
Remaining Useful Life Prediction Using Attention-LSTM Neural
Network of Aircraft Engines

Marouane Dida1, Abdelhakim Cheriet2, Mourad Belhadj3

1,3 Laboratoire d’Intelligence Artificielle et des Technologies de l’Information (LINATI), Kasdi Merbah University, Ouargla, Algeria
Computer science and technology of Information Department, Kasdi Merbah University, Ouargla, Algeria

dida.marouane@univ-ouargla.dz

2 The National School of Artificial Intelligence, Algiers, Algeria
abdelhakim.cheriet@ensia.edu.dz
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ABSTRACT

Accurate prediction of the Remaining Useful Life (RUL) is
essential for the effective implementation of Prognostics and
Health Management (PHM) in aerospace, particularly in en-
hancing aero-engine reliability and forecasting potential fail-
ures to reduce maintenance costs and human-related risks.

The NASA Commercial Modular Aero-Propulsion System
Simulation (C-MAPSS) dataset, utilized in the 2021 PHM
Data Challenge, serves as a widely recognized open-source
benchmark, providing simulated turbofan engine data col-
lected under realistic flight conditions. Previous deep learn-
ing approaches have leveraged this dataset to predict the re-
maining useful life of engine units.

However, data-driven methods for RUL prediction in aerospace
often encounter challenges such as high model complexity,
limited prediction accuracy, and reduced interpretability. To
address these issues, this paper presents a novel hybrid frame-
work that incorporates an attention mechanism to enhance
aircraft engine RUL prognostics. Specifically, we employ a
self-attention mechanism to effectively capture relationships
and interactions among different features, enabling the trans-
formation of high-dimensional feature spaces into
lower-dimensional representations.

The proposed model, which integrates an LSTM network,
demonstrates superior performance in predicting turbofan en-
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gine RUL. Experimental results validate its effectiveness, achiev-
ing RMSE values of 12.33 and 11.76, along with score val-
ues of 200 and 212 on the FD001 and FD003 sub-datasets,
respectively. These results surpass those of other state-of-the-
art methods on the C-MAPSS dataset.

1. INTRODUCTION

Recent advancements in communication, sensor, and comput-
ing technologies have significantly improved access to sensor
data from industrial machines, driving the Industry 4.0 rev-
olution and fostering the rise of smart manufacturing (Tao,
Qi, Liu, & Kusiak, 2018). The potential of predictive mainte-
nance to enhance productivity and reduce maintenance costs
has attracted substantial interest over the past decade, estab-
lishing it as a key focus within the modern industrial era (Lee,
Ardakani, Yang, & Bagheri, 2015). Predicting the Remaining
Useful Life (RUL) of a system is fundamental to all predictive
maintenance applications (Lei et al., 2018).

Accurate RUL prediction enables proactive maintenance
scheduling, effectively reducing costs while preventing sys-
tem performance deterioration and catastrophic failures (Han
et al., 2021). Deep learning methods have demonstrated su-
perior performance in RUL prediction by autonomously ex-
tracting hierarchical representations from training samples,
thereby eliminating the need for manual feature engineering
and minimizing human resource consumption (Rohani Bas-
tami, Aasi, & Arghand, 2019). The precise prediction of
RUL, facilitated by the comprehensive utilization of exten-
sive monitoring data, significantly enhances the safety and
reliability of system operations.
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Throughout its extended operational lifespan, an aero-engine
undergoes gradual performance degradation due to factors
such as fatigue, corrosion, and scale accumulation. While
the specific variables influencing the degradation of rotating
components vary, their combined impact alters the engine’s
efficiency and flow capacity. These performance indicators
are collectively referred to as health parameters (Kurz & Brun,
2001). Although direct measurement of health parameters
is often challenging, sensor data such as temperature, pres-
sure, rotor speed, and fuel flow rate can be readily quantified
and serves as the primary input for various advanced deep
learning models used in RUL prediction. Researchers gener-
ally classify RUL prediction approaches into two main cate-
gories: physics-based and data-driven (H. Song, Liu, & Song,
2023)(Benkedjouh, Medjaher, Zerhouni, & Rechak, 2013).
Due to the complexity of modeling requirements, physics-
based approaches can be difficult to implement (An, Kim, &
Choi, 2015)(Chao, Kulkarni, Goebel, & Fink, 2022). The
rapid advancements in artificial intelligence have led to an
increasing preference for data-driven methodologies, partic-
ularly deep learning techniques, in RUL prediction research
(Tian, Yang, & Ju, 2023)(Xia, Song, Zheng, Pan, & Xi, 2020).
Convolutional Neural Networks (CNNs) and their variants
have proven effective in handling complex signals and distur-
bances, thereby improving the reliability of RUL forecasting
(X. Li, Ding, & Sun, 2018).

