering
Systems (ESs), making prognostics one of the core challenges
in PHM (Kordestani, Saif, Orchard, Razavi-Far, & Khorasani,
2021). To address this challenge, three main approaches are
commonly employed: data-driven, physics model-based, and
hybrid methods. While data-driven and physics model-based
methods have long been established, hybrid methods are re-
ceiving increasing attention, as they provide a means to over-
come the limitations inherent in both purely data-driven and
physics-based modeling (Hagmeyer, Zeiler, & Huber, 2022).
For instance, models must be interpretable, trustworthy, and
robust under uncertainty—qualities that are difficult to guar-
antee when relying solely on data, which are often limited.
In contrast, physics-based models offer high precision but
are often impractical due to the complexity and limited ob-
servability of real-world degradation processes (Eker, Camci,
& Jennions, 2016). In response, at the forefront of hybrid
methods, Physics-informed Machine Learning (PIML) (Kar-
niadakis et al., 2021) effectively integrates prior knowledge
about the underlying physical system into data-driven meth-
ods to enhance the accuracy and generalizability of models,
striking a balance between the flexibility of Machine Learn-
ing (ML) and the rigor of physics-based modeling.

Leveraging both data and prior knowledge, however partial,
PIML offers a flexible and informed approach to improve
modeling degradation (Deng, Nguyen, Medjaher, Gogu, &
Morio, 2023). When this prior knowledge is specific to a
given ES, such as the degradation behavior of a particular
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bearing, it enables accurate and physically plausible mod-
eling for that context. Nevertheless, while effective in spe-
cific contexts, this approach also presents certain challenges.
Implementation is non-trivial, as it requires identifying, for-
malizing, and integrating prior knowledge in a usable form,
which is often a complex and highly system-specific task.
Furthermore, grounded in system-specific prior knowledge,
models tend to be tightly coupled to that context, making
them difficult to transfer to other ESs or use cases (Bajarunas,
Baptista, Goebel, & Chao, 2024). In contrast, leveraging
more general prior knowledge—knowledge valid across
multiple ESs or degradation processes—offers a pathway to-
ward degradation foundation models (Y.-F. Li, Wang, & Sun,
2024). These models can serve as transferable, off-the-shelf
solutions for a wide range of prognostic tasks, reducing the
need for extensive re-engineering per system.

Hagmeyer et al. (2022) have taken initial steps toward delin-
eating prior knowledge transferable across various ESs, ac-
companied by potential approaches for its integration into
data-driven methods. Furthermore, the work of Bajarunas et
al. (2024) represents one of the few examples in PHM where
prior knowledge on a wider scope is explicitly addressed by
integrating general knowledge about known cause-and-effect
relationships within ESs and common degradation trends to
estimate health indices using unsupervised learning. A simi-
lar approach is proposed by Chen, Ma, Zhao, Zhai, and Mao
(2022), which incorporates a positive increment recurrence
relationship to ensure monotonicity, keeping the learning pro-
cess consistent with physical degradation of bearings. Be-
yond these examples, however, such prior knowledge is rarely
used—indicating a preference for model performance, regard-
less of the significant overhead associated with tailoring mod-
els to individual ESs. Hence, this gap remains to be addressed
through a systematic identification of relevant prior knowl-
edge and an assessment of its applicability across different
systems.

In this paper, a taxonomy is proposed that defines prior knowl-
edge as Frequently Occurring Regularities (FORs) with four
levels of validity, essentially enabling the characterization of
hybrid methods based on their expected transferability. In
the scope of this paper, prior knowledge refers to informa-
tion about the degradation process that, while insufficient for
complete physics-based modeling, captures broadly applica-
ble regularities, such as typical degradation curve shapes or
the monotonic decline of health states. The universal charac-
teristics of the regularities are essential to facilitate the devel-
opment of transferable hybrid methods. Following the defini-
tion of FORs, the question naturally arises of what method-
ologies can be employed for their identification. Despite its
potential, a notable gap remains in the literature regarding the
thorough exploration of such regularities. To address this gap,
two approaches are proposed: one driven by expert knowl-
edge, the other by data, both aimed at systematically iden-

tifying FORs. Therefore, this paper contains the following
contributions:

1. A taxonomy is introduced that defines prior knowledge
as FORs, specifies four levels of validity with respect to
applications and domains, and enables characterization
of the expected transferability of hybrid methods incor-
porating the corresponding regularities.

2. An expertise-driven and a data-driven approach are pro-
posed for systematically identifying FORs across various
degradation processes and ESs.

3. The identification and discussion of six FORs represent-
ing cross-domain characteristics considered valid in mul-
tiple domains, based on the expertise-driven approach,
and 27 FORs representing cross-application characteris-
tics identified through the data-driven approach.

The structure of this paper is as follows: Section 2 introduces
the taxonomy, including the definition of FORs. Section 3 ex-
plores the expertise-driven and data-driven approaches used
to systematically identify FORs. In Section 4, the results from
both approaches and the findings from expert interviews con-
ducted to evaluate the taxonomy and the identified FORs are
presented, followed by an in-depth discussion in Section 5.
Finally, Section 6 concludes the paper with a summary of key
findings, an outlook on future work, and final reflections.

2. TAXONOMY OF FREQUENTLY OCCURRING REGU-
LARITIES

The underlying principle of hybrid methods is to combine
data-driven models with domain knowledge to improve
aspects such as overall performance, interpretability, gener-
alization, and robustness (Karniadakis et al., 2021). Since
degradation data are inherently tied to the process from which
they originate, the transferability of hybrid methods for diag-
nostics and prognostics hinges on the availability of broadly
applicable prior knowledge to bridge contexts. However, the
explicit consideration of such prior knowledge is rarely ad-
dressed in the existing literature. Consequently, a taxonomy
is developed that defines prior knowledge as FORs and spec-
ifies four levels of validity across applications and domains
(see Figure 1).

Regularities refer to systematic or consistent patterns or be-
haviors observed in physical phenomena or data. These regu-
larities may manifest as recurring relationships, trends, or de-
pendencies among variables that adhere to underlying phys-
ical laws or principles. They become frequently occurring
when the same pattern or behavior is consistently observed
across various configurations, i.e., environmental and opera-
tional conditions. Such regularities are referred to as applica-
tion-specific FORs, whereas regularities that are additionally
considered valid for different variations of this type of ap-
plication are referred to as cross-application FORs. More-
over, regularities that are frequently occurring with respect to
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Figure 1. Illustration of the taxonomy along with an example for the distinction between the different levels of validity of
the FORs. Application-specific: FORs occur under various configurations (i.e., variations such as distinct loads or rotational
speeds, as well as different ESs in which the type of rolling bearing is installed) of the same type of rolling bearing. Cross-
application: FORs are additionally valid for different types of rolling bearings. Domain-specific: The validity of FORs extends
beyond rolling bearings to other applications within the same (mechanical) domain, e.g., shafts and gears. Cross-domain: FORs
are additionally valid for different domains, e.g., electrical components and process technology.

different types of applications of one domain are considered
domain-specific FORs, with cross-domain FORs characteriz-
ing regularities that apply within different domains.

As illustrated in Figure 1, the proposed taxonomy catego-
rizes FORs according to their level of validity, ranging from
application-specific FORs, which have the narrowest scope,
to cross-domain FORs, which possess the broadest scope.
Consequently, only regularities with cross-application char-
acteristics can be considered for domain-specific FORs, and
this principle similarly applies to domain-specific and cross-
domain FORs. The term application refers to basic elements
integrated with respect to the system under consideration,
such as bearings and gears or resistors and capacitors, which
form the fundamental components of ESs. The term domain
refers to the domain from which the application originates.
The domains associated with the previous examples would
then be mechanical or electrical components. This definition
specifies the lowest level of FORs, which essentially estab-
lishes the subsequent levels of the taxonomy, thus facilitating
the adoption of the concept of FOR and setting the ground-
work for the transferability of hybrid methods.

To gain more practical insight into the taxonomy’s use and to
clarify the corresponding validity levels, Figure 1 shows the
following example:

• Application-specific FOR: Observations of FORs occur
under various configurations of the same type of rolling
bearing, such as varying in load, rotational speed, and the
ESs in which the bearings are installed.

• Cross-application FOR: The observed FORs are addi-
tionally valid for different types of rolling bearings. Here,
for example, a rolling bearing with different dimensions
or with a different shape of rolling element.

• Domain-specific FOR: The validity of FORs extends
beyond rolling bearings to other applications within the
same domain. For example, this includes components
such as shafts and gears from the mechanical domain.

• Cross-domain FOR: The observed FORs are addition-
ally valid for different domains. In this example, this
relates to the domains of electrical components and pro-
cess technology.

