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ABSTRACT 

Accurate Remaining Useful Life (RUL) prediction is 

essential for reducing maintenance costs and improving 

operational efficiency in high-value, complex systems such 

as aircraft engines. Data-driven approaches have emerged as 

a primary methodology in RUL estimation research, 

demonstrating significant improvements in performance. 

However, discrepancies in degradation trajectories across 

multiple failure modes can adversely affect the prediction 

accuracy. To address this challenge, this study proposes an 

integrated framework based on a Time Series K-Means – 

Bidirectional Long Short-Term Memory (TS K-Means–Bi-

LSTM) to perform RUL prediction considering different 

failure modes. Specifically, Time Series K-Means 

Clustering (TS K-Means) is used to cluster time series data 

into latent failure-mode groups, and a Bidirectional Long 

Short-Term Memory (Bi-LSTM) network is subsequently 

employed to predict the RUL for each group. The proposed 

framework is validated using the Commercial Modular 

Aero-Propulsion System Simulation dataset provided by 

NASA. Experimental results show that the proposed model 

outperforms existing methods. In addition, it achieves better 

results than the Bi-LSTM baseline trained under the same 

conditions but without fault type separation. This 

improvement likely results from minimizing interference 

among degradation patterns, allowing the model to better 

distinguish the unique behaviors associated with each fault 

type. Consequently, the proposed approach demonstrates 

strong potential for practical RUL prediction tasks. 

 

1. INTRODUCTION 

In response to the growing complexity of system operations 

and increasing maintenance demands in modern industries, 

Prognostics and Health Management (PHM) has gained 

significant attention. PHM enables optimized maintenance 

decisions through real-time health assessment and failure 

prognosis, serving as a cornerstone technology for 

intelligent asset management (Cuesta et al., 2025). 

Maintenance strategies are generally categorized into three 

types: reactive maintenance, preventive maintenance, and 

predictive maintenance. Among these, predictive 

maintenance is considered a key enabler of the future-

oriented maintenance paradigm, as it helps minimize 

unplanned downtime and reduce maintenance costs. Due to 

these advantages, it has been increasingly adopted in safety-

critical domains such as aerospace, railway, and energy 

sectors (Asif et al., 2022).  

The feasibility of predictive maintenance largely depends on 

the ability to accurately predict a system’s RUL. RUL refers 

to the remaining operational time of a system from its 

current state until the point of failure. There are two 

principal approaches to RUL estimation: model-based and 

data-driven approaches.  

The model-based approach constructs mathematical models 

that are grounded in the physical structure and dynamic 

behavior of the system. Bolander et al. (2009) introduced a 

Bayesian updating technique based on particle filters. This 

method continuously updated the degradation state by 

incorporating diagnostic information, thereby improving the 

accuracy of the model-based approach. 

However, this approach faces inherent limitations in fully 

capturing all complex factors of real-world systems, 

potentially leading to inaccurate RUL predictions. On the 

other hand, data-driven methods have increasingly gained 

attention, as they can predict RUL without requiring prior 

knowledge of system physics. The development of such 

methods has been further accelerated by advancements in 

machine learning and deep learning technologies (Chao et 

al., 2020).  

Several studies have proposed machine learning techniques 

for RUL estimation. Khelif et al. (2017) proposed a Support 

Vector Regression (SVR)-based method for predicting RUL 

directly from sensor data, without the need to explicitly 

estimate failure states or thresholds. Meanwhile, Adhikari et 
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al. (2018) developed a data-driven framework integrating 

multiple machine learning techniques. Their framework 

employed One-Class Support Vector Machine (One-Class 

SVM) for anomaly detection, K-Nearest Neighbors (KNN) 

for fault classification, and both Relevance Vector 

Regression (RVR) and Autoregressive Integrated Moving 

Average (ARIMA) models for RUL prediction. 

More recently, deep learning has shown great promise in 

RUL prediction tasks. Jayasinghe et al. (2019) proposed a 

temporal convolutional memory network, which extracts 

features from time-series sensor data using a Convolutional 

Neural Network (CNN) and captures both short- and long- 

term dependencies through Long Short-Term Memory 

(LSTM). This model demonstrated robust prediction 

performance on aircraft engine datasets. Wen et al. (2024) 

introduced a Temporal and Heterogeneous Graph Neural 

Network (THGNN) that simultaneously considers temporal 

dynamics and inter-sensor relationships. In addition, Zhang 

et al. (2022) proposed a model that combines a Bidirectional 

Gated Recurrent Unit (BiGRU) with a Temporal Self-

Attention Mechanism (TSAM), validating its effectiveness 

on both aircraft engine and milling datasets.  

In addition, several studies have demonstrated performance 

improvements through various feature engineering 

techniques applied during the Exploratory Data Analysis 

(EDA) stage. Hong et al. (2020) selected features that 

exhibit high correlation with RUL by utilizing the Pearson 

correlation coefficient and trained their model using only 

the selected features. They also employed Shapley Additive 

Explanations (SHAP) to identify the features that 

contributed most significantly to prediction accuracy. These 

findings suggest that incorporating relevant environmental 

conditions and appropriate parameters can enhance RUL 

prediction accuracy.   

Operational systems often operate under dynamic conditions 

and are exposed to multiple simultaneous fault modes. 

These diverse characteristics directly influence the accuracy 

of RUL prediction, necessitating their explicit consideration 

during the EDA phase. However, to the best of my 

knowledge, only a limited number of studies have 

systematically partitioned or labeled the data according to 

specific fault modes. Most prior works have relied on 

single-model training across the entire dataset, without 

accounting for variations across fault types.  Table 1 

presents five representative fault modes in turbofan engines 

and the sensors associated with each fault type (Wang et al., 

2023). Detailed descriptions of the sensors are provided in 

Chapter 3 of Hong et al. (2020). As summarized in Table 1, 

each fault type impacts multiple sensors at the same time. 

