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ABSTRACT

The intelligent fault diagnosis of rotating machines has been
significantly advanced by learning-based techniques in recent
years. However, the performance of these techniques can
drastically decrease under varying working conditions (VWC).
This paper investigates the root causes of these decreased
capabilities by analyzing the impact of VWC on each of the
key steps in intelligent fault diagnosis for rotating machines.
In addition, techniques proposed in the literature to mitigate
these effects are reviewed and assessed for their relevance in
industrial applications. A bibliometric study is also conducted
to understand the evolution of research in this field over the
past two decades. Beyond providing a synthesis of the existing
literature, this review is intended for researchers, engineers,
and industry professionals seeking to implement robust fault
diagnosis systems under varying operational conditions. It
offers insights on when and how these techniques can be
effectively applied, depending on specific industrial scenarios
and assumptions.

1. INTRODUCTION

Vibration analysis is one of the most commonly used ap-
proaches for fault diagnosis of rotating machines. Since the
development and widespread availability of specialized instru-
mentation, vibration signals have successfully been used for
early detection and characterization of mechanical faults, thus
increasing the safety and reliability of rotating machines. Over
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the years, a multitude of physics-based, data-driven, or hybrid
techniques have been proposed and demonstrated noteworthy
diagnosis capabilities. More recently, the field has been fur-
ther advanced by the advent of Industrial Internet of Things
(IToT) sensors providing large amounts of vibration data au-
tonomously, partly enabling the use of intelligent Machine
Learning (ML) techniques.

However, most of these techniques often rely on the assump-
tion of constant operating conditions. As industrial systems
and manufacturing processes get increasingly more complex,
this assumption is often untrue, resulting in decreased diag-
nosis performance. Consequently, techniques adapted to the
challenges of VWC are needed. This paper offers a compre-
hensive understanding of the development of such techniques.
The challenges induced by VWC are examined at each stage
of the diagnosis process, from data acquisition to health state
classification. We identified two primary challenges: the non-
stationary nature of vibration signals in machines under vary-
ing conditions, and the significant distribution shifts due to
VWC, which challenge the standard assumption that data in
data-driven models are independent and identically distributed.

Many reviews on the topic of intelligent fault diagnosis of
rotating machines have been proposed, some offering a broad
perspective (Tiboni et al. (2022); Wei et al. (2019)), and many
others reviewing the utilization of ML techniques (Tama et al.
(2022); R. Zhao et al. (2019)). Some focused on techniques
tailored for a specific component (Rai & Upadhyay (2016);
T. Wang et al. (2019)) or a specific signal processing technique
(Isham et al. (2019); Yan et al. (2014)). The topic of varying
working conditions is often mentioned as a major challenge
(Fink et al. (2020)) but few works are dedicated to the topic, ex-
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cept (Choudhury et al. (2021), Lin & Zhao (2014)) and D. Liu
et al. (2023)) who reviewed diagnosis techniques for varying
speeds specifically, and (Kan et al. (2015)) who reviewed prog-
nostics techniques for non-stationary and non-linear rotating
systems. Besides that, reviews on Transfer Learning (TL),
such as (C. Li et al. (2020)), often present TL as a mitigation
to the challenges of varying working conditions, but no review
encompassing all the research effort on the topic of fault diag-
nosis of rotating machines operating under varying working
conditions was found by the authors.

In this context, the present study addresses the following re-
search questions:

Q1: How did fault diagnosis of machines operating under
varying working conditions evolve in terms of publications
and sources in the past 20 years?

Q2: What are the challenges specific to the fault diagnosis of
machines operating under varying working conditions?

Q3: What are the steps needed to perform fault diagnosis of
machines operating under varying working conditions?

Our contribution aims to provide researchers and practitioners
with a comprehensive understanding of the literature related to
the fault diagnosis of rotating machines operating under vary-
ing working conditions while giving a technical description of
the methods commonly utilized.

The rest of this paper is organized as follows, Section 2
presents the methodology used to conduct the review. In
Section 3 the results of the bibliometric review are presented,
followed by a technical review of the techniques proposed
for the fault diagnosis of rotating machines operating under
VWC.

2. METHODOLOGY

In this section we will present the methodology utilized for
conducting the systematic review, based on the guidelines of
the PRISMA method (Liberati et al. (2009)). This includes
two main steps: data collection, and method for data analyses.

2.1. Data collection

Web of Science (WoS) was used to construct the initial pub-
lication corpus. Although other data sources such as Scopus
or Google Scholar were considered, Web of Science is widely
regarded as a reference (Moral-Muiioz et al. (2020)) and was
deemed sufficient for our analysis. WoS was queried using
the following keywords: fault diagnosis” AND ”vibration”
AND ((’time-varying” OR "varying” OR ”different” OR “non-
stationary”’) AND (”speed*” OR “working condition*” OR
”load*” OR ”operational condition*”)). The keyword “rotating
machines” was not included as many papers do not explicitly
mention it but rather mention specific components such as the
rolling element bearing. The screening process of the initial

Criterion Example values

Type of VWC Speed, Load, Environmental

A Rolling element bearing,
sset type Gearbox, Rotor...

Time-frequency analysis,

Feature extraction type Order tracking

Short-term Fourier Transform,

Feature extraction details Computed order tracking

Neural Network,

Classification / Decision Support Vector Machine

Speed information Yes, No

Dataset used CWRU, PRONOSTIA...

Table 1. Criteria used for analysis.

corpus of papers is illustrated in Figure 1.

2.2. Analytic method

Each of the items in the corpus was examined and hand-labeled
using an empirically-designed set of 8 criteria of interest given
in Table 1. Even though author-defined or journal-defined
keywords could have been used to accomplish the same result,
hand-tagging drastically reduces the risk of false positives and
mislabeling, it also serves as a common ground for analysis.
On top of that, some of the terms regularly used in the literature
can be ambiguous if not given a proper context.

Additionally, VOSviewer and CiteSpace were used to conduct
an automated discovery of the keywords, citation, authors and
journals networks.

Records identified through Wo$S
database searching (n=1896)

Records excluded
(n=41)

Records after duplicate removal
(n=1855)

Records excluded:
- Full-text unavailable (n=208)
- Review (n=63)

Records screened
(n=1584)

Articles reviewed with elibility
criteria
(n=1360)

Irrelevant records excluded
(n=223)

Articles included in review
(n=1302)

Figure 1. Methodology for the selection of the articles to be
included in the review.
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3. BIBLIOMETRIC ANALYSIS
3.1. Papers

The fault diagnosis of rotating machines operating under vary-
ing working conditions literature has received a lot of interest
in the past few years (Figure 2). Indeed, the majority of all
publications included in this study were published in the past
5 years.

Figure 2 illustrates the growing interest in data-driven methods,
where in the recent years more than half of all collected papers
proposed a data-driven fault diagnosis scheme.
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Figure 2. Number of publications per year since 2000.

3.2. Datasets

With the rise of data-driven methods, it is essential to take
interest in the datasets most often used in the literature. It is
especially important since the lack of large-scale databases
of vibration data is often recognized as a major pitfall of
the current fault diagnosis research (Sun et al. (2023)). The
open datasets most often encountered in the literature are
summarized in Table 2.

Based on this table, the small number of available datasets
must be noted in light of the vast variety of mechanical sys-
tems found in industrial environments. Moreover, one can
see that the representation of truly variable and dynamically
changing working conditions is largely lacking. This might
explain why, when examining the distribution of datasets used
in fault diagnosis literature (focused on variable working con-
ditions), most experimental setups employed to validate the
methods are ad-hoc closed-source datasets, as shown in Fig-
ure 3. This significantly hinders the proper evaluation and
comparison of data-driven methods, and limits the assessment
of the generalization capabilities and the applicability of the
proposed methods to real industrial applications.