This example demonstrates that the applicability of a FOR
broadens with successive validity levels. Hence, at higher va-
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lidity levels, fewer FORs are expected to be identifiable, as
ESs become increasingly diverse (see the right-hand side of
Figure 1). This applies particularly to FORs at the domain-
specific and cross-domain levels, as the types of applications
can vary significantly within these levels. For the cross-app-
lication level, the FOR must apply to at least two different
variations of the same type of application. For the domain-
specific level, the FOR must also apply to at least two differ-
ent variations of another type of application. Although ap-
plications from the same domain are still being considered,
these can already vary significantly. For the FOR to be valid
at the cross-domain level, it must apply to at least one further
domain, which means that the applications vary considerably
more. Consequently, FORs that demonstrate validity across
a wide range of applications and domains hold greater po-
tential for the development of transferable hybrid methods.
Nevertheless, cross-application FORs, such as those applica-
ble to different types of bearings, remain highly relevant in
practice, offering valuable contributions to the prognosis of
bearing degradation using hybrid methods.

In general, the concept of FORs offers broad flexibility with
respect to the type of prior knowledge being described, rang-
ing from simple univariate trend behaviors, e.g., the irreversi-
bility of degradation, to more complex multivariate depen-
dencies, such as partial differential equations capturing the
dynamics of the system being modeled. It is the definition
of application that enables establishing a reference point with
respect to the usage of the taxonomy. Hence, in the context
of this paper, applications are restricted to components. Cur-
rent research in the area of PHM frequently focuses solely
on single components or applications, as shown by the works
of Lei et al. (2020), Braig and Zeiler (2023), and Lei et al.
(2018). Thus, the authors hold the view that this conceptual
constraint does not represent an obstacle for the taxonomy’s
practical applicability.

Building on the in-depth explanation, the taxonomy must un-
dergo systematic evaluation to ensure its successful adop-
tion. For this purpose, expert interviews are conducted to
assess both the taxonomy and the FORs identified through
the expertise- and data-driven approaches.

3. APPROACHES FOR IDENTIFYING FREQUENTLY OC-
CURRING REGULARITIES

To address the question raised in Section 1 concerning the
identification of FORs, two approaches—an expertise-driven
and a data-driven one—are proposed. The expertise-driven
approach systematizes unstructured knowledge on diverse
degradation processes, incorporating the authors’ experience,
to derive candidate FORs. Examining degradation data is cru-
cial for diagnostics and prognostics. Thus, the data-driven
approach involves a systematic analysis of degradation data
with the goal of identifying shared characteristics. In both

approaches, a range of applications from various domains are
considered, enabling the identification of FORs with vary-
ing levels of validity. The following section outlines both ap-
proaches in detail.

3.1. Expertise-driven Analysis of Degradation Processes

In the field of diagnostics and prognostics within PHM,
expert knowledge—accumulated through years of research,
practice, and PHM-specific observations—is frequently avail-
able in addition to data on the degradation process (Kordestani
et al., 2021). Despite the broadly diversified nature of this ex-
pert knowledge, much of it remains unstructured and, as a re-
sult, is not readily applicable for integration into data-driven
methods. Therefore, the objective of the expertise-driven ap-
proach is to systematically consolidate and process this expert
knowledge in such a way that FORs can be effectively derived
from it. To this end, the expertise-driven approach employs
the following methodology. A systematic analysis of the lit-
erature on degradation processes is conducted, informed by
the authors’ experience, to identify FORs. Due to this proce-
dure, objectivity cannot be guaranteed. Therefore, the results,
i.e., the FORs identified (see Section 4.1), must be addition-
ally evaluated as objectively as possible. Consequently, the
expert interviews in Section 4.3 include a part dedicated to
the evaluation of these FORs. This methodology enables (a)
the identification of FORs derived from unstructured expert
knowledge and (b) their assessment via expert interviews, re-
sulting in an evaluated set of FORs.

The expertise-driven approach focuses on regularities, such
as recurring patterns and characteristic signal progressions
observed in degradation data. Such regularities include, for
example, monotonic trends in degradation signals, condition-
dependent signal changes or steps, and recurring degradation
behaviors. The expertise-driven approach places particular
emphasis on identifying regularities within degradation pro-
cesses or data, which are often recognized through expert ob-
servation rather than computational analysis, such as the data-
driven analysis in the following section. In addition, with the
aforementioned focus of the expertise-driven approach, the
aim is to uncover regularities that exhibit wide-ranging valid-
ity, i.e., FORs of cross-application and cross-domain charac-
teristics, respectively. In that case, the identified FORs could
be used across diverse degradation processes.

Regarding the expertise-driven approach, literature on degra-
dation processes and the authors’ experiences in diagnostics
and prognostics serve as sources of expert knowledge. The
PHM literature includes numerous systematic reviews and
survey papers (e.g., Deng et al. (2023), Zio (2022), Kordestani
et al. (2021), and Lei et al. (2018)), which are examined to
derive regularities, i.e., recurring patterns and characteristic
signal progressions. The identified candidate FORs are cor-
roborated with the authors’ experience. Alongside review pa-
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Algorithm 1: Pseudocode of the proposed algorithm under-
lying the data-driven analysis for the identification of FORs
from degradation datasets.
Input: Degradation dataset D = {ri}Ni=1

, which contains
runs ri → RTi→M consisting of time series s(i)j → RTi corre-
sponding to signals j = 1 . . .M .
Output: Identified FORs, represented by one of eight dis-
tinct curve progressions l.
1 for each signal j do
2 Retrieve time series s(i)j from all runs ri of dataset D
3 for each time series s(i)j do
4 Extract feature trajectory f (i)

k for every feature k

5 for each feature trajectory f (i)
k do

6 Fit bounded test function for every curve
progression l using nonlinear least squares

7 Compute its corresponding pseudo R2 score

8 for each feature k and curve progression l do
9 Compute median pseudo R2 score

10 if median pseudo R2 score > 0.9 then
11 FOR identified regarding curve progression l

for feature k of signal j

pers, the literature explicitly focusing on applications or do-
mains pertinent to diagnostics and prognostics is also exam-
ined. This involves using the taxonomy of publicly available
degradation datasets discussed in the work by Mauthe, Stein-
mann, Neu, and Zeiler (2025) as a reference for relevant ap-
plications and domains. Consequently, the domains primar-
ily identified are electrical components, mechanical compo-
nents, production systems, and process technology. Within
these domains, relevant applications include batteries and ca-
pacitors, rolling bearings and gears, manufacturing processes
such as milling, and filtration applications. Literature suit-
able for the examination includes, among others, the works
of Shrivastava, Naidu, Sharma, Panigrahi, and Garg (2023)
and Makdessi et al. (2015) on batteries and capacitors; of
D. Wang, Tsui, and Miao (2018) and H. Zhou et al. (2022)
on rolling bearings and gears; of Y. Zhou, Liu, Yu, Liu, and
Quan (2022) and He, Shi, and Xuan (2022) on milling; and
of Hagmeyer and Zeiler (2023) and Thomas, Penicot, Contal,
Leclerc, and Vendel (2001) on filtration processes.

3.2. Data-driven Analysis of Degradation Processes

Identifying common degradation signal characteristics, such
as monotonic trends or typical curve shapes, across different
degradation datasets holds substantial value, as it enables the
abstraction of generalizable degradation behavior. This sim-
plified yet broadly applicable knowledge can serve as a foun-
dation for developing methods that are not tightly coupled to a
specific application, thereby facilitating transferability across
different ESs. Motivated by this, the following approach sys-

tematically analyzes degradation datasets to potentially un-
cover regularities of different levels of validity regarding the
taxonomy (see Section 2). The following section provides
a detailed explanation of the algorithm underlying the data-
driven analysis (see Algorithm 1).

The starting point is a degradation dataset D of N runs ri of
variable duration Ti representing multivariate time series as

D = {ri | i = 1, . . . , N} .

Runs ri are either run-to-failure or run-to-threshold experi-
ments, where differences in duration arise from inherent vari-
ability in degradation as well as different configurations, such
as varying environmental and operational conditions. Follow-
ing this, each run containing measurements of M signals is
defined as

ri =





s(i)
1,1 s(i)

1,2 . . . s(i)
1,M

s(i)
2,1 s(i)

2,2 . . . s(i)
2,M

...
...

. . .
...

s(i)Ti,1
s(i)Ti,2

. . . s(i)Ti,M




→ RTi→M .

For each run ri, the time series of signal j is denoted as

s(i)j =

[
s(i)
1,j s(i)

2,j . . . s(i)Ti,j

]↑
→ RTi , j = 1, . . . ,M.