Such behavior has also been observed in real-world 

operations, where different failure modes lead to varying 

sensor patterns across subsystems (Luo, 2006). Ignoring 

these variations may introduce noise and conflicting patterns 

in model training, leading to suboptimal prediction 

outcomes. Therefore, fault-type-aware experimentation has 

the potential to mitigate this issue. Furthermore, as the 

problem of degradation pattern interference in RUL 

prediction exists across various industries, this approach can 

be extended to other sectors beyond the aviation industry. 

 

Table 1. Fault modes in turbofan engines and sensors 

associated with each fault type. 

Fault mode Key associated sensors 

HPC fault 
- PS30 (total HPC outlet pressure) 

- NC (core speed) 

LPC fault 

- Nf (fan speed) 

- P2 (LPC inlet pressure) 

- T2 (LPC inlet temperature) 

HPT fault 
- T50 (exhaust temperature) 

- T24 (temperature before HPT) 

LPT fault 

- Nf 

- T50 

- P30 (HPC outlet pressure) 

Fan fault 
- Nf 

- P15 (fan outlet pressure) 

 

With a similar focus, Peng et al. (2024) applied the FC-

AMSLSTM model exclusively to engine units exhibiting 

high-pressure compressor (HPC) degradation faults in the 

C-MAPSS FD004 dataset. To isolate HPC fault cases, a 

decline index was utilized, leveraging trends observed 

across specific sensor measurements such as bypass ratio, 

HPC outlet pressure, and fuel flow-to-pressure 

ratio. However, from a system-level perspective, engine 

components are interdependently linked, and actual faults 

often trigger complex, concurrent responses across multiple 

sensors, rather than being confined to a single sensor (Li et 

al., 2021). Such an approach may overlook the holistic 

behavior of the system and omit critical features necessary 

for accurate RUL prediction. Furthermore, during in-flight 

operation, explicit fault type labels are typically unavailable 

at the time of data acquisition. Engineers are often unaware 

of the actual fault type until physical inspection or 

maintenance is conducted. Given these uncertainties, 

approaches that depend on predefined fault labels are 

challenging to implement in field environments. 

To address these issues, this study proposes a framework 

based on Time Series K-Means – Bidirectional Long Short-

Term Memory (TS K-Means–Bi-LSTM), which segments 

input data into latent fault types and performs fault-type-

specific RUL prediction. By addressing the interference 

among degradation patterns, this study offers a 

methodological innovation in aero-engine RUL prediction. 

The methods and contributions for the key steps of the study 

are as follows: 
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• Optimal Degradation Zone Extraction for Enhanced 

Clustering Reliability: A common degradation zone is 

extracted from both the training and testing datasets by 

selecting only the segments where degradation patterns 

are clearly observable. This method is based on the 

critical insight that distinctive fault patterns become 

prominent primarily during the latter stages of a 

component's life cycle. By focusing on these segments, 

it has the potential to enhance the reliability of 

clustering. 

 

• TS K-Means Based Knowledge-Guided Clustering 

Applicable to Real-World Operations: The Time 

Series K-Means (TS K-Means) algorithm is used to 

cluster sequences into latent fault types. This approach 

takes degradation sequence data as input, performing 

clustering based on the progression of degradation. 

Rather than identifying explicit fault types, it 

categorizes data according to the underlying fault mode 

structures. Notably, it is effective in practical 

operational environments where the specific fault 

occurring is unknown during operation. Specifically, 

system-level Failure Mode, Effects & Criticality 

Analysis (FMECA) or Fault Tree Analysis (FTA) can 

provide in advance detailed information on component-

level fault modes, including their failure characteristics, 

criticality, and specific impacts on embedded sensors. 

As shown in Table 1, fault modes tend to influence 

particular sensors while exerting negligible effects on 

unrelated ones. This selective influence results in 

common degradation patterns and directional trends 

that are unique to each fault type. Such prior knowledge 

can be leveraged to determine the number of clusters 

and to perform knowledge-guided clustering based on 

similarities in degradation progression. 

 

• Fault-Type-Specific Bi-LSTM Models for Improving 

RUL Prediction: Separate Bidirectional Long Short-

Term Memory (Bi-LSTM) models are trained for each 

fault type. This mitigates the interference effects 

common in heterogeneous degradation data, allowing 

the model to capture the unique bidirectional temporal 

dependencies within a specific degradation pattern. 

This approach aims to enhance RUL prediction 

accuracy by leveraging a steady stream of focused and 

consistent inputs. 

 

The rest of the paper is organized as follows: Section 2 

provides an overview of the dataset and experimental setup. 

Section 3 introduces the proposed method. The 

experimental procedure is detailed in Section 4. The 

experimental results and analysis are provided in Section 5. 

Finally, Section 6 concludes the paper and discusses 

directions for future work.             

 

2. DATASET OVERVIEW AND EXPERIMENTAL SETUP 

2.1. Dataset Description  

The C-MAPSS dataset, developed by the NASA 

Prognostics Center of Excellence, is a widely used 

benchmark in the field of PHM. It was simulated based on a 

commercial turbofan engine with a thrust rating of 400 kN 

and was designed to reflect a variety of operating conditions 

and fault modes. The turbofan engine architecture is 

illustrated in Figure 1. The engine consists of key 

components such as the fan, low-pressure compressor (LPC), 

high-pressure compressor (HPC), shaft, combustion 

chamber, high-pressure turbine (HPT), and low-pressure 

turbine (LPT). 

