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ABSTRACT 

Because satellites cannot be repaired once launched, 
operators must detect anomalies early and prevent failures 
before they occur. Thus, satellite telemetry monitoring 
systems need to alert operators of anomalies and provide 
them with useful information to deal with these anomalies. 
However, traditional knowledge-based monitoring systems 
have the challenges of difficulty in building comprehensive 
models and a high dependency on experts. In recent years, 
data-driven approaches have been actively studied with the 
development of machine learning algorithms. These 
approaches solve the challenges of knowledge-based 
methods; however, they are often less capable of explaining 
anomalies than knowledge-based methods. In this study, we 
propose the new telemetry monitoring system with feature 
engineering to explain anomalies. The proposed method 
realizes identifiability of anomaly types and unusual 
telemetry by designing features based on moving averages, 
telemetry periods, waveform differences, and the 
Mahalanobis distance. We applied the proposed features to 
artificial and practical abnormal datasets and evaluated their 
usefulness. The results showed that the proposed method is 
capable of identifying trend, periodic, and waveform 
anomalies, specifying the telemetry in which the anomaly 
occurred and providing the information to operators. 

1. INTRODUCTION 

Although developing satellites requires significant time, 
manpower, and budget, satellite operators are physically 
unable to repair launched satellites. Thus, satellite operators 
constantly monitor telemetry data to detect anomalies as 
early as possible and prevent serious failures that could 
affect the continuation of operations. However, it is very 
labor-intensive for operators to manually identify the causes 
of anomalies from the huge amount of telemetry. Given 

these backgrounds, telemetry monitoring systems must 
provide operators with additional information about 
anomalies in association with alerting them to these 
anomalies. 

The mainstream of telemetry monitoring systems are 
knowledge-based approaches. Limit checking, in which a 
threshold is set for each telemetry, is often used because it is 
easy for humans to understand. Other methods are rule-
based (Mizutani et al, 2009) and model-based (Williams & 
Nayak, 1996), where diagnostic rules and physical models 
are designed in advance. However, constructing appropriate 
thresholds and comprehensive diagnostic rules for complex 
satellite systems is highly time-consuming and labor-
intensive. Moreover, there are problems with the possibility 
of missing unknown anomalies and the high dependence on 
skilled operators. 

With the recent development of machine learning 
algorithms, data-driven health monitoring systems have 
been researched and developed. Data-driven methods reduce 
the effort of constructing models and dependence on experts, 
because anomaly detection models are constructed 
inductively using historical data instead of expert 
knowledge in these methods. In general, anomaly detection 
models are built from normal data using unsupervised 
learning methods owing to the difficulty of obtaining 
anomaly data before training the models (Yairi et al., 2021). 
That is, any data that deviate from usual behavior are 
considered anomaly data; therefore, the models have the 
potential to detect anomalies that are not known by 
operators. Data-driven methods in satellites often use 
predictive modeling approaches because satellites are 
dynamical systems and telemetry is time-series data. Time-
series prediction algorithms, such as long short-term 
memory, are used to forecast future telemetry values, and 
anomaly scores are determined by prediction accuracy 
(Chen et al., 2021; Hundman et al., 2018; Tariq et al., 2019; 
Wu et al., 2020). Other approaches focus on feature 
representations and use autoencoders (Sakurada & Yairi, 
2014), principal component analysis (Barreyre et al., 2019; 
Xiong et al., 2011; Yairi et al., 2017), and dictionary 
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learning (Pilastre et al., 2020). In these approaches, anomaly 
scores are computed as reconstruction errors or distances 
from normal behavior in the feature space. 

As described above, data-driven methods solve the 
problems of knowledge-based methods. However, in many 
cases, the models constructed by unsupervised learning only 
output anomaly scores and cannot contribute to the 
identification of unusual telemetry and anomaly types 
necessary for operators to deal with abnormalities. This lack 
of explainability has been discussed in recent years in 
satellites (Yairi et al., 2021) and other fields, and Yepmo et 
al. (2022) state that anomalies are explained by feature 
importance, feature values, data points comparison, and 
structure analysis. 