However, CNN-based methodologies have inherent limita-
tions. Their convolutional kernels restrict the range of infor-
mation they can capture, limiting their ability to effectively
learn long-term dependencies in the data. In contrast, Recur-
rent Neural Networks (RNNs) excel in processing sequential
data due to their recurrent architecture, offering advantages
in RUL prediction (Hu, Cheng, Wu, Zhu, & Shao, 2021).
Although Long Short-Term Memory (LSTM) networks ad-
dress the vanishing gradient problem encountered in stan-
dard RNNs, they still struggle to retain all crucial informa-
tion across long sequences (T. Song, Liu, Wu, Jin, & Jiang,
2022). Additionally, the requirement for serial computation
in these models significantly increases computational over-
head (Peng, Jiao, Dong, & Pi, 2019). The limitations of con-
ventional CNNs, RNNs, and their derivatives become more
pronounced as the monitored sequence length grows.

While early methods primarily leveraged Convolutional Neu-
ral Networks (CNNs) and Recurrent Neural Networks (RNNs),
recent research has shifted toward more sophisticated archi-
tectures. Attention-based models, such as the BiGRU-TSAM
model proposed by Zhang et al. (J. Zhang et al., 2022), in-
corporate temporal self-attention mechanisms to selectively
focus on time steps with greater prognostic relevance, en-
hancing interpretability and performance. Similarly, Liu et
al. (C. Liu, Zhang, Yao, & Wu, 2021) introduced a dual
attention-based temporal convolutional network (DATCN) for
Remaining Useful Life (RUL) prediction, demonstrating its

effectiveness in capturing long-term dependencies while main-
taining computational efficiency.In addition to performance
gains, interpretability has emerged as a crucial concern in in-
dustrial AI applications.

In this study, a literature review is presented in Section 2, fol-
lowed by an overview of the proposed RUL prediction model
in Section 3. Section 4 examines the network layers and batch
size of the AtnnLSTM model to validate its performance us-
ing the NASA Commercial Modular Aero-Propulsion System
Simulation (C-MAPSS) dataset. In Section 5, the effective-
ness and superiority of AtnnLSTM are demonstrated through
a comparative analysis with other deep learning techniques.
Finally, this article concludes in Section 6.

2. LITERATURE REVIEW

Data-driven methodologies leverage historical data to eval-
uate current system health and predict the Remaining Useful
Life (RUL) of components. Rather than directly modeling the
complexities of wear, material degradation, and mechanical
deterioration, these approaches employ artificial intelligence
to identify failure patterns and extract critical features from
large datasets.

Chen et al. (X. Chen, Shen, He, Sun, & Liu, 2013) introduced
an innovative prognostics model that utilizes feature-based
comparison and a multivariable support vector machine to es-
timate the RUL of mechanical components such as bearings,
even when dealing with small sample sizes. Similarly, Elfor-
jani et al. (Elforjani & Shanbr, 2017) investigated three su-
pervised learning methods to establish correlations between
acoustic emission features and RUL predictions.

Huang et al. (Huang, Liao, Zhang, & Li, 2018) developed a
deep coupling convolutional neural network for intelligent di-
agnosis of compound faults, validating its effectiveness through
gearbox malfunction assessments. Zhu et al. (Zhu, Chen, &
Peng, 2018) proposed a deep feature learning approach that
integrates time-frequency representation with a multi-scale
convolutional neural network for RUL prediction, demonstrat-
ing its efficacy through experimental validation. Miao et al.
(Miao, Li, Sun, & Liu, 2019) designed dual-task deep long
short-term memory (LSTM) networks for degradation assess-
ment and RUL prediction in aero-engines, successfully val-
idating their model using the publicly available C-MAPSS
lifetime dataset.

