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ABSTRACT 

In machine learning (ML), ImageNet has become a reputable 

resource for transfer learning (TL), allowing the development 

of efficient ML models with reduced training time and data 

requirements. However vibration analysis used in fields such 

as predictive maintenance, structural health monitoring, and 

fault diagnosis, lacks a comparable large-scale, annotated 

dataset to facilitate similar advancements. To address this 

gap, a dataset framework is proposed that begins with a focus 

on bearing vibration data as an initial step towards creating a 

universal dataset for vibration-based spectrogram analysis for 

all machinery. The initial framework includes a collection of 

bearing vibration signals from various publicly available 

datasets. To demonstrate the advantages of this framework, 

experiments were conducted using a deep learning (DL) 

architecture, showing improvements in model performance 

when pre-trained on bearing vibration data and fine-tuned on 

a smaller, domain-specific dataset. These findings highlight 

the potential to parallel the success of ImageNet in visual 

computing but for vibration analysis. For future work, this 

research will include a broader range of vibration signals 

from multiple types of machinery, emphasizing spectrogram-

based representations of the data. Each sample will be labeled 

according to machinery type, operational status, and the 

presence or type of faults, ensuring its utility for supervised 

and unsupervised learning tasks. Additionally, a framework 

for data preprocessing, feature extraction, and model training 

specific to vibration data will be developed. This framework 

will standardize methodologies across the research 

community, allowing for collaboration and accelerating 

progress in predictive maintenance, structural health 

monitoring, and related fields. By mirroring the success of 

ImageNet in visual computing, this dataset has the potential 

to improve the development of intelligent systems in 

industrial applications. 

1. INTRODUCTION 

In recent years, machine learning (ML) has made substantial 

progress across various fields, driven in large part by the 

availability of massive, well-annotated datasets (Dean, 2022; 

Demirbaga, Aujla, Jindal, & Kalyon, 2024). ImageNet, a 

large-scale dataset widely used in visual computing, is a 

prime example of how access to large data has allowed for 

significant advancements in areas like image classification, 

object detection, and transfer learning (TL) (J. Deng et al., 

2009). With the ability to pre-train models on vast and diverse 

datasets, researchers can fine-tune TL models for more 

specific tasks with less data and reduced training time, 

making ML both more efficient and more accessible. 

However, the success of TL has not yet extended to every 

domain. In particular, vibration analysis, a crucial field for 

predictive maintenance, structural health monitoring, and 
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fault diagnosis lacks comparable large-scale datasets 

(Atmaja, Ihsannur, Suyanto, & Arifianto, 2024). This 

absence presents a significant barrier to the adoption of ML 

techniques in TL, where early detection of faults or system 

degradation can prevent costly failures in industrial 

applications. 

Vibration analysis, unlike visual computing, faces several 

challenges that complicate the creation of a universal dataset. 

Machine components often produce complex, non- stationary 

signals that vary not only by machine type but also by 

operational conditions, fault types, and environmental factors 

(Goyal & Pabla, 2016; Tiboni, Remino, Bussola, & Amici, 

2022). Another challenge is the significant amount of healthy 

data when compared to faulty data, since machines aren’t 

meant to fail. Without large, diverse, and labelled datasets, 

models trained on vibration data tend to lack the 

generalization ability that is common in visual models trained 

on datasets like ImageNet (Zhang, Chen, Mao, Zhu, & Xu, 

2024). As a result, most of the progress in vibration analysis 

has been limited to specific domains where small, hand-

curated datasets are used (Atmaja et al., 2024). This approach 

limits the potential for TL, forcing researchers to develop 

models from scratch for each new application. 

To address these issues, a framework is proposed that takes 

the first step towards developing a comprehensive, large-

scale dataset for vibration analysis. The initial focus will be 

on bearing vibration data, one of the most monitored 

components in machinery across industries. Bearings are not 

only critical to the operation of many machines, but their 

vibration signals provide valuable insights into a machine’s 

health, offering an ideal starting point for this dataset. By 

curating a broad collection of bearing vibration signals from 

various public datasets, the aim is to capture a wide range of 

real-world conditions such as normal operation, and various 

fault states (inner-race, outer-race, cage, and ball), thereby 

creating a dataset that is more representative of real-world 

applications. 

In addition to the dataset, the framework proposes leveraging 

a DenseNet DL architecture (Huang, Liu, Van Der Maaten, 

& Weinberger, 2017) to demonstrate the effectiveness of TL 

in bearing diagnosis. By pre-training models on this curated 

dataset and then fine tuning them on smaller, domain-specific 

datasets, the hypothesis is that improved model performance 

can be obtained, even with limited data. This approach would 

allow for more accurate fault diagnosis, predictive 

maintenance, and early fault detection, similar to how TL in 

visual computing has revolutionized image recognition tasks. 