 

 

Figure 1. Architecture of the turbofan engine 

 

The training set in the C-MAPSS dataset comprises run-to 

failure trajectories, where each unit starts from an arbitrary 

initial condition and operates until failure. In contrast, the 

testing set is only partially observed, with some sequences 

ending before the engine reaches complete failure. The full 

dataset is divided into four subsets FD001 through FD004, 

based on the combinations of fault modes and operational 

conditions. This study focuses on the FD004 subset, which 

represents the most complex configuration among the other 

subsets, with six operating conditions and two fault modes, 

as detailed in Table 2. It consists of 26 columns, including 

engine ID, cycle count, three operational conditions, and 21 

sensor measurements. To better capture system-level 

degradation patterns, eighteen input features were selected, 

comprising the cycle count, three operational conditions, 

and fourteen sensor signals (sensor_2, 3, 4, 7, 8, 9, 11, 12, 

13, 14, 15, 17, 20, and 21), all of which exhibited 

observable variation. Conversely, variables that are 

irrelevant or exhibited low variance were excluded from the 

input features. 
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Table 2. Summary of the FD004 dataset 

Dataset FD004 

Operational conditions 6 

Fault modes 2 

Training engine units 249 

Testing engine units 248 

 

2.2. RUL Modeling and Data Filtering 

In general, turbofan engines maintain stable health 

conditions during the early stage of operation, followed by a 

near-linear decline in RUL as degradation progresses 

(Berghout et al., 2020). This trend is effectively represented 

by a piecewise linear degradation model, as illustrated in 

Figure 2. To define the onset of degradation, the maximum 

RUL was set to 115 cycles. This threshold is not a fixed 

standard but an empirically determined parameter that can 

be adjusted based on dataset characteristics and modeling 

objectives. Similar approaches have been adopted in 

previous studies. For example, Zheng et al. (2017) set the 

RUL threshold at 125 cycles, while Asif et al. (2022) 

dynamically detected the onset of degradation and applied 

unit-specific maximum RUL values. 

This study targets only the engine units exhibiting clear 

signs of degradation, as they are more informative for 

clustering based on fault-related behavior. As the C-MAPSS 

testing dataset does not follow a run-to-failure structure, 

some units remain in healthy condition throughout their 

recorded cycles. Including such units may introduce noise 

and hinder clustering performance. Therefore, testing units 

with RUL exceeding 115 cycles were excluded from 

evaluation, resulting in a final test set comprising 168 out of 

248 units. 

 

 

Figure 2. Piecewise linear degradation model 

 

2.3. Common Degradation Zone 

In the classification phase, this study focuses on specific 

segments where signs of degradation are more pronounced. 

Using the entire long-term time series as input can lead to 

overfitting issues due to noise, complexity, and non-

stationarity. To address these challenges, a common practice 

is to extract key cycles or patches from the complete time 

series for the model's input. Wang et al. (2024) presented 

various case studies on utilizing only significant segments in 

deep learning model applications. The input data used for 

clustering reflected the observed trend in which sensor 

behavior becomes increasingly distinguishable as the system 

approaches failure, and this trend was also observed across 

multiple sensor measurements in this study.  As illustrated 

in Figure 3, sensor_14 is presented as a representative 

example. Its values remain relatively constant in the early 

stages but exhibit a gradual increase as failure nears, 

followed by a sharp rise immediately prior to failure. 

Although this pattern is clearly observed in sensor_14, the 

magnitude and onset timing of variations vary depending on 

the sensor type and operating conditions. Furthermore, this 

approach is in line with prior research. Saeidi et al. (2019) 

segmented engine health into three classes based on RUL 

and defined the 50–0 RUL range as the ‘class red’, 

indicating urgent maintenance requirements. Similarly, Peng 

et al. (2024) reported that RUL prediction accuracy 

improves in the late degradation phase, attributing this effect 

to increased sensor responsiveness as the engine nears 

failure.  

 

Figure 3. Variation of sensor_14 values over RUL 

Motivated by these findings, this study focuses on a more 

informative portion of the degradation sequence, rather than 

using the entire timeline. A uniform 50-cycle degradation 

segment was extracted from the portion closest to the failure 

point. This choice was made to minimize potential bias in 

the classification results arising from variations in sequence 

length. In the training data, the RUL 50–0 interval was used, 

while in the testing data, which is truncated before failure, 

the last 50 observed cycles within the degradation phase 

were considered. Figure 4 illustrates the extraction process 

for the common degradation zone in both the training and 

testing datasets.  
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Figure 4. Extraction of the common degradation zone from 

the training and testing datasets. 

 

3. PROPOSED METHOD 

This study proposes a framework that combines TS K-

Means clustering and Bi-LSTM regression. The overall 

process is divided into two phases: classification and 

regression, and this section provides a detailed explanation 

of the models and techniques employed in each phase. 

3.1. Classification Phase 

3.1.1. Data Normalization 

In sensor data, input features vary in scale, which can bias 

model training by amplifying the influence of certain 

variables. Feature normalization is employed to rescale all 

features to a uniform range (Zheng et al., 2017). In the 

classification phase, Min-Max normalization is applied to 

transform each feature into the range [0, 1]. In Eq. (1),  x  

denotes the original value, x𝑚𝑖𝑛  and x𝑚𝑎𝑥  represent the 

feature’s minimum and maximum values, respectively. The 

resulting value 𝑋norm is the normalized output. 

𝑋norm =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
                            (1) 

3.1.2. Dimensionality Reduction 

High-dimensional input features can result in the curse of 

dimensionality, which hinders the model’s generalization 

performance. To mitigate this issue and improve 

classification efficiency, dimensionality reduction is 

performed using an LSTM-Autoencoder. As shown in 

Figure 5, the encoder compresses the original 18-

dimensional input into an 8-dimensional latent vector. 

Compared to standard methods such as PCA or t-SNE, the 

LSTM-Autoencoder is better suited for time-series data as it 

preserves temporal dependencies (Simpson, Dervilis, and 

Chatzi, 2021).  

