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ABSTRACT 

The increasing complexity of space exploration missions 

introduces significant challenges to maintaining spacecraft 

health, particularly in the propulsion systems, due to the 

inherent communication delays with Earth. This research 

introduces a novel framework for constructing a data-driven 

diagnostic system using data generated from both simulation 

models and actual spacecraft telemetry. A detailed trade-off 

analysis between diagnostic accuracy and computational 

efficiency is conducted, and an extensive literature review 

positions the framework within the current research 

landscape. Future work will focus on enhancing the 

framework's capability to address unknown anomalies 

through advanced machine learning techniques. The study 

addresses the limitations imposed by computational 

resources and sensor installation constraints through 

Sequential Forward Selection (SFS) for optimized sensor 

placement and feature selection. The framework's 

effectiveness is demonstrated through implementation on a 

microcomputer, showing promising results in terms of 

diagnostic accuracy and processing speed, thus highlighting 

its potential for onboard spacecraft application. This study 

not only advances the autonomous capabilities of spacecraft 

in deep space, but also contributes to the broader field of 

Prognostics and Health Management (PHM) by providing a 

scalable, efficient approach to fault diagnosis in critical 

spacecraft systems. The suggested methodology illustrates a 

promising approach to optimizing diagnostic scenarios for 

spacecraft systems. However, the trade-offs observed 

necessitate a careful consideration of task-specific 

requirements and the potential need for adjustments to 

maintain a high level of accuracy alongside computational 

efficiency. 

1. INTRODUCTION 

In recent years, the ambitions for deep space exploration have 

expanded dramatically, with initiatives like the Lunar 

Gateway and Mars exploration pushing the boundaries of 

human achievements beyond Earth’s orbit [1,2]. These 

ambitious missions, however, come with their own set of 

challenges, particularly the significant communication delays 

between spacecraft and Earth. For instance, messages to and 

from Mars can take anywhere from 3 to 20 minutes each way, 

complicating immediate responses to any issues that may 

arise on spacecraft in deep space [3]. One subsystem of 

spacecraft that stands crucial in this context is the propulsion 

system, responsible for orbital transfer and attitude control. 

The inherent communication delays underscore the necessity 

for autonomous onboard diagnostic systems capable of 

detecting and identifying faults independently. This 

autonomy is vital for mission success, as delayed responses 

due to communication lag could have dire consequences. 

However, achieving autonomy in spacecraft operations is no 

small feat. It involves overcoming significant hurdles, such 

as the limitations in computational resources and the 

restrictions on the number of sensors that can be installed. 

Spacecraft are equipped with computers that must withstand 

extreme conditions like harsh radiation and thermal 

environments, often resulting in the use of lower-

performance computing systems. Moreover, considerations 
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related to weight and communication channels limit the 

number of sensors that can be integrated within the 

propulsion system, challenging the design of effective 

diagnostic systems that must work within these constraints, 

using minimal data and computational resources. 

 

The field of Prognostics and Health Management (PHM) in 

spacecraft primarily focuses on anomaly and fault detection. 

Early detection of these anomalies is crucial as it allows for 

timely corrective actions, thereby enhancing the reliability 

and longevity of spacecraft systems and potentially 

preventing mission-critical failures. Model-based methods 

offer clear insights into system behavior and are adept at 

addressing unknown anomalies using established rules. 

However, their complexity and the high cost of model 

construction pose significant challenges, especially for 

systems with restricted computational capabilities like 

spacecraft [4]. On the other hand, data-driven methods, 

characterized by their lower costs and ease of modification, 

do not require intricate knowledge for model development 

and operate at lower computational costs during inference. 

Yet, these methods heavily rely on the availability and quality 

of data, which can be a limiting factor for spacecraft due to 

the expensive nature of physical experiments and the scarcity 

of data. 