Closed-source 73.6%

CWRU

Ottawa Univ. 6.5%

Other 4.6%

0% 10% 20% 30% 40% 50% 60% 70% 80%
Proportion (%)

Figure 3. Distribution of the most commonly used datasets
for the fault diagnosis of rotating machines operating under
variable working conditions.

REB 59.2%
Gear
Shaft
Other 4.7%
0% 10% 20% 30% 40% 50% 60%

Proportion (%)

Figure 4. Distribution of the most commonly studied mechan-
ical components in the literature.

3.3. Mechanical components under study

Rotating machines can experience a multitude of mechani-
cal faults, depending on their structure and function. In the
literature, we find several key mechanical components often
studied, as they were found to be the most common cause
of machine breakdown in the field. The distribution of said
components is given in Figure 4.

Evidently, there is a large interest in the study of Rolling
Element Bearings (REBs), this finding is consistent with the
industrial setting as REB faults are often cited as the most com-
mon mechanical failure among rotating machines (G. Singh &
Ahmed Saleh Al Kazzaz (2003)).

3.4. Keywords

An automated keywords discovery has been conducted with
VosViewer and is illustrated by Figure 5. These keywords
offer an initial understanding of the underlying topics and
challenges related to the intelligent fault diagnosis of rotating
machines operating under VWC.
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Dataset Test component Accelsrort;:égl:eilég Faults Working conditions
T per bearing Artificial
Case Western Reserve University (CWRU (2021)) Bearing Sampled at 12kHz inner and outer Multiple static loads
and 48 kHz raceways
R . . per bearing frsen p ultiple static
Paderborn University (Lessmeier et al. (2016)) Bearin, ! beari lller;lﬁr::liiaieil:(}n"fgre ferated Multipl i
sty (Less : g Sampled at 64 kHz ; speed and load
and outer raceways
2 per bearin Run-to-failure inner, outer
Center for Intelligent Maintenance Systems (Qiu et al. (2006)) Bearing S;Fmpled at 2g0 kHz rzllcewa}t/s and rolling Fixed
elemen
o T on the motor Artificial chipped or Multiple static
Southeast University (Shao et al. (2019)) Gearbox 3 per gearbox missing tooth, root speed and load
Sampled at 50 kHz and surface fault
S . T per bearing Artificial inner and outer Dynamic variations
Ottawa University (H. Huang et al. (2018)) Bearing Sampled at 200 kHz raceways in speed
1 per component Artificial inner and outer Dynamic variations
Ottawa University (Sehri & Dumond (2024)) Bearing Sfmple d apt) 42 kHz raceways, unbalance, misalignment, inyspee d ;
bowed and broken rotor
I per bearing e ] . .
Society for Machinery Failure Prevention Technology (MFPT (2013)) Bearing Sampled at 97.656 kHz i:rctégcalal inner and outer g'[uhép le st;uc loads
and 48.828 kHz S 1xed spee
A L . 2 per bearing Run-to-failure outer, inner Multiple static
Xi'an Jiaotong University (B. Wang et al. (2020)) Bearing Sampled at 25.6 kHz raceways, rolling element, cage speed and load
" j . 2 per bearing ‘Unknown run-to-failure .
Pronostia (Nectoux et al. (2012)) Bearing Sampled at 25.6 kHz faults Fixed
2 at each end of the P . ‘ ,
Artificial missing, Multiple static
PHM data challenge (2009) Gearbox gzanrlz?é(d A1 6.6 KTy chipped tooth speed and load

Table 2. Datasets regularly used for the evaluation of fault diagnosis of rotating machines methods.

domain adaptation

geatbox
convolutional ieural network

intelligent fault diagnosis

vibratid@signal
transfeglearning
beating
machineilearning

feature @xtraction
rotating @achinery

osis
bearing fault diagnosis

rolling bearing

fault

vibrations

conditionimonitoring

variable speed
planetary gearbox
time-frequency analysis

Figure 5. Automated keyword discovery generated using
VosViewer.

Indeed, common keywords related to the broader fault diag-
nosis literature can be found, such as “feature extraction” or
“machine learning”. However, the presence of keywords such
as “time-frequency analysis” or “transfer learning” hint to
methods specific to the VWC case.

This network allows for the identification of central themes,
such as ”fault diagnosis” and its strong connections to ’fea-
ture extraction” and “machine learning.” Prominent objects of
study like “’rolling bearing” and “gearbox” are also evident.
Crucially, keywords such as “variable speed,” "time-frequency
analysis,” “transfer learning,” and ”domain adaptation” high-
light the specific challenges and specialized methodologies
pertinent to diagnosing faults under varying working condi-

vibratiomsanalysis

tions (VWC). Examining these relationships provides an initial
understanding of the main topics, common components stud-
ied, and key trends in addressing VWC.

4. PROBLEM STATEMENT

The goal of vibration-based fault diagnosis of rotating ma-
chines is typically to identify vibratory signatures that are
symptomatic of a mechanical fault and infer a diagnosis. To do
so, a multitude of signal processing and data-driven techniques
have been proposed over the years. However, constant work-
ing conditions are often assumed, which is far from guaranteed
in real industrial applications. Indeed, mechanical systems
often operate under varying working conditions, depending
on their task and environment. Most often, the variations
in working conditions manifest themselves as varying speed,
varying load changes in the environment of the machine. In
the following, the effects induced by each of these variations
will be discussed.

Speed variations are the most commonly addressed type of
working condition in the literature, given their prevalence in
industrial settings. While many condition monitoring systems
are designed to collect acceleration signals at constant speeds,
this is not always feasible in practice. A notable example is
a wind turbine, which experiences natural variations in speed
due to changing wind conditions.

The typical fault frequencies found in rotating machinery are
closely associated with the rotational frequency of the shaft.
As such, when the shaft speed varies over time, the fault fre-
quencies inevitably exhibit similar variations. This dynamic
change in fault frequencies significantly complicates the task
of identifying defective components. Consequently, this com-
plexity renders a vast array of signal processing techniques,
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which are typically effective in constant-speed environments,
inadequate and ineffective for addressing scenarios where the
shaft speed is not constant.

Changes in the load managed by machinery can also signif-
icantly influence vibration characteristics. Different loads
modify the mechanical stresses and strains on machine compo-
nents, thus altering the vibration signals. Traditional vibration
monitoring assumes that shifts in vibration signals stem from
mechanical defects, so a fluctuating load can lead to erroneous
diagnoses. For instance, dynamic loading in gearboxes has a
strong influence on mesh stiffness effects, which significantly
alters the waveform of the resulting vibration signals.

Finally, environmental noise is a very common challenge in
vibration-based fault diagnosis, as it hides the signal of in-
terest and prevents early detection of mechanical failures. A
common assumption of most denoising techniques is that the
noise is normally distributed. However, environmental or
process-related noise having impulsive characteristics can be
encountered, notably in mining processes such as crushing or
milling. Many fault detection techniques rely on finding an
informative frequency band which contains weak impulsive
characteristics, often symptomatic of a fault. The presence of
impulsive noise can mislead the frequency band identification
process, thereby missing the fault.

From this, we can identify two main challenges induced by
VWC, which are stated in the following.

4.1. Challenge 1: effects of VWC on the vibration signals

From what precedes, it can be concluded that vibration signals
originating from machines operating under VWC are non-
stationary. Extracting meaningful health information from
such signals is a challenging task which necessitates ad hoc
signal processing tools (Abboud et al. (2016)).