The encoder architecture consists of two LSTM layers 

followed by three dense layers. The LSTM layers contain 64 

and 128 units, respectively, with a 20% dropout applied 

after each layer to reduce overfitting. The outputs are then 

passed through three dense layers with 32, 16, and 8 units. 

LeakyReLU activation functions are used to introduce 

nonlinearity, and batch normalization is applied after each 

dense layer to stabilize training. The model is trained using 

the Adam optimizer.  

After dimensionality reduction, the resulting latent vectors 

are reshaped into 3D tensors of shape (number of samples, 

timesteps, number of latent dimension), where the timestep 

is set to 8. This configuration is determined empirically 

based on multiple experimental iterations. 

 

Figure 5. Architecture of the proposed LSTM-Autoencoder 

for dimensionality reduction 

3.1.3. Time Series K-Means Clustering 

In this study, a Soft-DTW-based TS K-Means clustering 

method is employed to effectively identify and group 

temporal fault patterns. Clustering is one of the techniques 

based on unsupervised learning that partitions data into 

groups based on similarities among data samples. 

Traditional K-Means clustering is an iterative algorithm that 

assigns each data point to the nearest centroid based on 

Euclidean distance and then updates the centroids until 

convergence. However, Euclidean distance is ill-suited for 

time series data, which often involves temporal shifts and 

distortions. As shown in Figure 6, even sequences with 

similar underlying patterns are incorrectly assessed under 

Euclidean distance when their time axes are not aligned, 

since it compares values at fixed time points. In contrast, 

Figure 7 illustrates how Dynamic Time Warping (DTW) 

addresses this limitation by flexibly aligning sequences 

through non-linear warping of the time axis (Holder, 

Bagnall, and Lines, 2024). 

 

 

Figure 6. Distance measurement using Euclidean metric 
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Figure 7. Distance measurement using DTW metric 

 

DTW finds the optimal alignment path between two 

sequences via dynamic programming. Equation (2) defines 

the recursive formula used to compute the DTW distance. 

Specifically, at each step, the local distance 𝑑(𝑥𝑖 , 𝑦𝑗)  is 

added to the minimum cumulative cost among the three 

neighboring cells — 𝐷(𝑖 − 1, 𝑗) , 𝐷(𝑖, 𝑗 − 1) , 𝐷(𝑖 − 1, 𝑗 − 1) . 

This recurrence enables DTW to accumulate the minimum 

alignment cost over the entire sequence and find the optimal 

warping path (Keogh and Ratanamahatana, 2005). 

𝐷(𝑖, 𝑗) =  𝑑(𝑥𝑖 , 𝑦𝑗) + min{𝐷(𝑖 − 1, 𝑗), 𝐷(𝑖, 𝑗 − 1),  

                                                                  𝐷(𝑖 − 1, 𝑗 − 1)}         (2) 

SoftDTW(Q,C) 

=  − 𝜆 · log ( ∑ exp ( −
1

𝜆
· ∑ 𝑑(𝑄𝑖 , 𝐶𝑗)𝑖,𝑗 ∈ 𝜋 )𝜋 ∈ 𝒫 )           (3) 

 

In this study, Soft-DTW is adopted as a differentiable 

extension of DTW. It employs a log-sum-exp formulation 

that smooths the minimum operator, making the distance 

function differentiable with respect to input sequences. As 

defined in Eq. (3), 𝑑(𝑄, 𝐶) represents the local distance 

between sequence elements, and 𝒫  denotes the set of all 

alignment paths. 𝜆  is a parameter that controls the 

smoothness of path selection. In Soft-DTW–based models, 

it regulates the smoothness of the soft-min operation, 

thereby influencing the differentiability of the loss function. 

As 𝜆  approaches zero, Soft-DTW behaves similarly to 

standard DTW, heavily weighting the shortest path. 

Conversely, as 𝜆 increases, the soft-min operation acts as an 

exponentially weighted average of all path costs, attenuating 

the differences between individual paths.  

3.2. Regression Phase 

3.2.1.Sliding Window 

A sliding window technique is used to segment a continuous 

time series into fixed-length subsequences by moving a 

window across the data. This transformation converts the 

raw time series into a structure suitable for model training. It 

offers several advantages in time series modeling. By 

generating multiple overlapping samples, it enables the 

model to capture subtle temporal variations and recurring 

patterns (Al-Khazraji et al., 2022). In this study, the optimal 

window size was determined through repeated experiments 

using candidate values of 20, 30, 50, and 60. The selection 

of these candidates is guided by previous studies employing 

the sliding window technique, including Wang et al. (2023), 

Al-Khazraji et al. (2022), and Peng et al. (2024). As a result, 

the window size is set to 50 with a stride of 1, which 

minimizes information loss at boundaries and the final input 

data are organized into 3D tensors of shape (number of 

samples, window size, number of features). 

 

3.2.2. Data Standardization 

In the regression phase, each time series window is 

standardized using the TimeSeriesScalerMeanVariance. As 

a result, all windows are scaled to have zero mean and unit 

variance, enabling the model to learn from uniformly scaled 

inputs. This standardization is defined in Eq. (4), where 𝑋𝑖,𝑡 

denotes the value of feature 𝑖  at timestep 𝑡 , and 𝜇𝑖 , 𝜎𝑖 

represent the mean and standard deviation of feature 𝑖 
within the window, respectively. The standardized value, 

denoted by 𝑋𝑖,𝑡
′ , is used as the input. 