As an advanced subset of machine learning, deep learning en-
ables the hierarchical modeling of complex processes and has
been widely applied in system prognostics (Sun, Ma, Zhao,
& Chen, 2018). Chemali et al. (Chemali, Kollmeyer, Preindl,
Ahmed, & Emadi, 2017) designed an LSTM-based recurrent
neural network (RNN) to enhance state-of-charge estimation
for lithium-ion batteries.

The attention mechanism, inspired by human selective visual
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attention, is extensively used in applications such as image
captioning, machine translation, and video motion recogni-
tion. By allowing models to focus on the most relevant seg-
ments of sequential data, attention mechanisms significantly
enhance predictive performance. Chen et al. (L. Chen et al.,
2017) introduced a convolutional neural network (CNN) ar-
chitecture incorporating both spatial and channel-wise atten-
tion mechanisms for image recognition, achieving outstand-
ing results on benchmark datasets.

An end-to-end spatio-temporal attention model was devel-
oped by Song et al. (S. Song, Lan, Xing, Zeng, & Liu, 2017)
to recognize and predict human actions in videos. Similarly,
Zhai et al. (Zhai, Xiang, Zhang, Lv, & El Saddik, 2019) im-
proved optical flow prediction by integrating a channel atten-
tion mechanism with dilated convolutional neural networks,
demonstrating enhanced accuracy through experimental re-
sults. Additionally, Ran et al. (Ran, Shan, Fang, & Lin, 2019)
achieved superior accuracy compared to baseline models by
exploring attention-based LSTM architectures for travel time
prediction.

Building upon these advancements, this study introduces an
attention-based LSTM model specifically designed for pre-
dicting the remaining useful life (RUL) of aircraft engines.

3. THE PROPOSED METHODOLOGY

The Attention LSTM model, depicted in Figure 1, employs an
LSTM layer to extract temporal features. Subsequently, an at-
tention mechanism is integrated to identify and emphasize the
most critical information within these extracted features, en-
hancing the accuracy of the prediction task. Each component
of the model is discussed in detail below.

3.1. Long Short-Term Memory Network (LSTM)

Standard RNNs suffer from several limitations. First, the
backpropagation process can lead to vanishing or exploding
gradients, hindering effective learning. Second, RNNs of-
ten exhibit ”fading memory,” where information from earlier
time steps is lost as the sequence progresses. These issues
arise when the number of time steps in the RNN network ex-
ceeds the capacity of its connections and layers. To overcome
these challenges, LSTM networks were developed as an en-
hanced variant of standard RNNs.

The Long Short-Term Memory (LSTM) network, introduced
by Hochreiter and Schmidhuber in 1997 (Hochreiter & Schmid-
huber, 1997), employs a gating mechanism to regulate the
flow of information, allowing it to effectively handle long-
term dependencies in sequential data. Unlike conventional
methods that process all input indiscriminately across time
steps, LSTM utilizes specialized gates to selectively retain,
update, or discard information. As illustrated in Figure 2,
the memory cell consists of three key components: the forget

gate, the input gate, and the output gate, all of which work
collaboratively to control information flow within the cell.

The proposed LSTM framework, illustrated in Figure 2, em-
ploys a sliding time-window methodology to process sequen-
tial input data. This approach segments the input into con-
secutive windows of fixed size, each containing a subset of
features. These windows are then sequentially fed into the
LSTM layers. By treating one input dimension as a pseudo-
time axis, the architecture enables the LSTM layers to effec-
tively capture temporal dependencies throughout the recur-
rent training process.

