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ABSTRACT

Predictive maintenance deals with the timely replacement
of industrial components relatively to their failure. It allows
to prevent shutdowns as in reactive maintenance and re-
duces the costs compared to preventive maintenance. As
a consequence, Remaining Useful Life (RUL) prediction of
industrial components has become a key challenge for con-
dition based monitoring. In many applications, in particu-
lar those for which preventive maintenance is the general
rule, the prediction problem is made harder by the rarity
of failing instances. Indeed, the interruption of data acqui-
sition before the occurrence of the event of interest leads
to right censored data. Recent deep-learning architectures,
that show the best results of the literature for complete-life
data, most often do not consider censoring, even though its
rate in the industrial environment may be high.

The present article introduces a method which considers
censored data for the Dual Aspect Self-Attention based on
Transformer proposed by (Z. Zhang, Song, & Li, 2022), and
puts it into competition a modified version of the ordinal-
regression based LSTM of (Vishnu, Malhotra, Vig, & Shroff,
2019). The evaluation of the resulting method on the C-
MAPSS and N-CMAPSS benchmark dataset shows that it is
competitive compared to the state-of-the-art RUL predic-
tion methods for a low censoring rate and more efficient
for a high rate of censoring in large enough data sets. Fi-
nally, conformal prediction is used to estimate confidence
intervals for the predictions.

Jean-Pierre NOOT et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

1. INTRODUCTION

Technology and electronic developments of sensors nowa-
days allow the collection of huge amounts of data on me-
chanical and industrial equipment, in particular time se-
ries measuring their evolution over time. The definition of
the maintenance schedule, which is crucial for the indus-
try, therefore shifts to predictive maintenance, or condition-
based maintenance (CBM). The latter is defined by oppo-
sition to the historical preventive maintenance, for which
the maintenance schedule is pre-defined, each component
being replaced at fixed time intervals. CBM avoids replace-
ment of healthy components and therefore reduces costs,
by determining a dynamic schedule depending on the real-
time monitoring of the system. A crucial step is therefore
the estimation, given the actual status of the system, of the
Remaining Useful Lifetime (RUL) of a component, that is
the time before its failure.

Preliminary results were presented at the European Confer-
ence of the Prognostics and Health Management Society
2024 (Jean-Pierre, Birmelé, & François, 2024). This journal
article extends that work by evaluating the proposed method
on a different dataset and by incorporating conformal pre-
diction to provide calibrated uncertainty estimation.

Several approaches exist to create CBM models for RUL es-
timation (Arena, Collotta, Luca, Ruggieri, & Termine, 2021),
most of them being physical model-based methods, data-
driven methods or hybridisation of those approaches.

Model-based methods consider the physical phenomenon,
for instance corrosion or fatigue, that leads to the failure. A
mathematical model is used to simulate the studied mech-
anism and to get a RUL prediction (Tinga & Loendersloot,
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2019). A precise physical and mechanical knowledge is how-
ever needed to build physical-based models. Moreover, this
approach results in highly complex models when applied to
large scale industrial systems composed with a lot of subsys-
tems (Casenave, 2024).

Data-driven methods regroup approaches that rely on stochas-
tic models or statistical analysis to create fault detection
models not directly mimicking the underlying physics. It
may consist in statistical algorithms to diagnose battery fault
(Y. Zhao, Liu, Wang, & Hong, 2017), stochastic processes to
mimic the degradation processes (Garay & Diedrich, 2019)
or evolving fuzzy models for semiconductor health manage-
ment (Boutrous, Bessa, Puig, Nejjari, & Palhares, 2022).

Data-driven methods include machine learning algorithms,
which have been extensively used by the Prediction and
Health Management community to establish predictive main-
tenance rules. Multiple linear regression durability models
were for instance used to predict the fatigue life of automo-
tive coil (Kong, Abdullah, Schramm, Omar, & Haris, 2019),
or SVM classifiers for fault detection in vehicle suspensions
(Jeong & Choi, 2019). In (Vasavi, Aswarth, Pavan, & Gokhale,
2021), a kNN classifier is used to detect fault by predicting
vehicle health using real time data, while (Patil et al., 2018)
relies on decision trees and gradient boosting regressor for
RUL prediction. Another modelisation choice is gaussian
processes (Groot & Lucas, 2012) that have been applied to
RUL prediction of batteries (Liu & Chen, 2019; Jia et al., 2020)
or turbofans (Benker, Bliznyuk, & Zaeh, 2021)

Deep learning, like machine learning methods, allow to have
no physical or mechanical knowledge of the studied system.
In recent years, numerous articles have demonstrated the
effectiveness of those methods for RUL prediction. The data
at hand being mainly time series, the developed methods
focus on architectures widely used to treat sequential data.
Recurrent neural networks like Long-short-time-memory
(LSTM) (Zheng, Ristovski, Farahat, & Gupta, 2017), or Con-
volutional neural network (CNN) (Sateesh Babu, Zhao, &
Li, 2016) and recently Transformers (Z. Zhang et al., 2022),
which were adapted from the original Transformer archi-
tecture (Vaswani et al., 2017) to deal with time series are
popular method used to perform RUL predictions.