𝑋𝑖,𝑡
′ =

𝑋𝑖,𝑡−μ𝑖

σ𝑖
                          (4) 

 

3.2.3. Bi – LSTM 

Bi-LSTM is an extension of the LSTM architecture by 

processing sequential data in both forward and backward 

directions. Traditional LSTM networks incorporate a cell 

state and gating mechanisms to selectively retain relevant 

information. This structure effectively mitigates the 

vanishing gradient problem and manages long-range 

dependencies in time series data. While the LSTM processes 

information in a single forward direction—from past to 

present, Bi-LSTM incorporates both a forward path and a 

backward path to process input data. By integrating both 

directions, Bi-LSTM provides a more comprehensive 

understanding of data dependencies. This architecture has 

been widely adopted in various fields, including speech 

recognition and automated language translation (Wang et al., 

1997). Equations (5) and (6) define the forward and 

backward paths, respectively, and Equation (7) represents 

the final output at timestep 𝑡 obtained by combining both 

directional outputs. The structure of the Bi-LSTM network 

is illustrated in Figure 8. 

ℎ𝑡
→ = LSTM(𝑥𝑡, ℎ𝑡−1

→ )                      (5) 

ℎ𝑡
← = LSTM(𝑥𝑡, ℎ𝑡+1

← )                      (6) 

𝑦ₜ =  𝜎(ℎ⃗ ₜ +  ℎ⃗⃖ₜ)                            (7) 
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Figure 8. Architecture of the Bi-LSTM network 

The proposed RUL prediction model consists of three Bi-

LSTM layers followed by three dense layers. The Bi-LSTM 

layers contain 256, 128, and 64 units, respectively, and use 

the tanh activation function. The dense layers are composed 

of 128, 64, and 1 units, with the ReLU activation function 

applied to all but the final output layer, which generates the 

RUL values. To prevent overfitting and stabilize training, 

dropout and batch normalization are applied throughout the 

network. In this study, candidate dropout rates for each layer 

were set to the values [0.1, 0.2, 0.3]. A grid search is 

conducted to identify the optimal combination, resulting in a 

configuration of 0.3–0.2–0.2–0.2–0.2 across the five 

dropout layers. The structure of the Deep Bi-LSTM model 

is presented in Figure 9. 

 

 

Figure 9. Structure of the proposed regression model 

 

4. EXPERIMENTAL DETAILS 

4.1. Overall Flowchart 

The overall flowchart is presented in Figure 10, and the 

steps are summarized as follows:  

1. To use only degradation progressing data, units 

with an RUL exceeding 115 are excluded from 

both the training and testing datasets. A common 

degradation zone of 50 timesteps is then extracted 

from each sequence. 

2. Eighteen variables are selected as input features 

and scaled using Min-Max normalization. 

Dimensionality reduction is performed via LSTM-

Autoencoder. Next, the resulting latent vectors are 

clustered into two fault types using the TS K-

Means model. At this stage, as the specific fault 

modes corresponding to each cluster are 

inherently unknown in clustering, this study 

designated them as anonymous clusters, namely 

Fault 0 and Fault 1. 

3. Fault type labels are assigned to the raw dataset. A 

sliding window approach is applied to convert the 

sequences into 3D tensors, and each window is 

standardized using TS-ScalerMeanVariance. 

4. Finally, the Deep Bi-LSTM model is trained 

separately for each fault type. Model performance 

is evaluated using RMSE and Score metrics. 

 

 

Figure 10. Overall flowchart of the proposed framework 
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4.2. Hyperparameter Setup 

The hyperparameters used in this study are summarized in 

Tables 3 and 4. In the regression phase, the training dataset 

is split into 80% for training and 20% for validation. The 

optimal hyperparameter configuration for the models is 

determined through a systematic and iterative optimization 

process, prioritizing data characteristics and the model’s 

training stability. The candidate ranges considered during 

the iterative hyperparameter tuning are as follows: window 

size ∈ {20, 30, 50, 60}, batch size ∈ {32, 64, 128, 256}, and 

learning rate decay factor ∈ {0.1, 0.2}. The initial learning 

rate is set to 1e-3 and is allowed to decay to 1e-7, with an 

early stopping criterion configured with a patience of 10 

epochs. In addition, the smoothing parameter 𝜆 is evaluated 

over five candidate values {1e-3, 1e-2, 1e-1, 1, 10}, selected 

with reference to prior studies on Soft-DTW-based 

clustering, as discussed in Section 5.1. 

Table 3. Hyperparameters for the TS K-Means model 

Hyperparameter Value 

Number of clusters 2 

Max iterations 100 

Distance Function Soft-DTW 

𝜆  1 

Table 4. Hyperparameters for the Deep Bi-LSTM model 

Hyperparameter Value 

Number of hidden layers 6 (3, 3) 

Number of neurons 256-128-64-128-64-1 

Window size 50 

Epochs Early stopping (100) 

Batch size 32 

Learning rate 1e-3 → 1e-7 

Learning rate decay factor 0.2 

Loss function Huber 

Activation 
Tanh(Bi-LSTM), 

ReLU(Dense) 

Optimizer Adam 

 

4.3. Evaluation Metric 

This study evaluates model performance using one metric in 

the classification phase and five in the regression phase. The 

Silhouette score is used to assess clustering quality. For 

each data point 𝑖, 𝑎(𝑖) denotes the average distance to all 

other points within the same cluster, while 𝑏(𝑖) represents 

the minimum average distance to points in the nearest 

neighboring cluster, as defined in Eq. (8). The score ranges 

from –1 to +1, with higher values indicating better 

clustering characterized by compact intra-cluster structure 

and well-separated clusters. 

   𝑠(𝑖) =
𝑏(𝑖)− 𝑎(𝑖)

max(𝑎(𝑖),𝑏(𝑖))
                     (8) 

For the regression phase, Root Mean Squared Error (RMSE) 

serves as the primary evaluation metric, offering an intuitive 

measure of prediction accuracy. In Eq. (9), 𝐷𝑖  represents the 

prediction error between the predicted and actual RUL for 

unit 𝑖 , and 𝑁  is the total number of testing units. To 

summarize performance across the two fault types, the 

Mean RMSE is reported as a representative score to show 

overall performance. In both metrics, lower values indicate 

superior predictive accuracy, as formalized in Eq. (9) and 

(10) respectively.  