Hence, this study aims to develop a telemetry monitoring 
system that can explain anomalies based on feature 
engineering. In the context of telemetry monitoring, 
Barreyre et al. (2019) have focused on feature engineering 
and designed features using fixed functional bases and 
principal component analysis. However, their method does 
not consider anomaly explanations, and it is necessary to 
construct a model for each telemetry to specify abnormal 
telemetry. In this study, we target periodic time-series 
telemetry and propose the feature representation that can 
identify anomaly types and unusual telemetry. First, the 
feature vectors corresponding to each anomaly type are 
extracted from the telemetry using the moving average, 
periodogram, and Kullback–Leibler (KL) divergence. Then, 
those feature vectors are summarized into a three-
dimensional feature vector and anomaly score by two times 
Mahalanobis distance (MD) calculation. In operation, when 
anomaly is detected by monitoring the anomaly score, the 
proposed method suggests the type of anomaly and 
abnormal telemetry by calculating the contribution of each 
feature vector variation. The contributions of this study can 
be summarized as follows: 

• We classified anomalies occurring in periodic time-
series telemetry into trend, periodic, and waveform 
anomalies. Then, we designed the feature representation 
that can identify the anomaly types and unusual 
telemetry based on this classification. 

• We applied the proposed method to artificial abnormal 

datasets and practical anomaly events, demonstrating 
that it can provide operators with the information they 
need to deal with anomalies. 

• The proposed method contributes to realizing a 
telemetry monitoring system that reduces operator 
effort by providing additional information about 
anomalies as well as warnings by anomaly scores. 

The rest of this paper is composed of the following sections: 
Section 2 categorizes anomalies based on previous studies; 
Section 3 defines the proposal method; Section 4 presents 
the results of applying the proposed method to the abnormal 
datasets and discusses them; and Section 5 provides the 
conclusion and future perspectives. 

2. ANOMALY CLASSIFICATION 

As with conventional knowledge-based approaches, it is 
difficult to exhaustively enumerate anomalies occurring on 
satellites. Thus, based on anomaly types mentioned or 
verified in previous studies, we classify anomalies into three 
categories: trend, periodic, and waveform. This 
classification is not specific fault names such as thermal 
runaway, bus voltage drops, or incorrect attitude controls. 
Even so, when trend anomalies are observed in temperature 
telemetry, operators can assume the occurrence of thermal 
runaway based on this information. 

In the field of anomaly detection, the mainstream anomaly 
categories are point, group, and contextual anomalies (Ruff 
et al., 2021), which are also mentioned in the context of 
telemetry monitoring (Hundman et al., 2018; Pilastre et al., 
2020; Tariq et al., 2019; Wu et al., 2020; Xiong et al., 2011). 
First, point anomalies are basically described as spikes of a 
single data point, but they are also considered a series of 
out-of-range anomalies (Pilastre et al., 2020). In addition, 
Yairi et al. (2017) state that outliers are often trivial 
anomalies occurring temporarily as a result of data 
conversion or transmission errors and should be 
distinguished from truly serious anomalies. Thus, we do not 
consider point anomalies such as spike values, as outliers 
are removed by the preprocessing described in Section 4.2. 
Next, group and contextual anomalies are summarized as 
time-dependent group anomalies (Hundman et al., 2018; 
Tariq et al., 2019) or categorized as periodicity anomalies 
(Figure 1a) and pattern anomalies (Figure 1b) (Barreyre et 

 
Figure 1. Types of anomalies. The gray background indicates abnormal time. In this study, (a) is classified as periodic 

anomalies, (b) and (e) as waveform anomalies, and (c) and (d) as trend anomalies. 
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al., 2019) because the telemetry is periodic time-series data. 
As these types of anomalies occur within normal value 
ranges, operators may miss them by simply monitoring raw 
telemetry with limit checking. Other classifications include 
the mathematical fault models by Cui et al. (2023): pulsed 
anomaly, step-type anomaly (Figure 1c), gradient anomaly 
(Figure 1d), and periodic anomaly. Of these classifications, 
step-type and gradient anomalies are time-dependent group 
anomalies that focus on the trend of the telemetry, rather 
than on the period and waveform. 