As depicted in Figure 2, the fundamental unit of an LSTM
consists of a memory cell, an input gate (it), an output gate
(ot), and a forget gate (ft). At each time step t, the input
xt is selectively stored in the memory cell (Ct) based on the
behavior of the input gate. Simultaneously, the forget gate
determines the extent to which the previous cell state (Ct−1)
is retained or discarded. Finally, the output gate regulates
which portion of the current cell state (Ct) contributes to the
output (ht). The operational dynamics of the LSTM layers
are governed by the following equations:

it = σ (Wi ∗ [ht−1, xt] + bi) (1)

ft = σ (Wf ∗ [ht−1, xt] + bf ) (2)

ot = σ (Wo ∗ [ht−1, xt] + bo) (3)

In this framework, ft, it, and ot represent the forget gate,
input gate, and output gate, respectively. The sigmoid acti-
vation function, denoted by σ and utilized within the LSTM
cell (as illustrated in Figure 2), constrains the output values
to the range [0, 1]. Additionally, Wi, Wf , and Wo denote the
weight matrices associated with the gates, while ht−1 repre-
sents the output from the previous time step, xt is the current
input, and bi, bf , and bo are the respective bias vectors for
each gate.

The previous cell state, Ct−1, undergoes transformation into
the updated cell state, Ct, as depicted in Figure 2. This trans-
formation is governed by the following mathematical expres-
sion:

Ct = ft ⊗ Ct−1 + it ∗ (tanh(Wc ∗ [ht−1, xt] + bc)) (4)

Here, Wc represents the weight matrix, bc denotes the bias
vector, and Ct−1 corresponds to the state of the previous cell.

The updated hidden state, ht, is obtained by applying the hy-
perbolic tangent activation function to the current cell state,
modulated by the output of the output gate (as shown in Fig-
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Figure 1. Architecture of the proposed method

Figure 2. LSTM memory cell

ure 2). This process can be mathematically expressed as:

ht = ot ⊗ tanh (Ct) (5)

3.2. Attention mechanisms

The Attention mechanism, a recent advancement, has trans-
formed multiple fields where it has been applied (Vaswani,
2017). Originally introduced in natural language processing
(NLP), it achieved remarkable success, leading to its widespread
adoption across various domains.

To effectively capture temporal dependencies in time-series
data, an attention mechanism is integrated, as illustrated in
Figure 3. Here, St represents the LSTM hidden state at time
step t. As information propagates through the LSTM cells,
the sequence of hidden state vectors (ht) is processed through
a learnable function (a) to compute a set of attention weights
(αi). The context vector (C) is then obtained by computing
a weighted sum of the hidden state vectors (ht) using their
corresponding attention weights (αi) (Raffel & Ellis, 2015;
Wu, Wang, Li, & Gao, 2018).

Figure 3. Attention mechanism

LSTM is utilized to effectively capture dependencies between
past and future information. However, to mitigate potential
information loss within the LSTM, an attention mechanism
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is integrated. This mechanism enhances the model’s abil-
ity to focus by assigning greater significance to critical in-
formation while reducing the influence of less relevant data.
Notably, the attention mechanism operates at the neural unit
level rather than directly on the input features, which is the
rationale behind its naming convention. The functionality
of this attention mechanism can be succinctly represented
through the following three equations:

C =

t∑
i=1

αihi (6)

αi = exp(et)/

t∑
k=1

exp(ek) (7)

ei = a(hi) = σ(Whi + b) (8)

In this context, t represents the total number of time steps in
the input sequence to the LSTM network. The vector h de-
notes the eigenvector output generated by the LSTM network.
The scalar αi corresponds to the weight assigned to the vec-
tor h. The symbol σ represents the activation function, while
W denotes the weight matrix that connects the input layer to
the hidden layer.

3.3. Evaluation Metrics

To assess the performance of the models, we utilize two widely
recognized evaluation metrics: the root mean squared error
(RMSE) and the scoring algorithm (Score) proposed by the
National Aeronautics and Space Administration (NASA) (Saxena,
Goebel, Simon, & Eklund, 2008).