 

To improve the practical relevance and reliability of the 

framework, future work will integrate actual spacecraft data 

into the validation process. This integration aims to 

corroborate the simulated results and ensure the framework's 

applicability to real-world spacecraft systems. Preliminary 

steps include collaborations with space agencies to access 

telemetry data from existing missions. By employing 

Sequential Forward Selection (SFS) for optimized sensor 

placement and feature selection, the framework aims to 

address the challenges posed by computational and sensor 

installation constraints. This approach not only caters to 

anticipated faults but also deals with unknown anomalies, 

demonstrating its feasibility through implementation on a 

microcomputer with a proven track record in spacecraft 

applications. This method demonstrates a significant 

development in enhancing the self-governance of spacecraft. 

This research underscores the importance of advanced 

simulation models in enhancing the reliability and safety of 

spacecraft propulsion systems by providing a:  

• Realistic model to test and improve lower fault diagnosis 

methods. 

• The ability to accurately simulate and diagnose potential 

faults and anomalies throughout the propulsion system 

ensures the success and safety of future space missions, 

particularly in the face of the unpredictable and 

challenging conditions encountered in deep space 

exploration. 

2. RELATED WORK 

To position the proposed framework within the current 

research landscape more effectively, a comprehensive 

literature review has been conducted. This review 

encompasses various fault diagnosis methods, including 

optimization techniques like Genetic Algorithms and Particle 

Swarm Optimization, and machine learning approaches such 

as Random Forests and Neural Networks. The expanded 

literature review highlights the unique contributions and 

advantages of the proposed framework compared to existing 

methods. While model-based approaches excel in 

interpretability and handling data absent from training 

datasets, data-driven methods stand out for their low 

construction costs, lack of requirement for expert knowledge 

during model building, and inference computational costs. 

Despite their distinct advantages, both methodologies face 

unique challenges when applied to the stringent and limited 

environment of spacecraft systems, driving the need for 

innovative solutions like the proposed framework. Kolcio et 

al.'s work [5]–[8] introduced the "MONSID System," a 

model-based health management system tailored for Mars 

rovers. This system processes sensor and command data 

through physical models, comparing these results against 

actual sensor data to identify discrepancies indicative of 

system anomalies. Its ability to pinpoint the exact component 

failure makes it a robust solution against unforeseen 

anomalies, albeit at the cost of requiring intricate, high-

fidelity motion models and real-time computation. Similarly, 

Aaseng et al.'s study [9] on the Orion Exploration Flight Test 

1 (EFT-1) developed a model-based fault diagnosis system 

for the spacecraft's Electrical Power System (EPS). By 

inputting both test data and actual telemetry, the system 

monitored the EPS's state, adjusting based on output 

discrepancies. This method proved effective, operating at 

1Hz on a standard Linux notebook PC, though it necessitated 

an in-depth analysis of technical documentation and expert 

consultation. 

 

Extending model-based methodologies to Guidance, 

Navigation, and Control (GNC) systems, Henry et al.'s 

research [10–13] showcased high-precision fault detection 

and control tailored for ESA spacecraft rendezvous missions. 

These missions, where system faults could directly 

compromise mission objectives, benefited greatly from such 

precise diagnostic capabilities. However, the dependency on 

specific spacecraft components and sensors underscores a 

limitation: each mission demands a bespoke system. 

In contrast, data-driven approaches, exemplified by Gao et 

al.'s study [14], leverage existing data without the need for 

physical system models. Utilizing Principal Component 

Analysis (PCA) [15] and Support Vector Machines (SVM) 

[16], this methodology demonstrated high accuracy in fault 

detection using spacecraft telemetry data. Despite its 

effectiveness, the reliance on linear feature extraction 

through PCA might limit its applicability to more complex, 
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nonlinear system behaviors. Hundman et al.'s approach [17] 

introduced anomaly detection using Long Short-Term 

Memory (LSTM) [18] networks combined with dynamic 

thresholding, demonstrating high accuracy in detecting 

telemetry anomalies from satellites and Mars rovers. This 

method's reliance on deep learning and dynamic data 

thresholding presents a novel way to handle the inherent data 

limitations and computational constraints faced by spacecraft 

systems. However, its primary focus on univariate data may 

overlook anomalies stemming from system interactions, 

highlighting a gap in its applicability for onboard spacecraft 

execution. 