Besides the choice of a physical, statistical or deep-learning
modelisation, another important characteristic for RUL pre-
diction methods is their ability to take right-censored data
into account (Lillelund, Pannullo, Jakobsen, Morante, & Ped-
ersen, 2024). Indeed, when the current policy for an indus-
trial application is predictive maintenance, equipment’s are
renewed before failure, leading to numerous time-series in
the dataset for which the RUL is unknown. One way to deal
with such data is to use the survival approach based on Cox
models that has been successfully transposed from medical
analysis to maintenance analysis (Rahat, Kharazian, Mash-

hadi, Rögnvaldsson, & Choudhury, 2023; Yang, Kanniainen,
Krogerus, & Emmert-Streib, 2022a), and combined with di-
mension reduction (Wang, Zhao, Yang, Xu, & Ge, 2022) or
neural networks (Katzman et al., 2018; Chen et al., 2020).
(Aggarwal et al., 2018) propose a modelisation based on a
Weibull distribution for the RUL, which estimation takes
account right-censored data. Another alternative is the ordi-
nal regression (OR) approach where the RUL prediction is
replaced by a vector of predictions encoding the failure time
(Vishnu et al., 2019).

A third concern in RUL prediction in industrial systems is
that they are often subject to uncertainties arising from data
noise, stochastic failures or model limitations. As an error
may be of high cost if the failure happens before the pre-
diction, it is crucial to quantify the uncertainty associated
to a RUL prediction. Some methods, for instance based on
Bayesian methods (Caceres, Gonzalez, Zhou, & Droguett,
2021) or previously cited gaussian processes, natively define
a probabilistic law for the RUL and thus an uncertainty mea-
sure. Another option is to try and predict the quantiles of
the RUL distribution rather than the RUL itself (Chen, Shi,
Shen, Feng, & Tao, 2023; T. Zhang & Wang, 2024). Finally, pre-
diction methods which outcome is a single procedure can
predict a confidence interval, without strong assumptions
about the underlying data distribution, by using conformal
prediction (CP) (Angelopoulos, Bates, & al, 2023), as illus-
trated in(Javanmardi & Hüllermeier, 2023).

The aim of the present paper is to build upon the recent
Transformer based DAST model (Z. Zhang et al., 2022) which
was proven to be among the most performant models in
terms of prediction accuracy for RUL prediction on non-
censored multi-dimensional time series. The model is adapted
using ordinal regression in order to be able to take right-
censored data into account and put into competition with
an improved version of the LSTM-OR model of (Vishnu et al.,
2019). To illustrate the performance of the obtained model,
the proposed method is run on the C-MAPSS Turbofan NASA
benchmark dataset, and completed by an uncertainty quan-
tification using conformal prediction. The predictions are
compared to state-of-the-art methods, able to consider cen-
sored data or not. The benchmark dataset being charac-
terized by the absence of censoring, the latter is artificially
introduced at various levels. The results highlight that the
best choice between LSTM and Transformer architectures
is dependent on the operating conditions and fault modes.
Moreover, the proposed method is shown to be comparable
to the best methods on non-censored data and better when
a significant amount of data is censored.

2. RELATED WORK

This section introduces the main ideas of the DAST (Z. Zhang
et al., 2022) and LSTM-OR (Vishnu et al., 2019) architectures,
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and then builds upon those ideas to propose a novel method
for RUL estimation on censored data.

Beforehand, let us introduce the notations which will be
used throughout the paper.

For a given unit, we denote by:

• Tω the time of failure,

• C the censoring time if relevant, that is if the unit is
replaced before failure,

• T = min(C,Tω) the observed time of replacement,

• X the time series of the p sensors data, xk,t being the
measure of sensor k at time t ,

• Z the optional of vector covariates, that is characteristics
of the unit which are not varying with time.

We denote the training, calibration, validation, and test sets
by Dtrain, Dcalib, Dvalid, and Dtest, respectively.

Let us fix a maximum value Rmax for the RUL estimation,
which is standard procedure (Heimes, 2008; H. Li, Zhao,
Zhang, & Zio, 2020) and is relevant for the applications, as
it focuses on the precision of the method on the period pre-
ceding the failure. At a given time point t , The the remaining
lifetime to predict is defined by

Rt = min(Tω→ t ,Rmax )

Note that this lifetime is observed in the training set only
when Tω = T. If not, the only available information is that
Rt ↑ min(C→ t ,Rmax ).

All the variables in that section are in fact indexed by the
number i of the considered unit, for instance when comput-
ing a loss. That index is omitted unless necessary for reading
purposes.

2.1. Dual Aspect Self-Attention based on Transformer (DA-
ST)

The DAST model is an encoder-decoder, with the specificity
of a double encoding, using a time step encoder and the
sensor encoder.