Expanding beyond the initial phase, this dataset framework is 

meant to evolve over time. Future iterations will include not 

just bearing data but vibration signals from a wide range of 

machinery, components, types and sensors. Multi-sensor 

data, such as those captured by accelerometers, and 

microphones will allow for the development of more 

sophisticated models that can process different types of 

signals simultaneously. Such advancements could facilitate 

sensor fusion techniques, where data from multiple sensors 

are combined to provide a more comprehensive 

understanding of machinery health. This will be useful in 

complex systems, where relying on a single sensor might not 

provide sufficient information for accurate diagnosis. 

Additionally, this framework will incorporate detailed 

metadata with each sample (input signal length), and fault 

characteristics of bearing signatures. This level of detail will 

make the dataset versatile, enabling it to be used in a range of 

applications from supervised learning tasks where labeled 

data is abundant, to unsupervised learning and fault detection 

in cases where labels are scarce. As the dataset grows in 

scope and complexity, it will position itself as a universal 

source for vibration analysis, applicable across industries 

such as manufacturing, aerospace, and energy. 

Developing a standardized dataset framework for vibration 

analysis also holds the potential to unify methodologies 

across ML research. In the current landscape, the lack of 

standardization in data collection, preprocessing, and feature 

extraction leads to inconsistent results and limited 

collaboration. By introducing a comprehensive, well-

annotated dataset accompanied by best practices for data 

handling and model training, the aim is to encourage a 

collaborative environment where research can accelerate. 

Standardization will allow for more reproducibility in 

experiments and make it easier for researchers to build upon 

one another’s work. 

Thus, the proposed dataset framework for vibration analysis 

represents a crucial step towards addressing the gap in ML 

resources for TL. By starting with bearing data and 

expanding to include more types of machinery and sensors, 

this initiative has the potential to revolutionize how vibration 

data is analyzed across ML research. By utilizing TL and 

providing a standardized approach to data handling, this 

framework has the potential to bring the same level of success 

to vibration analysis as ImageNet has achieved in visual 

computing, paving the way for more reliable and intelligent 

systems in predictive maintenance and machine condition 

monitoring. 

2. BACKGROUND 

The section focuses on the foundational elements that 

highlight the requirements to developing a universal 

vibration dataset framework, including the selection of 

publicly available bearing datasets, pre-processing methods, 
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and the role of TL in improving fault diagnosis models. By 

addressing these key components, the creation of a robust and 

scalable approach to machine condition monitoring can be 

obtained. 

2.1. Bearing Datasets 

This section introduces the publicly available bearing 

datasets that are used to create the foundation of the universal 

dataset for vibration analysis. The selected datasets offer 

diverse vibration data from multiple bearing types, fault 

scenarios, and operational conditions, allowing the 

development of models that can generalize across a wide 

range of applications. By using publicly available datasets 

such as the CWRU dataset and combining them with more 

recent multi-domain datasets like the UORED-VAFCLS, 

HUST and PADERBORN datasets, this framework will 

allow for a better approach to TL in fault diagnosis and 

condition monitoring. 

2.1.1. Case Western Reserve University (CWRU)  

The CWRU dataset is known for its contribution to machine 

fault diagnosis research. It provides a diverse set of vibration 

signals such as healthy ball bearings and ball bearings with 

various fault conditions, including inner race, outer race, and 

ball faults, collected under different fault severities. This 

dataset has played a pivotal role in advancing the 

development of ML models, particularly convolutional 

neural networks (CNNs), for fault diagnosis tasks. 

However, the CWRU dataset was not specifically designed 

with ML applications in mind, and care must be taken to 

avoid misleading results. For example, issues related to data 

with similar load conditions may affect the generalizability 

of models (Hendriks, Dumond, & Knox, 2022; Rauber, da 

Silva Loca, Boldt, Rodrigues, & Varejão, 2021). Despite this 

limitation, it remains a valuable benchmark for the early 

stages of developing a universal dataset for vibration 

analysis, especially when data is converted to time-frequency 

spectrogram images. 

The CWRU data consists of sampling frequencies of 12,000 

and 48,000 Hz with a sample duration of 10 seconds, and 

speeds around 1,720 and 1,797 RPM (“Download a Data File 

| Case School of Engineering | Case Western Reserve 

University,” 2021). The test rig consists of an electrical motor 

seen on the left-hand side of Figure 1, followed by a shaft 

with a coupling being tested and a dynamometer to control 

the different loads being applied. The bearings tested for the 

CWRU dataset are a SKF 6205-2RS deep groove ball bearing 

on the drive end, and a SKF 6203-2RS deep groove ball 

bearing on the fan end. 

 

Figure 1. CWRU Bearing Data Test Rig (“Apparatus & 

Procedures | Case School of Engineering | Case Western 

Reserve University,” 2021) 

2.1.2. University of Ottawa Rolling Element Dataset – 

Vibration and Acoustic Faults under Constant Load 

and Speed (UORED-VAFCLS) 

The UORED-VAFCLS dataset complements the CWRU 

dataset by including vibration and acoustic ball bearing data 

collected under constant load and speed conditions. This 

dataset captures various fault types such as ball, cage, inner 

race, and outer race faults. Additionally, the dataset includes 

multiple instances of each fault type, sourced from bearings 

manufactured by different companies, which introduces 

variability for developing robust TL models. 