4.2. Challenge 2: effects of VWC on data distributions

As stated previously, intelligent ML-based diagnosis methods
have received great attention recently as they achieve state-
of-the-art performance. One key assumption of most ML
algorithms is that training and testing data are sampled from
the same underlying distribution. The intrinsic uncertainty of
varying working conditions challenges this assumption, as it
is often difficult to guarantee that the whole operating range of
the machine has been well captured in the training data, espe-
cially as fault data are very difficult to obtain. Consequently,
out-of-distribution (OOD) testing samples can appear, severely
hindering the diagnosis capabilities of the ML systems, espe-
cially with Deep Learning (DL) models which could classify
OOD samples into a class with high confidence. The OOD
problem is well known and receives significant attention in
theoretical ML research (J. Ren et al. (2019)). In the field of
intelligent fault diagnosis, it has been recognized as a major

Additional hardware
Additional data sources

y y y

LData e } #‘ Feature } ‘ Fault detection }

extraction and diagnostic

Non-stationary signals Distribution shifts

Figure 6. The diagnosis process and the challenges of VWC.

challenge of the current ML techniques (Y. Lei et al. (2020)),
with Transfer Learning regularly invoked as its mitigation
(C. Lietal. (2020)).

In the following Section, we will detail the commonly used
fault diagnosis process and review the techniques proposed to
alleviate the challenges described above.

5. DIAGNOSIS PROCESS UNDER VWC

The diagnosis process is traditionally comprised of 3 phases.
The first one being data collection, during which the surveil-
lance signals are collected. We will restrict here our analysis
to vibration signals but other signals such as current, acoustic
emission or temperature are often used as well. The second
phase, feature extraction, aims to extract relevant machine
health information from the acquired signals, typically using
signal processing and statistical tools. The third and final step
is health state recognition, where the extracted features are
fed into a statistical classification model in order to infer the
surveyed machine health states by detecting and characteriz-
ing eventual mechanical faults. The overall process and its
associated challenges are illustrated in Figure 6.

In this section we will detail how the challenges of vary-
ing working conditions have been addressed in each of these
phases.

5.1. Data acquisition

Vibration signals are often collected using piezoelectric ac-
celerometers placed as close as possible to the component
we wish to monitor. An optimal accelerometer placement
is illustrated in Figure 7, although it must be noted that in
real industrial applications such placement is often impossi-
ble as components are hidden by the housing and we must
resort to sub-optimal placement. Some mechanical faults,
such as the ones occurring in rolling element bearings, man-
ifest themselves very high in the spectrum. Consequently,
accelerometers with a high sampling rate must be preferred.

Beyond single-point accelerometers, alternative measurement
schemes such as sensor arrays or multi-modal sensing (e.g.,
combining vibration with acoustic or thermal data) can pro-
vide richer diagnostic information, particularly for complex
or high-dimensional structures. Such multi-channel data may
then necessitate advanced signal processing techniques, includ-
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Extracting meaningful health information from vibration sig-
nals of machines operating under VWC is a difficult task which
often requires the use of dedicated signal processing methods.
Indeed, many of the effects of VWC manifest themselves as
amplitude modulation and frequency modulation, which can

& ~ easily be mistaken for a fault.

Figure 7. Experimental setup used for the PRONOSTIA
dataset (Nectoux et al. (2012)).

ing operational modal analysis (OMA) adapted for varying
conditions to effectively extract relevant fault signatures.

Additional hardware can help alleviate the effects of VWC.
Tachometers, for instance, can be useful to circumvent the chal-
lenges induced by varying speeds. Process data can also be
used to distinguish between working conditions. For instance,
in (Ruiz-Cércel et al. (2016)), process data were used to dis-
tinguish between the operating states of a motor-compressor,
including the temperature, the inlet tank pressure or the air
flow among others. A similar approach was used in (Pawlik et
al. (2025)) where a tachometer signal, a current signal and the
temperature were used alongside the vibration signal to distin-
guish between working conditions. However, it must be noted
that additional hardware might negate one of the strengths of
vibration-based fault diagnosis which is its cost effectiveness,
only requiring very inexpensive and easy-to-install accelerom-
eters.

Given that acquiring vibration data from rotating machines
in real industrial application is a very challenging task, espe-
cially fault examples, most publications use publicly available
datasets summarized in Table 2 or custom experimental se-
tups. As stated previously, the prevalence of the use of custom
laboratory experimental setups is clear. This is partly due to
the fact that most publicly available datasets do not usually
portray variable working conditions.

Despite the availability of public datasets, it’s important to
note that vibration data available in real industrial settings
often differ significantly from idealized datasets, where all
fault modes in all working conditions are equally represented.
Considering realistic data availability scenarios is crucial for
developing techniques that are truly applicable in the field.

In this section, we will review the most commonly used tech-
niques to address this problem and give some application
examples. A summary of the effects of VWC and is given
in Table 3. The methods proposed to alleviate the effects of
varying speed are presented first, since they are by far the most
often considered in the literature.

5.2.1. Variable speed case

Variations in rotating speed cause frequency modulation (FM)
effects and amplitude modulation (AM) effects in the resulting
signals. Specific signal processing tools that can help attenuate
these effects are reviewed in this section.

5.2.1.1 Removing FM effects

Under speed variations, the periodicity of most vibratory
events of interest are no longer constant in time. However,
they are still linked to the main shaft rotation, thus constant
in the angular domain. As such, analyzing the signal in the
angular domain can help overcome the challenges of varying
speed.

Using the Order Tracking (OT) method, the vibration can be
transformed from the time domain to the angular domain to
produce an order (multiple of the rotating frequency) spec-
trum.

Early implementations of OT used analog instrumentation
with variable sampling rate depending on the rotation speed
of the main shaft, but required costly and complex equipment
which hindered the viability of the solution. Computed Order
Tracking (COT) proposes to acquire the signals at constant
time increments and then resample it based on a tachometer
signal. Being fully digital, COT was proven to be much more
usable in real industrial applications. In practice, angular re-
sampling allows the use of traditional cyclostationary analysis
tools, as vibrations signal under limited speed variations are
angle-cyclostationary. A typical example of COT use can be
found in (Randall & Antoni (2011)) where the COT method
is employed to remove the effects of small speed fluctuations
and enhance a rolling element bearing signal, enabling the use
of envelope analysis.

An example of the use of COT is given in Figure 8, where a
vibration signal of a machine under run-up is presented. The
OT operation allows to identify distinct peaks in the squared
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VWC Type Key Impact/Challenge on Diagnosis

Varying Speed Signal non-stationarity (FM/AM effects), shifting fault frequencies, smeared
spectra, making standard frequency analysis difficult.

Varying Load Amplitude modulations, altered mechanical stresses/strains, load-induced vibration

changes can be mistaken for faults.

Environmental Noise (Impulsive/
Non-Gaussian)

Obscured fault signatures, impulsive noise characteristics can mimic fault
signatures, misleading fault indicators (e.g., kurtosis).

General Data Distribution Shifts (due
to any VWC)

Degradation of diagnostic models trained under different conditions, violation of
the Independent and Identically Distributed (i.i.d.) assumption, emergence of

Out-of-Distribution (OOD) samples.

Table 3. Overview of VWC: Types and Key Challenges.

envelope spectrum which are indicative of a rolling element
fault, while the squared envelope spectrum of the time-domain
signal is smeared and doesn’t allow the identification of a
fault.