Following this, the collection of all time series of signal j
across all runs in dataset D is defined as

SD
j = {s(i)j } ,

which provides the foundation for analyzing the signals with
the aim of identifying systematic or consistent patterns or be-
haviors that reflect the progression of degradation. For each
signal s(i)j , L features are extracted in a sliding window man-
ner, using a set of functions gextract,k. Here, gextract,k com-
putes the k-th feature for a given window of length w, with
k = 1, . . . , L. This produces N (i)

w = Ti ↑ w + 1 windows.
Computing L features in each window results in a feature ma-
trix for signal s(i)j :

F (i)
j =





f (i)
1,1 f (i)

1,2 . . . f (i)
1,L

f (i)
2,1 f (i)

2,2 . . . f (i)
2,L

...
...

. . .
...

f (i)

N(i)
w ,1

f (i)

N(i)
w ,2

. . . f (i)

N(i)
w ,L




→ RN(i)

w →L,

where each column f (i)
k represents the trajectory of one fea-

ture, showing its evolution over time. The collection of fea-
ture matrices across all runs for sensor j is then defined as

FD
j = {F (i)

j } .
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Table 1. Test functions and identifiable curve progressions are provided with bounds that constrain the parameter space so
that fitted curves remain within the intended progression. In addition, representative examples of applications across various
domains are included, for which the associated degradation signals exhibit the corresponding progression. These examples
provide the rationale for selecting the presented curve progressions and motivate the systematic analysis of datasets to identify
applications exhibiting similar characteristics.

Test Curve Bounds (lower, upper) Representative Examples
Function f(x) Progression a b c d

a · x+ b

Linearly 0 →↑ - - Tool wear (Y. Zhou et al., 2022), internal resistance of
a battery cell (Diao et al., 2022)increasing 1 ↑ - -

Linearly -1 →↑ - - Fuel cell voltage (BenChikha et al., 2022)decreasing 0 ↑ - -

a · 1
1+eb·(x→c)

Sigmoidally 0 15 0.1 - Tool wear (Colantonio et al., 2021)increasing 1 ↑ 0.9 -
Sigmoidally 0 →↑ 0.1 - Battery capacity (Johnen et al., 2021)decreasing 1 -15 0.9 -

a · eb·(x→c) + d

Progressively 0 0 →↑ →↑ Crack growth (Castillo et al., 2010), differential pres-
sure in filtration processes (Eker et al., 2019)increasing ↑ ↑ ↑ ↑

Progressively →↑ 0 →↑ →↑ Battery capacity (Diao et al., 2022)decreasing 0 ↑ ↑ ↑
Degressively →↑ →↑ →↑ →↑ Internal resistance of a battery cell (Lin et al., 2025)increasing 0 0 ↑ ↑
Degressively 0 →↑ →↑ →↑ Battery voltage (Lin et al., 2025)decreasing ↑ 0 ↑ ↑

This serves as the basis for identifying FORs by examining
the progression of each feature trajectory to uncover charac-
teristic trends. The analysis is performed on feature trajecto-
ries normalized to [0, 1] by fitting test functions (see Table 1)
using nonlinear least-squares optimization. The Trust Region
Reflective (TRF) algorithm (Branch, Coleman, & Li, 1999)
is employed for the minimization task due to its robustness
in handling bounded optimization problems. The number of
steps per optimization is limited to NP · 100, with NP be-
ing the number of parameters of the respective test function.
Since the NCP = 8 curve progressions to be identified are
known, the test functions are initialized with favorable pa-
rameter values for the first attempt. If no optimal solution is
obtained after a maximum of four additional attempts, with
parameters randomly initialized within the bounds of the re-
spective test function, the optimization is terminated. With
the coefficient of determination (R2 score), the goodness-of-
fit regarding a feature trajectory f (i)

k and each fitted test func-
tion are rated. In the case of nonlinear regression, fits can be
arbitrarily poor and may produce negative values of the co-
efficient of determination, which is then typically referred to
as a pseudo R2 score. Hence, each feature trajectory f (i)

k of
feature matrix F (i)

j is attributed a total of NCP = 8 pseudo
R2 scores, defined as

R2 (i)
k,l → [↑↓, 1] , l = 1, . . . , NCP ,

resulting in a total of N ·NCP ·L pseudo R2 scores regarding
collection FD

j . Then, for each curve progression, the me-

dian pseudo R2 score across all runs is computed, yielding
NCP ·L scores. Those greater than or equal to 0.9 are consid-
ered FORs. Hence, the algorithm underlying the data-driven
analysis essentially enables the identification of eight distinct
characteristic trends for each feature extracted from the signal
being analyzed in the degradation dataset. Identified trends
correspond to application-specific FORs.

Hereafter, implementation-specific aspects of the data-driven
analysis are described step by step according to the algorithm.
To ensure reliable analysis of trend behavior, runs that are
right- or left-censored are excluded, as they do not permit ex-
amination of the full progression of the underlying degrada-
tion processes. Additionally, runs containing fewer than 20%
of the median number of samples across all runs are also dis-
carded. This threshold prevents curve fitting on feature tra-
jectories with very few points (close to the number of param-
eters of the test functions), which could otherwise produce
inflated pseudo R2 scores. Moreover, each dataset may re-
quire specific preprocessing steps due to the high heterogene-
ity of publicly available degradation datasets. For example,
irregularly sampled signals are resampled using linear inter-
polation, as the set of functions gextract,k requires a constant
sampling rate to produce meaningful features.

For feature extraction, the Time Series Feature Extraction Li-
brary (TSFEL) toolbox (Barandas et al., 2020) is employed
due to its versatility and suitability for time-series analysis.
In this work, a specific subset of L = 47 features from the
statistical, temporal, and spectral domains is considered. Fea-
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tures that cannot be meaningfully applied in a sliding-window
manner, or that are not relevant for capturing degradation
trends (e.g., the human range energy ratio), are omitted. A
complete list of the selected features is provided in Table 3 of
Appendix A. The behavior of functions gextract,k depends on
whether the data are recorded continuously or periodically,
a distinction the algorithm is designed to handle. Continu-
ously recorded signals allow for overlap as the window moves
across the signal. In this case, the window size w is set to 10%
of the median number of samples across all runs in the dataset
D. Periodically recorded signals, however, necessitate a fixed
window size and mandate that the sliding of the window oc-
curs on a per-snapshot basis, due to the predefined temporal
intervals between successive recordings.

To identify characteristic trends indicative of degradation, test
functions are fitted to each feature trajectory. This enables
the evaluation of whether the temporal evolution of each fea-
ture follows a typical curve progression, whose selection is
informed by degradation modeling. Degradation signals typ-
ically follow a monotonic trend, either increasing or decreas-
ing over time (Dersion, Goglio, Bajarunas, & Arias-Chao,
2025; Fink et al., 2025; Meeker, Escobar, & Pascual, 2022).
These trends are commonly represented in degradation mod-
eling by linear, sigmoidal, progressive, or degressive curve
progressions (Meeker et al., 2022; Colantonio et al., 2021;
Johnen et al., 2021). Table 1 lists representative examples
of applications whose degradation signals follow the corre-
sponding curve progressions. These examples motivate the
selection of these curve progressions, as identifying the same
trends in other applications would indicate characteristic
trends that are valid across a wide range of applications.

As already mentioned, the median pseudo R2 score is used
to determine, based on the overall trend of the feature trajec-
tory, whether feature k corresponds to a FOR regarding SD

j .
Only fits with values close to 1 are considered relevant, for
which the metric remains a reliable indicator of fit quality,
even in the context of nonlinear test functions. The threshold
of 0.9 was heuristically determined by examining the fitted
functions in relation to the feature trajectories used for fitting.
For pseudo R2 scores ↔ 0.9, feature trajectories were clearly
representative of their respective curve progression, as deter-
mined by careful visual assessment. This value discards fea-
tures that do not closely follow one of the eight distinct curve
progressions while allowing sufficient flexibility to identify
valid trends, i.e., a perfect fit is not required for a feature to
be classified as a FOR.

4. RESULTS

This section presents the FORs identified using the approach-
es previously introduced, along with their corresponding va-
lidity levels as defined by the proposed taxonomy. Further-
more, the findings from expert interviews, conducted to pro-

vide an additional layer of evaluation by critically reviewing
the taxonomy and the identified FORs, are reported.