RMSE is a standard metric in regression tasks and is fre-
quently employed to evaluate the accuracy of Remaining Use-
ful Life (RUL) predictions. It is computed using the following
formula:

RMSE =

√√√√ n∑
i=1

(ŷi − yi)2 (9)

In the equation above, n denotes the total number of predicted
samples, while ŷi and yi represent the predicted value and the
actual Remaining Useful Life (RUL) for sample i, respec-
tively.

While RMSE treats early and late predictions symmetrically,
late predictions can have far more severe consequences in
real-world applications, potentially leading to catastrophic fail-
ures. To address this limitation, Saxena et al. (Saxena et al.,
2008) proposed a scoring function that has since become a
widely accepted evaluation metric for industrial RUL pre-
diction. This metric has also been integrated into the Inter-

national Conference on Prognostics and Health Management
Data Challenge (X. Li et al., 2018). The present study adopts
this scoring function, which is formally defined as follows:

Score =

{ ∑n
i=1 exp

ŷi−yi
10 −1 : ŷi ≥ yi∑n

i=1 exp
yi−ŷi

13 −1 : ŷi < yi
(10)

In this equation, n represents the total number of test engines,
ŷi denotes the predicted Remaining Useful Life (RUL), and
yi indicates the actual RUL for the final sample of engine
i. Notably, the scoring function applies a more substantial
penalty for late predictions.

4. EXPERIMENTAL SETUP

This section presents an in-depth analysis of the results ob-
tained from the proposed RUL prediction model. The model’s
performance is evaluated by assessing the influence of various
factors, such as the number of hidden layers and the length of
the time window. Additionally, comparative analyses with
other widely adopted neural network architectures are con-
ducted to highlight the effectiveness of the proposed design.

All experiments were implemented in Python using the Keras
and TensorFlow libraries. The computations were performed
on a workstation equipped with a Ryzen 5 5600 CPU, 16GB
of RAM, and an RTX 3060 GPU. To mitigate the effects of
randomness, each experiment was repeated 10 times, and the
results were averaged, with both mean values and standard
deviations reported. The C-MAPSS dataset served as the
benchmark for all RUL prediction experiments.

4.1. Dataset Description

The Commercial Modular Aero-Propulsion System Simula-
tion (C-MAPSS) dataset is a widely utilized benchmark dataset
developed by NASA for research in prognostics and health
management (PHM) of aircraft engines. It has been refer-
enced in over 28% of related studies (Ferreira & Gonçalves,
2022). This dataset provides simulated operational data of
turbofan engines up to the point of failure, making it an es-
sential resource for developing predictive maintenance mod-
els, particularly for Remaining Useful Life (RUL) prediction.

Table 1. C-MAPSS datasets for turbofan engines

Column centents FD001 FD002 FD003 FD004
training engines 100 260 100 249
testing engines 100 259 100 248
Condition number 1 6 1 6
Fault mode number 1 1 2 2

The C-MAPSS dataset consists of multiple subdatasets, each
representing different operating conditions and fault modes,
as detailed in Table 1. Each sample comprises 26 values, in-
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Figure 4. sensors data of the turbofan engines in FD001.

cluding the cycle number, unit ID, 21 sensor readings, and
three operating conditions. The sensor data captures vari-
ous parameters such as temperature, pressure, and rotational
speed, as described in (Saxena et al., 2008). This dataset
simulates aircraft engine performance under realistic flight
conditions, accurately reflecting degradation patterns result-
ing from component wear and environmental fluctuations.

Certain sensors fail to provide meaningful data for monitor-
ing engine health. For example, in the case of turbofan engine
sensor data from FD001, as illustrated in Figure 4, the read-
ings from sensors numbered 1, 5, 6, 10, 16, 18, and 19 remain
constant throughout the cycles. Consequently, these sensors
are excluded from the analysis, and the remaining 14 sensor
readings are selected as raw features for data modeling, con-
sistent with prior research (Z. Liu, Liu, Jia, Zhang, & Tan,
2021).

4.2. Sliding Time Window Processing

Effective training of models on sequential sensor data requires
comprehensive pre-processing. Directly training on raw data
for regression or other predictive tasks may fail to capture
crucial short-term dependencies due to the high dimensional-
ity and temporal nature of sequential data. The Time Window
Processing technique addresses this challenge by preserving
associative relationships, enhancing feature extraction, and
ultimately improving the algorithm’s performance.