The input data of the DAST architecture consists in a decom-
position of the times series X by a sliding window processing
of width W, as shown in Figure 2. The input is thus a list of
matrices (Xt ), each of size (p,W):

Xt =




x1,t · · · x1,t+W
... · · ·

...
xp,t · · · xp,t+W


 (1)

The data of each window are normalized to equalize the
amplitude for each sensor and completed with positional
encoding to keep track of the relative time positions of the

Inputs

Input Embedding

Positional Encoding

Sensor Encoders Time-step Encoders

Encoder

Decoders

Feed Forward Layer

RUL Prediction

Decoder

Figure 1. Original DAST architecture (Z. Zhang et al., 2022)

columns as well as constant lines corresponding to the co-
variates Z. It is also enriched for each sensor by the mean
value and the slope of the linear regression as a function of
time, as proposed in (Song et al., 2020).

The originality of DAST is to consider these inputs in two
dimensions. On the one hand, the enriched matrix Xt is
given as input of the time step encoder, which encodes
through self-attention scores per time point the dependency
between the vectors of data at different time points. On the
other hand, its transpose XT

t
is given as input to the sensor

encoder which uses the same architecture to encode and
capture the dependency information between the sensors.
A final fusion layer finally allows to mix both encodings into
a final one, which contains the importance of different com-
binations of sensors and time steps at the same time. That
information is valuable in the context of RUL estimation and
is processed by the decoder part of the architecture to obtain
a prediction.

As the prediction is a scalar corresponding to R̂t , the model
is trained using a RMSE loss, that is the square root of the
mean squared prediction error when summing over all units
i and time points t .
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W W

Figure 2. Example of sliding window of size W for time-series
on 3 sensors

2.2. Ordinal Regression for RUL Estimation with censored
data

In various applications, the complete lifetime of the units
is not systematically available as the components may be
changed before failure, leading to right-censored lifetime.
Direct RUL estimation requires the complete lifetime of the
components in the learning data set and thus discards such
data, which may represent most of the available data. One
possible method to integrate both right-censored and un-
censored lifetime data, is the ordinal regression approach
developed in (Vishnu et al., 2019).

The key idea is to discretize the object to be estimated, by
replacing the RUL Rω

t
by a binary vector of the component

status in the future. To do so, two integers L and K are fixed
and the status of the unit is checked one time every L cycles
(or time points in the time series). The new target is then a
vector Yt of length K where

yt ,k =





0 if T > t +kL,
i.e. the unit is healthy after k ↓L cycles,

1 if T ↔ t +kL and T = Tω,
i.e. the unit has failed before k ↓L cycles,

- if T ↔ t +kL and T = C,
i.e. the unit status is unknown after k ↓L cycles

t is the time of the current time step and k is the index of Yt .

Let us for example consider L = 10 and K = 10:

• if the component fails after 75 cycles,
Yt = (0,0,0,0,0,0,0,1,1,1),

• if the component is replaced after 75 cycles but be-
fore failure Yt = (0,0,0,0,0,0,0,-,-, -). The last three ele-
ments are masked as no status appropriate for learning
is available.

A learning phase applied on the binary vectors of the train-
ing set allows then to obtain a prediction rule, as initially
proposed using an LSTM architecture (Vishnu et al., 2019).
The prediction for a given unit at time t , denoted by Ŷt , is a

Time

FailedUnit 1

FailedUnit 3

FailedUnit 6

Replaced before failureUnit 2

Replaced before failureUnit 4

Replaced before failureUnit 5

Figure 3. Right-censored data: unit 2, 4 and 5 are censored
to the right, they were still healthy when replaced

vector of K probabilities indicating the probability of failure
before the corresponding time steps.

As the problem has become a binary classification problem,
the learning is done using binary cross-entropy (BCELoss).
However, it is adjusted for right-censored data by discarding
all coordinates equal to - in the Y vectors. For example, if
Yt = (0,0,0,0,0,0,0,-,-, -), its contribution to the loss is only
computed on the seven first coordinates. In other terms, the
loss is the sum over all units i and times t of

BCE(Yt , Ŷt ) =→
K∑

k=1

(
yt ,k log (ŷt ,k )+ (1→ yt ,k )l og (1→ ŷt ,k )

)

(2)
where the term in the sum is set to 0 whenever yt ,k is masked.

2.3. Conformal prediction

Let ε be a user-defined error rate. The aim of conformal pre-
diction for RUL prediction is to provide not only a prediction
R̂t of Rt , but also a prediction interval Cε(t ) that contains Rt

with a coverage rate 1→ε, that is

P (Rt ↗ Cε(t )) ↑ 1→ε.

The Split Conformation Prediction procedure for RUL pre-
diction ((Javanmardi & Hüllermeier, 2023)) consists in ran-
domly splitting the initial training data Dtrain into two dis-
joint subsets: the effective training set, again denoted by
Dtrain, and a calibration set Dcalib. A predictive model is
trained on Dtrain, and a non-conformity score function is
defined as the absolute error of the prediction:

NCt = |R̂t →Rt |.

The computation of the non-conformity scores NC for all
time points in Dcalib allows to estimate its distribution in
an independent dataset, and in particular to define a criti-
cal score q as the (1→ε)-quantile of this distribution. The
prediction interval for a new query point is then defined as
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Input
Layer

Model

Output Layer:
linear

(a) Metric regression

Input
Layer

Model

Output Layer:
sigmoid

(b) Ordinal regression

Input
Layer

Model

Masked outputs
Output Layer:

sigmoid

(c) Ordinal regression with censored data

Figure 4. Metric regression compared to ordinal regression

Cε(t ) = [R̂t →q, R̂t +q].