4.1. Expertise-driven Regularities Identified

In real-world scenarios, the degradation processes are typi-
cally irreversible, i.e., an ES is unable to restore its original
health state or functionality without maintenance (Lei et al.,
2018). Therefore, the progression of degradation signals or
corresponding health indicators has either a gradient ↔ 0 or
a gradient ↗ 0 depending on the degradation process, ac-
cording to Dersion et al. (2025), Fink et al. (2025), Lei et
al. (2018), and Sadoughi, Lu, and Hu (2019). This refers to
the entire progression. Temporary deviations due to noise or
varying environmental conditions are not taken into account.
The same holds for application-specific deviations such as
changing lubrication conditions or running-in effects. An ex-
pert cannot reliably determine the exact progression of signals
or health indicators (e.g., linear or exponential) based solely
on visual inspection. However, the gradients of the progres-
sion of degradation signals or health indicators are observ-
able, from which two FORs are identified:

• Increasing progression: The degradation signal or heal-
th indicator has a gradient ↔ 0. Examples are shown by
H. Zhou et al. (2022), Kordestani et al. (2021), D. Wang
et al. (2018), and Lei et al. (2018) for peaks of vibration
signals; by Lei et al. (2018) and Castillo et al. (2010)
for crack length progression; by Meghoe, Loendersloot,
and Tinga (2020), He et al. (2022) and Y. Zhou et al.
(2022) for mechanical wear; and by Eker et al. (2016)
for increasing differential pressure in a filtration process.

• Decreasing progression: The degradation signal or he-
alth indicator has a gradient ↗ 0. Examples are shown
by Pan, Yang, Wang, and Chen (2020), Severson et al.
(2019), Shrivastava et al. (2023), and Lin et al. (2025) for
battery capacity; by E et al. (2025) and Makdessi et al.
(2015) for capacitor capacity; and by Diao et al. (2022)
and BenChikha et al. (2022) for voltage degradation in
fuel cells.

These two FORs will be more generalized by representing
them as a Health Index (HI). Using a predefined threshold
for a degradation signal or a health indicator, the HI can be
normalized for both progressions so that HI → [0, 1]. Where
HI = 1 means that the system is in a completely healthy con-
dition and HI = 0 means it has reached the threshold, i.e., is
regarded as failed (Dersion et al., 2025; Berghout & Ben-
bouzid, 2022). Then, for the time-dependent HI(t) follows

dHI(t)

dt
↗ 0 . (1)

As Eq. (1) shows, such FORs can be mathematically well for-
mulated and applied as constraints, for instance, in physics-
based regularization.

7



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

In addition to the overall trend of the signal, experts can often
detect patterns and correlations within its progression over
time. These finer-grained insights are particularly important
when knowledge of the overall trend alone is insufficient to
characterize the system’s behavior. With this understanding,
the following FORs are identified:

• Known health stages: The degradation signal or health
indicator exhibits different stages that correlate with the
actual health state. Some signals can be subdivided into
distinct stages, each corresponding to a known degrada-
tion level. Examples are shown by Lei et al. (2018) and
D. Wang et al. (2018) for a steplike progression in bear-
ing degradation and by Eker et al. (2016) for different
stages through the changing of filter mechanisms in a fil-
tration process.

• Correlation to operating condition: The correlation be-
tween operating conditions and the progression of degra-
dation signals or health indicators is well established.
Operating conditions, such as loading, have a significant
impact on the degradation process, as shown for different
domains and datasets, respectively, by Lei et al. (2018)
and Bajarunas et al. (2024).

In addition to the FORs associated with the progression of
degradation, two further FORs are identified:

• Boundaries: Predictions in diagnostics and prognostics
must fit within known boundaries, such as adherence to
existing physical laws and known system boundaries. For
example, the RUL cannot have negative values (Hoenig,
Hagmeyer, & Zeiler, 2019; Saxena, Celaya, Saha, Saha,
& Goebel, 2010).

• Problem structure: Evaluating established structures in
the degradation process, such as characteristic points in
the degradation signal where progression changes, al-
lows subtasks to be defined and appropriate health in-
dicators to be derived. This has been demonstrated for
rotating systems by Zhu, Nostrand, Spiegel, and Morton
(2014).

The FORs increasing progression and decreasing progression
offer the potential, through their representation in Eq. (1),
to be used directly without additional consideration of the
respective degradation processes. Furthermore, these FORs
only necessitate the respective degradation signal or health
indicator, thereby ensuring their validity across various appli-
cations and domains. The FORs known health stages, corre-
lation to operating condition, boundaries, and problem struc-
ture have to be specified for the respective degradation pro-
cesses under consideration. For example, this means that the
respective health stages or boundaries have to be defined in-
dividually. However, this can be performed across various
applications and in different domains. Consequently, the six
identified FORs represent cross-domain FORs.

Table 2. Summary of all applications analyzed by means of
the data-driven approach proposed in Section 3.2, structured
according to the originating domains and types of application.
For each type of application, the signals that were used for
feature extraction and subsequent testing regarding the con-
sistency with the eight identifiable characteristic curve pro-
gressions are listed.

Domain Type of application
(number of specific
applications)

Signals

Process
technology

Filtration (2) Differential
pressure

Mechanical
component

Bearing (5) Vibration,
temperature

Electrical
component

Fuel cell (1) Voltage
Battery (6) Discharge

voltage, tem-
perature

Manufacturing
process

Milling (2) Vibration,
acoustic
emission

Sum across
all domains

16

4.2. Data-driven Regularities Identified

In this work, 17 publicly available datasets from the overview1

of Mauthe, Braun, Raible, Zeiler, and Huber (2024) regarding
the task prognosis are analyzed. Two datasets arise from the
same application, resulting in 16 different applications listed
in Table 2. More detailed information regarding the datasets
(e.g., number of runs, configurations defined by environmen-
tal and operational conditions, the analyzed signals, and their
origin) and the FORs identified through the data-driven ap-
proach are presented in detail in Table 4 of Appendix B. The
latter serve as the empirical basis for evaluating their respec-
tive levels of validity based on the taxonomy shown in Fig-
ure 1. In the following paragraphs, both application-specific
FORs and cross-application FORs are described with respect
to the types of application mentioned in Table 2. Then, po-
tential domain-specific FORs and cross-domain FORs will be
explored.

Filtration: The type of application filtration of the domain
process technology comprises three datasets (PHM DATA
CHALLENGE 2020 EUROPE - FILTRATION SYSTEM, KAG-
GLE - PREVENTIVE TO PREDICTIVE MAINTENANCE, and
KAGGLE - PROGNOSIS BASED ON VARYING DATA QUAL-
ITY), which enable the analysis of the signal differential pres-
sure. The last two datasets mentioned are recorded via the
same filtration test bench and, as such, belong to the same
application. Therefore, the identified FORs that match are
considered application-specific. Both datasets’ FORs match

1https://arxiv.org/abs/2403.13694
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Figure 2. Temporal evolution of the feature absolute energy,
extracted from the signal differential pressure, for three ran-
domly selected runs of the filtration datasets. The features
are normalized for comparison purposes due to the different
units in the raw data. Dotted line: KAGGLE - PROGNOSIS
BASED ON VARYING DATA QUALITY, solid line: KAGGLE -
PREVENTIVE TO PREDICTIVE MAINTENANCE, and dashed
line: PHM DATA CHALLENGE 2020 EUROPE - FILTRA-
TION SYSTEM.

closely. Multiple features follow a progressively increasing
trend (e.g., absolute energy, area under the curve, autocorre-
lation, average power, max, min, mean, median, and
root mean square) but are also well approximated by a
sigmoidally increasing trend. Considering the dataset PHM
DATA CHALLENGE 2020 EUROPE - FILTRATION SYSTEM,
the application-specific FORs identified are also described by
sigmoidally increasing and progressively increasing trends,
respectively. In addition, the feature spectral distance follows
the trend of a sigmoidally decreasing, as well as progressively
decreasing, function and, hence, yields another application-
specific FOR.

Considering the three datasets originating from two different
test benches simultaneously, several cross-application FORs
can be determined. These are exactly the aforementioned fea-
tures, as they appear in all datasets. All ten cross-application
FORs of the filtration type of application in Table 4 of Ap-
pendix B are colored in orange. Regarding the progressively
increasing and sigmoidally increasing trends, it can be in-
ferred that the features experience a steep increase towards
the end while tapering off shortly after. Both trends can be
recognized in Figure 2, which depicts three randomly selected
runs per dataset for the feature absolute energy.

Bearing: Regarding the type of application bearing within
the domain mechanical component, five datasets were an-
alyzed: PHM IEEE DATA CHALLENGE 2012 - FEMTO
BEARING DATASET, NASA - BEARING DATASET,
GITHUB - XJTU-SY BEARING DATASETS, MENDELEY -
RUN-TO-FAILURE VIBRATION DATASET OF SELF-ALIG-
NING DOUBLE-ROW BALL, and ZENODO - BALL BEAR-
INGS SUBJECTED TO TIME-VARYING LOAD AND SPEED
CONDITIONS. Solely GITHUB - XJTU-SY BEARING DATA-
SETS led to the identification of application-specific FORs re-

garding the signal vibration. Progressively increasing trends
were obtained for a variety of features. Regarding the signal
temperature that was available for both PHM IEEE DATA
CHALLENGE 2012 - FEMTO BEARING DATASET and
ZENODO - BALL BEARINGS SUBJECTED TO TIME-VARYING
LOAD AND SPEED CONDITIONS, a degressively decreasing
trend regarding the features maximum frequency and spec-
tral roll-off was observed, marking cross-application FORs.
These two are highlighted with blue in Table 4 of Appendix B.