The COT technique is very useful to allow the utilization of
classical diagnosis tools in the context of varying rotating
speed, however some limitations must be acknowledged. For
instance, the ease of acquisition of vibration signals compared
with other types of surveillance signals makes it a prime option
for scalable fault diagnosis technology. But COT’s need for ad-
ditional hardware able to accurately measure the rotation speed
then negates one of the main advantages of vibration-based
fault diagnosis. Consequently, significant interest has been
directed towards order tracking solutions with no tachometer
requirement.

The main challenge of Tacho-less Order Tracking (TOT) is
then to estimate the Instantaneous Angular Speed (IAS) di-
rectly from the acceleration signal, circumventing the need for
a dedicated instrument. Two main ways of doing so can be
found in the literature.

The first way of extracting the IAS from the vibration signal is
based on time-frequency analysis by tracking harmonics in a
time frequency representation (TFR). A typical early example
of this can be found in (Kwok & Jones (2000)), where an
adaptive STFT was used to produce a TFR, and a multistate
hidden Markov model (HMM)-based post-estimation enabled
the tracking of the instantaneous frequency. Other techniques
adopt more advanced TFA methods, such as in (M. Zhao, Lin,
Wang, et al. (2013)), where the Chirplet Transform was used
to estimate the instantaneous frequency and a Vold-Kalman
Filter extracted the IAS. In (H. Huang et al. (2018)), a multi-
ple curve extraction scheme is proposed using the STFT and
achieved good performance on the fault diagnosis of bearings
operating under unknown rotational speed but noted that a
more advanced TFA technique could improve their results.
Such advanced techniques can be found in (P.-P. Yuan et al.
(2025)), where a spline-kernelled chirplet transform and multi
synchrosqueezing technique was used to produce a TFR with
a very good time-frequency resolution. Other techniques pro-

pose to track multiple harmonics instead of a single one in
order to make use of all vibratory components susceptible
of being present in the signal, such as the ones emitted by
shafts or gears. A fairly recent example of this approach is
the multi-order probabilistic approach (Leclere et al. (2016)).
This approach extracts the IAS by considering the TFR as a
probability density function map of the fundamental rotation
frequency.

The second way of extracting the IAS is based on the instanta-
neous phase demodulation of harmonics. An early example
can be found in (Bonnardot et al. (2005)), where a harmonic
of the gear meshing frequency was used to obtain the IAS in
the case of limited speed fluctuations. A more recent method
which uses a multi-order approach to instantaneous phase
demodulation can be found in (Peeters et al. (2022)).

A comprehensive review of TOT can be found in (S. Lu et
al. (2019)), and a performance comparison of different ap-
proaches can be found in (Peeters et al. (2019)). The ability
of TOT to circumvent the need for an additional speed signal
is its greatest strength, however inferring the rotating speed
of the machine directly from the vibration signal is difficult
to achieve robustly. Moreover, a significant challenge lies in
assessing the accuracy of these estimations in real applica-
tions where the true speed is unknown. This challenge was
addressed in (D. Peng et al. (2023)) where through the use of
several indicators, such as the sparsity of the order spectrum,
the quality of the candidate IAS were assessed, effectively
improving the IAS selection.

In data-driven fault diagnosis, OT has been used as a prepro-
cessing technique in data-driven methods in order to mitigate
the effects of speed variations. For instance in (Z. Lei et al.
(2023)), COT was used as prior knowledge for few-shot fault
diagnosis of rolling element bearings operating under variable
rotating speeds. Similar approaches can be found in (D. Liu et
al. (2021)), (Kim et al. (2024)) or (Gu et al. (2020)).
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5.2.1.2 Removing AM effects

Apart from FM, speed variations also induce AM effects,
which are less studied but present significant challenges. AM
can indeed result from both speed variations and faults. There-
fore, removing AM effects risks eliminating fault-related symp-
toms, while leaving them unchecked can lead to mistaking
speed-related AM effects for a fault.

Two main ways of removing AM effects can be found in the
literature. The first approach proposes to estimate the envelope
of the signal to estimate the speed-related AM effects, and
use it to normalize the signal. This approach was used in
(Urbanek et al. (2017)). In a similar fashion, in (Schmidt &
Heyns (2020)), the square root of the moving median of the
squared envelope was computed to normalize the AM signal.
However, these envelope-based methods can remove fault-
related contributions as they are contained in the envelope,
which constitutes a significant shortcoming.

The other type of approach uses the assumption that the AM
effects are proportional to the square of the rotating speed, and
uses the speed signal to normalize the signal. An example of
this approach can be found in (D. Wei et al. (2019)).

Normalizing vibration signals in data-driven fault diagnosis
can help improve the performance of models across varying
speed conditions. In (D. Wei et al. (2019)), the speed AM
normalization was used before training a Convolutional Neural
Network to diagnose rotor cracks. In (Rao et al. (2024)),

a piecewise power fitting method was used to estimate and
normalize the AM effects before using the normalized data to
train an Autoencoder to detect rolling element bearing faults.

5.2.1.3 Time-frequency analysis

From what precedes, one obvious challenge when performing
fault diagnosis of rotating machines under speed variations is
to analyze the time-varying frequency content of the vibration
signal and extract its local properties in the presence of strong
noise.

Time-frequency analysis (TFA) aims to answer this need by
building a time-frequency representation (TFR), able to repre-
sent the evolution of a signal’s frequency content with respect
to time.

A key property of TFA is given by Heisenberg’s uncertainty
principle : for a continuous time signal z(¢) in L?(R), Heisen-
berg’s uncertainty principle, also referred to as Gabor’s limit,
states that x(t) joint time and frequency resolution cannot
be arbitrarily precise at any given point. As such, tradeoffs
must be made in order to obtain a satisfying TFR within the
limitation of the uncertainty principle.

In this context, we will discuss the 3 main techniques for TFA
commonly used in the literature, that is linear TFA, quadratic
TFA and mode decomposition.



OT type

Component
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References

CcoT

Gearbox

K. Feng et al. (2017)

H. Li et al. (2009)

A. Singh & Parey (2019)
A. Singh & Parey (2017)
J. Yang et al. (2019)

M. Zhao, Jia, et al. (2018)
Y. Li, Ding, et al. (2018)

Bearing

Barbini et al. (2018)
Y. Yang et al. (2013)
Tang et al. (2020)
Ming et al. (2016)

Y. Li, Wei, et al. (2018)
Bouhalais et al. (2018)
X.-h. He et al. (2016)
Y. Guo et al. (2012)

Y. Wang et al. (2017)
Mishra et al. (2016)

Z. Liu et al. (2021)

TOT

Gearbox

J. Wang et al. (2018)
Bonnardot et al. (2005)

Yi et al. (2020)

Z. Feng, Qin, & Liang (2016)
Z. Feng, Chen, & Liang (2016)
X. Jiang & Li (2016)

Bearing

Khan & Kim (2016)
Siegel et al. (2012)

J. Wang et al. (2019)
J. Wang et al. (2016)
Y. Wang et al. (2019)
Gu et al. (2020)

B. Chen et al. (2018)
T. Wang et al. (2014)
Y. Li et al. (2023)

X. Wang et al. (2020)
Niu et al. (2019)

L. Wang et al. (2019)
M. Zhao, Lin, Xu, & Lei (2013)
S. Guo et al. (2020)
Kumar et al. (2021)

Table 4. Examples of OT use in the literature.

5.2.1.3.1. Linear TFA

Linear TFA produces a TFR by correlating the signal with one
or more basis waveforms localized in time and frequency.