The inclusion of both vibration and acoustic data under 

controlled conditions makes the UORED-VAFCLS dataset 

an excellent resource for multi-sensor fusion, enabling 

models to learn from diverse input types which will be used 

in the future of this universal data framework. 

The UORED-VAFCLS data consists of a sampling frequency 

of 42,000 Hz with a sample duration of 10 seconds, and 

speeds around 1,700 to 1,800 RPM (M. Sehri & Dumond, 

2023; Mert Sehri, Dumond, & Bouchard, 2023). The test rig 

(Figure 2) consists of two bearings tested inside the motor, 

the bearings tested are the NSK 6203 and FAFNIR 203KD. 

 

Figure 2. UORED-VAFCLS Bearing Test Rig (Mert Sehri 

et al., 2023) 
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2.1.3. Hanoi University of Science and Technology 

(HUST) 

The HUST dataset expands on the diversity of bearing sizes 

and types, offering data from ball bearings such as the 6204, 

6205, 6206, 6207, and 6208. Each bearing is tested under 

multiple fault conditions, including inner race, outer race, and 

ball faults, which allows for a more comprehensive dataset 

that supports TL. The variation in bearing size also adds 

complexity, making it an ideal dataset for developing models 

that can generalize across different mechanical setups. 

Moreover, the HUST dataset can be integrated with the 

CWRU and UORED-VAFCLS datasets to create a more 

versatile and extensive dataset. This data fusion approach will 

enable the development of advanced models that can handle 

multiple fault types and varying operational conditions. 

HUST data consists of a sampling frequency of 25,600 Hz 

with a sample duration of 20 seconds, and speeds ranging 

from 600 to 2,100 RPM (Thuan & Hong, 2023). The HUST 

bearing test rig (Figure 3) consists of mounts for 6204, 6205, 

6206, 6207, and 6208 bearings. 

 

Figure 3. HUST Bearing Data Test Rig 

2.1.4. PADERBORN Vibration Dataset 

The PADERBORN dataset consists of vibration data 

containing compound fault conditions, captured using three 

distinct bearing types: deep groove ball bearings, cylindrical 

roller bearings, and tapered roller bearings. It encompasses 

data from 21 compound fault scenarios and various rotational 

speeds, making it a valuable resource for investigating 

complex machine faults. 

This dataset tackles critical challenges faced in industrial 

environments, such as domain shift and the occurrence of 

simultaneous faults across multiple components. By 

incorporating compound faults in both bearings and other 

rotating components, it extends beyond the limitations of 

traditional datasets that focus solely on isolated fault 

conditions. 

The PADERBORN dataset includes vibration data recorded 

using two accelerometers with sampling rates of 8,000 and 

16,000 Hz, covering motor speeds of 600, 800, 1,000, 1,200, 

1,400, and 1,600 RPM (Y. Deng, 2023; Wang, Wang, Kong, 

Wang, & Li, 2020). The test rig features 6204 deep groove 

ball bearings, N204 and NJ204 cylindrical roller bearings, 

and 30204 tapered roller bearings, making it a robust tool for 

the study of real-world fault diagnosis challenges. The test rig 

consists of (1) test motor, (2) measuring shaft, (3) bearing 

module, (4) flywheel, and (5) load motor seen in Figure 4. 

 

Figure 4. PADERBORN Vibration Data Test Rig (Y. Deng, 

2023) 

2.2. Spectrograms 

Spectrograms are designed to capture the varying frequency 

components of a signal over time. The resulting time-

frequency representations (TFRs) are 3D images, where the 

horizontal axis denotes time, the vertical axis denotes 

frequency, and the energy of the TFR is represented by 

different colors. The expression of the resulting TFR based 

on an original signal x(t) can be written as equation 1. 

 
𝑆(𝜏,  𝜔) =  ∫𝑥(𝑡)𝑔(𝑡 − 𝜏)𝑒−𝑖𝜔(𝑡−𝜏)

 

 

𝑑𝑡 (1) 

where 𝜏 and 𝜔 represent time and frequency, g(t) denotes the 

short window used to truncate the original signal x(t), i is the 

imaginary unit. Serving as inputs to train the model, 

spectrogram figures are usually read as RGB figures in three 

different channels. Also, a simplified version using grayscale 

images is also widely used since fewer convolutional 

operations must be performed during training. 