  RMSE = √
1

𝑁
∑ (𝐷𝑖)

2𝑁
𝑖=1      (𝐷

𝑖
= 𝑝

𝑖
− 𝑎𝑖)         (9)                                         

Mean RMSE =
 RMSEfault0+ RMSEfault1 

2
       (10) 

While RMSE is a useful metric for evaluating overall 

prediction accuracy, it does not differentiate between early 

and late predictions, which is critical in safety-sensitive 

operational environments. The Score metric addresses this 

limitation by employing an asymmetric loss function that 

penalizes late predictions (𝐷𝑖 > 0) more heavily than early 

ones (𝐷𝑖 < 0). This reflects the operational risk posed by 

delayed maintenance actions, leading to system failures or 

safety incidents. Overall model performance is evaluated 

using the Total Score, computed as the sum of individual 

scores from both fault types. In addition, an Average Score 

(AS) is introduced to account for different sample sizes 

across testing units. Lower values indicate better 

performance, and the definitions of Score, Total Score, and 

AS are provided in Eq. (11), (12), and (13), respectively. 

 

1

exp 1  if 0
10

Score

exp 1  if 0
13

i

iN

i i

i

D
D

D
D

=

− 

=

− − 

  
 

  


 
   

          (11) 

Total Score = Scorefault0 + Scorefault1        (12) 

AS =
Score(Total Score)

𝑁
                       (13) 

 

5. RESULTS AND DISCUSSION 

This section is structured into three parts. First, the fault 

type clustering results obtained from the dataset are 

presented. Second, clustering performance is compared 

using three distance metrics—Euclidean, DTW, and Soft-

DTW—to evaluate the influence of the distance metric on 

clustering quality. Third, based on the clustering results, the 

RUL prediction performance is analyzed and compared with 

previous studies. All experiments were conducted on 

Google Colab using an NVIDIA Tesla T4 GPU with 16GB 

of RAM, running Python 3.11.11 and TensorFlow 2.18.0.  
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Table 5. Clustering results on the C-MAPSS FD004 dataset 

Data Fault type (units) Engine units 
Silhouette 

score 

Training 

dataset 

Fault 0 (107) 

1, 2, 3, 6, 9, 10, 11, 12, 14, 18, 20, 23, 26, 29, 30, 34, 35, 37, 42, 46, 

47, 48, 49, 51, 52, 53, 55, 56, 58, 61, 62, 65, 69, 71, 72, 79, 80, 85, 
86, 87, 88, 91, 94, 95, 98, 101, 108, 109, 111, 112, 116, 117, 118, 

126, 127, 128, 131, 133, 134, 139, 144, 145, 146, 149, 151, 154, 155, 

157, 158, 159, 161, 162, 163, 164, 166, 167, 169, 171, 172, 173, 174, 
179, 180, 184, 188, 189, 190, 191, 200, 201, 203, 206, 207, 208, 215, 

223, 225, 227, 228, 229, 230, 232, 233, 239, 241, 243, 244 

0.34 

Fault 1 (142) 

4, 5, 7, 8, 13, 15, 16, 17, 19, 21, 22, 24, 25, 27, 28, 31, 32, 33, 36, 38, 

39, 40, 41, 43, 44, 45, 50, 54, 57, 59, 60, 63, 64, 66, 67, 68, 70, 73, 
74, 75, 76, 77, 78, 81, 82, 83, 84, 89, 90, 92, 93, 96, 97, 99, 100, 102, 

103, 104, 105, 106, 107, 110, 113, 114, 115, 119, 120, 121, 122, 123, 

124, 125, 129, 130, 132, 135, 136, 137, 138, 140, 141, 142, 143, 147, 
148, 150, 152, 153, 156, 160, 165, 168, 170, 175, 176, 177, 178, 181, 

182, 183, 185, 186, 187, 192, 193, 194, 195, 196, 197, 198, 199, 202, 

204, 205, 209, 210, 211, 212, 213, 214, 216, 217, 218, 219, 220, 221, 
222, 224, 226, 231, 234, 235, 236, 237, 238, 240, 242, 245, 246, 247, 

248, 249 

Testing 

dataset 

Fault 0 (67) 

8, 9, 12, 13, 18, 25, 29, 32, 35, 37, 40, 41, 44, 47, 49, 56, 61, 62, 64, 
68, 71, 74, 86, 89, 99, 102, 105, 110, 111, 118, 119, 123, 124, 126, 

131, 134, 135, 138, 143, 149, 150, 151, 161, 176, 178, 179, 180, 181, 

185, 190, 192, 193, 194, 197, 202, 206, 211, 212, 213, 216, 223, 231, 
235, 237, 240, 244, 248 

0.53 

Fault 1 (101) 

1, 2, 3, 4, 6, 7, 14, 15, 20, 21, 22, 23, 26, 27, 31, 36, 38, 42, 43, 45, 

48, 50, 57, 58, 65, 67, 69, 70, 73, 77, 78, 79, 80, 81, 82, 85, 87, 88, 
90, 91, 92, 96, 97, 98, 100, 101, 103, 106, 107, 112, 113, 114, 116, 

117, 121, 142, 145, 146, 147, 152, 154, 155, 158, 159, 160, 162, 163, 

165, 166, 167, 168, 172, 173, 174, 177, 183, 184, 187, 189, 196, 198, 
199, 200, 201, 208, 209, 210, 214, 217, 219, 221, 222, 224, 226, 230, 

233, 234, 236, 238, 242, 247 

 

 

Figure 11. Clustered scatter plots of the C-MAPSS FD004 dataset: a) training dataset, b) testing dataset 