Fuel Cell: The availability of fuel cell datasets was limited to
one (PHM IEEE DATA CHALLENGE 2014 - FUEL CELL).
The analysis regarding the signal voltage reveals that the sta-
tistical features absolute energy, average power, mean, me-
dian, and root mean square follow the trend of linearly de-
creasing, as well as degressively decreasing, functions. The
same behavior can be attributed to the temporal features area
under the curve and autocorrelation. Spectral distance is
following a degressively increasing trend. Since only one
dataset is available for this type of application, potential cross-
application FORs cannot be identified.

Battery: The type of application battery regarding the do-
main electrical component contains six different datasets:
NASA - RANDOMIZED BATTERY USAGE DATASET,
NASA - HIRF BATTERY, NASA - LI-ION BATTERY AG-
ING DATASET, MENDELEY - BATTERY DEGRADATION
DATASET (FIXED CURRENT PROFILES AND ARBITRARY
USES PROFILES), OXFORD BATTERY DEGRADATION
DATASET, and ZENODO - DATA-DRIVEN CAPACITY ESTI-
MATION OF COMMERCIAL LITHIUM-ION BATTERIES FROM
VOLTAGE RELAXATION. Multiple application-specific FORs
were found for the datasets (with the exception of NASA -
LI-ION BATTERY AGING DATASET and ZENODO - DATA-
DRIVEN CAPACITY ESTIMATION OF COMMERCIAL LITHI-
UM-ION BATTERIES FROM VOLTAGE RELAXATION) for both
signals (discharge voltage and temperature). Five of the six
datasets are cycle-based datasets, meaning that charge and
discharge cycles are performed alternately. Hence, the sliding
window procedure described in Section 3.2 is performed on
a cycle basis. The NASA - HIRF BATTERY dataset, how-
ever, is not a cycle-based dataset, providing an explanation
for the strongly varying appearance of FORs in Table 4 of
Appendix B and was therefore neglected in the comparison.
The results are still reported.

Considering the datasets NASA - RANDOMIZED BATTERY
USAGE DATASET and OXFORD BATTERY DEGRADATION
DATASET, cross-application FORs are found regarding the
voltage signal: The majority of features follow a linearly de-
creasing trend (e.g., absolute energy, autocorrelation, sig-
nal distance, and spectral slope). Also, linearly increasing,
progressively increasing, and degressively decreasing trends
can be observed for other features. Considering the tempera-
ture signal, further cross-application FORs can be determined
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with the majority of features following a linearly decreasing
trend (e.g., centroid, signal distance, and spectral slope). All
15 cross-application FORs regarding the aforementioned two
datasets are highlighted in purple in Table 4 of Appendix B.

Milling: Regarding the type of application milling within
the domain manufacturing process, two datasets are analyzed
with respect to vibration and acoustic emission signals: PHM
DATA CHALLENGE 2010 - CNC MILLING MACHINE CUT-
TERS and NASA - MILLING DATASET. The PHM DATA
CHALLENGE 2010 - CNC MILLING MACHINE CUTTERS
revealed a variety of application-specific FORs regarding
the vibration signal that are mainly progressively increasing
trends. Both datasets have shown trend behavior for cer-
tain features regarding the acoustic emission. Overall, the
two datasets show no consistent patterns, and thus no cross-
application FORs could be identified for either signal.

A total of 27 cross-application FORs were identified across
the examined datasets. Of these, the highest number is asso-
ciated with the application battery (15), followed by filtration
(10) and bearing (2). These findings carry significant poten-
tial as valuable building blocks for developing hybrid meth-
ods that are transferable across different types of the same
application—an aspect of particular practical relevance, given
that such components (i.e., batteries, filters, or bearings) are
often monitored.

Domain-specific FORs: For the domain of electrical com-
ponent, datasets from two types of applications were consid-
ered (see Table 2), allowing for the investigation of domain-
specific FORs. Strictly speaking, since the application fuel
cell includes only one dataset, no cross-application FORs can
be determined—eliminating the basis for identifying domain-
specific FORs. It is still worth mentioning, however, that
the features absolute energy, area under the curve, and au-
tocorrelation show a degressively decreasing trend for multi-
ple battery datasets as well as the fuel cell dataset. The same
holds for the feature spectral distance, which follows a de-
gressively increasing trend. These findings provide strong in-
dications of potential domain-specific FORs.

Cross-domain FORs: Considering Table 2, it is obvious that
most domains include only datasets from one type of ap-
plication, therefore making it impossible to identify multi-
ple domain-specific FORs yet, which are the basis for cross-
domain FORs. Nevertheless, it is worth mentioning that pro-
gressively increasing trends of multiple features are visible
in different domains, like the vibration signals of bearings
in the mechanical component domain, the vibration signals
in milling within the manufacturing process domain, and the
differential pressure signals in filtration within the process
technology domain.

4.3. Expert Interviews

Conducting expert interviews aimed at two distinct goals: on
the one hand, gathering unbiased insights from a variety of
experts on the topic of degradation processes; on the other
hand, evaluating the proposed taxonomy that hinges on the
definition of prior knowledge as FORs. To that end, a total
of ten participants from academia and industry were inter-
viewed, who are active in different fields (each with expertise
in different domains such as mechanical, electrical, produc-
tion, and process technology) but share a background regard-
ing reliability, physics-of-failure, degradation processes, and
maintenance topics.

In line with the stated goals, the interviews followed a two-
part structure and were conducted in a dialog format. In the
first part, participants’ backgrounds, knowledge, and experi-
ence in relation to regularities of degradation processes were
investigated. Following this, participants were asked to de-
rive criteria for assessing the level of validity of the regulari-
ties they had reported. To challenge their criteria, participants
were tasked with evaluating three previously unknown, real or
fictitious FORs according to the criteria they had proposed.
The second part of the interview involved an evaluation of
the taxonomy presented in Section 2, especially considering
Figure 1. First, the taxonomy was explained in detail, includ-
ing the rationale for defining prior knowledge as FORs. To
rigorously test the usefulness of the proposed taxonomy, par-
ticipants were then tasked with categorizing their previously
reported regularities within the taxonomy. For this task, par-
ticipants were provided with a blank version of Figure 1. Fi-
nally, the findings of Section 4.1 were evaluated.

During the first part, the participants named a wide variety of
well-established regularities within their respective fields of
expertise. For instance, those familiar with electrical compo-
nents frequently mentioned characteristic degradation curves
observed in specific applications, e.g., batteries and capaci-
tors. Participants with expertise in mechanical components
have often reported increasing power loss, temperature, and
wear, which can be observed across different applications,
e.g., bearings and gears. Across various applications and do-
mains, participants frequently noted that system performance
declines with degradation and that this phenomenon is often
employed as a health indicator. When asked to define criteria
for the validity of the regularities, the participants were of-
ten more critical, noting that the reported regularities are not
consistently present and may occasionally deviate. Hence,
most of the participants named criteria that are at the appli-
cation level and a few that extend to the domain level. The
criteria mentioned most frequently were operating and envi-
ronmental conditions, as well as variations of an application
for which the regularities are valid. These criteria correspond
to application-specific and cross-application FORs within the
proposed taxonomy, which can be interpreted as clear sup-
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port for its validity. As a criterion for the domain-specific
level, curve shapes of corresponding signals were mentioned
by a few participants. The criteria defined by the participants
could be used in part to categorize the three previously un-
known FORs, depending on their validity.