 

The connection of model-based and data-driven methods in 

spacecraft health management reveals a shared goal: to 

ensure mission success through effective fault diagnosis and 

management. While model-based approaches offer deep 

system insights and robust anomaly detection, they require 

extensive expertise and computational resources. 

Conversely, data-driven methods provide flexibility, lower 

costs, and adaptability, albeit dependent on the availability 

and quality of data. This synthesis of methodologies 

underlines the evolving landscape of spacecraft health 

management, where the integration of both approaches could 

pave the way for more autonomous, resilient, and successful 

deep space missions. 

2.1. Research on Health Management of Spacecraft 

Propulsion Systems 

The management of spacecraft health, particularly propulsion 

systems, is critical for the success of space missions. As 

spacecraft venture further into deep space, the ability to 

detect and diagnose system abnormalities autonomously 

becomes increasingly vital. Traditional diagnostic methods 

rely on data from spacecraft components, such as solar 

sensors and attitude controllers. Research by Gueddi et al. 

[19], Mansell et al. [20], and Xiao et al. [21] has have 

explored data-driven diagnostic systems that monitor such 

components. Yet, these methods often detect issues only after 

they have impacted the spacecraft's attitude, necessitating 

corrective action that consumes additional propellant. 

An emerging area of interest in spacecraft health 

management is the monitoring of fluid flow within 

propulsion systems, specifically focusing on the phenomenon 

known as the water hammer [22]. This phenomenon, a 

sudden pressure surge or wave resulting when a fluid in 

motion is forced to stop or change direction suddenly, can 

indicate the presence of anomalies within the propulsion 

system. The water hammer effect, characterized by equations 

that describe the fluid's behavior under such conditions 

[24][25], offers a novel approach to detecting faults. Notably, 

the work of Kumar et al. [26] and Lecourt et al. [27] has 

advanced the understanding and simulation of water hammer 

phenomena in environments that mimic spacecraft 

propulsion systems. 

Building on this foundation, Kawazu et al [28–33] have 

utilized simulation models to assess and manage the health of 

spacecraft propulsion systems. These models, developed 

using the Modelica language [34] and SimulationX software 

[35], enable detailed analysis of water hammer effects and 

other fluid dynamics within the system. Such simulations 

provide valuable insights into potential anomalies and the 

overall health of the propulsion system. Furthering this line 

of research, Tominaga et al. [36] created a 1D-CAE 

simulation model based on a quad-engine configuration of a 

spacecraft propulsion system. This model generates data for 

various scenarios to evaluate the system's health and identify 

potential faults. While subsequent studies by Minami et al. 

[37], Lee et al. [38], and Kato et al. [39] have applied data-

driven methods to diagnose faults using this data, challenges 

remain in ensuring the robustness of these diagnostic systems 

under real-world conditions and computational constraints. 

 

Addressing these challenges, this study proposes a fault 

diagnosis method designed to be resilient against mechanical 

noise and other real-world variables. By implementing a pre-

trained model on a microcomputer with a proven track record 

in spacecraft applications, this method's accuracy and 

processing speed are assessed. The dataset for this study, 

developed by JAXA, offers a more realistic simulation of a 

spacecraft propulsion system, enhancing the potential for 

effective onboard fault diagnosis. This approach aims not 

only to advance the capabilities of spacecraft in deep space, 

but also to contribute to the broader field of spacecraft health 

management by providing a scalable and efficient solution 

for fault diagnosis. 

 

The research delves into the development and application of 

a sophisticated spacecraft propulsion system simulation 

model by JAXA, designed to simulate real-world conditions 

and enhance the reliability and safety of spacecraft 

operations. This model is instrumental in understanding the 

intricate behaviors of spacecraft propulsion systems and 

forms the basis for testing and improving fault diagnosis 

methods. 