Figure 5 shows sliding time window of length three with a
stride size of one is employed. This simplified example is
provided for illustrative purposes only. The sliding window
advances one step along the time axis to generate the next set
of windowed data. This process continues iteratively until the
sliding window reaches the end of the original sequence. The

Remaining Useful Life (RUL) associated with the final data
point in each time window is assigned as the RUL for that
window.

Figure 5. Sliding time window processing

A window size of 30 was chosen for this study. For sub-
datasets FD001 and FD003, the window size was determined
based on the engine with the shortest data sequence, ensuring
uniformity across the training and testing datasets for each
engine. The stride for the time windowing process was set
to one. In the initial stages, RUL labels were assigned a con-
stant value of 125. Engines in sub-datasets FD002 and FD004
that contained fewer than 30 samples were excluded from the
study. Table 2 presents the dimensions and significance of the
training and testing datasets after applying the time window-
ing procedure.
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Table 2. C-MAPSS datasets for turbofan engines

Dataset Train Test
Input (simple num, window size, engine feature) FD001 (17731, 30, 14) (100, 30, 14)

Output (simple num, RUL) FD001 (17731, 1) (100, 1)
Input (simple num, window size, engine feature) FD003 (21820, 30, 14) (100, 30, 14)

Output (simple num, RUL) FD003 (21820, 1) (100, 1)

4.3. Data Normalization

Data preprocessing, including normalization and noise reduc-
tion, is a crucial step before model training. Normalization
was applied to accelerate model convergence and prevent fea-
tures with larger numerical values from dominating the train-
ing process, which could adversely affect performance. The
normalization process is defined by Eq. (11).

xnorm =
x−min(x)

max(x)−min(x)
(11)

The max and min functions represent the mathematical op-
erations used to determine the highest and lowest values, re-
spectively.

4.4. The Proposed Model Architecture

LSTM networks with attention mechanisms are employed for
Remaining Useful Life (RUL) prediction due to their capabil-
ity to effectively capture temporal dependencies in sequential
data.

The LSTM architecture consists of two layers, each compris-
ing 50 hidden units. The Adam optimizer is utilized with a
learning rate of 0.001 and a batch size of 32. To mitigate
overfitting during training, an early stopping mechanism is
implemented, which halts the training process once the model
begins to overfit the training data. The network architecture
of the proposed model is illustrated in Figure 6.

The final values for hidden size, batch size, learning rate were
selected based on a grid search and empirical validation on a
held-out portion of the training data.

5. RESULTS

This section evaluates the performance of the proposed model
using RMSE and scoring functions. The results are compared
with those of existing models, and the findings are thoroughly
analyzed.

5.1. Experimental Results

The training subsets comprise full run-to-failure data, while
the testing subsets are truncated before the occurrence of any
faults. Once trained, the AtnnLSTM model was subsequently
utilized to predict the Remaining Useful Life (RUL) using the
C-MAPSS testing datasets.

Figure 6. architecture of the model AM-LSTM

Figures 7 and 8 presents the RUL predictions for engines in
the testing sub-datasets FD001 and FD003. In the figure, the
x-axis represents the number of samples, while the y-axis de-
notes the remaining useful life. The green line corresponds
to the actual RUL, whereas the orange line illustrates the pre-
dicted RUL.

The degree of alignment between the green line (actual RUL)
and the orange line (predicted RUL) in Figures 7 and 8 serves
as an indicator of the model’s accuracy. The figure demon-
strates that the AtnnLSTM method yields more precise pre-
dictions, particularly as the system approaches failure. This
improved accuracy empowers maintenance teams to schedule
interventions proactively, thereby reducing the risk of unex-
pected system failures.
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Figure 7. The results of the RUL predictions for the C-MAPSS sub-dataset FD001

Figure 8. The results of the RUL predictions for the C-MAPSS sub-dataset FD003

Figures 9 and 10 illustrate the prediction performance for
four representative engines (IDs: 31, 100, 78, and 92) from
sub-datasets FD001 and FD003. The model successfully pre-
dicted the RUL for these engines, showcasing its capability to
capture diverse degradation patterns, including gradual wear
and early-stage performance decline. These results affirm the
effectiveness of integrating domain knowledge into system
reliability analysis, further reinforcing the model’s practical
applicability in predictive maintenance.