Spectrograms are often chosen over statistical preprocessing 

methods because they provide a rich visual representation of 

the vibration signal, capturing both time and frequency 

information in a single domain. This is particularly 

advantageous for vibration-based intelligent fault diagnosis 

in industrial applications, where faults often manifest as 

specific frequency patterns that vary over time. Unlike 

statistical preprocessing, which summarizes the data into 

fixed descriptors that may obscure critical fault-related 

details, spectrograms retain the raw signal's temporal and 

spectral dynamics, offering a comprehensive view of the 

data. Furthermore, frequency-based analysis typically 

outperforms time-based approaches because many fault 

signatures, such as those caused by imbalance, misalignment, 
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or bearing defects, are more easily identifiable as distinct 

frequency peaks or patterns. In the time domain, these 

patterns are often hidden or ambiguous, making it 

challenging to extract meaningful features. By transforming 

the data into the frequency or time-frequency domain, 

spectrograms enable advanced algorithms, especially DL 

models, to better discern and classify faults, significantly 

enhancing diagnostic accuracy and reliability in complex 

industrial settings. 

2.3. Transfer Learning 

TL is a ML technique that involves reusing a pre-trained 

model on a new but similar problem. There are several 

common TL techniques, including partial fine tuning and full 

fine-tuning. In partial fine tuning, the earlier layers of a pre-

trained model are used as a fixed feature extractor, meaning 

that only the final layers of the model are re-trained for the 

target task. This approach assumes that the learned 

representations in the lower layers (such as edges and shapes 

in image processing models) are general enough to apply to 

the new problem. Full fine-tuning, on the other hand, 

involves retraining some or all of the model layers on the new 

task, often with a lower learning rate to preserve previously 

learned features while adapting to the new data. This 

approach is beneficial for tasks not closely related to the 

original training data, allowing the model to better specialize 

to the specific nuances of the target dataset. Figure 5 provides 

an overview of the TL process. Using one or more datasets 

with a large amount of data, a learning technique is applied 

to create a pre-trained model that captures relevant 

knowledge about a specific task. Subsequently, a new model 

can be trained using the pre-trained model along with a 

smaller dataset for a new task to be performed.  

 

Figure 5. TL Process Flowchart 

3. VIBNET 

VibNet, akin to ImageNet in computer vision, represents a 

transformative leap for vibration-based intelligent fault 

diagnosis, addressing critical gaps in research and industry. 

By providing a comprehensive, structured database of 

vibration signals from a diverse range of rotating machinery, 

VibNet facilitates the development, benchmarking, and 

comparison of advanced diagnostic algorithms. Researchers 

can use VibNet to access standardized datasets covering 

various equipment types, fault conditions, and operating 

environments, enabling more robust and generalizable 

models. This standardization drives innovation, reducing 

redundancy in data collection efforts while promoting 

collaboration and reproducibility across the community. 

For industry, VibNet unlocks new possibilities in predictive 

maintenance and operational efficiency. It empowers 

engineers to leverage pre-trained DL models and TL 

techniques tailored to vibration diagnostics, significantly 

lowering the barrier to implementing AI-driven solutions. By 

offering a repository of labeled data and associated features, 

VibNet accelerates the deployment of intelligent systems 

capable of identifying subtle fault signatures, minimizing 

downtime, and preventing catastrophic failures. Its role as a 

unifying platform for data and algorithms not only advances 

the state of the art but also bridges the gap between academic 

research and real-world applications, ensuring industries 

benefit from cutting-edge technologies with reduced 

development time and cost. 

In this section, a preliminary version of VibNet, the dataset 

framework proposed in this work, is described. It consists of 

a data storage layer named VibData, a software layer named 

VibSoft, a VibScript layer containing scripts that describe 

experiments, and a VibReport layer with reports detailing the 

results of benchmark methods (i.e., the methods that achieved 

the best performance in each experiment outlined in 

VibScript). It is important to highlight that the framework 

was designed to be extensible, allowing—and indeed 

intended—that new data, computational software, 

experimental scripts, and reports be added to the framework 

at any time. Figure 6 presents a diagram illustrating the layers 

of VibNet. The diagram illustrates that all layers are 

encapsulated, ensuring strict separation of responsibilities. 

Data in the VibData layer can only be accessed through 

operations provided by the VibSoft layer. Similarly, scripts 

in the VibScript layer are restricted to utilizing operations 

defined in the VibSoft layer, and reports in the VibReport 

layer are exclusively generated using scripts created within 

the VibScript layer. 
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Figure 6. Layer Diagram of VibNet 

This section also provides detailed descriptions of the 

VibData and VibSoft components, and explains the choice of 

spectrograms as the foundational data used to generate the 

pre-trained networks in this work. Finally, a detailed 

description of the TL method employed to create the pre-

trained vibration network used in this work's experiments is 

also provided. 

3.1. VibData 

VibData is a database designed to store and utilize vibration 

data collected from various types of rotating equipment using 

different types of sensors. The datasets within VibData are 

hierarchically organized by equipment type, which may 

include bearings, gears, motors, compressors, centrifugal 

pumps, and other rotating machinery. In this preliminary 

version, only datasets from bearings are used. 