Based on the above, we classify time-dependent group 
anomalies into trend, periodic, and waveform anomalies. 
First, trend anomalies are cases in which the trend of 
telemetry fluctuation changes significantly. They include 
step-type anomalies, gradient anomalies, and series of out-
of-range anomalies in the previous categories. In practical 
operation, they occur in temperature and voltage telemetry 
in the event of thermal runaway or a drop in generated 
voltage. 

Next, periodic anomalies are cases in which the period of 
telemetry changes and may occur within the normal value 
range. Periodicity of telemetry that depends on the satellite’s 
orbital period, such as battery voltage and surface 
temperature, rarely changes, and satellites are likely to have 
a serious failure at the time it changes. However, the 
telemetry of mission equipment that is routinely used by 
operators can cause this type of anomaly. 

Lastly, waveform anomalies are cases in which telemetry 
does not show the expected waveform or the telemetry 
amplitude changes (Figure 1e). These types of anomalies 
can occur in a wide range of telemetry owing to equipment 
failure or changes in component characteristics. 

3. PROPOSED METHOD 

3.1. Feature Extraction 

Figure 2 shows the workflow of the proposed method. 
Initially, the moving average, period, and distribution 
difference are extracted from the telemetry as the features 
corresponding to the anomaly classification in Section 2. 
Subsequently, we summarize those features into a single 
feature vector using the two times MD calculation and 
compute the anomaly score. This feature extraction is 
performed for each telemetry series of length 𝑊 . In this 
study, we let 𝑊  be the length of 1 day’s telemetry for 
simplicity. Thus, the series of telemetry processed at time 𝑡 
is 𝚾௠

(௧)  =  ൣ𝑥௠
(௧ିௐ ା ଵ), … , 𝑥௠

(௧)൧ , where 𝑥௠
(∙)  is the observed 

value and 𝑚 =  1, … , 𝑀 is the label of telemetry. 

First, a simple way to represent a trend of telemetry is the 
moving average. More robust methods for outliers include 
the moving median and moving trimmed average. However, 
we use the moving average because these robust methods 
are slower to respond to changes in trend, and outliers are 
removed by the preprocessing in Section 4.2. Thus, the 
trend feature is expressed by Eq. (1) with 𝒥 =
 {𝑡 − 𝑊 +  1, … , 𝑡}  as the set of time steps. Here, if this 
feature has a constant value and its variance is zero, the MD 
cannot be calculated in Section 3.2, so we add to the average 
a random number generated from a normal distribution with 
a sufficiently small variance and the zero mean. In this study, 
the random number is 𝜖(௧)~𝑁(0, 0.001), and this is added 
for the remaining features as well. 

𝑦୑୅,௠
(௧)  =  

1
𝑊

෍ 𝑥௠
(௝)

௝∈𝒥

 +  𝜖(௧) (1) 

Next, we estimate the telemetry period using the 
periodogram. The periodogram is a method of estimating 
the power spectral density (PSD) in signal processing, and 

 
Figure 2. Flow of the proposal method. 
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the estimated PSD is obtained by 𝑆௞
(௧)  =  ห𝑓௞൫𝚾௠

(௧)൯ห
ଶ

/𝑊 
using the discrete Fourier transform 𝑓௞൫𝚾௠

(௧)൯  =
 ∑ 𝑤(௝)𝑥௠

(௝)𝑒ି௜ଶగ௞௝/ௐ௧
௝ ୀ ௧ିௐ ା ଵ . Here, 𝑤(௝)  is a window 

function, which, in this study, is the Hann window. Then, 
the period feature is represented by Eq. (2) using 𝑘 where 
𝑆௞

(௧)  has the peak value. Δ𝑡  is the sampling period of the 
telemetry. 

𝑦୘,௠
(௧)  =  

𝑊∆𝑡
𝑘

 + 𝜖(௧) (2) 

Lastly, we use the KL divergence between 𝚾௠
(௧)  and 

𝚾௠
(௧ିௐ/ଶ)  distributions as the waveform feature. Although 

there are distance-based methods for calculating waveform 
differences, we calculate distribution differences to obtain 
only the waveform change without the influence of period 
and average changes. Thus, let 𝑝௧(∙) and 𝑝௧ିௐ/ଶ(∙) be the 
probability distributions of 𝚾௠

(௧) and 𝚾௠
(௧ିௐ/ଶ), respectively, 

and the waveform feature is given by Eq. (3). 