The most obvious basis decomposition technique for TFA, a
direct extension of the Fourier transform to the time-frequency
domain is the Short-Time Fourier Transform (STFT) or Win-
dowed Fourier Transform, given by Eq. 1, which computes
the inner product of the signal z(¢) with time and frequency
sinusoidal functions localized by a window function w(t):

o0

STFT(r, f) = / s(yw(t — 1)e 2"t (1)

—00

The common use of the STFT can be explained by its ease
of implementation and low computational cost. However its
fixed window size imposes a large time-frequency resolution
trade-off. This tradeoff would be acceptable if the components
of interest in the vibration signals had the same time-frequency
resolution, however it is not often the case. An example of
the use of the STFT is given in Figure 9, where the TFR
of a vibration signal collected during a machine run-up is
presented.

The Wavelet Transform (WT), given by Eq. 2 in its continuous
version, is another linear TFA technique which uses wavelets
as its elementary function. A wavelet is a zero-mean finite-
energy oscillation, dilated and translated (b and a coefficients)
in order to obtain a multi-resolution TFR of the input signal.

CWT(a,b) = \}a/_is(t)zp* (lt;[)) a Q)

Choosing the mother wavelet ¢)*(-) is often difficult as a wide
variety of mother wavelets have been proposed over the years
each having a specific set of features. However the multi-
resolution capabilities of the WT alleviate the limitations of
the STFT as shown in Figure 9, making the WT a useful tool
to analyze non-stationary vibration signals. The WT has been
further improved by the Wavelet Packet Transform (WPT),
which offers better high frequency resolution, and the Second
Generation Wavelet Transform (SGWT) which uses a lifting
scheme instead of the WT scaling. A detailed review of their
application for rotating machines fault diagnosis is given in
(Yan et al. (2014)).

There are several examples of the WT used to diagnose fault
on rotating machines running under VWC. For instance, in
(Meltzer & Dien (2004)), the authors used the wavelet am-
plitude in polar coordinates to diagnose faults in gearboxes
operating under varying speed. The authors in (Al-Badour et
al. (2011)) used the WPT to detect rubbing faults on a rotor
under start-up and coast-down. The WT is often used as a de-
noising tool. For instance, in (Mishra et al. (2016)), the DWT
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was used to enhance the fault signature in rolling element
bearings operating under time-varying speed and load.
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Figure 9. Top: Time-domain signal of a rotating machine
during run-up. Bottom: Corresponding spectrogram.

5.2.1.3.2. Atomic decomposition and sparse representa-
tion

Given the very heterogeneous nature of the frequency con-
tent of vibration signals of rotating machines, a single basis
function might not be able to accurately describe all frequency
components embedded in the signal. Atomic decomposition
aims to alleviate this limitation by sparsely characterizing a
signal using a set of multiple basis. It can be considered as an
extension of the classical basis expansion techniques discussed
previously.

Given a redundant and over-complete waveform dictionary
®, the vibration signal x(t) can be linearly approximated by
a sum of decomposition coefficients o weighting atoms ¢
from the collection I' C & (and a residual signal in real-world
scenarios).

Atomic decomposition and sparse representation have received
a significant amount of interest recently and have been used
in several contexts. In (F. Peng et al. (2011)), a multi-scale
chirplets dictionary was used to diagnose a cracked tooth in

o
=

(9]

ing sp

otat

-4

Intensity [dB]

a gearbox operating under time-varying rotational speed. In
(Cui et al. (2014)), an impulse dictionary was designed to
diagnose faults in rolling element bearings operating under
time-varying speed. Authors in (H. Wang et al. (2020)) used
the K-SVD algorithm to adaptively learn a fault dictionary in
order to diagnose bearing faults. A comprehensive survey can
be found in (Z. Feng, Zhou, et al. (2017)).

Linear TFA also sometimes serves as a support for very popu-
lar fault diagnosis techniques. For instance, the widely used
Spectral Kurtosis (Antoni & Randall (2006)) exploits the STFT
to aid the design of an optimal filter for detecting transients.
Moreover, linear TFA has been successfully used to analyze vi-
bration signals of machines operating under variable working
conditions, however the choice of a basis function inevitably
introduces a bias in the resulting TFR.

5.2.1.3.3. Quadratic time-frequency analysis

Quadratic or bilinear TFA doesn’t use analyzing functions like
linear TFA, but correlates the signal with a time and frequency
translation of itself, resulting in the finest time-frequency res-
olution possible within the uncertainty principle limit as it is
not bounded by the time-frequency resolution of any basis
function. The basis of most quadratic TFA techniques is the
Wigner-Ville Distribution (WVD), given by Eq. 3 where 7 is
the time lag.

oo T * T —i2wfT
s(t+§)s (t 5)6 dr

3
The main deficiency of the WVD is the cross-term interfer-
ence, which is especially problematic for its application to
vibration signals that are the result of multiple source com-
ponents. Several techniques have been proposed to alleviate
the cross-term interference problem using a carefully chosen
kernel function, such as the Choi-Williams distribution (Choi
& Williams (1989)) and more generally the Cohen Class dis-
tribution (Cohen (1989)), but they fail to conserve the full
time-frequency resolution of the WVD.

WVD(t, f) = /

—00

Some applications of quadratic TFA can be found as in (Climente-
Alarcon et al. (2015)) for instance where the WVD is used
to diagnose a broken bar and a short circuit in an induction
motor under varying load. In (Guan et al. (2019)), Cohen’s
class distribution was used with the generalized demodulation
to diagnose gear wear in a planetary gearbox operating under
time-varying speed and load.

5.2.1.3.4. Adaptive mode decomposition

Adaptive mode decomposition techniques aim to decompose
the input signal into a set of natural oscillatory modes imbed-
ded in the signal and called Intrinsic Mode Functions (IMFs).

10
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As such, mode decomposition is fully adaptive and doesn’t
rely on any basis function.

The Empirical Mode Decomposition (N. E. Huang et al. (1998))
algorithm is the earliest example of a mode decomposition
method. It successively extracts the IMFs by using the local
extrema of the signal to fit a cubic spline and subtracting it
from the signal until a monotonic residual is obtained. The
Hilbert transform is then used on each of the IMFs to compute
the instantaneous frequency and obtain a TFR. The original
EMD has shown promising performances, but the method
lacks rigorous mathematical formulation, is sensitive to noise
and suffers from the mode mixing problem where, in the pres-
ence of closely spaced spectral components or intermittence in
the signal, different components can be grouped into a single
IMF.

Consequently, many methods have been proposed to iterate
on the promises of EMD and alleviate its shortcomings. The
Ensemble Empirical Mode Decomposition (EEMD) (Wu &
Huang (2009)) and the Complete Ensemble Empirical Mode
Decomposition with Adaptive Noise (CEEMDAN) (Torres et
al. (2011)) use noise to facilitate the IMF separation, the Lo-
cal Mean Decomposition (LMD) (Smith (2005)) obtains IMF
using data smoothing rather than cubic spline fitting, the Intrin-
sic Time-scale Decomposition (ITD) (Frei & Osorio (2007))
produces proper rotation component (PRC), the Empirical
Wavelet Transform (EWT) fills EMD’s need for a rigorous
mathematical formulation by adaptively building wavelets,
the Variational Mode Decomposition (VMD).(Dragomiretskiy
& Zosso (2014)) received a lot of attention recently due to
its high noise resistance. The Synchrosqueezing Transform
(Daubechies et al. (2009)) is also based on the idea of EMD
coupled with wavelet analysis. A detailed review of the mode
decomposition methods can be found in (Z. Feng, Zhang, &
Zuo (2017)).