Each dataset in VibData contains a collection of data captured 

from sensors. These data are typically time series 

representing vibration signal amplitudes measured over a 

specific time interval at a given sampling frequency. It is also 

important to note that each time series is collected under 

specific operating conditions, such as state (healthy, inner 

race fault, outer race fault, etc.), load, fault severity, sensor 

positioning, and more. Additionally, each dataset is 

associated with the type of equipment from which the data 

were collected, along with their characteristics, such as 

model, size, and component configuration. Figure 7 provides 

a macro overview of VibData. 

3.2. VibSoft 

The layer responsible for providing operations on VibData is 

called VibSoft. It comprises several software libraries 

designed to enable the following functionalities: 

1. Sampling: Allows time-domain data to be freely 

segmented and labeled, creating a dataset of 

examples. 

2. Resampling: Enables the example dataset to be split 

into training, validation, and test sets using various 

resampling strategies, such as percentage-based 

splits, cross-validation, and nested cross-validation. 

3. Transformations: Facilitates the transformation of 

time-domain data into other domains, such as 

frequency or time-frequency. This component 

includes Fourier transforms, wavelets, and routines 

for generating spectrograms or scalograms. 

4. Feature Extraction: Provides statistical 

preprocessing techniques, DL methods, and TL 

tools to extract features from time-domain or 

transformed-domain data. These features can be 

used for training classifiers to diagnose faults. 

5. Feature Selection: Offers algorithms and 

techniques to select a more meaningful subset of 

features for model training. This includes filtering 

 

Figure 7. Macro overview of VibData 
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methods or search-based approaches combined with 

statistical evaluations or wrapper methods. 

6. Fault Detection and Diagnosis: Includes methods 

for training classifiers capable of performing fault 

detection and diagnosis. Techniques for building 

one-class, binary, multi-class, and multi-label 

classifiers are available. Notably, this library 

incorporates TL techniques and tools for generating 

pre-trained deep vibration networks. 

Each component is designed to ensure flexibility and 

robustness in handling vibration data for fault detection and 

diagnosis tasks. 

3.3. Data Transformation 

For the experiments conducted in this preliminary study, the 

data were transformed into the time-frequency domain by 

generating spectrograms. This choice was motivated by two 

factors: (a) frequency-domain analysis is the most commonly 

used approach for vibration-based fault detection and 

diagnosis, and (b) spectrograms enable the integration of data 

obtained with different sampling rates, numbers of sample 

points, and time intervals. Heterogeneous data collected 

under varying conditions can be standardized into 

spectrogram images of a predefined size, ensuring uniformity 

and compatibility for input into deep neural networks.  

The following subsections describe the parameters and 

values used for generating the spectrograms of the different 

datasets used in this work. 

3.3.1 Parameter settings 

To provide clear TFRs from the collected signals, the 

parameters used for preprocessing the data in preparation for 

creating spectrograms are listed in Table 1. For each dataset 

there are 1600 Number of Fast Fourier Transform (NFFT) 

points, 96% overlap, and a frequency range of 0 to 10 kHz is 

used. 

Table 1. Data Preprocessing Parameters for Spectrograms 

Dataset 
Signal 

length (samples) 

Window 

length 

Sampling 

freq. 

CWRU 12000 200 48 / 12 kHz 

UORED-VAFCLS 10500 180 42 kHz 

HUST 12800 200 51.2 kHz 

PADERBORN 16000 180 64 kHz 

In Table 1, signal segments with the same time duration are 

selected for further analysis. Here, 0.25 s is used for all 

datasets. Also, since the resonance frequency band differs for 

different experimental setups, a frequency range within [0, 

10] kHz is used for the CWRU, UORED-VAFCLS, HUST, 

and PADERBORN datasets, which ensures that rich fault-

related features can be covered in the resulting TFRs. As 

identified by each experimental test rig, the resonance 

frequency bands vary with each other, as shown in the Figure 

8, where all the Fourier amplitudes versus frequency are 

drawn. The resonance frequency bands refers to the local 

peaks that could be observed from the Fourier spectrum. It 

can be seen that [0, 10 kHz] will cover most of the fault-

related impulses for all datasets.  

(a) CWRU (b) UORED-VAFCLS

(c) HUST (d) PADERBORN  
Figure 8. Fourier spectra for different datasets. 

By using these parameters, the fault-related impulses can be 

observed clearly from the spectrograms. It is worth noting 

that users could also use other parameter combinations as 

time-frequency analysis has limited time-frequency 

resolution due to the uncertainty principle. Some examples 

are given below for illustration, where both the original time 

domain signal segments and corresponding spectrograms are 

provided. It can be found that the energy in the obtained 

spectrograms (Figure 9, 10, 11, and 12) is basically 

proportional to the amplitude of the collected signals versus 

time, that is, the larger the amplitude in the original time 

domain signal waveform, the darker the color in the 

corresponding spectrograms.  