Under the hypothesis that the different times series can
be considered as generated independently and under the
same distributions, this method ensures that the probabil-
ity of the true RUL being outside the interval is at most ε
(Angelopoulos et al., 2023).

2.4. The proposed method

A framework is considered to deal with censored data using
the OR encoding with the following step:

1. Adapt the DAST architecture to the OR framework by
adding a sigmoid layer, leading to the DAST-OR archi-
tecture. After training, it outputs a vector (Ŷt ) of length
K for every time point in a time series.

2. Following (Chaoub, Voisin, Cerisara, & Iung, 2021) which
studies LSTM for RUL prediction, a feed-forward-layer
is added in the LSTM-OR architecture, between the
LSTM and the sigmoid output layer.This model is de-
noted as LSTM-MLP-OR. It outputs an alternative vec-
tor (Ŷt ) of length K for every time point in a time series.

3. Map every vector Ŷt into a predicted RUL R̂t , following
(Vishnu et al., 2019):

R̂t = Rmax (1→ 1
K

K∑

k=1
ŷt ,k ) (3)

with Rmax = KL being chosen as the length of the time
interval covered by Ŷt .

4. Select the best model in terms of RMSE loss of this RUL
prediction on Dval i d .

5. Use conformal prediction to obtain a prediction inter-
val.

Note that the RUL estimation introduced step 3 is of prac-
tical use, but also allows comparison with methods in the
literature estimating directly the RUL.

Moreover, to reduce randomness, 10 train of each model are
performed, leading to two options:

1. The simple model: The model with the best loss on
Dval i d is chosen.

2. The ensemble model: We consider an ensemble of mod-
els, the final prediction corresponding to the average
prediction of the 6 best models among the 10 models
trained.

LSTM

Feed Forward Layer

Output Layer:
Sigmoid

Figure 5. LSTM-MLP-OR architecture

3. EXPERIMENTAL EVALUATION

The performance of the proposed method is evaluated on
the C-MAPSS (Commercial Modular Aero Propulsion Sys-
tem Simulation) dataset, which is used as a benchmark for
RUL estimation methods. It simulates run-to-failure trajec-
tories of turbofan engines (Saxena, Goebel, Simon, & Eklund,
2008) in two different operating conditions and two failure
modes, leading to four sub-datasets FD001, FD002, FD003
and FD004. The characteristics of the four sets are sum-
marized in Table 1. Each trajectory contains the following
variables:
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1. a unit number corresponding to the component identi-
fier,

2. a time variable corresponding to the number of cycles
performed,

3. the simulation parameters (operating condition and
failure modes),

4. the simulated data from 21 sensors.

Table 1. Summary of C-MAPSS dataset

C-MAPSS sub-datasets FD001 FD002 FD003 FD004
Train trajectories 100 260 100 249
Test trajectories 100 259 100 248
Operating condition 1 6 1 6
Fault modes 1 1 2 2

3.1. Data preprocessing and censoring

Sensors having a constant value during the experiment are
removed, leaving 14 sensors for datasets FD001 and FD003,
and 21 for datasets FD002 and FD004. No other feature
selection is performed. Data standardization is processed
on the remaining sensors by removing the mean and scaling
by standard deviation.

Right-censoring is artificially added to the data, with rates
pc ↗ [0%, 20%, 50%, 70%, 90%]. More precisely, for every
censor rate pc , the corresponding fraction of the units are
randomly chosen, and, for each selected unit, the time series
are truncated prior to failure at a random moment. When
pc = 90%, it leads to a train set where only 10% of the units
have a known RUL, and approximately 45% of the initial data
is kept.

Finally, to be able to chose the best models during the train-
ing, each sub-dataset is divided into Dtrain and Dvalid, 20%
of randomly chosen units joining Dvalid.

3.2. Trained models

Three architectures are trained on the four datasets of the
CMAPSS data:

1. DAST for RUL (Z. Zhang et al., 2022),

2. LSTM-MLP-OR,

3. DAST-OR.

Moreover, each of them are trained ten times, and those
results are used to derive a single and an ensemble model
for each architecture. Ensemble models are denoted with
the addition of a final E, for instance DAST-ORE for the en-
semble version of DAST-OR.

We also consider the model BEST-ORE which is chosen be-
tween DAST-ORE and LSTM-MLP-ORE based on the RMSE
on Dvalid.

Seven different models are thus obtained, which can be fairly
compared, on exactly the same preprocessing, censoring, as
well as training, validation and test sets.

For all models, Rmax = 130 is used, and for the methods
relying on ordinal regression, we consider Y vectors consist-
ing on K = 13 coordinates corresponding to the status every
L = 10 cycles.

3.3. Hyperparameters of the models

The hyperparameters employed for the DAST are those de-
scribed in the original article (Z. Zhang et al., 2022), except
for number of epochs that is set to 250 with early stopping.
They are summarized table 2.