Despite the wide use of decomposition methods for fault di-
agnosis of rotating machines operating under VWC, most of
these techniques are ill-suited for this task as they perform
poorly if the working conditions experience harsh variability
(Z. Feng, Zhang, & Zuo (2017)). On top of that, there’s no
guarantee that the extracted IMFs contain any relevant diag-
nosis information, especially if an energy metric is used as
an objective function as most mechanical faults have weak
signatures. The last issue common to any adaptive method lies
in its sensitivity to modifications in the signal which can result
in widely different decompositions and is thus very unstable
for comparison.

A summary of the aforementioned TFA techniques, along with
their strengths, limitations and application examples can be
found in Table 5.

5.2.2. Varying load case

In some cases, the loading condition of a machine directly
affects its rotating speed, which is the reason both effects are
often considered simultaneously. Load variations cause ampli-
tude modulations which also complicate the diagnosis process
as they can be mistaken for a fault (Stander et al. (2002)).
Despite the fact that very few papers consider the effects of
varying load independently compared with the variable speed
case, some notable proposals can be noted. Since the main
challenge in case of varying load is still the accompanying
non-stationarity of the signal, we find the use of TFA to han-
dle these signals. For instance, in (X. Wang et al. (2010))
the authors used the CWT and the Time-synchronous average
to attenuate the effects of varying load and compute load-
independent health indicators to diagnose fault in a gearbox.

Several normalization methods aiming at removing ampli-
tude modulation effects have been proposed. For instance, in
(Schmidt & Heyns (2020)), a method to normalize the ampli-
tude modulation caused by varying working conditions based
on the analytic signal is proposed.

5.2.3. Varying environmental noise case

Apart from the variations in speed and load, changes in the
background noise characteristics of the acquired vibration
signal can also cause significant hurdles. The presence of
impulsive noise can be directly linked to the process, as is
often the case in the mining industry for instance in milling
or crushing operations. Most traditional fault diagnosis tech-
niques assume that impulsive behavior is linked to a fault. For
instance, a classical REB fault diagnosis technique consists in
identifying the frequency band exhibiting high kurtosis, which
is high impulsiveness. Hence, the presence of non-gaussian
noise might break this diagnosis scheme (Antoni (2007)).

Several methods have been proposed to eliminate the impul-
sive noise in the signal. Some examples include the use of
different impulsivity indexes such as the Gini index (Miao et
al. (2022)). The use of the Infogram (Antoni (2016)) can also
be considered to be less sensitive to impulsive noise.

5.2.4. Learning-based feature extraction in VWC

In the previous sections, ad hoc methods to overcome the chal-
lenges of specific types of working condition variations were
presented. Recently, a lot of interest has been directed towards
Deep Learning (DL) methods for their ability to automate
the feature extraction step. Deep autoencoders (Z. Yang et
al. (2022)), Deep belief networks and Convolutional Neural
Networks (Jiao et al. (2020)) are the DL architectures most
often used for their ability to extract features from the raw
signals directly, but other architectures such as Recurrent Neu-
ral Networks (RNN) are also often encountered (Z. An et al.
(2020)).
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Method

Pros

Cons

Application examples

Linear methods

Short-Term Fourier
Transform (STFT)

Widely used,
Easy to implement,
Computationally efficient

Fixed window size, large
time-frequency tradeoff

Z. Feng et al. (2019)
D. Liu et al. (2018)
T. Wang et al. (2014)
S. Wei et al. (2021)
J. Shi et al. (2019)

‘Wavelet Transform (WT)

Multi-resolution analysis,
Effective for transient detection

Mother wavelet selection,
limited time-frequency resolution

Heidari Bafroui & Ohadi (2014)
Mishra et al. (2016)

Al-Badour et al. (2011)
Gangsar & Tiwari (2018)

Atomic decomposition

Use of multiple time-frequency
atoms

Difficult dictionary design
High computational cost

J. Wang et al. (2019)
Cui et al. (2014)

F. Jiang et al. (2021)
G. He et al. (2016)
Cui et al. (2016)

Quadratic methods

‘Wigner-Ville Distribution
(WVD)

Highest possible time-frequency
resolution

Cross-terms interference

K. Lietal. (2013)
Climente-Alarcon et al. (2015)
Baydar & Ball (2000)

Cohen class Distribution

Partly suppresses the cross-terms
of the WVD

Decreased time-frequency
resolution compared
with WVD

Guan et al. (2019)

Adaptive mode decomposition

Empirical Mode Decomposition
(EMD)

Adaptive approach

Mode mixing
Lack of rigorous theoretical
basis

Ziani et al. (2019)
Saidi et al. (2014)
Sharma & Parey (2017)
H. Liu et al. (2016)

Ensemble Empirical Mode
Decomposition (EEMD)

Reduced mode mixing
Resistance to noise

Computational complexity
Noise level choice

J. Chen et al. (2018)
H. Chen et al. (2017)
Bouhalais et al. (2018)
B. Chen et al. (2018)

Local Mean Decomposition
(LMD)

Better time-frequency resolution
than EMD

Computational complexity
Mode mixing

Y. Yang et al. (2013)
Hou & Lee (2019)
W. Liu et al. (2012)

Intrinsic time-scale
decomposition (ITD)

Low computation complexity
Guarantee of physically
meaningful PRCs

Low time resolution

A Huetal. 2017)
Yu et al. (2021)
X. An et al. (2012)

Empirical Wavelet Transform
(EWT)

Rigorous theoretical basis

Lower performance on
highly varying signals

Y. Hu et al. (2018)
Pan et al. (2016)

Variational mode decomposition
(VMD)

Rigorous theoretical basis
Robust to noise

Lower performance on
highly varying signals

Sharma & Parey (2020)
Xu et al. (2020)

S. Chen et al. (2019)
H. Ren et al. (2019)

J. Zhang et al. (2020)

Table 5. Summary of the TFA techniques with their strengths and limitations along with some application examples.
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Despite the state-of-the-art performance of DL methods, they
tend to encounter a decrease in accuracy when confronted with
VWC. Consequently, improved architectures of traditional
DL methods have been proposed. For instance, a CNN with
wide convolution kernels was shown to have better robustness
to varying loads in (W. Zhang et al. (2018)). Similarly, in
(D. Peng et al. (2020)) a Multibranch and Multiscale CNN was
shown to have better resistance to noise and load variations.

Some DL architectures have also been modified to better han-
dle speed variations. For instance, the authors of (Rao et al.
(2023)) proposed an autoencoder architecture which includes
speed normalization to achieve fault detection in a gearbox. A
similar idea has been utilized in (Z. Yuan et al. (2023)), where
a speed-adaptive graph convolutional network is proposed for
the fault diagnosis of a wheelset-bearing system. In (Xie et al.
(2025)), a pyramid attention residual network is proposed to
handle the diagnosis of various rotating machines operating
under sharp speed variations.

Other approaches still rely on a preprocessing step using clas-
sical signal processing tools in order to learn a meaningful
feature set. A very common practice is to produce a two di-
mensional Time-Frequency Representation (TFR) using Time-
frequency Analysis (TFA) and feed it into a DL model as a
2D image. For instance, the authors of (L.-H. Wang et al.
(2017)) used the STFT to create a spectrogram and feed it into
a CNN achieving up to 100% diagnosis accuracy on a motor.
In (M. Zhao, Kang, et al. (2018)), Wavelet Packet Transform
coefficients were used as input of a Deep Residual Network to
diagnose faults in a planetary gearbox.

However, these applications of DL-based feature extraction
do not derogate from the overarching critique of DL in fault
diagnosis, namely:

* Interpretability: there’s no guarantee that the features
learned by the DL models carry any physically meaning-
ful information.

* Generalization capabilities: as a consequence of the first
item, the overall poor generalization capabilities of tradi-
tional shallow learning algorithms are further hindered by
the eventual overfitting of DL architectures.