5.2. Comparisons With State-of-the-Art Methods

This study evaluates the proposed model against other state-
of-the-art methods on the C-MAPSS dataset, using RMSE
and Score as evaluation metrics. The best results for FD001
and FD003 are highlighted in bold in Table 3, demonstrat-
ing the superior performance of the proposed approach. All
experiments were carried out on a system equipped with an
NVIDIA RTX 3060 GPU, utilizing GPU acceleration to ac-
celerate neural network training. Using more advanced GPUs
could further reduce the training time of the proposed method.

The table also underscores the optimal performance of our
approach on the FD001 and FD003 sub-datasets, reaffirming

its effectiveness in terms of score evaluation. The AtnnL-
STM model, based on the LSTM architecture, was specifi-
cally designed to accommodate the characteristics of multi-
variate time series sensor data. By incorporating an attention
layer that employs dot product operations to compute fea-
ture similarity and assign appropriate weights, the model sur-
passes traditional fully connected layers in capturing degrada-
tion patterns. This attention mechanism improves the model’s
sensitivity to feature interactions and variations, allowing it to
extract degradation information more effectively.

However, the spatial complexity of the algorithm poses a chal-
lenge, particularly for larger and higher-dimensional datasets.
Future research should focus on optimizing the spatial com-
plexity of attention-based algorithms.

Overall, this study underscores the potential of attention mech-
anisms for RUL prediction and suggests that such models
hold great promise for addressing time-series problems.

5.3. Discussion

The experimental results presented in this study demonstrate
that the proposed Attention-LSTM (AttnLSTM) architecture
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Figure 9. Prediction of test engines FD001.

Figure 10. Prediction of test engines FD003.

Table 3. Comparison with the methods proposed in the literature on NASA C-MAPSS using score and RMSE.

FD001 FD003
Models RMSE Score RMSE Score
CNN(Sateesh Babu, Zhao, & Li, 2016) 18.45 1287 19.82 1596
DCNN(X. Li et al., 2018) 12.61 274 12.64 284
LSTM(C. Chen, Shi, Lu, Zhu, & Jiang, 2022) 16.10 338 16.20 852
AGCNN(H. Liu, Liu, Jia, & Lin, 2020) 12.40 226 13.40 227
MODBNE(C. Zhang, Lim, Qin, & Tan, 2016) 15.00 334 12.50 422
MLP(C. Zhang et al., 2016) 16.80 561 18.50 480
CNN-LSTM(Marouane, Belhadj, & Cheriet, 2024) 13.92 383 19.83 1099
CATA-TCN(Lin et al., 2024) 12.80 234 13.16 290
AttnBiLSTM(Shah, Chadha, Schwung, & Ding, 2021) 15.87 473 15.10 676
DBRNN-SLF(Hu et al., 2021) 17.97 458 19.18 658
AttnPINN(Liao, Chen, Wen, & Zhao, 2023) 16.89 523 17.75 1194
SAM-CNN-LSTM(J. Li, Jia, Niu, Zhu, & Meng, 2023) 12.60 261 13.80 253
BiGRU-TSAM(J. Zhang et al., 2022) 12.56 213 12.45 232
AttnLSTM 12.33 200 11.76 212

consistently outperforms baseline models and recent state-
of-the-art approaches on the FD001 and FD003 subsets of
the C-MAPSS benchmark. These gains are not coinciden-
tal but stem from a rigorously engineered architecture that
captures both the temporal dynamics and contextual nuances
inherent in degradation processes. At its core, the model in-
tegrates Long Short-Term Memory (LSTM) networks with

a learnable attention mechanism, enabling it to simultane-
ously model long-range dependencies and selectively empha-
size the most informative temporal and feature-level inputs.