Figure 9. TFR of the CWRU dataset, using the 109.mat file 

as an example, which has an inner race fault with a size of 

0.007 inch under a 0 hp load 
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Figure 10. TFR of the UORED-VAFCLS dataset, using the 

B-11-2 file as an example, which indicates a fully developed 

ball fault. 

Figure 11. TFR of the HUST dataset, using the B702 file as 

an example, showing that the 6207 bearing type has a ball 

fault and a 200W load is applied. 

Figure 12. TFR of the Paderborn bearing dataset, using the 

N09_M07_F10_KI21_9 file, operating parameters are: 900 

rpm, 0.7 Nm and 10000 radial force, KI21 indicates damage 

caused by an accelerated lifetime test, 9 means the 9th trial 

3.4. Data Evaluation 

For this paper, the CWRU dataset is used for testing, where 

all three accelerometers, located at the drive end (DE), fan 

end (FE) and base (BA), are included for analysis for both 

12kHz and 48kHz, ensuring a great diversity among the 

evaluated data. K-fold cross validation is used to assess the 

selected dataset. K-fold cross-validation is a resampling 

technique used to evaluate ML models by splitting the dataset 

into k subsets (folds), where the model is trained on a certain 

number of folds and tested on the remaining fold, repeating 

this process k times. This method ensures that every data 

point is used for both training and testing, providing a more 

robust estimate of model performance compared to a single 

train-test split. In this work the dataset was divided into folds 

for training, validation and testing, as seen in Figures 13 and 

14. 

 

Figure 13. Mitigation bias related to motor load severity 

 

Figure 14. Mitigation bias related to similarity of failure 

severity 

3.5. Transfer Learning Method 

This work focuses on leveraging TL to improve fault 

diagnosis using spectrogram-based features and deep neural 

networks. This section describes the VibNet pre-training 

pipeline, and the experimental workflow used for evaluating 

the proposed method. 

Figure 15 illustrates the pipeline for creating and using the 

pre-trained DL network for vibration-based fault diagnosis. 

Among the four datasets used, the CWRU dataset was 

selected for evaluating the proposed approach. The CWRU 

dataset was chosen for resampling analysis as it was used to 

test the different approaches, ensuring a consistent evaluation 

framework. Figure 15 shows the process of creating the 

VibNet pre-trained deep network. First the HUST, UORED-
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VAFCLS, and PADERBORN datasets are sampled to 

generate the examples used for training VibNet. Then these 

samples are used for generating corresponding spectrogram 

images of the examples. In this study, the CWRU dataset is 

subjected to the same process used for training VibNet. 

Instead, CWRU spectrogram examples are resampled for 

composing the CWRU training, validation and testing 

datasets used for evaluating the models used in this work. 

The other datasets were primarily used for training VibNet, 

which is why they were not included in this specific 

resampling analysis. It is worth noting that this pipeline was 

evaluated using two different data divisions, as detailed in 

Section 3.4. The first division uses load condition 

information from the CWRU dataset, while the second 

focuses on fault size. This approach ensures multiple 

evaluation modes, strengthening the robustness of our 

method. 

 
Figure 15. TL Experimental Workflow 

Here’s a summary of the pipeline’s key steps: 

1. Datasets and Sampling:   Four datasets are used: 

HUST, UORED-VAFCLS, PADERBORN, and 

CWRU. CWRU serves as a benchmark to evaluate 

the various methods implemented, while HUST, 

UORED-VAFCLS, and PADERBORN are 

employed to pre-train VibNet, in contrast to 

ImageNet. For each training, the records from each 

dataset are segmented into temporal windows to be 

processed into the time-frequency spectrum. 

2. Spectrogram Generation: The sampled data from 

all datasets are converted into spectrogram images, 

a representation of the vibration signals in the time-

frequency domain are provided in section 3.3.1. 

Given the difference in scales between the datasets 

and the need to standardize the size of the images to 

be fed into the neural network, it was necessary to 

resize each image to a fixed size. This fixed value 

was 256x512 due to the lower compression and 

consequently less loss of information in the resulting 

spectra. 

3. Pre-training the Deep Network: The spectrogram 

images from the HUST, UORED-VAFCLS, and 

PADERBORN datasets are used to train the deep 

neural network. The chosen architecture is 

DenseNet121, which has demonstrated excellent 

performance in the field of computer vision, such as 

on the CIFAR-10 classification benchmark and 

ImageNet. It helps alleviate the vanishing gradient 

problem, strengthens feature propagation, 

encourages feature reuse, and offers several other 

benefits. With this set, it was possible to use both the 

architecture from scratch and the pre-trained model 

from ImageNet 

Figure 16 shows the workflow used for training and 

evaluating DL models for fault diagnosis using vibration data 

from the CWRU dataset. In this work, the code for data 

management vibdata and the experiments vibnet-experiments 

is publicly available on GitHub in two separate repositories. 