 

5.1. Fault Type Clustering Results 

The training and testing datasets are separately partitioned 

into two latent fault types using the knowledge-guided 

clustering approach. This simulates a blind operational 

scenario, in which the exact fault location and type are 

typically unknown. Table 5 summarizes the final clustering 

results. Of the 249 engine units in the training dataset, 107 

were assigned to Fault 0 and 142 to Fault 1, with a 

Silhouette score of 0.34. In the testing dataset, 67 out of 168 

units were classified as Fault 0 and 101 as Fault 1, yielding 

a Silhouette score of 0.53. Figure 11 presents scatter plots of 

the clustering results: (a) training dataset and (b) testing 

dataset. In both figures, the data are separated into two 

clusters with clearly visible boundaries. The training dataset 

exhibited a slightly lower score than the testing dataset. As 

shown in Figure 11(a), some samples are ambiguously 

located between clusters.  
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This may be attributed to the temporal position of the input 

segments within the degradation timeline. In particular, the 

training segments are primarily extracted from the final 

portion of the degradation trajectory, immediately preceding 

failure, where patterns tend to be more fluctuating and 

complex. This higher variability may reduce intra-cluster 

cohesion and result in a lower Silhouette score. In contrast, 

the testing segments do not extend to the point of failure, as 

data collection is terminated beforehand. These pre-failure 

degradation segments typically exhibit less abrupt and  more 

stable patterns compared to those near the failure point, 

contributing to lower temporal complexity and better cluster 

separation. 

In addition, the effect of the smoothing parameter 𝜆 on the 

results of Soft-DTW-based clustering is analyzed. 

Experiments are conducted on both training and testing 

datasets using five 𝜆 values: 0.001, 0.01, 0.1, 1, and 10, and 

the corresponding silhouette scores are recorded. The results 

are presented in Table 6. The search space for 𝜆 is defined 

with reference to Cuturi and Blondel (2017), as widely 

adopted in prior work on time-series clustering, where this 

parameter is typically set in powers of ten. Also, the 

maximum number of iterations is set to 100 to ensure 

convergence of the clustering process. Experimental results 

show that the optimal performance is achieved at 𝜆 = 1 for 

both the training and testing datasets. When 𝜆 is less than 1, 

the algorithm exhibits sensitivity to noise and local 

fluctuations, resulting in degraded performance. Conversely, 

values of  𝜆  greater than 1 likely cause oversmoothing, 

which diminishes the discriminative differences among 

individual time-series paths. These findings highlight the 

importance of tuning 𝜆  to achieve an optimal balance 

between filtering out noise and preserving the inherent 

features of the data. 

 

Table 6. Silhouette scores on training and testing datasets 

for various λ values 

Data 𝝀 =0.001 𝝀 =0.01 𝝀 =0.1 𝝀 =1 𝝀 =10 

Train 0.17 0.29 0.31 0.34 0.26 

Test 0.24 0.31 0.26 0.53 0.4 

 

5.2. Comparison of Clustering Results Using Different 

Distance Functions 

A comparative analysis of clustering performance is 

conducted using three distance metrics: Euclidean, DTW, 

and Soft-DTW. Table 7 summarizes the resulting Silhouette 

scores and cluster distributions for each metric. Among 

them, Soft-DTW yielded the highest Silhouette scores — 

0.34 for the training dataset and 0.53 for the testing dataset 

— outperforming the other two approaches. In contrast, 

Euclidean-based clustering resulted in the lowest scores. 

Because Euclidean distance relies on strict pointwise 

alignment at identical time indices, it cannot effectively 

capture nonlinear temporal variations arising from 

differences in sequence length or structure. DTW mitigates 

this issue by allowing flexible alignment through time 

warping. However, its non-differentiable nature makes it 

incompatible with centroid-based algorithms such as K-

Means, which require iterative updates of cluster centers. 

Ultimately, Soft-DTW overcomes these limitations and is 

therefore well-suited for time-series clustering applications. 

Furthermore, this ablation study demonstrates that the Soft-

DTW distance function is the most effective choice within 

the TS K-Means algorithm for clustering nonlinear time-

series degradation patterns. This provides a practical 

guideline for selecting distance functions to achieve optimal 

performance in future research.  

 

Table 7. Clustering performance of TS K-Means with 

different distance functions 

Distance 

function 
Silhouette (Train) 

[fault0, fault1] 

Silhouette (Test) 
[fault0, fault1] 

Euclidean 
0.08 

[118, 131] 

0.11 
[71, 97] 

DTW 
0.11 

[114, 135] 

0.17 
[78, 90] 

Soft-DTW 
0.34 

[107, 142] 

0.53 
[67, 101] 

 

5.3. RUL Prediction Results 

In this section, this study presents the RUL prediction 

results categorized by fault type. In addition, the results are 

compared with the Bi-LSTM model trained without fault 

type separation. Finally, the proposed model is compared 

with previous studies to assess its relative effectiveness.  

Table 8 summarizes the RMSE and Score for each fault type, 

along with the overall performance in terms of Mean RMSE 

and Total Score. To ensure consistency of the results, five 

independent trials are conducted using random seeds of 32, 

42, 52, 62, and 72. Results are reported as the mean ± 

standard deviation, where the mean indicates overall 

prediction accuracy and the standard deviation reflects 

model stability. The proposed model achieved RMSE values 

of 17.00 ± 0.83 for Fault 0 and 17.65 ± 0.22 for Fault 1, 

resulting in a Mean RMSE of 17.33 ± 0.61. The relatively 

small RMSE gap between fault types suggests that the 

model provides unbiased predictions across different 

degradation patterns. In terms of Score, Fault 0 recorded 
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398.4 ± 39.9 and Fault 1 recorded 817.2 ± 59.9, yielding a 

Total Score of 1215.6 ± 50.9.  