Table 2. Hyperparameters of DAST

Hyperparameter Value

Input embedding 1 MLP layer with 64 neurons,
activation: Linear

Sensor encoder N = 2 Sensor encoder blocks
with H = 4 heads

Time step encoder N = 2 Timestep encoder blocks
with H = 4 heads

Decoder N = 1 Decoder block
with H = 4 heads

Output layer 1 MLP layer with 64 neurons,
activation: ReLU

Final output layer 1 MLP layer with 1 neurons,
activation: Linear

Learning Rate 0.001
Batch Size 256
Dropout 0.2

Window Size 40 for FD001 and FD003,
60 for FD002 and FD004

Optimizer Rectified Adam
Loss RMSE

The hyperparameters for DAST-OR are identical, except for
the output layer, which was modified for the OR method,
and the sliding window size, which was increased for DAST-
OR. Table 3 presents those which are specific to DAST-OR
(sigmoid output layer and loss) or are chosen different (a
manual tuning on the window size gave better results). The
number of epochs is set to 500 with early stopping.

Table 3. Hyperparameters of DAST-OR

Hyperparameter Value

Final output layer 1 MLP layer with 13 neurons,
activation: Sigmoid

Window Size 60 for FD001 and FD003,
80 for FD002 and FD004

Loss BCELoss

The hyperparameters of the LSTM-MLP-OR model mainly
correspond to the article introducing LSTM-OR (Vishnu et
al., 2019). However, not all parameters being explicitly de-
tailed in the original article, manual tuning has been applied
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to the LSTM-MLP-OR model with a few trials on Dval i d .

3.4. Results on uncensored data

This part focuses on the comparison of the results obtained
on data without censoring. Table 4 shows the results for the
seven trained models on each of the four datasets, with vari-
ous state-of-the-art methods. Note that the seven methods
are trained with the same preprocessing and separation into
Dtr ai n and Dval i d , whereas the reported values for other
methods correspond those indicated in the corresponding
publications. Small variations may therefore not be signifi-
cant.

On FD001, results of DAST-ORE are equivalent to the re-
sults of DAST and F+T. On FD002 results of LSTM-MLP-OR
and LSTM-MLP-ORE are significantly better than the re-
sults obtain with DAST, and equivalent to results obtain with
MLP+LSTM and F+T. On FD003 DAST-ORE perform better
than other models of the state of the art. The results of
LSTM-MLP-ORE are equivalent to the result of MLP+LSTM
and F+T. On FD004 LSTM-MLP-ORE perform significantly
better than other models. All the OR method proposed are
significantly better than the LSTM-ORCE.

Two main conclusions can be drawn from those results. The
first is that, even if OR models were designed to handle
right-censored data, the obtained results on uncensored
data are equivalent to those found in the literature with
models specifically made for direct RUL estimation. The
second interesting fact to note is the dependence on the
number of operating conditions in the dataset (cf Table 1).
Differences between sets FD001 and FD003, with a unique
operating condition, and sets FD002 and FD004, with six
different ones, are commonly found in the state of the art
(C. Zhao, Huang, Li, & Yousaf Iqbal, 2020) (Sateesh Babu et
al., 2016) (C. Zhang, Lim, Qin, & Tan, 2016) (Zheng et al.,
2017) (X. Li, Ding, & Sun, 2018). Furthermore, the number of
inputs used between is different. In this study, it appears that
DAST-based methods are more powerful when the operating
condition is unique, while LSTM-based outperform them
when there are 6 operating conditions. Learning both archi-
tectures and keeping the best on Dval i d , as does BEST-ORE,
is therefore useful.

3.5. Results on censored data

The results on the C-MAPSS dataset for each right-censored
rate are detailed in Tables 6 and 5. The former compares the
proposed ensemble methods to the ensemble LSTM-ORCE
method (Vishnu et al., 2019) for the data subsets (FD001 and
FD004) and censoring rates studied in that article. The train
and validation sets being different, small variations should
not be interpreted. However, it clearly indicates a better
performance of DAST-ORE on FD001 and a significant im-
provement with LSTM-MLP-ORE due to the supplementary

MLP layer on FD004.

Table 6 shows the results for the models listed in section 3.2
trained on the same training and validation data. For read-
ability, BEST-ORE is not indicated, but the associated RMSE
is always the lowest among the RMSEs of LSTM-MLP-ORE
and DAST-ORE.

The FD001 dataset has more simple operating conditions
and more simple failure modes than the other C-MAPSS
sub-datasets. On FD001 the DAST-ORE model has the best
RMSE for each percentage of right-censored value. With
the increase of pc , the RMSE is slowly deteriorating and
reach it’s worst value at pc = 90%, which is not a surprise as
the learning data becomes less informative. Other models,
especially LSTM-based ones, show a bigger deterioration
with increasing censoring.

The results are similar on FD003, which has also only one
operating condition but two failure modes. The best over-
all results are obtained with DAST-ORE. Moreover, the in-
creasing of the RMSE for highly censored data is milder for
DAST-ORE than for competing methods.

FD002 and FD004 are considered more complex than FD001
and FD003, because they mix several operating conditions.
In both cases, the LSTM-based models outperform the DAST-
based ones, as for uncensored data, with a small advantage
for the LSTM-MLP-ORE ensemble method. In those two
cases, the decrease of performance with growing censoring
is remarkably low.