This separation ensures better modularity and organization of 

the experiments. By providing the code, we enable future 

researchers to build upon and extend this work, fostering 

innovation and allowing for the exploration of new ideas and 

improvements. With this set, the workflow for the 

experiments includes the following key steps: 

1. Pre-trained Model: A pre-trained deep network is 

used from ImageNet. The DenseNet121 pre-

trained model is used. Following that the 

pretraining of VibNet is performed using the 

DesneNet121 topology, but without importing 

parameter weights. The training is done with the 

source datasets (Hust, UORED-VAFCLS and 

PADEBORN).   

2. CWRU Dataset Partitioning: The CWRU 

spectrogram images undergo resampling to create 

training, validation, and testing datasets as detailed 

in Section 3.4. 

3. Fine-Tuning: Both pre-trained networks are fine-

tuned using the CWRU training and validation 

dataset. At this stage, we employed two approaches. 

In the first, we update all the weights using the 

CWRU dataset, known as full fine tuning. In the 

second, we only trained the classification header, 

while keeping the feature extractor weights frozen, 

called partial fine tuning. 

4. Evaluation: The models are (VibNet fine-tuned, 

ImageNet fine-tuned, and from-scratch trained) 

tested on the CWRU testing dataset. To address the 

class imbalance in the target dataset, two metrics 

more suited to this situation were used: balanced 

accuracy and F1-macro, both of which provide a 

https://github.com/ivarejao/vibdata
https://github.com/NINFA-UFES/vibnet-experiments
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better evaluation of performance across imbalanced 

classes. 

5. Results: The testing phase generates results that are 

used to compare the performance of these 

approaches in terms of their effectiveness for fault 

diagnosis. 

 

Figure 16. TL Experimental Workflow 

For training the DenseNet121 model, an EarlyStopping 

callback was used to prevent overfitting. Additionally, a 

ReduceLROnPlateau learning rate scheduler was 

implemented to adjust the learning rate when the validation 

loss plateaued. A batch size of 32 was used across all 

experiments, while the number of epochs and initial learning 

rate were varied to optimize model convergence, based on 

validation performance. These hyperparameters are 

summarized in Table 2. 

Table 2. Experiment Hyperparemeters 

Type Experiment Epochs Initial Learning Rate 

CWRU 

By 

Load 

Partial-Fine-Tuning-ImageNet 50 0.01 

Partial-FineTuning-VibNet 50 0.01 

Full-FineTuning-ImageNet 15 0.001 

Full-FineTuning-VibNet 25 0.01 

From-Scratch 15 0.001 

CWRU 

by 

Fault Severity 

Partial-Fine-Tuning-ImageNet 50 0.001 

Partial-FineTuning-VibNet 50 0.01 

Full-FineTuning-ImageNet 25 0.001 

Full-FineTuning-VibNet 25 0.01 

From-Scratch 25 0.001 

This setup evaluates the benefits of TL using a VibNet pre-

trained model comparing the proposed model with two 

common intelligent fault diagnosis DL-based method: 

training a deep network from scratch and by using TL with 

an ImageNet pre-trained network. 

4. RESULTS & DISCUSSION 

This section demonstrates the potential of VibNet by 

displaying vibration data results when training multiple 

datasets. 

4.1. Data Transformation into Spectrograms 

As depicted in Section 3.4, the CWRU dataset is used for 

testing, while the other 3 datasets are used for training. The 

vibration signals from the selected 4 datasets are transformed 

into spectrograms using the short-time Fourier transform 

(STFT) using a Hanning window. 

4.2. Data Organization and Sample Distribution 

To facilitate the analysis and ensure structured 

experimentation, the samples from the CWRU dataset were 

organized into directories based on two experimental 

configurations: load conditions and fault severity (Table 3). 

The remaining breakdown of the number of samples used for 

testing is shown in Table 3, where H, I, O and B represent 

healthy, inner race, outer race and ball faults, respectively. 

Table 3. Number of Samples by Bearing State 

Dataset Folds H I O B 

CWRU 

by 

Loads 

Fold 1 (0 hp) 40 270 280 290 

Fold 2 (1 hp) 80 412 420 430 

Fold 3 (2 hp) 80 430 420 430 

Fold 4 (3 hp) 80 430 420 430 

Total 280 1542 1540 1580 

CWRU 

by 

Fault Severity 

Fold 1 (0.007”) 40 520 520 520 

Fold 2 (0.014”) 80 462 520 520 

Fold 3 (0.021”) 80 500 500 520 

Fold 4 (0.028”) 80 40 0 40 

Total 280 1522 1540 1600 

HUST N/A 600 600 600 405 

UORED-VAFCLS N/A 800 200 200 200 

PADERBORN N/A 1918 1267 1907 0 

4.3. Results and Discussion 

The results for K-fold cross-validation (K = 4) are presented 

in Table 4, highlighting the mean and standard deviation of 

balanced accuracy and macro F1 scores for various 

approaches, including full fine tuning, partial fine tuning, and 

training from scratch. The best results in the table are 

indicated in bold. 