During the second part, participants were presented with the
proposed taxonomy (see Figure 1), which received broad sup-
port. They considered formalizing prior knowledge as FORs
particularly valuable for standardizing research in the devel-
opment of transferable hybrid methods. Hence, they viewed
the taxonomy as a promising reference point, with its dif-
ferentiation of levels of validity across different applications
and domains. However, considerations were raised regard-
ing potential difficulties in identifying cross-domain FORs.
This observation emerged when participants were asked to
name regularities for each level of validity (i.e., fill in a blank
version of Figure 1). While doing this, many showed profi-
ciency in recognizing cross-application FORs. While domain-
specific FOR identification was prevalent, only a few cross-
domain FORs were recognized. As a concrete example, the
application most frequently referenced was the battery. The
taxonomy was initially populated with a specific battery type,
subsequently expanded to encompass various battery types at
the cross-application level, and then refined to include bat-
teries, capacitors, and transistors at the domain-specific level.
Yet, the cross-domain level was frequently left blank. An-
other interesting example given analyzes a milling cutter type
as an application. At the cross-application level, different
types of milling cutters were mentioned, and at the domain-
specific level, different machine tools, such as grinding wheels
and turning tools, were mentioned. At the cross-domain level,
tools from injection molding technology were mentioned in
addition to machine tools. Despite acknowledging the poten-
tial of such FORs, participants noted that practical applica-
tions often diverge from known FORs. This aspect is crucial
in FOR utilization. By the end of part two, all participants
uniformly agreed on the FORs presented, which were iden-
tified via the expertise-driven approach. These were deemed
valid and could be linked to the regularities discussed in part
one. However, random deviations in practical applications of
such FORs were noted and must be considered when apply-
ing FORs.

Overall, all participants offered positive and approving feed-
back. Although initially unfamiliar with the concept of FORs,
participants swiftly developed an understanding and were sub-
sequently able to reference regularities, several of which di-
rectly corresponded to those obtained via the expertise-driven
approach, thus reinforcing the validity of the identified FORs.
To help organize the regularities referenced by the partici-
pants, the proposed taxonomy was presented, enabling them
to assign the regularities to the appropriate levels of validity.
The necessity and idea, as well as the presented results of this
work, were also rated very positively by the participants.

5. DISCUSSION

This section provides a detailed discussion of the results pre-
sented in the previous section. In addition, it discusses the
limitations associated with the approaches dedicated to the
FOR identification. Finally, conceptual examples are pre-
sented to illustrate the potential integration of FORs into hy-
brid methods as a means to convey the principle of transfer-
ability.

With its six identified cross-domain FORs, the expertise-driv-
en approach provides regularities with the highest level of va-
lidity regarding the taxonomy. While some FORs (increasing
progression and decreasing progression) can be directly uti-
lized through their representation in Eq. (1), others require
contextual adaptation to the respective degradation process.
However, the applicability of all six FORs across diverse ap-
plications and domains highlights their potential as a basis for
transferable hybrid methods. As already mentioned in Sec-
tion 3.1, due to the notion of an expertise-driven approach,
objectivity cannot be fully guaranteed. Consequently, a part
of the expert interviews was dedicated to evaluating the iden-
tified FOR. All participants reached a consensus on the
presented cross-domain FORs, which were considered valid.
However, participants noted that random deviations can arise
in practical applications and must be considered when apply-
ing these cross-domain FORs. Given the inherent subjectiv-
ity of the expertise-driven approach, considerable effort was
made to enhance its objectivity by grounding it in a system-
atic review of the literature on degradation processes and in-
terviewing ten experts to validate the results obtained by the
authors. Nonetheless, some residual subjectivity may persist
due to variations in expert interpretation and potential gaps or
biases within the existing literature.

Having identified numerous application-specific FORs, along
with 27 cross-application FORs (e.g., battery, filtration, and
bearings), the data-driven approach proves to be well-suited
for FOR identification across diverse applications. Neverthe-
less, its effectiveness is inevitably limited by factors such as
data quality and quantity, while the subsequent analysis is in-
herently constrained by the scope of the available datasets.
The heterogeneity of the analyzed datasets, coupled with a
lack of standardization regarding the experiments conducted
to acquire them, posed significant challenges, such as varia-
tions in sampling rates within single runs and across different
runs, recordings with non-equidistant recording intervals, and
missing values. This, in turn, impacted the degree of stan-
dardization achievable for the proposed algorithm, necessi-
tating measures such as resampling based on linear interpo-
lation, varying overlap regarding the sliding window, and re-
moval of runs containing corrupt data. Owing to its internal
sliding-window filtering, the algorithm inherently exhibits ro-
bustness to low-amplitude noise in real-world datasets.
However, complex noise scenarios such as local noise arti-
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facts could lead to misidentification of FORs. An additional
methodological constraint concerns data of ESs affected by
maintenance measures between collection intervals, which
precludes their inclusion due to distortion of underlying degra-
dation trends.

It is worth noting that the data-driven approach occasionally
resulted in two FORs for a specific feature (e.g., sigmoidally
increasing and progressively increasing), as both pseudo R2

scores exceeded 0.9. However, only a single FOR is reported
for that feature, acknowledging that its progression likely rep-
resents a mixture of both trends. The occurrence of such am-
biguities represents a limitation of the data-driven approach.
It should also be mentioned that some of the FORs identified
relate to similar features. For example, if the feature mean
is identified with an increasing progression, it is very likely
that features such as median or max will also be identified
with the same progression. Despite their similarities, it is still
meaningful to consider these features as separate FORs, as
they frequently have different pseudo R2 values (see Table 4
in Appendix B).

The results of the data-driven approach confirm the FORs in-
creasing progression and decreasing progression identified
by the expertise-driven approach. The taxonomy is proposed
alongside the assumption that as the level of validity increas-
es, the expected number of FORs to be identified tends to
decrease. This assumption is empirically supported by the
results of both approaches, which identified 27 cross-appli-
cation FORs using the data-driven approach and six cross-
domain FORs using the expertise-driven approach. It is
conceivable that within similar applications (cross-applica-
tion), essentially the same underlying degradation mechanis-
ms dominate, whereas across highly divergent applications
(cross-domain), the mechanisms differ to such an extent that
identified FORs may reflect statistical similarities rather than
shared underlying degradation mechanisms.

Conceptual Examples on the Utilization of Identified Fre-
quently Occurring Regularities

To illustrate the full pathway from the identification of FORs
to their utilization, conceptual examples are outlined that fol-
low two PIML principles—observational bias and learning
bias (Karniadakis et al., 2021; Fink et al., 2025)—using the
notation and regularities identified in this work. It should be
noted that the actual utilization, i.e., the integration of iden-
tified regularities in hybrid methods, is outside the scope of
this paper.

Observational bias leverages data that already embody the
identified regularities or uses dedicated data augmentation
strategies to imprint them into the training data distribution
(Karniadakis et al., 2021). Hence, to introduce such bias, the
identified FORs can be employed to generate synthetic data.
Pre-training a model hω on these data provides an informed

initialization of its weights. Fine-tuning on real data then
starts from this advantageous starting point, yielding higher
predictive accuracy than training from scratch (Hagmeyer et
al., 2022). Specifically, auxiliary time series could be con-
structed that reflect generic degradation behavior correspond-
ing to a given FOR. As indicated in Section 4.1, both mono-
tonic increasing and monotonic decreasing degradation pro-
gressions can be generalized by representing them as HI(t),
with HI → [0, 1] and with a monotonic decreasing gradient
(see Eq. (1)). Time series H̃I(t) can be generated to exhibit
this behavior and subsequently employed to train hybrid mod-
els that can be transferred across domains. For example, in
the case of filtration (see Section 4.2), auxiliary time series
of differential pressure can be generated that exhibit progres-
sively increasing trends, as identified by the data-driven ap-
proach. In this instance, pretraining hω on these data effec-
tively enables transferring hω between different filtration sys-
tems.

The principle of learning bias is based on the idea that in-
corporating informed loss functions, constraints, or inference
algorithms guides the learning process toward solutions that
are consistent with prior knowledge or underlying physical
laws (Karniadakis et al., 2021). A FOR can be incorporated
as a constraint in the loss function L by adding an additional
term that penalizes deviations from the expected behavior:

L = Ldata + wFORLFOR . (2)

In addition to the data-driven loss Ldata, which measures the
difference between the model predictions and the observed
data, an additional loss term LFOR, weighted by wFOR, en-
forces adherence to the FOR. This ensures that the model not
only fits the training data but also respects the known regular-
ities captured by the FOR, providing a principled way to em-
bed prior knowledge into the learning process. One possible
strategy is to represent a monotonically decreasing gradient,
as described in Eq. (1). For example, by introducing a penalty
on positive differences in the predicted health trajectory, such
as

Lmono =

∑

k

[
ĤI(tk+1)↑ ĤI(tk)

]2
+

, (3)

with [x]+ = max(x, 0). Taking into account that this addi-
tional loss (i.e., monotonicity of HI(t)) applies to all ESs, it
follows that hybrid models incorporating Lmono in their loss
function can be transferred across domains. Furthermore,
the loss function can be extended to encompass a loss term
that enforces agreement between the shape of the predicted
trajectory and the shape of an identified curve progression,
i.e., a test function in Table 1 (see Section 4.2). For example,
by quantifying the discrepancy between the prediction values
f̂(t) and the corresponding reference values f(t), such as

Lshape =

∑

k

(
f̂(tk)↑ f(tk)

)2

. (4)

12



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

The transferability of a hybrid model incorporating this addi-
tional loss term, Lshape, depends on which applications ad-
here to the specific FOR underlying the reference values, po-
tentially spanning from cross-application to cross-domain sce-
narios.