𝑦୏୐,௠
(௧)  =  ෍ 𝑝௧ ቀ𝑥௠

(௝)ቁ log
𝑝௧ ቀ𝑥௠

(௝)ቁ

𝑝௧ିௐ/ଶ ቀ𝑥௠
(௝ିௐ/ଶ)ቁ௝∈𝒥

 + 𝜖(௧) (3) 

3.2. Feature Summarization 

We denote by Eq. (4) the new feature vector consisting of 
the features defined in Section 3.1, where 𝑛 =  MA, T, KL is 
the label of the feature. 

𝒚௡
(௧)  =  ൣ𝑦௡,ଵ

(௧), 𝑦௡,ଶ
(௧), … , 𝑦௡,௠

(௧) , … , 𝑦௡,ெ
(௧) ൧

ୃ
 (4) 

We then summarize the feature vector using the MD from 
the usual vectors. In the field of quality management, outlier 
detection using the MD from normal datasets, called the unit 
space, is widely used as the Mahalanobis–Taguchi system 
(MTS) (Woodall et al., 2003). Although the MTS is a 
classical method, it is still evolving as improved methods 
are proposed currently (Mota-Gutiérrez et al., 2018). In 
addition, the MTS has the advantage of aggregating data 
into one-dimensional distances, considering correlations 
between data, and calculating the contribution to increasing 
distances by the signal-to-noise (S/N) ratio. 

The summarized feature computed by the MD is expressed 
in Eq. (5), and the proposed feature vector is given by Eq. 
(6). Here, 𝒚ഥ௡

(௧) and 𝚺௡
(௧) are the mean vector and covariance 

matrix of 𝒚௡
(∙), respectively. 

𝑧௡
(௧)  =  

1
𝑀

൫𝒚௡
(௧) − 𝒚ഥ௡

(௧)൯
ୃ

𝚺௡
(௧)ିଵ

൫𝒚௡
(௧) − 𝒚ഥ௡

(௧)൯ (5) 

𝒛(௧)  =  ൣ𝑧୑୅
(௧) , 𝑧୘

(௧), 𝑧୏୐
(௧)൧

ୃ
 (6) 

In actual operation, satellites cannot store all telemetry and 
can only send some telemetry to the ground station owing to 
communication limitations. Thus, anomaly detection should 
be performed on board, requiring that the parameters be 
updated incrementally. In this study, 𝒚ഥ௡

(௧)  and 𝚺௡
(௧)  are 

updated by Eqs. (7) and (8), respectively, where it is 
necessary to give initial values, such as estimates from 
telemetry at the initial operation. In addition, the telemetry 
at time steps judged to be abnormal by the anomaly score 
described in Section 3.3 is not used in the update to prevent 
degradation of the estimated values. 

𝒚ഥ௡
(௧)  =  𝒚ഥ௡

(௧ିଵ)  +  
𝒚௡

(௧) − 𝒚ഥ௡
(௧ିଵ)

𝑡
 (7) 

𝚺௡
(௧)  =  

(𝑡 − 1)
𝑡

𝚺௡
(௧ିଵ) 

 + 
1
𝑡

൫𝒚௡
(௧)−𝒚ഥ௡

(௧ିଵ)൯൫𝒚௡
(௧)−𝒚ഥ௡

(௧)൯
ୃ

 
(8) 

3.3. Anomaly Score 

We define the anomaly score by computing the MD from 
the set of normal 𝒛(∙) to 𝒛(௧), as shown in Eq. (9). Here, 𝒛ത(௧) 
and 𝚺୸

(௧) are the mean vector and covariance matrix of 𝒛(∙), 
respectively, which are updated as in Section 3.2. 
Abnormalities are judged by limit checking using a 
threshold of anomaly score 𝑎௧௛. 