* Need for large amounts of varied quality training data: the
success of deep architectures in computer vision and natu-
ral language processing is inextricably linked to the avail-
ability of large amounts of quality, varied training data.
As stated before, quality vibration datasets are scarce.

e Uncertain ground truth: the partitioning in classes of
most available datasets can be uncertain, more generally
framing the diagnosis task as a one-class classification
problem is a simplistic approach considering the complex
failure modes often encountered in industrial applications.

5.2.5. Statistical Time Series Models

Beyond direct signal processing, advanced statistical time se-
ries models with varying parameters can explicitly capture the
non-stationary nature of vibration signals under VWC. Key ap-
proaches include Linear Parameter Varying (LPV) models, and
Random Coefficient (RC) models, addressing unmeasurable
uncertainties.

To address significant uncertainty and time-dependent dy-
namics, Gaussian Mixture Random Coefficient (GMM-RC)
models have been proposed in (Avendafio-Valencia & Fas-
sois (2017)), in the context of Structural Health Monitoring.
This framework represents the system’s dynamics for each
health state using elementary time-dependent parametric mod-
els (such as a Linear Parameter-Varying Model (LPV) model).
The core idea is that the coefficients of these underlying mod-
els are not fixed but are treated as random variables following
a multivariate Gaussian Mixture Model (GMM). This GMM
structure for the parameters provides considerable flexibility
in representing complex parameter variability due to VWC.

In this context, a LPV-AutoRegressive (LPV-AR) model tai-
lored for gear tooth crack detection under random speed varia-
tions was proposed in (Y. Chen et al. (2021)). In an LPV-AR
model, the autoregressive (AR) coefficients, which describe
how the current signal value depends on its past values, are
not constant but expressed as functions of time-varying op-
erating conditions. For gearbox diagnosis, the instantaneous
rotating speed and the rotating phase of the gear were used as
covariates. This allows the model to adapt to changes in vibra-
tion characteristics caused by speed fluctuations and overcome
their effects.

More recently, a more advanced Sparse LPV-ARMA model
was proposed in (Y. Chen et al. (2025)), which built upon
(Y. Chen et al. (2021)) to include a moving average component
to the model, and a sparsity penalty to avoid overfitting.

These statistical time series models, by allowing parameters
to vary with conditions or by probabilistically modeling pa-
rameter distributions, offer a powerful way to integrate time-
dependencies and uncertainty directly into diagnostic models,
enhancing the accuracy and reliability of fault diagnosis under
VWC.

5.3. Fault Detection and Diagnosis

Variations in working conditions, depending on their nature,
can have a variety of impacts on the vibration signals. Sev-
eral methods to mitigate said impacts have been presented in
the preceding sections, however all effects can often not be
completely alleviated.

Most data-driven learning algorithms, whether it be traditional
ML or state-of-the-art DL models, rely on a fundamental as-
sumption that the training data is sampled from the same
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underlying distribution as the test data. If the effects of VWC
subsist, this inevitably causes discrepancies between the distri-
butions of the working conditions, breaking this fundamental
assumption.
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Figure 10. Probability density function of healthy vibration
signals sampled at three different rotating speeds.

The distribution discrepancy between working condition is
exemplified in Figure 10, where the probability density func-
tion of the variance of healthy signals from the University of
Ottawa dataset (Sehri & Dumond (2024)) are plotted at three
different rotating speeds. The obvious variance differences
highlight the distribution shifts caused by varying rotating
speed (Qian et al. (2024)).

Consequently, a model trained on a given working condition,
say at a given rotating speed, sees its performance significantly
degrade when departing from said rotating speed. This prob-
lem is known as a distribution shift, and is widely studied
across many fields, not limited to the fault diagnosis of rotat-
ing machines. Examples of distribution shifts include models
in medical imaging failing across hospitals due to variations
in equipment, species recognition models underperforming
in new wildlife locations due to environmental differences,
and molecular property prediction models struggling with new
chemical structures they weren’t trained on (Koh et al. (2021)).

This problem could be alleviated by using training data rep-
resentative of all working conditions. However collecting
sufficient data is tremendously difficult, especially samples
depicting mechanical faults.

In light of this, several approaches to this problem have been
proposed based on the data availability scenario considered.
We find two main learning paradigms in the literature: Do-
main Adaptation (DA) and Domain Generalization (DG). The
difference between DA and DG is illustrated in Figure 11. In
both these approaches, a domain refers to a set of data char-
acterized by a specific working condition. The domain shift
is characterized by the difference in conditional and marginal
distributions between domains. The goal is then to use the
source domain, which is available and fully labeled, to train

a model which generalizes well to an unlabeled or scarcely
labeled target domain. Both learning paradigms are discussed
in the following sections.

5.3.1. Domain Adaptation

In DA, it is assumed that a fully labeled source domain is
available, and that the target domain is also available during
training, but is unlabeled or scarcely labeled. The learning
process is then modified to take into account the target domain,
and align the target distribution with the source distribution.
We generally find two main ways of achieving this: feature
alignment and adversarial training.

Feature alignment methods aim to reduce domain shifts by
incorporating a discrepancy measure in the learning objective.
Typical discrepancy measure include the Maximum Mean Dis-
crepancy (MMD), the Multiple Kernel Variance MMD (MK-
MMD), the Wasserstein distance, and the Deep Correlation
Alignment (CORAL). Early examples of this approach can be
found in (W. Lu et al. (2017)), where a Deep Autoencoder is
trained with a MMD term to align the marginal distributions
between domains in order to diagnose gearbox faults at differ-
ent running speeds. A similar approach in (Wen et al. (2019))
is adopted to diagnose bearing faults across different loads.
More recent methods propose to also consider the alignment
of the conditional distribution, as only aligning the marginal
distributions can be insufficient. Examples of joint distribu-
tion adaptation can be found in (Han et al. (2020)) where
pseudo-labels were used to align the conditional distributions,
or in (Zhong et al. (2024)) where the the MK-MMD is used to
align the marginal distributions, and the Wasserstein distance
is used to align the conditional distributions for the diagnosis
of bearing across loading and rotating speed conditions.

Adversarial methods were first introduced in (Ganin et al.
(2016)) with the Domain Adversarial Neural Network (DANN).
This adaptation mechanism inspired by Generative Adversar-
ial Networks aims at matching the source and target distribu-
tions by encouraging the feature extractor to generate domain-
invariant representations. It achieves this by training a domain
classifier to distinguish between the source and target domains,
while simultaneously training the feature extractor to confuse
the domain classifier, leading to aligned feature spaces across
domains. A typical example of this approach can be found
in (Han et al. (2019)), where adversarial training is used to
build a CNN which generalizes well across speed and load
conditions. A more recent study (Y. An et al. (2023)) employs
adversarial training as part of the Domain Adaptation Net-
work based on Contrastive Learning (DACL) for bearing fault
diagnosis under variable working conditions.

Although effective, DA still assumes that a unlabeled target
domain is available during training, which can be unrealis-
tic in real-world scenarios. Indeed, the acquisition of fault
data, even unlabeled, is very difficult. Consequently, a more
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CLASSICAL APPROACH

DOMAIN ADAPTATION

DOMAIN GENERALIZATION

wC1

— Variations in working conditions
cause missclassifications of the model

trained on Working Condition 1 (WC1) training

— The unlabelled or scarcely labelled
WC2 can be aligned with WC1 during

wcC1

— WC1 and WC2 are used to build a
model which generalizes to unseen
WC3 and WC4

O Accessible during training :/ Unseen before testing — -

— Model decision boundary

Figure 11. The differences between the classical approach, Domain Adaptation and Domain Generalization.

challenging but realistic scenario consists in considering that
the target domain is unseen before testing. This is the Do-
main Generalization problem statement, it is discussed in the
following section.