3. SPACECRAFT PROPULSION SYSTEM MODEL 

At the heart of the simulation is an 18-branch piping system, 

incorporating sixteen Reaction Control System (RCS) 

thrusters (SV1-SV16) and two main engines (ME) (SV17, 

18). The model uses pure water as the working fluid, selected 

for its similar density and sound speed to hydrazine, a 

common spacecraft fuel. This fluid is propelled from the tank 

to various system parts under a base pressure of 2MPa. The 

simulation precisely controls the operation of 

electromagnetic valves SV1-SV4 of the RCS, allowing for 

open and close actions, while the main engines remain 

operational throughout the RCS's activity. Notably, the 

simulation introduces a realistic touch by incorporating 
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random fluctuations of 0-1ms in valve timing, simulating the 

unpredictability found in actual spacecraft operations. 

3.1. The Pressure Fluctuation Data 

The model's ability to capture the dynamics of pressure 

fluctuations within the system is a key feature. For instance, 

data obtained at pressure gauge P3 under standard conditions 

reveals significant pressure drops coinciding with the 

operation of RCS valves. These drops, followed by water 

hammer effects caused by the valves' closing actions, provide 

critical insights into the system's behavior under various 

operational scenarios. Such detailed observations are 

invaluable for refining diagnostic techniques to swiftly 

identify and address system anomalies. 

3.2. Training and Test Data: Anomalies and Faults 

The simulation model generates data reflecting three primary 

types of system anomalies and faults: 

• Solenoid Valve (SV) Faults: Faults originating from the 

RCS's solenoid valves (SV1-SV4), which may operate 

partially, affecting the flow rate of the propellant. 

• Bubble Anomalies: Introduced bubbles at specific 

accumulator locations (BP2, 17, 32) mimic potential 

operational issues, impacting the propagation of pressure 

waves within the system. 

• Simultaneous SV Faults and Bubble Anomalies: This 

complex scenario combines SV faults with bubble 

anomalies, presenting a challenging diagnostic scenario 

to test the system's diagnostic capabilities. 

Moreover, the test data encompasses these scenarios 

alongside hypothetical unknown anomalies, challenging the 

diagnostic system to identify and classify a wide range of 

potential issues. 

 

An Exploratory Data Analysis (EDA) was meticulously 

performed on the dataset generated from the spacecraft 

propulsion system simulation. This analysis was particularly 

focused on specific intervals: 100–400ms, 500–800ms, and 

900–1200ms. These intervals were chosen for their 

significance in showcasing the water hammer effects 

triggered by the operation of the Reaction Control System 

(RCS) solenoid valves (SV1-SV4). The decision to focus on 

these segments stems from the understanding that pressure 

fluctuations, especially those resulting from the closing of 

solenoid valves, can be profoundly influenced by vibrations 

emanating from downstream thrusters or the combustion 

processes of engines. These factors become critically 

important when considering the operations of actual 

spacecraft, where such vibrations can significantly impact 

pressure sensor readings. 

 

 

 

 

 

 
Figure 1: The schematic diagram of the numerical spacecraft 

propulsion system 

 

 
Figure 2: Example of time series pressure fluctuation data at 

P3 

 

Table 1: Training data generated by Simulation Model 

Condition No of data 

Normal 20 

SV fault: Location: SV1,SV2,SV3,SV4 

Valve opening ratio: 0%, 50% 

8 

Bubble anomaly: 

Location: BP2, BP17, BP32 

6 

SV fault + Bubble Anomaly: Location: 

SV1,SV2,SV3,SV4 

Valve opening ratio: 0% 50%, 

BP2, BP17, BP32 

 

24 

 

 

Table 2: Test data generated by Simulation Model 

Condition No of 

data 

Normal 5 

SV fault Location: SV1,SV2,SV3,SV4 

Valve opening ratio: 0%, 50% 

8 

Bubble anomaly 

Location: BP2, BP17, BP32 

6 

SV fault + Bubble Anomaly SV Location: 

SV1,SV2,SV3,SV4 

 

24 
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Valve opening ratio: 0% 50%, Bubble 

Location: BP2, BP17, BP32 

Unknown SV2,4 multi faults 

SV6 accidentally open with SV1‒4 

BP1 Bubble BP9 Bubble 

SV1,3 multi faults and BP2 

BP2,17 multi anomalies 

 

 

6 

 

The data analysis revealed that the pressure fluctuations were 

more pronounced at points P9 and P3, which are proximal to 

the RCS solenoid valves responsible for inducing water 

hammer effects. This observation was consistent across both 

time-series data and Fast Fourier Transform (FFT) analysis 

results. It indicates that these points are directly impacted by 

the water hammer phenomenon, leading to larger pressure 

fluctuations.  