6. CONCLUSION AND OUTLOOK

Prior knowledge plays a pivotal role in advancing diagnos-
tics and prognostics by means of hybrid methods. While cur-
rent approaches often rely on system-specific knowledge, en-
abling accurate modeling but with limited applicability across
ESs, general prior knowledge offers the potential for develop-
ing hybrid methods that are transferable across different ESs,
eliminating or reducing the need for re-engineering. In light
of this, a taxonomy is proposed, defining prior knowledge as
FORs—recurring trends or relationships that adhere to under-
lying physical laws and are consistently observed across vary-
ing configurations, i.e., environmental and operational condi-
tions. With FORs spanning four levels of validity across dif-
ferent applications and domains, this taxonomy offers a novel
approach to characterizing the expected transferability of hy-
brid methods incorporating the respective regularities.

To identify FORs, an expertise-driven approach and a data-
driven approach were developed. In the expertise-driven ap-
proach, FORs are derived from a systematic analysis of the
literature on degradation processes, complemented by the au-
thors’ experience. Whereas, in the data-driven approach, pub-
licly available degradation datasets form the basis for identi-
fying FORs, aiming to infer characteristic trends indicative
of degradation. Six cross-domain FORs and 27 cross-appli-
cation FORs were identified with the expertise-driven and the
data-driven approach, respectively. The proposed taxonomy
and the identified FORs were evaluated via expert interviews,
with participants expressing positive feedback.

By formalizing prior knowledge as FORs, this paper provides
a novel, comprehensive contribution to the study of degra-
dation processes. The proposed taxonomy provides a foun-
dation for future research aimed at enhancing the transfer-
ability of hybrid methods in PHM by leveraging regularities
of widespread applicability within the paradigm of PIML,
potentially extending from cross-application to cross-domain
scenarios. Future work building on the data-driven approach
for identifying FORs could explore valuable extensions, such
as analyzing a broader set of features or investigating addi-
tional curve progressions that may indicate degradation. In
this context, a particularly promising direction is the integra-
tion of the continuous wavelet transform to obtain time–fre-
quency representations. By simultaneously capturing tempo-
ral and spectral characteristics, this could complement and
enhance the statistical, temporal, and frequency features al-
ready considered, enabling the discovery of subtle or over-
lapping degradation patterns that might otherwise remain hid-

den. Furthermore, the currently curve-fitting-based FOR de-
termination can be extended to a rule-based one that uses a set
of abstract rules that can be fitted within predefined ranges. In
addition, specific noise scenarios, including local noise arti-
facts, can be taken into account to analyze the robustness of
the data-driven approach. In general, the influence of varying
operating conditions, which are currently considered implic-
itly in multiple configurations within a dataset (see Table 4
in Appendix B), can be investigated more thoroughly in fu-
ture work. An analysis might be performed to assess how
the number of configurations (i.e., operating conditions) af-
fects the number of FORs identified in each configuration,
allowing for an evaluation of the importance of the FORs.
Following this, the parameters of the fitted curves of multiple
experiments can be considered to investigate trends occurring
along different operating and load conditions. These trends,
in turn, potentially represent interesting prior knowledge that
can be leveraged. Most importantly, the conceptual exam-
ples presented in Section 5 warrant exploration in an empiri-
cal study to determine whether the premise of increasing the
transferability of hybrid methods by leveraging the identified
FORs holds in practice. Nevertheless, further methods for
the identification of FORs are still essential, as the suggested
approaches are only one way of identifying FORs. In future
work, alternative approaches, including learning-based ones,
can also be investigated in order to extract FORs.
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APPENDIX A

Table 3. Specific selection of features (47 in total) considered for extraction. Naming in accordance with TSFEL’s convention.

Spectral Temporal Statistical
Fundamental frequency Area under the curve Absolute energy
Max power spectrum Autocorrelation Average power
Maximum frequency Centroid Entropy
Median frequency Mean absolute diff Interquartile range
Power bandwidth Mean diff Kurtosis
Spectral centroid Median absolute diff Max
Spectral decrease Median diff Mean
Spectral distance Negative turning points Mean absolute deviation
Spectral entropy Neighbourhood peaks Median
Spectral kurtosis Positive turning points Median absolute deviation
Spectral positive turning points Signal distance Min
Spectral roll-off Slope Peak to peak distance
Spectral roll-on Sum absolute diff Root mean square
Spectral skewness Zero crossing rate Skewness
Spectral slope Standard deviation
Spectral spread Variance
Spectral variation

APPENDIX B

Table 4. Listing of the results regarding the data-driven identification of dataset-specific FORs based on 17 degradation datasets.
The generalizability of the FOR identified strongly depends on the quantity of data, i.e., available number of runs (R), as well
as the quality of data, i.e., the representativeness and completeness characterized by the number of different configurations (C)
applied, such as environmental and operational conditions, as well as failure modes (FM) present in the respective dataset. R, C
or FM are indicated as not applicable (n.a.), if no information was provided by the host of the dataset. The proposed approach
enabled identifying eight distinct curve progressions: linearly increasing (li), linearly decreasing (ld), sigmoidally increasing
(si), sigmoidally decreasing (sd), progressively increasing (pi), progressively decreasing (pd), degressively increasing (di),
degressively decreasing (dd). The trajectories of the features were analyzed to determine if their trends could be modeled
by one of these curve progressions by solving a nonlinear least squares problem. The resultant curves are considered an
application-specific FOR, if the median pseudo-R2 score across all runs accumulates to at least 0.9. If no application-specific
FORs could be identified at all, it will be marked as n.a. accordingly. The color coding refers to cross-application FORs, with
orange marking cross-application FORs within the filtration type of application, blue marking cross-application FORs within
the bearing type of application and purple marking cross-application FORs within the battery type of application.

Dataset Runs, Configs, Signal Feature Curve progression
(Domain, Application) Failure Modes li ld si sd pi pd di dd

PHM Data Challenge
2020 Europe - Filtration
System2 (Process
technology, Filtration)

R=32, C=8,
FM=1

Differential
Pressure

Absolute energy 1.0 0.96

Area under the
curve

0.98 0.96

Autocorrelation 1.0 0.96

Average power 1.0 0.96

Max 0.99 0.93

Mean 0.98 0.96

Median 0.98 0.96

Continued on next page
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Table 4 – continued from previous page
Dataset Runs, Configs, Signal Feature Curve progression
(Domain, Application) Failure Modes li ld si sd pi pd di dd

Median fre-
quency

0.94

Min 0.92 0.93

Root mean
square

0.98 0.96

Spectral distance 0.99 0.93

Spectral entropy 0.95

Spectral kurtosis 0.95 0.94

Spectral skew-
ness

0.93

Zero crossing
rate

0.99 0.94

Kaggle - Preventive to
Predictive Maintenance3

(Process technology,
Filtration)

R=100, C=7,
FM=1

Differential
pressure

Absolute energy 0.99 1.0

Area under the
curve

0.93 1.0

Autocorrelation 0.99 1.0

Average power 0.99 1.0

Max 0.91 0.99

Mean 0.93 1.0

Mean absolute
deviation

0.91

Mean diff 0.91

Median 0.93 1.0

Min 0.94 0.99

Peak to peak
distance

0.92

Root mean
square

0.93 1.0

Slope 0.91

Spectral distance 0.95 1.0

Spectral slope 0.91

Standard devia-
tion

0.92

Kaggle - Prognosis
based on Varying Data
Quality4 (Process
technology, Filtration)

R=55, C=4,
FM=1

Differential
pressure

Absolute energy 0.97 0.99

Area under the
curve

0.95 0.99

Autocorrelation 0.97 0.99

Average power 0.97 0.99

Entropy 0.96 0.91

Max 0.92 0.97

Mean 0.95 0.99

Median 0.93 0.99

Median fre-
quency

0.98

Min 0.96 0.97

Root mean
square

0.95 0.99
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Dataset Runs, Configs, Signal Feature Curve progression
(Domain, Application) Failure Modes li ld si sd pi pd di dd

Spectral centroid 0.93

Spectral de-
crease

0.9 0.97

Spectral distance 0.95 0.98

Spectral kurtosis 0.93 0.95

Spectral skew-
ness

0.94

Spectral slope 0.93

Zero crossing
rate

0.99

PHM IEEE Data
Challenge 2012 -
FEMTO Bearing
Dataset5 (Mechanical
component, Bearing)

R=6, C=3,
FM=n.a.

Vibration n.a.

R=4, C=3,
FM=n.a.