5.3.2. Domain Generalization

In Domain Generalization, multiple source domains are used
to extract domain-invariant knowledge, able to generalize to
domains unseen during training. Various ways of addressing
DG can be found in the literature.

Some propose to use data augmentation techniques to expand
the training data with transformations similar to the ones sus-
ceptible of being provoked by varying working conditions.
In (X. Li et al. (2020)) for instance, signals from the source
domains were augmented via time-stretching, and a signifi-
cant increase in performance was achieved in diagnosing shaft
cracks across different rotating speeds. In (Y. Shi et al. (2023)),
an improved version of the popular data augmentation tech-
nique Mixup (H. Zhang et al. (2018)) was used to build a
model able to generalize across different speed and load con-
ditions. While these methods have been proven to be useful
in some situations, their performance greatly depends on the
credibility of the augmented samples. However, as mentioned
previously, the effects of varying working conditions can be
very complex depending on the structure of the machine, and
it is then difficult to build realistic augmentations.

Others try to learn domain-invariant representations. Cur-
rent approaches often rely on adversarial training to mitigate
discrepancies between multiple source domains. Typical ex-

amples can be found in (L. Chen et al. (2022)) where multiple
source domains are used to learn domain-invariant representa-
tion through adversarial learning between a feature extractor
and a domain classifier, or in approaches like the relation-
ship transfer domain generalization network (RTDGN), which
employs an adversarial network with several domain discrimi-
nators to enhance domain confusion and reduce distribution
discrepancies between source and target domains without re-
quiring target domain samples during training (Qian et al.
(2023)).

Other notable examples of DG include (H. Ren et al. (2023))
where a domain-invariant feature fusion networks (DIFFN)
is proposed, fusing intra-domain and inter-domain invariant
features to improve the model generalization across vary-
ing speed, load torque and radial force. In (R. Wang et
al. (2023)), a domain generalization network with multiple
domain-specific auxiliary classifiers is proposed, which re-
moves domain-specific features through a convolutional auto-
encoder and aligns feature distributions across source domains
to enhance diagnosis generalization to unseen working condi-
tions.

An even more challenging problem than DG considers the case
where a single source domain is available during training. Sev-
eral single-source methods have been proposed, for instance
in (C. Zhao & Shen (2023)), an adversarial mutual informa-
tion guided single domain generalization network (AMINet)
is introduced for intelligent fault diagnosis. The AMINet
framework generates fake target domains through a domain
generation module and uses mutual information minimization
to handle significant distribution discrepancies, enhancing gen-
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eralization to unseen rotating speeds. Other methods include,
(Pu et al. (2024)) introduced a single-domain incremental gen-
eration network (SDIGN) for machinery fault diagnosis, which
incrementally generates augmented domains from a single
source domain to simulate various working conditions. The
model combines adversarial and contrastive learning strate-
gies to extract domain-invariant features and enhance gener-
alization to unseen target domains. Furthermore, (J. Wang
et al. (2024)) proposed the multi-scale style generative and
adversarial contrastive networks (MSG-ACN), which employs
multi-scale style learning and adversarial contrastive learning
to generate diverse samples from a single domain, enhancing
the model’s ability to generalize across unseen conditions.

Despite the aforementioned proposals, the DG problem in
cross-working condition scenarios is still a very difficult prob-
lem. A recent benchmark study on domain generalization
showed that state-of-the-art methods still struggle to general-
ize across significant changes in working conditions (C. Zhao
et al. (2024)).

5.3.3. Self-Supervised learning

Beyond Domain Adaptation and Generalization, Self-Supervised

Learning (SSL) offers a compelling alternative strategy to the
challenges of VWC. Self-Supervised Learning (SSL) lever-
ages abundant unlabeled data to learn meaningful represen-
tations, reducing reliance on scarce labeled datasets. This
typically involves a pre-training stage where a model learns
from the data itself followed by fine-tuning on a small labeled
dataset for the specific diagnostic task. Notable works in the
context of VWC include (L. Yang et al. (2023)), where a
signal masking and reconstruction strategy is used. Their self-
supervised training enables an autoencoder to learn effective
representations from unlabeled data under VWC by under-
standing signal context to restore masked segments, which
then aids fault diagnosis with limited labeled samples. A more
recent study (Song et al. (2025)) uses the same masking princi-
ple within a teacher-student architecture where reconstruction
tasks grow in difficulty.

SSL’s main advantage for VWC is its ability to utilize exten-
sive unlabeled data. Pre-training on diverse signals across
various working conditions allows the model to learn features
inherently robust to these variations.

6. FUTURE RESEARCH PROSPECTS

The domain of vibration-based data-driven fault diagnosis
for rotating machinery operating under varying working con-
ditions (VWC) has seen significant advancements. Several
critical challenges remain for future investigation to enhance
the robustness and practical applicability of diagnostic systems.
This section outlines key directions for future research.

* Development of Comprehensive and Realistic VWC

Datasets: A persistent challenge in the field is the scarcity
of large-scale, publicly available, and diverse datasets that
represent real-world VWC. Future efforts should prior-
itize the creation of benchmark labeled datasets. These
datasets need to encompass a wider variety of rotating
machinery types beyond common examples like bearings
and simple gearboxes. They must also include a com-
prehensive range of fault types, such as incipient and
compound faults, to test the sensitivity and specificity of
diagnostic methods.

¢ Enhancing Generalization and Interpretability of Deep
Learning Models: While Deep Learning (DL) models
have shown considerable promise, their generalization
capabilities across unseen VWC and their inherent “black-
box” nature remain significant concerns. Future research
should focus on developing novel DL architectures that
are inherently more robust to significant domain shifts in-
duced by VWC. Methods for improving the interpretabil-
ity and explainability of features learned by DL models in
the context of VWC are already a rapidly evolving field
of research and are indispensable for real-world adoption
of data-driven diagnosis systems.

Real-World Validation, Deployment Challenges, and
Scalability: Bridging the gap between laboratory re-
search and real-world industrial applications is a critical
step. Future work must emphasize the rigorous validation
of proposed methods on data from actual industrial ma-
chinery operating under genuine VWC, moving beyond
reliance on laboratory test rigs or limited public datasets.
This is easier said than done, since industrial environ-
ments are notoriously hard to operate in, however this
step is critical to build and deploy data-driven diagnosis
systems in the future.

* Beyond diagnosis: Beyond detecting and diagnosing
faults, the ultimate goal in many industrial settings is to
predict the Remaining Useful Life (RUL) of components
and optimize maintenance decisions. Future work should
focus on integrating VWC-robust diagnostic features into
prognostic models to improve the accuracy of RUL esti-
mations, especially under variable operating profiles that
can significantly impact degradation rates.

7. CONCLUSION

The fault diagnosis of rotating machines operating under vary-
ing working conditions (VWC) is a challenging topic. The
presence of non-stationary signals and distribution shifts in-
duced by changes in operating speed, load, and environmental
noise necessitates the development of robust diagnostic tech-
niques. This paper provided a comprehensive review of vari-
ous signal processing and data-driven methods that have been
developed to address these challenges. Despite recent advance-
ments, especially with the integration of machine learning and
deep learning, significant hurdles remain. These include the
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need for large, representative datasets and improved general-
ization capabilities of models. Future research should focus
on creating more generalized and adaptive methods capable
of functioning reliably in real-world industrial environments
where working conditions are often unpredictable and con-
stantly changing.
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