The conclusion of this study is therefore two-fold. First, the
competition between LSTM and DAST-based architectures
remains relevant with censored data, as different conditions
may lead to different rankings of those methods. Second,
OR-based methods allow to obtain a reasonable loss of per-
formance when the real time of failure is missing for most of
the learning data.

As prescribed in (Saxena et al., 2008), the results were evalu-
ated by the RMSE on the predictions of the last time-point
of the time-series in the test set. To illustrate more visually
the results of the different methods, Figure 6 provides some
plots of the predictions of the ensemble methods for ran-
domly picked time series on different datasets and censoring
rates.

3.6. Asymmetric score evaluation

Prediction on C-MAPSS should also be evaluated by the
asymetric score (Saxena et al., 2008) defined by

Score =





e
R̂t →Rt

13 →1 if R̂t →Rt ↑ 0

e
→ R̂t →Rt

13 →1 if R̂t →Rt < 0
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Table 4. RMSE results on the C-MAPSS dataset without censoring

Model FD001 FD002 FD003 FD004 Average RMSE
LSTM-MLP-OR 14.24 12.00 17.27 15.35 14.94

LSTM-MLP-ORE 13.20 12.77 13.84 14.75 13.64
DAST 12.35 16.48 13.43 19.89 15.54

DAST-E 12.22 15.44 12.89 16.14 14.17
DAST-OR 12.16 15.62 9.64 16.20 13.41

DAST-ORE 11.57 15.55 8.54 18.01 13.42
BEST-ORE 11.57 12.77 8.54 14.75 11.91

DAST (Z. Zhang et al., 2022) 11.43 15.25 11.32 18.36 14.09
LSTM-ORCE (Vishnu et al., 2019) 14.62 - - 27.47 -
MLP+LSTM (Chaoub et al., 2021) 13.26 12.49 13.11 13.97 13.21
F+T (Lai, Liu, Pan, & Chen, 2022) 11.43 13.32 11.47 14.38 12.65

Table 5. Results RMSE on C-MAPSS

FD001
pc LSTM-MLP-OR LSTM-MLP-ORE DAST DAST-E DAST-OR DAST-ORE
0% 14.24 13.20 12.35 12.22 12.16 11.57

20% 15.42 14.01 13.69 12.59 12.73 12.51
50% 15.09 15.96 15.41 13.37 13.39 12.99
70% 17.83 17.97 15.38 14.08 14.28 12.51
90% 30.02 26.76 16.78 17.17 17.01 15.80

FD002
pc LSTM-MLP-OR LSTM-MLP-ORE DAST DAST-E DAST-OR DAST-ORE
0% 12.00 12.77 16.48 15.44 15.62 15.55

20% 15.43 13.01 14.09 13.80 16.37 18.51
50% 13.71 13.15 15.08 14.18 15.39 16.58
70% 14.24 13.24 16.10 14.74 16.71 17.73
90% 16.44 13.61 15.85 15.08 25.23 17.00

FD003
pc LSTM-MLP-OR LSTM-MLP-ORE DAST DAST-E DAST-OR DAST-ORE
0% 17.27 13.84 13.43 12.89 9.64 8.54

20% 15.69 12.80 13.55 12.53 10.03 8.81
50% 13.97 13.46 16.04 12.57 11.69 10.14
70% 21.72 21.13 20.88 15.32 13.46 12.20
90% 38.74 30.66 22.34 22.88 19.59 16.09

FD004
pc LSTM-MLP-OR LSTM-MLP-ORE DAST DAST-E DAST-OR DAST-ORE
0% 16.23 14.75 19.89 16.14 16.20 18.01

20% 15.66 14.42 18.32 15.23 18.01 16.93
50% 16.00 14.67 17.46 15.66 17.43 19.49
70% 16.59 15.11 17.32 17.10 14.84 20.83
90% 18.85 15.47 19.79 17.21 22.41 22.14

Table 6. RMSE results on FD001-FD004 with censor

pc LSTM-MLP-ORE DAST-ORE LSTM-ORCE
(Vishnu et al., 2019)

FD001
50% 15.96 12.99 15.98
70% 17.97 12.51 16.57
90% 26.76 15.80 20.38

FD004
50% 14.67 19.49 30.62
70% 15.11 20.83 31.27
90% 15.47 22.14 38.41

That score corresponds to a higher penalty for overestima-
tion rather underestimation of the RUL.

Table 7 shows the scores for the ensemble methods DAST-E,
DAST-ORE and LSTM-ORE. If the results are rather coher-
ent with the RMSE comparisons for FD001 and FD003, the
advantage of LSTM-based methods compared to DAST-E is
less clear for FD002 and FD004.