 

On the contrary, locations such as P1, P32, and P33, which 

are situated further from the primary sources of water 

hammer (SV1, SV2, SV3, SV4) and are influenced by system 

branching, exhibited lesser fluctuations. The attenuation of 

the water hammer impact at these distant points suggests that 

the structural layout of the propulsion system plays a 

significant role in the distribution and magnitude of pressure 

fluctuations within the system. This exploratory analysis not 

only underscores the critical nature of water hammer effects 

in the context of spacecraft propulsion system health, but also 

highlights the importance of sensor placement and data 

interpretation in diagnosing potential issues. Understanding 

how pressure fluctuations vary across different points in the 

system provides valuable insights into the operational 

dynamics of spacecraft propulsion systems and lays the 

groundwork for developing more accurate and reliable 

diagnostic tools. 

 

Figure 3: Example of time series data and FFT results at P1, 

P3, P9, P32, P33, 34 

 

4. METHODOLOGY 

A detailed trade-off analysis between diagnostic accuracy 

and computational efficiency has been conducted. While the 

optimization process significantly reduces computational 

load, it is crucial to evaluate the impact on diagnostic 

accuracy. This analysis, presented in Table 4, highlights 

specific scenarios where accuracy may be compromised and 

proposes strategies to mitigate these effects, ensuring a 

balanced approach that maintains high diagnostic capabilities 

while optimizing efficiency. The framework outlines a 

sequence of steps designed to process and interpret the data, 

facilitating precise diagnostic outcomes. These steps include: 

• Scenario 1: Known Anomaly Detection: The objective 

here is to identify any deviations from normal 

operational patterns within the dataset. This step 

involves distinguishing between normal operational data 

and potential anomalies that could indicate issues within 

the propulsion system. 

• Scenario 2: Unknown Anomaly Detection: This scenario 

focuses on detecting anomalies that were not previously 

identified or defined in the dataset. It aims to uncover 

new or unforeseen issues that could impact the 

propulsion system's performance. 

• Scenario 3: Classification of SV Faults, Bubble 

Anomalies, and SV Faults + Bubble Anomalies: This 

stage classifies the detected anomalies into specific 

categories, including solenoid valve (SV) faults, bubble 

anomalies within the propulsion system, and instances 

where both SV faults and bubble anomalies occur 

simultaneously. 

• Scenario 4: Classification of SV Fault Locations: After 

identifying SV faults, this scenario pinpoints the specific 

location of each fault among the solenoid valves (SV1-

SV4). Accurate location identification is vital for 

targeted maintenance and repairs. 

• Scenario 5: Classification of Bubble Anomaly 

Locations: Similar to scenario 4, this step aims to 

determine the exact locations of bubble anomalies within 

the propulsion system, specifically identifying whether 

they occur at BP2, BP17, or BP32. This information is 

critical for understanding the anomaly's impact on 

system performance and for guiding corrective actions. 

• Scenario 6: Classification of SV Faults + Bubble 

Anomalies: The final scenario involves classifying 

instances where both SV faults and bubble anomalies are 

present. This comprehensive classification provides a 

nuanced understanding of the propulsion system's health, 

highlighting complex scenarios that may require 

specialized intervention. 
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Through this structured framework, each piece of time-series 

data is meticulously analyzed and categorized, enabling a 

thorough diagnosis of the spacecraft propulsion system. This 

approach not only enhances the precision of fault detection 

and anomaly classification but also supports the development 

of targeted strategies for maintaining and improving system 

health and reliability with: 

 

Data Augmentation: This initial phase enhances the dataset 

by generating additional data points through techniques such 

as synthetic data generation. Specifically, we used a 

simulation model that closely mimics the real spacecraft 

propulsion system to create realistic fault scenarios. This 

included varying the operating conditions and introducing 

controlled faults to generate diverse and representative data. 