𝑎(௧)  =  
1
3

൫𝒛(௧) − 𝒛ത(௧)൯
ୃ

𝚺௭
(௧)ିଵ

൫𝒛(௧) − 𝒛ത(௧)൯ (9) 

3.4. Contribution Calculation 

In the MTS, the S/N ratio is used empirically as a measure 
of the data’s usefulness for outlier detection. Typically, this 
measure is used to select data for use in the MTS, where it 
compares cases of inclusion and exclusion of data in the 
MD calculation (Woodall et al., 2003). 

In this study, we compute the contribution of each 
component of 𝒚௡

(∙) to 𝑧௡
(∙) using the S/N ratio as in Eq. (10), 

where 𝒥௔  is the set of abnormal time steps; 𝑦௡,௠
(௝)  and 𝑦ത௡,௠

(௝)  
are the 𝑚  component of 𝒚௡

(௝) and 𝒚ഥ௡
(௝) , respectively; and 

𝜎௡,௠
ଶ (௝)  is the (𝑚, 𝑚)  component of 𝚺௡

(௝) . Because 𝜂௡,௠ 
increases as 𝑦௡,௠

(௝)  deviates from the usual, the component 
with relatively large 𝜂௡,௠ among all components is likely to 
contribute to the abnormal events. The contribution of 𝑧௡

(∙) to 
𝑎(∙) is calculated in the same way. 

𝜂௡,௠  =  −10 log ቎ ෍
𝜎௡,௠

ଶ (௝)

ቀ𝑦௡,௠
(௝) − 𝑦ത௡,௠

(௝) ቁ
ଶ

௝∈𝒥ೌ

቏ (10) 
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4. EXPERIMENTAL RESULTS 

4.1. Setup 

We applied the proposed method to the telemetry of the 
satellite Suzaku (ASTRO-EII), which is available online 
(https://darts.isas.jaxa.jp/astro/suzaku/). We targeted for 
experiments the voltage, current, and temperature telemetry 
labeled “DIST” (power distribution) and “HCE” (heater 
control electronics), which control power and temperature 
critical to the satellite’s operational life. Then, we selected 
the continuous telemetry with confirmed periodicity to 
compose the five datasets shown in Table 1. Of these 
datasets, the trend, periodic, and waveform datasets are 
artificial abnormal cases that were made anomalies during 
the last 2 days by processing the telemetry of the normal 
dataset. 

• Normal: This dataset consists of telemetry from 
August 25, 2005, to September 29, 2005, just after the 
start of Suzaku operations. 

• Trend: The trend anomaly is reproduced by a linear 
decrease of 0.3 in the value of 
DIST_PCU_BUS_VOL_CAL over 2 days. 

• Periodic: The periodic anomaly is reproduced by 
switching the period of “DIST_PCU_BUS_VOL_CAL” 
from 96 to 100 min, and then the period linearly 
increases to 110 min over 2 days. 

• Waveform: The waveform anomaly is reproduced by 
cyclically adding a convex quadratic function 𝑓(𝑥)  =
 −𝑎𝑥ଶ  +  𝑎, (−1 ≤  𝑥 ≤  1)  to the series of 
“DIST_PCU_BUS_VOL_CAL.” The coefficient 𝑎 
increases linearly from 3 to 5 over 2 days. 

• Practical: This dataset consists of telemetry from 
September 1, 2011, to January 24, 2012. Because this 
dataset includes a long operational period, we removed 
the telemetry related to mission equipment that 
fluctuates nonperiodically, and focused on bus 
equipment. Moreover, SAFEHOLD occurred at 1:27 
a.m. on January 24, 2012, during Suzaku’s operation, 
which is considered to be caused by an irregularity in 
the power system equipment (Umezu et al., 2019). 

By comparing the results of the normal, trend, periodic, and 
waveform datasets, we confirmed that the proposed method 
is able to identify anomaly types and unusual telemetry. We 
also confirmed on the practical dataset that the proposed 
method can provide operators with useful information for 
detecting and dealing with practical anomaly events. 

4.2. Preprocessing and Parameters 

We preprocessed the telemetry before validation. First, the 
sampling period ( ∆𝑡  in Eq. 2) of all telemetry was 
resampled to 1 min to handle all telemetry values at each 
time step. Then, outliers were removed by a moving 
trimmed average. Because a large window size may smooth 
out the original telemetry waveforms, we eliminated the 
largest and smallest values with a window size of 5. 