Temperature Absolute energy 0.95 0.98

Area under the
curve

0.96 0.98

Autocorrelation 0.95 0.98

Average power 0.95 0.98

Max 0.94 0.98

Maximum fre-
quency

0.96

Mean 0.96 0.98

Median 0.95 0.98

Min 0.92 0.97

Root mean
square

0.96 0.98

Spectral roll-off 0.96

NASA - Bearing
Dataset6 (Mechanical
component, Bearing)

R=4, C=1,
FM=3

Vibration n.a.

GitHub - XJTU-SY
Bearing Datasets7

(Mechanical component,
Bearing)

R=15, C=3,
FM=n.a.

Vibration
(vertical)

Absolute energy 0.92

Autocorrelation 0.92

Average power 0.92

Max 0.92

Mean absolute
diff

0.94

Median absolute
diff

0.95

Min 0.92

Peak to peak
distance

0.92

Signal distance 0.95
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Dataset Runs, Configs, Signal Feature Curve progression
(Domain, Application) Failure Modes li ld si sd pi pd di dd

Sum absolute
diff

0.94

Variance 0.92

Vibration
(horizontal)

Interquartile
range

0.9

Mean absolute
deviation

0.91

Mean absolute
diff

0.93

Median absolute
deviation

0.9

Median absolute
diff

0.93

Root mean
square

0.91

Signal distance 0.92

Standard devia-
tion

0.91

Sum absolute
diff

0.93

Mendeley -
Run-to-Failure Vibration
Dataset of Self-Aligning
Double-Row Ball8
(Mechanical component,
Bearing)

R=6, C=4,
FM=n.a.

Vibration n.a.

Zenodo - Ball bearings
subjected to
time-varying load and
speed conditions9

(Mechanical component,
Bearing)

R=17, C=11,
FM=n.a.

Vibration n.a.

Temperature Maximum fre-
quency

0.91

Spectral roll-off 0.91

Variance 0.95

PHM IEEE Data
Challenge 2014 - Fuel
Cell10 (Electrical
component, Fuel cell)

R=5, C=1,
FM=n.a.

Voltage Absolute energy 0.95 0.98

Area under the
curve

0.95 0.98

Autocorrelation 0.95 0.98

Average power 0.95 0.98

Mean 0.95 0.98

Median 0.95 0.99

Root mean
square

0.95 0.98

Spectral distance 0.93
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Dataset Runs, Configs, Signal Feature Curve progression
(Domain, Application) Failure Modes li ld si sd pi pd di dd

NASA - Randomized
Battery Usage Dataset11

(Electrical component,
Battery)

R=25, C=7,
FM=n.a.

Voltage
(discharge)

Absolute energy 0.97 0.98

Area under the
curve

0.97 0.98

Autocorrelation 0.97 0.98

Centroid 0.97 0.98

Entropy 0.97

Fundamental
frequency

0.97 0.95

Max power
spectrum

0.93 0.98

Mean 0.9

Mean absolute
diff

0.96

Mean diff 0.96 0.96

Median absolute
deviation

0.92

Root mean
square

0.9

Signal distance 0.97 0.98

Slope 0.98 0.91

Spectral distance 0.95 0.99

Spectral slope 0.97 0.95

Temperature Centroid 0.97 0.97

Signal distance 0.97 0.99

Spectral distance 0.93 0.97

Spectral slope 0.96 0.96

NASA - HIRF Battery12

(Electrical component,
Battery)

R=44,
C=varying,
FM=n.a.

Voltage
(discharge)

Max 0.92 0.94

Spectral distance 0.9

Temperature Absolute energy 0.98 0.99

Area under the
curve

0.98 0.99

Autocorrelation 0.98 0.99

Average power 0.98 0.99

Max 0.96 0.98

Mean 0.98 0.99

Median 0.97 0.99

Min 0.91

Root mean
square

0.98 0.99

NASA - Li-ion Battery
Aging Datasets13

(Electrical component,
Battery)

R=34, C=12,
FM=n.a.

Voltage
(discharge)

n.a.

Temperature n.a.
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Dataset Runs, Configs, Signal Feature Curve progression
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Mendeley - Battery
Degradation Dataset
(Fixed Current Profiles
and Arbitrary Uses
Profiles)14 (Electrical
Component, Battery)

R=73,
C=multiple,
FM=n.a.

Voltage
(discharge)

Absolute energy 0.93

Area under the
curve

0.92

Autocorrelation 0.93

Centroid 0.91

Neighbourhood
peaks

0.95

Signal distance 0.91

Spectral distance 0.99

Spectral positive
turning points

0.91

Temperature Centroid 0.91

Spectral distance 0.99

Oxford Battery
Degradation Dataset15

(Electrical Component,
Battery)

R=8, C=1,
FM=n.a.

Voltage
(discharge)

Absolute energy 0.98 1.0

Area under the
curve

0.98 1.0

Autocorrelation 0.98 1.0

Centroid 0.98 1.0

Fundamental
frequency

0.99 0.98 1.0

Mean absolute
diff

0.99 1.0

Mean diff 0.99 1.0

Negative turning
points

0.91 0.91

Positive turning
points

0.91 0.9 0.91

Signal distance 0.98 1.0

Skewness 0.94 0.91

Slope 0.98 0.98

Spectral centroid 0.96

Spectral distance 0.97 1.0

Spectral entropy 0.91 0.96

Spectral kurtosis 0.93

Spectral positive
turning points

0.93 0.95

Spectral skew-
ness

0.95

Spectral slope 0.99 1.0

Sum absolute
diff

0.9 0.91

Temperature Absolute energy 0.97 0.99

Area under the
curve

0.98 0.99

Autocorrelation 0.97 0.99

Centroid 0.98 1.0
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Dataset Runs, Configs, Signal Feature Curve progression
(Domain, Application) Failure Modes li ld si sd pi pd di dd

Fundamental
frequency

0.99 0.98 1.0

Max power
spectrum

0.97 0.98

Negative turning
points

0.93 0.95

Positive turning
points

0.93 0.95

Signal distance 0.98 1.0

Spectral distance 0.97 1.0

Spectral positive
turning points

0.94 0.96

Spectral slope 0.99 1.0

Sum absolute
diff

0.92 0.93

Zenodo - Data-driven
capacity estimation of
commercial lithium-ion
batteries from voltage
relaxation16 (Electrical
component, Battery)

R=130, C=11,
FM=n.a.

Voltage
(discharge)

n.a.

PHM Data Challenge
2010 - CNC milling
machine cutters17

(Manufacturing process,
Milling)

R=6, C=1,
FM=1

Vibration
(workpiece)

Absolute energy 0.96

Area under the
curve

0.97

Autocorrelation 0.96

Average power 0.9 0.96

Entropy 0.91 0.95

Interquartile
range

0.96

Max 0.91

Mean 0.97

Mean absolute
deviation

0.96

Mean absolute
diff

0.94

Median 0.97

Median absolute
deviation

0.96

Median absolute
diff

0.95

Peak to peak
distance

0.91

Root mean
square

0.97

Standard devia-
tion

0.96
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(Domain, Application) Failure Modes li ld si sd pi pd di dd

Sum absolute
diff

0.94

Variance 0.93 0.95

Acoustic
emission
(workpiece)

Median fre-
quency

0.98

Zero crossing
rate

0.99

NASA - Milling
Dataset18 (Manufacturing
process, Milling)

R=15, C=8,
FM=1

Vibration
(spindle)

n.a.

Acoustic
emission
(spindle)

Area under the
curve

0.9

Mean 0.9

Median 0.92 0.93

Root mean
square

0.9

2Eker, Camci, and Jennions (2016)
3Hagmeyer, Mauthe, and Zeiler (2021); Signals in the original dataset are right-censored, in this work, however, the entire signals were used.
4Mauthe, Bakir, Scheerer, and Zeiler (2022)
5Nectoux, P. and Gouriveau, R. and Medjaher, K. and Ramasso, E. and Morello, B. and Zerhouni, N. and Varnier, C. (2012)
6Lee, J. and Qiu, H. and Yu, G. and Lin, J. (2007)
7(B. Wang, Lei, Li, & Li, 2020)
8Gabrielli, Battarra, Mucchi, and Dalpiaz (2024)
9Aimiyekagbon, O. K (2024)
10FCLAB Federation (2014)
11Bole, B. and Kulkarni, C. and Daigle, M. (2014)
12Kulkarni, C. and Hogge, E. and Quach, C. and Goebel, K. (2015)
13Saha, B. and Goebel, K. (2007)
14(Lu et al., 2022)
15(Birkl & Howey, 2017)
16Zhu, Jiangong (2022)
17X. Li et al. (2009)
18Agogino, A. and Goebel, K. (2007)
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