For the CWRU Load Division, the full fine tuning method 

from ImageNet weights achieved a mean balanced accuracy 

of 97.58% and an macro F1 score of 97.46%, with standard 

deviations of 4.30% and 4.53%, respectively. In comparison, 

Full fine tuning from VibNet weights resulted in a slightly 

lower mean balanced accuracy of 97.39% and a macro F1 

score of 97.32%, but with reduced standard deviations of 

3.79% and 3.94%. Partial fine tuning on VibNet weights 

showed a mean balanced accuracy of 95.66% and a macro F1 

score of 95.66%, while partial fine tuning on ImageNet 

weights resulted in significantly lower performance, with a 

mean accuracy of 90.04% and an F1 score of 89.94%. 

In the CWRU Severity Division, the full fine tuning method 

on ImageNet weights achieved a mean accuracy of 64.38% 

and an F1 score of 65.12%, with higher standard deviations 

of 21.39% and 21.69%. Full fine tuning on VibNet weights 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 
 

 11 

improved the mean accuracy to 66.57% and the F1 score to 

65.91%, albeit with slightly higher standard deviations of 

22.47% and 22.94%. The training from scratch model 

resulted in a mean accuracy of 64.35% and an F1 score of 

58.00%, with a notable reduction in the standard deviation of 

the F1 score to 10.43%. Partial fine tuning on VibNet weights 

showed the best performance in this division, with a mean 

accuracy of 66.88% and an F1 score of 66.21%, while Partial 

fine tuning on ImageNet weights had the lowest performance, 

with a mean accuracy of 58.26% and an F1 score of 52.75%. 

The results of these preliminary experiments were quite 

satisfactory. VibNet full tuning achieved the second-best 

results and equivalent to the best ImageNet full fine tuning 

on the load division and VibNet partial and full fine tuning 

respectively achieved the best and second-best results in the 

severity division, which is the more difficult diagnosis 

problem in the CWRU dataset. 

Table 4. ImageNet and VibNet Dataset Results 

Metric Method 

Mean (%)       Std (%) 

Accuracy 
Score 

F1 Score 
Accuracy 

Score 
F1 

Score 

CWRU 

Load 

Division 

Full Finetune 

ImageNet 
97.58 97.46 4.30 4.53 

Full Finetune VibNet 97.39 97.32 3.79 3.94 

From Scratch 96.84 96.81 3.82 3.89 

Partial Finetune 
VibNet 

95.66 95.66 3.62 3.63 

Partial Finetune 

ImageNet 
90.04 89.94 14.86 15.53 

CWRU 
Severity 

Division 

Full Finetune 
ImageNet 

64.38 65.12 21.39 21.69 

Full Finetune VibNet 66.57 65.91 22.47 22.94 

From Scratch 64.35 58.00 20.18 10.43 

Partial Finetune 

VibNet 
66.88 66.21 21.38 21.69 

Partial Finetune 
ImageNet 

58.26 52.75 4.31 7.00 

5. CONCLUSION 

Developing a standardized dataset framework for vibration 

analysis is an essential step toward bridging the current gap 

in ML applications, particularly for TL. Starting with the 

curation of bearing vibration data, the VibNet framework 

aims to provide a diverse dataset that can aid in identifying 

the health conditions of bearings. By pre-training models on 

this robust dataset and fine tuning on smaller bearing 

datasets, the goal is to enhance model generalization and 

performance, even when there is a limited amount of data. 

This will allow for effective fault diagnosis, predictive 

maintenance, and in addressing challenges that limit the 

advancement of ML in vibration analysis for specific 

domains. Experiments performed in this work present 

promising results. Even when training with a small number 

of vibration datasets, the VibNet pre-trained model achieved 

better results than state of the art fault diagnosis methods, 

particularly with the consolidated ImageNet transfer learning 

approach. The addition of more bearing datasets is expected 

to help improve results further. 

Aside from bearing data, the future of the VibNet framework 

is designed to evolve and include data from various 

machinery, potentially enabling multi-sensor analysis and 

advanced sensor fusion techniques. The inclusion of detailed 

metadata and diverse input conditions will make the datasets 

applicable across different ML tasks, from supervised 

learning to unsupervised fault detection. By presenting a 

standardization in data handling (preprocessing), the 

proposed framework can unify ML methodologies, 

promoting reproducibility and collaborative growth. The goal 

is to set the stage so that ML-based vibration analysis can 

reach a level of progress similar to what ImageNet has 

achieved for visual computing, unlocking more reliable and 

intelligent systems for machine condition monitoring and 

predictive maintenance across industries. Future research 

will focus on the broader validation of different machinery 

components across real world scenarios. 

NOMENCLATURE 

DL deep learning 

ML machine learning 

TL transfer learning 

CNN convolutional neural network 
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