The proposed method requires several parameters. As 
already mentioned, the window size for the feature 
calculation is 𝑊 =  1440 (1 day), and the sampling period 
is ∆𝑡 =  1 min. The initial values of the covariance matrix 
𝚺௡

(଴) and mean vector 𝒚ഥ௡
(଴) in Eqs. 7 and 8 is calculated from 

the first 30-day portion of each dataset and is updated 
incrementally in subsequent time steps. 

In addition, a threshold 𝑎௧௛  is required for the anomaly 
score to detect anomalies via limit checking. If we had a 
sufficient amount of abnormal telemetry samples, we could 
determine an optimal threshold by considering the trade-off 
between false positives and false negatives. However, this 
was impossible in this study because we only know a 
limited number of anomaly events on Suzaku, similar to 
many other satellites. Thus, we a posteriori determined  

 
Figure 3. Normal telemetry and abnormal telemetry with reproduced anomalies. The gray background indicates abnormal 

time. 

Dataset label Number of  
telemetry 

Number of  
samples 

Normal 71 50400 

Trend 71 50400 

Periodic 71 50400 

Waveform 71 50400 

Practical 59 208888 

Table 1. List of datasets 
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Figure 4. Anomaly scores and the components of feature vector for the last 5 days of the normal, trend, periodic, and 
waveform datasets shown on logarithmic axis. The red dotted line indicates the threshold 𝑎௧௛  =  2.5, and the gray 

background indicates abnormal time. 
 

 
Figure 5. Contributions 𝜂 to the anomaly scores and the components of feature vector. 
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appropriate thresholds to one decimal place of precision, 
which we set to 𝑎௧௛  =  2.5 for the normal, trend, cycle, and 
waveform datasets and to 𝑎௧௛  =  34.2  for the practical 
dataset. 

4.3. Anomaly Score and Feature Vector Behavior 

The first line of Figure 4 shows the anomaly scores 
calculated from the last 5 days of the normal, trend, periodic, 
and waveform datasets. The anomaly scores for the 
abnormal datasets rapidly increase and converge to a value 
higher than the threshold during the abnormal term, 
indicating that the proposed method is able to detect the 
anomalies. All anomalies were detected with a delay of 8 to 
14 h from the start of the abnormal term. This delay is the 
number of time steps until the abnormal values occupy a 
sufficient proportion of the window length 𝑊 to affect the 
estimated value. To reduce these delays, it is effective to 
decrease the window size in which features are calculated at 
each time step. However, smaller window sizes increase 
sensitivity to telemetry variations, potentially resulting in 
more false alarms. Thus, it is necessary to consider how 
much delay the satellite system can accept in operations. 

The second to fourth rows in Figure 4 show the components 
of the feature vector. The components corresponding to 
anomalies in each dataset are increasing, showing that the 
proposed feature vector behaves differently depending on 
the anomaly type. However, 𝑧୑୅  in the periodic and 
waveform datasets, where no trend anomaly occurs, 
increased more than in the normal dataset. This difference in 
𝑧୑୅ behavior is due to the fact that the telemetry values at 
the abnormal time steps in the periodic and waveform 
datasets are not used in the parameter update. In this study, 
all telemetry values at the abnormal time steps were 
eliminated from the updating, but a more detailed adoption 
rule for training data, such as eliminating only the values of 
telemetry with high contribution to anomaly, can construct a 
telemetry monitoring system that adapts to telemetry 
fluctuations more flexibly. 

4.4. Identifying Anomaly Types and Anomaly Telemetry 

The left column of Figure 5 shows the contribution of the 
components to the anomaly score in the trend, periodic, and 
waveform datasets. As was evident in the feature behavior 
in Figure 4, the contribution of the component 
corresponding to the anomaly that occurred in each dataset 
was the highest. Thus, the contribution using the S/N ratio 
can be used to identify the type of anomaly. 