 

Table 8. RUL prediction results by fault type 

Metric Fault 0 Fault 1 

RMSE 17.00 ± 0.83 17.65 ± 0.22 

Mean RMSE 17.33 ± 0.61 

Score 398.4 ± 39.9 817.2 ± 59.9 

Total Score 1215.6 ± 50.9 

 

Subsequently, I evaluate the performance of the proposed 

method against a conventional approach in which the model 

is trained on the entire dataset without fault type separation. 

The same Bi-LSTM architecture, as described in Section 

3.2.3, was employed in both cases. To ensure a consistent 

comparison, the evaluation is conducted on the 168 testing 

units introduced in Section 2.2, using identical 

hyperparameter settings and preprocessing procedures. As 

shown in Table 9, the conventional approach yielded RMSE 

of 19.04 ± 1.82, while the proposed approach achieved a 

lower RMSE of 17.33 ± 0.61, indicating an average 

improvement of 1.71 points. In terms of the AS, the 

conventional method recorded 11.20, whereas the proposed 

method achieved 7.24, representing an improvement of 

approximately 35%. These improvements can be attributed 

to the effect of fault type separation, which reduces 

interference among heterogeneous degradation patterns and 

thereby enhances prediction accuracy. Notably, the 

proposed model outperformed the conventional method in 

both metrics despite using fewer training samples, 

demonstrating the effectiveness of fault-type-aware 

modeling in time-series–based RUL prediction. This offers 

an effective strategy that can enhance RUL prediction 

accuracy in the presence of heterogeneous degradation 

patterns. Given that systems in operational environments 

often experience multiple concurrent failures, the proposed 

approach could be applicable across a wide range of 

industries, including manufacturing, energy, and 

transportation, not just aviation engines. 

 

Table 9. Evaluation of RUL prediction performance with 

and without fault type separation 

Finally, the proposed method is compared with previous 

studies based on the C-MAPSS FD004 dataset. Among the 

compared models, Deep LSTM, Bi-LSTM, LSTM Attention, 

AEQRNN, Double Attention-based Architecture, and ISG-

McMsDCNN-LSTM were trained on the full dataset of 249 

engine units without fault type separation. In contrast, the 

proposed method and FC-AMSLSTM were trained 

separately for each fault type. The proposed method 

achieved the best RMSE performance among all methods. 

Although its AS was slightly higher than that of the Double 

Attention-based architecture, the result remains competitive 

considering the reduced training data due to fault-type 

clustering. Notably, it outperformed FC-AMSLSTM, which 

was optimized specifically for HPC fault cases, thus 

demonstrating superior accuracy across two latent fault 

types. This demonstrates the model’s robustness in real-

world operational settings where the exact fault type is often 

not clearly identified. Detailed comparison results are 

presented in Table 10. 

 

Table 10. Performance comparison between the proposed 

method and previous models 

Methods 
Training 

units 
RMSE AS 

Deep LSTM (2017) 249 28.17 22.38 

Bi-LSTM (2018) 249 24.86 21.89 

LSTM Attention (2021) 249 27.08 22.78 

AEQRNN (2022) 249 20.67 18.54 

Double Attention based 

Architecture (2022) 
249 19.86 7.02 

ISG-McMsDCNN- 

LSTM (2024) 
249 17.81 9.75 

FC-AMSLSTM (2024) 111 19.48 8.42 

TS K-Means – Bi-LSTM 107 / 142 17.33 7.24 

 

6. CONCLUSION 

This study proposes a framework that combines the TS K-

Means clustering with the Deep Bi-LSTM regression model 

for RUL prediction. Given that sensor degradation patterns 

in aircraft engines can vary by fault types and potentially 

reduce prediction accuracy, this study reflects this 

characteristic in the deep learning process by first 

distinguishing fault modes and then performing fault-

specific RUL prediction. While previous studies often 

overlooked the diversity of degradation behaviors, the 

proposed framework introduces a novel perspective by 

enabling degradation pattern separation, thus contributing a 

technical advancement to the PHM domain. Experimental 

results demonstrated that the proposed method achieved 

higher accuracy than the conventional approach, which does 

Methods 
Training 

units 
RMSE 

(Mean RMSE) 
AS 

Bi-LSTM 
(Conventional 

approach) 
249 19.04 ± 1.82 11.20 

TS K-Means – 

Bi-LSTM 

107 (Fault 0) 

142 (Fault 1) 
17.33 ± 0.61 7.24 
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not incorporate fault type separation. In addition, it 

outperformed previously published models. These results 

suggest that incorporating  fault type separation helps 

mitigate the effects of interference among different 

degradation patterns, resulting in more balanced and 

accurate learning. Furthermore, when fault types have been 

reasonably characterized in advance, such as through 

comprehensive FTA or FMECA, the proposed method—by 

leveraging knowledge-guided clustering to identify latent 

fault patterns—can be effectively applied to real-world 

scenarios where the exact fault is not identifiable during 

operation.  

In this study, healthy data with RUL values beyond the 

threshold are excluded to focus on the degradation phase. 

Future research will aim to preserve such data and examine 

its contribution to model performance. In addition, the 

current framework adopts knowledge-guided clustering 

strategy. However, this approach can lead to clustering 

instability when data are scarce or the fault modes are 

diverse. To address this, semi-supervised clustering emerges 

as a promising solution. It allows a small amount of labeled 

data to serve as a guide, enabling simultaneous learning 

with large volumes of unlabeled data, thus contributing to 

more reliable clustering results. Furthermore, this method 

can leverage a few labeled data points to identify the 

specific fault type corresponding to each cluster, 

significantly enhancing the interpretability of the research 

outcomes. Building on these advantages, the future work 

will investigate applying semi-supervised clustering to 

various domain-specific datasets and analyzing its 

contributions. 
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