This step aims to enrich the dataset, ensuring a robust 

foundation for subsequent analysis. We explore the method 

to bolster the model's generalization capabilities by 

effectively increasing the size of the training data. This is 

particularly applied to water hammer events observed during 

the closure of the Reactor Coolant System (RCS), where a 

unique time-series data segment is dissected into three sub-

intervals: 100-400ms, 500-800ms, and 900-1200ms. Each 

interval is then independently analyzed as a standalone data 

set. 

 

Extracting key features from the time-series data is crucial for 

transforming raw data into a format that is amenable to 

analysis. This process involves identifying significant 

attributes or characteristics that effectively represent the data, 

facilitating easier detection of anomalies and faults. Central 

to our methodology is the process of feature extraction, which 

is the transformation of time-series data into a more 

malleable, non-time-series format. This step is crucial for the 

data to be effectively utilized by machine learning models. 

The need for this transformation arises from the inherent 

variability in the time intervals of data capture, especially due 

to the inconsistent operation of valves in the propulsion 

system. This inconsistency can result in data that is not 

always collected at the same, expected time intervals, with 

any deviation in the time of data capture potentially skewing 

the model's predictions. To address this, we employ a range 

of data processing techniques. For instance, the study 

leverages the Fourier Transform (FFT) to derive n peak FFT 

features, indicating the application of the FFT for data 

simplification. Furthermore, to ensure a level playing field 

for all the derived features, we apply a process of 

standardization. This normalizes the data with the equation: 

 

𝑧 =
(𝑥 − 𝜇)

𝜎
 

(1) 

 

where x is the data value, μ is the mean, and σ is the standard 

deviation, to ensure that all the data is on the same scale and 

thus treated equally by the model. 

 

 
Figure 4: Flowchart of the proposed diagnostic framework 

 

A unique challenge in this process is the high dimensionality 

of the data. The process of data augmentation yields three 

datasets for each time interval, and with 34 sensors, we are 

presented with a 300×34 matrix (data points × number of 

sensors) for each dataset. From this, we extract 17 different 

types of data features, both statistical and frequency domain 

features, for each of the 34 sensors, which results in a large, 

multi-dimensional dataset. The main task is then to discern 

the most computationally manageable and significant 

features, as processing the total number of all possible data 

points efficiently is too large. 

 

Moreover, in the real-world design of spacecraft, the number 

of sensors that can be feasibly installed is bound by weight, 

space, and cost limitations. Therefore, it is not only a task of 

computational simplification but also of hardware 

optimization to reduce the number of sensors used without 

compromising the data's integrity. This optimization of the 

number of sensors and the data they collect is a subject of in-

depth study and is set to be a subject of future work. Lastly, 

the data, upon being collected and optimized, is standardized. 

This is an essential pre-processing step that ensures that the 

data from each sensor is on a common scale, which is a key 

step in allowing the model to evaluate the data impartially. 
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This data pre-processing step is a prelude to the data's 

eventual use in training the model, with the aim of the whole 

exercise being to make the most of the model's potential to 

predict and manage the space vehicle's in-flight status and 

safety. 

 

Table 3: Features extracted from time‒series data 

 Feature Type No of 

Features 

Statistical RMS  

Mean  

Variance  

Kurtosis  

Skewness  

Peak to Peak Energy  

Crest Factor  

Shape Factor 

Clearance Factor 

Impulse Factor 

11 

FFT First Peak Frequency First Peak 

Amplitude Second Peak 

Frequency Second Peak 

Amplitude Third Peak Frequency 

Third Peak Amplitude 

6 

 

4.1. Models 

This section discusses the machine learning models 

employed for diagnosing the data, with a focus on Principal 

Component Analysis (PCA). PCA is a key dimension 

reduction technique that identifies the most significant axes 

or principal components to represent the original high-

dimensional data's variability. This is achieved with minimal 

data loss, enhancing the data's interpretability for machine 

learning models. 