The right column of Figure 5 shows the top five 
contributions of telemetry to the component with the highest 
contribution. In all datasets, the contribution of 
“DIST_PCU_BUS_VOL_CAL,” which is processed to 
reproduce the anomaly, has the highest value. These results 
show that the contribution can indicate the unusual 
telemetry in addition to the type of anomaly. 

4.5. Practical Abnormal Event 

The first row of Figure 6 shows the anomaly score 
calculated from the last 10 days of the practical dataset. The 
anomaly was detected 26 h before the last time step when 
SAFEHOLD occurred. Comparing this result with the 
results of Umezu et al. (2019) detecting the same event, the 
proposed method is faster than using a 𝑘-nearest neighbor 
and an autoencoder (13 and 12 h before, respectively) and 
slower than using a recurrent neural network and a one-class 
support vector machine (28 and 44 h before, respectively). 
Focusing on how the anomaly score increases, we can see 
first the rectangular increase, followed by the gradient 
increase. As the remaining rows of Figure 6 show, the 
rectangular and gradient increases were influenced by 
variations in 𝑧୏୐ and 𝑧୑୅. 

Figure 7 shows the contribution of the rectangular 
increasing part, and as expected, the contribution of 𝑧୏୐ was 
the highest. The telemetry with the highest contribution to 
𝑧୏୐  was “DIST_SHNT_DRV_V_CAL.” Moreover, Figure 
9a indicates that its waveform changed significantly. 

The contribution of the gradient increasing parts is also 
shown in Figure 8, indicating that 𝑧୑୅  had the highest 
contribution and that the top five telemetries for 
contribution to 𝑧୑୅ were all related to the battery (BAT). As 
shown in Figures 9b to 9f, the mean of these telemetries 
actually changed, where the change in the two current 
telemetries was slight. 

 
Figure 6. Anomaly score and the components of the feature 

vector for the last 10 days of the practical datasets shown on 
the logarithmic axis. The red dotted line indicates the 

threshold 𝑎௧௛  =  34.2. 
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To summarize the above results, what the proposed method 
provides to operators is that the waveform of the shunt 
voltage changed abruptly, and the average values of the 
battery voltage, current, and temperature changed gradually. 
This information is sufficient for operators to assume that 
the abnormal event of batteries or power generation has 
occurred. Therefore, we found that the proposed method can 
provide useful information to operators in practical 
operations. Although anomalies such as voltage drops can 
be detected manually by operators, data-driven automatic 
detection reduces the burden on operators. In addition, if the 

proposed method can be implemented on board, 
downlinking of the features and contributions will enable 
more comprehensive anomaly detection, considering the 
telemetry, which could not be downlinked owing to 
communication capacity limitation. 

5. CONCLUSION 

In this study, we designed a feature based on the MD and 
proposed a telemetry monitoring system to assist operators. 
The proposed method can provide operators with 
information on the type of anomaly and unusual telemetry 

 
Figure 7. Contributions 𝜂 to anomaly score and the component of feature vector 𝑧୏୐. 

 
Figure 8. Contributions 𝜂 to anomaly score and the component of feature vector 𝑧୑୅. 

 
Figure 9. Telemetry with high contribution to the components of feature vector in the practical dataset. 
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necessary for them to address the anomaly. In the validation 
phase, we confirmed that it can recognize trend, periodic, 
and waveform anomalies and identify the telemetry where 
the anomaly occurred. We also applied it to the anomaly 
event related to the power system on the actual satellite and 
showed that it can provide sufficient information for 
operators to predict and cope with the anomaly. 

For future work, different issues could be investigated. First, 
thresholds are an important issue because they are used to 
judge the rejection of training data as well as to detect 
anomalies in the proposed method. It is necessary to set the 
threshold dynamically because satellite telemetry fluctuates 
under the influence of equipment degradation and changes 
in operational mode. Next, in this study, features for trends, 
periods, and waveforms were extracted using a simple 
method, but more developed methods need to be adopted to 
deal with nonperiodic and discrete telemetry. For example, 
topological data analysis and time-series prediction 
approaches are effective for detecting changes in waveforms. 
With future improvements, the proposed method will be a 
useful telemetry monitoring system that will help improve 
satellite reliability and reduce the burden on operators. 
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