The LSTM component plays a foundational role by model-
ing non-stationary time-series signals generated by engines
operating under diverse conditions. However, conventional
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LSTMs treat all time steps and input features equally when
summarizing sequential information, which is suboptimal in
prognostics where degradation-relevant cues especially those
closer to failure carry disproportionately greater predictive
value. To overcome this limitation, the AttnLSTM introduces
an attention mechanism positioned atop LSTM layers, which
dynamically computes importance weights over both tempo-
ral and feature dimensions. This dual focus allows the model
to amplify salient sensor readings and attenuate noise or re-
dundant signals, functioning as an embedded form of adap-
tive feature selection.

Empirical correlation analysis revealed that sensor contribu-
tions to RUL prediction are not uniform, and the attention
module capitalizes on this by learning to prioritize high-impact
features during training. The resulting attention weights are
not only functionally beneficial enhancing predictive accu-
racy and model stability but also interpretable, providing in-
sight into which sensors and time steps are most critical under
varying operational regimes. This interpretability bridges the
gap between deep learning and domain-informed decision-
making, offering actionable knowledge for engineers in sen-
sor design, placement, and maintenance planning.

Crucially, the model maintains an efficient architecture two
LSTM layers with 50 units each optimized using the Adam
optimizer and regularized via early stopping. The input pipeline
employs a dense sliding window (size 30, stride 1) and uti-
lizes 14 preselected sensors based on prior studies, ensuring
that the most informative variables are retained while mini-
mizing overfitting. Despite its compactness, the model ex-
hibits remarkable performance, achieving the lowest RMSE
and NASA score metrics across multiple runs, with notably
reduced variance indicating not only accuracy but robustness.

Furthermore, unlike heavier transformer-based approaches,
AttnLSTM was designed with deployment in mind. Its com-
putational size is small enough for real-time prediction in
resource-constrained environments, such as aircraft mainte-
nance systems. The transparency offered by attention visual-
ization also meets a critical need in safety-critical domains,
where explainability is paramount for operational trust and
regulatory compliance. The proposed AttnLSTM model was
evaluated for prediction efficiency on a standard high-performance
computing platform (Ryzen 5600 processor, 16 GB RAM,
and NVIDIA RTX 3060 GPU). The prediction time in en-
gine cycles is approximately 3 ms per step, meeting the typi-
cal real-time requirements of predictive aviation health man-
agement systems. The model architecture contains approxi-
mately 61,000 trainable parameters, significantly fewer than
transformer-based models, which typically exceed 10 million,
reducing memory usage and latency. These properties con-
firm that AttnLSTM is suitable for immediate deployment in
resource-constrained environments.

In summary, the proposed AttnLSTM model advances the

field of RUL prediction by offering a domain-aligned, inter-
pretable, and computationally efficient architecture. Its per-
formance stems from a thoughtful integration of temporal mod-
eling, attention-based feature relevance estimation, and prin-
cipled engineering design resulting in a scalable and practi-
cally deployable solution for predictive maintenance in real-
world aerospace systems.

6. CONCLUSIONS AND FUTURE WORK

Predictive maintenance plays a crucial role in optimizing equip-
ment maintenance schedules by minimizing unnecessary main-
tenance, reducing costs, and enhancing overall operational ef-
ficiency. A key objective of predictive maintenance is to ac-
curately forecast equipment failures, particularly by estimat-
ing the Remaining Useful Life (RUL). By predicting poten-
tial failures in advance, maintenance planning can be signifi-
cantly improved. This study introduces a novel deep learning-
based model for predicting the RUL of turbofan jet engines.

The effectiveness of the proposed model was evaluated us-
ing the FD001 and FD003 sub-datasets from the C-MAPSS
dataset. Compared to other state-of-the-art models, our ap-
proach demonstrated superior performance based on the eval-
uation score for these sub-datasets. These specific sub-datasets
were chosen because they allow training the proposed model
without necessitating structural modifications.

Future research will focus on extending the proposed model
to achieve enhanced results on additional test datasets within
the scope of this study. Additionally, upcoming work will
explore integrating insights from other relevant literature to
refine and further enhance the proposed model’s architecture.
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