However, it has to be noted that the OR-based methods
were trained with a symmetric BCELoss which does not take
into consideration a different penalty for over and under-
estimations. In terms of binary vectors, it means a higher
penalty for a close to 0 coordinate in Ŷt when the truth is 1
(the fan is predicted running when it actually failed, which
is an over-estimation of the RUL) than for a prediction close
to 1 when the truth is 0.
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(a) Results of unit 49 (FD001) with pc = 50% (b) Results of unit 138 (FD002) with pc = 90%

(c) Results of unit 24 (FD003) with pc = 70% (d) Results of unit 235 (FD004) with pc = 0%

Figure 6. Example of results on one units of each sub-dataset

A possibility to introduce this asymmetry would be to con-
sider a modified loss by replacing Equation 2 by

BCE(Yt , Ŷt ) =→
K∑

k=1

(
εyt ,k l og (ŷt ,k )+ (1→ yt ,k )log (1→ ŷt ,k )

)

(4)
where ε> 1 is a hyperparameter to be optimized.

3.7. Conformal prediction

The Conformal Prediction (CP) framework is applied to our
models DAST, DAST-OR, and LSTM-OR on the C-MAPSS
dataset. To achieve this, the inital training dataset is divided
into three subsets: Dtrain, Dcalib, and Dvalid. The three sets
contain respectively 70%, 10% and 20% of the initial training
data.

The models are trained on Dtrain, confidence intervals are
constructed using Dcalib by evaluating the quantiles of or-
der ε on the prediction errors calculated on Dcalib, and the
models are selected based on their performance scores on
Dvalid. Note that the quantiles for different values of ε can
be evaluated directly on Dcalib without the need to retrain
the models.

Table 8 presents the coverage results of the best ORE model
on the CMAPSS dataset across the four subsets FD001, FD002,
FD003, and FD004. The parameter 1→ε represents the the-
oretical or expected coverage rate. The table is structured
by varying the proportion parameter pc and the confidence
level 1→ε. The bold values indicate cases where the ob-
served coverage exceeds 1→ε→0.05, demonstrating good
alignment with the theoretical expectations.

The results demonstrate that the ORE model performs ro-
bustly, with higher values of 1→ε and pc contributing to im-
proved observed coverage. However, the performance varies
across datasets, which may reflect differences in model per-
formance or dataset characteristics.

While achieving a coverage rate on the test data that is close
to 1→ε is desirable, it is not sufficient to ensure model per-
formance. A trivially large interval size relative to the studied
problem would guarantee a high coverage rate but would
result in an impractical and ineffective model. Furthermore,
the method used to compute prediction intervals implies
that larger model errors lead to wider intervals, which in
turn increases the coverage rate. As a result, a high coverage
rate alone does not necessarily indicate a well-calibrated or
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Table 7. Score results on C-MAPSS

FD001
pc LSTM-MLP-ORE DAST-E DAST-ORE
0% 341.00 201.17 206.48

20% 410,63 232,49 269,68
50% 631,91 252,89 296,04
70% 1279,51 458,45 261,79
90% 4566,18 808,5 500,21

FD002
pc LSTM-MLP-ORE DAST-E DAST-ORE
0% 708,28 638,34 978,48

20% 753,57 531,06 1891,21
50% 751,84 544,1 1412,07
70% 786,58 647,39 1362,25
90% 860,19 849,25 1286,1

FD003
pc LSTM-MLP-ORE DAST-E DAST-ORE
0% 322,06 206,94 103,65

20% 250,9 192,28 111,17
50% 267,75 223,95 143,29
70% 1611,57 437,85 272,35
90% 3100,45 2797,84 447,64

FD004
pc LSTM-MLP-ORE DAST-E DAST-ORE
0% 1741,67 2262,98 2739,62

20% 1772,3 1518,44 2591,59
50% 1434,33 2206,4 2788,02
70% 2096,04 2470,12 3863,9
90% 1689,67 1194,16 2903,72

Table 8. Coverage Results on CMAPSS

Best ORE Model Coverage
pc 1→ε FD001 FD002 FD003 FD004
0% 0.50 0.34 0.72 0.20 0.62
0% 0.75 0.61 0.92 0.33 0.82
0% 0.95 0.91 0.98 0.60 0.97

20% 0.50 0.44 0.58 0.32 0.60
20% 0.75 0.67 0.83 0.66 0.78
20% 0.95 0.91 0.95 0.98 0.96
50% 0.50 0.40 0.46 0.56 0.63
50% 0.75 0.64 0.95 0.81 0.83
50% 0.95 0.91 0.95 0.97 0.97
70% 0.50 0.50 0.46 0.51 0.56
70% 0.75 0.70 0.77 0.70 0.77
70% 0.95 0.94 0.95 0.93 0.97
90% 0.50 0.51 0.54 0.46 0.65
90% 0.75 0.65 0.77 0.61 0.83
90% 0.95 0.82 0.95 0.73 0.97

useful model.

Figure 7 shows the interval width for different models and
datasets. The first and last point of the green curve on FD001
can be read as the fact that a prediction by DAST-ORE in
that condition has a nominal rate of 95% to be less than 28
hours away from the true RUL, and of 50% to be less than 10
hours away. The figure shows that the predicted interval size
is decreasing with ε, as expected. However, interval sizes
considerably vary between models and datasets.

3.8. The N-CMAPSS dataset

N-CMAPSS ((Arias Chao, Kulkarni, Goebel, & Fink, 2021)) is
an enhanced and expanded version of the CMAPSS dataset,

aimed to simulate more realistic data for aircraft engines.
As a next-generation version, it includes additional data to
make the simulations more robust and closer to real-world
conditions.

N-CMAPSS introduces several improvements, including the
inclusion of new engine configurations, more diverse sim-
ulated failures, and more complex environments to train
predictive models. Moreover, N-CMAPSS consists of less
than ten units per condition, each unit containing a large
amount of data. In contrast, C-MAPSS comprises several
hundred units per condition, with each unit containing a
relatively smaller amount of data.

The same preprocessing applied to C-MAPSS is applied to N-
CMAPSS. Right-censoring is artificially applied to the data,
with censoring rates pc ↗ [0%, 20%, 50%, 70%, 90%], follow-
ing the same procedure as used in the C-MAPSS dataset.

Three architectures are trained on the four datasets of the
N-CMAPSS data:

1. DAST-E for RUL (Z. Zhang et al., 2022),

2. LSTM-MLP-ORE,

3. DAST-ORE.

The exact same procedure as used for the C-MAPSS dataset
is followed, and the same hyperparameters are applied.

N-CMAPSS DS02
pc DAST-E DAST-ORE LSTM-ORE
0% 6.24 7.16 13.82

20% 7.42 8.27 14.35
50% 11.92 14.44 17.07
66% 6.20 8.04 17.08

Table 9. Comparison of RMSE between different models for
DS02

Table 9 shows the RMSE results on the condition DS02 of
N-CMAPSS, consisting of 6 units. On this dataset, DAST-E is
the best model, even for censored data.

This observation may be explained by the fact that the dis-
cretisation step in OR methods implies some loss of infor-
mation, which is hopefully compensated by the gain rep-
resented by the censored data. However, for such small
datasets, the number of censored units remains very low,
and the gain of information is not sufficient. This finding
suggests that, in order to improve performance by taking
censored data into account and using ORE models, a suffi-
ciently large number of censored units is necessary.

4. CONCLUSION

This work addresses the challenge of estimating the Remain-
ing Useful Life (RUL) of industrial components from time
series data with no prior physical model of the system and
a high rate of censored data. It does so by considering two
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(a) Interval width as function of ε for FD001 with pc = 0 (b) Interval width as function of ε for FD002

(c) Interval width as function of ε for FD003 (d) Interval width as function of ε for FD004

Figure 7. Interval width as function of ε for each CMAPSS sub-dataset for pc = 90%, the interval width is expressed in time
cycle.

(a) Results predicted RUL and true RUL with confidence interval on
unit 8 (FD001)

(b) Results predicted RUL and true RUL with confidence interval on
unit 72 (FD003)

Figure 8. Results predicted RUL and true RUL with confidence interval (1→ε= 0.75) on the C-MAPSS dataset

data-driven deep-learning architectures relying on the ordi-
nal regression approach introduced in (Vishnu et al., 2019)
for RUL estimation. One of them is an improved version of
the LSTM-OR method by (Vishnu et al., 2019), the second
is an adaptation to censored data of the DAST model intro-
duced in (Z. Zhang et al., 2022). Moreover, the application of
conformal prediction allows to obtain prediction intervals

for the presented models.

These approaches are shown to perform as well on the C-
MAPSS data as the existing direct RUL estimation methods
found in the literature on uncensored data, and better on
censored data. Their application on the N-CMAPSS dataset
however highlights that they are ineffective if only a handful
of censored data are available.
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Furthermore, the two proposed architectures are shown
to be complementary, as they outperform each other de-
pending on the complexity of the dataset. Therefore, in the
context of estimating the lifespan of components, it is in-
teresting to put them in competition, considering that this
approach should yield favorable results regardless of the
complexity of the data and the rate of right-censored data.

From a computational perspective, such models take some
time to be learnt but are then of immediate application for
new data. The OR method significantly increases training
time due to its underlying mechanism, which involves trans-
forming the RUL prediction task into a multi-class classifica-
tion problem with ordinal targets. This requires computing
and optimizing multiple output probabilities per time step
and testing each target vector to determine its size and the
appropriate truncation point for the prediction 2.2. This
added complexity leads to higher computational demands.
As a result, DAST-OR is five to ten times slower than DAST,
while LSTM-OR is approximately twenty to twenty-five times
slower. A reasonable deployment in industry would consist
in a periodical centralized learning given all gathered data
giving raise to regular updates for the prediction model.

Finally, the present article focused on right censored data,
which corresponds to the missing data situation created
by preventive maintenance. However, (Yang, Kanniainen,
Krogerus, & Emmert-Streib, 2022b) highlights the presence
of various types of censoring (left, interval, right) in mainte-
nance data, which complicates statistical analysis and RUL
estimation. The ordinal regression framework could easily
be extended to the case of gaps in the learning data. The vec-
tor to predict could then be of the form Yt = (0,0,→,0,→,0,0,
1,1,1) for example, the → representing missing data, and the
error defined as previously only on the observed data seg-
ments. Studying the influence of the missing data rate and
time window size in that case is an open research question.

CODE AVAILABILITY

The code was written in Pytorch and is available at https://git-
lab.math.unistra.fr/jnoot/rul_estimation_cmapss
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