 

The PCA model is initially trained with only the 'normal' 

data to define a standard subspace. The novelty or 'anomaly' 

of the test data is then quantified by the model's ability to 

reconstruct the new data using this pre-learned subspace. The 

main steps for this are: 

• Mapping and reduction: The data, with p normalized 

features, is mapped to a lower q dimension (q<p) to 

capture the most relevant data structure. 

• Projection and reconstruction: The model projects the 

data onto the new q dimensions and attempts to 

reconstruct it. This step uses the model's main 

components, derived from the most significant 

eigenvectors of the training data's variance-covariance 

matrix. 

• Error analysis: The method then evaluates the test data's 

'anomaly' by the error in reconstructing the new 

information. A large difference between the original and 

reconstructed data suggests an anomaly. 

This error, calculated as the Euclidean norm between the test 

and reconstructed data, is a good measure of the system's 

status. A high error score indicates a high chance of the new 

test data being an anomaly, which is a critical part of the 

system's self-diagnosis. Through this method, PCA can be a 

powerful tool in the real-time health management of complex 

systems, by effectively reducing the data's complexity and 

making it more manageable for in-depth analysis. 

 

One class SVM The One-Class Support Vector Machine 

(OC-SVM) is a specialized model designed to distinguish 

between 'normal' and 'anomaly' data points. It operates by 

learning the data space's boundary where the normal, or more 

common, data points are found. The model is particularly 

skillful at handling data that isn't linearly separable, thanks to 

its use of a kernel function—often a Gaussian kernel. This 

capability allows the OC-SVM to map the data effectively, 

placing normal points in high-density areas far from the data 

space's origin, and mapping anomalies, or data in low-density 

regions, closer to the origin. The OC-SVM's problem-solving 

process is about minimizing the value for all data points, to 

find the most optimal model's decision boundary. This 

minimization also ensures that a pre-defined fraction of the 

data, controlled by a hyperparameter, is found near the 

model's decision boundary. This method of operation makes 

OC-SVM a robust solution for real-time data analysis, 

enabling the detection of data points that deviate from the 

'normal' range, which is a crucial part of the self-diagnosis in 

health management systems. 

 

K-NN The k-Nearest Neighbors (k-NN) method, initially 

proposed by Evelyn et al., serves as a versatile tool in the 

realm of supervised learning, primarily for classifying data 

points into distinct classes. Beyond its conventional 

application, k-NN has been adapted for anomaly detection, 

leveraging the concept of 'neighborhood' to identify 

deviations from normal patterns. In essence, k-NN operates 

by locating the nearest k neighbors to a given data point and 

computing an anomaly score based on the distance to these 

neighbors. This approach is particularly effective in datasets 

where normal instances predominate, with the anomaly score 

reflecting the average distance to the k nearest neighbors. 

Such a mechanism is adept at quantifying the extent of a data 

point deviation from its closest counterparts, thereby offering 

a robust metric for anomaly detection. Despite its intuitive 

nature and the ease of parameter adjustment, k-NN may 

encounter limitations when dealing with high-dimensional 

data or exceedingly large datasets due to computational 

constraints.  

 

Mahalanobis distance This emerges as a sophisticated 

metric capable of gauging the similarity between an unknown 

sample and a known group, factoring in the correlation 

among variables. This metric is instrumental in identifying 

anomalies, with a larger Mahalanobis distance indicating a 

significant divergence from the known sample group. The 
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process entails calculating a mean vector and covariance 

matrix from the training data, followed by computing the 

anomaly score for test data based on these parameters. 

 

Gaussian Mixture Model (GMM) GMM introduces a 

probabilistic approach, assuming the data originates from a 

blend of several Gaussian distributions. It identifies the 

specific distribution each sample likely belongs to, 

facilitating anomaly detection through the estimation of 

normal data distribution. This estimation is achieved by 

maximizing the likelihood's expected value via the EM 

algorithm, with anomalies pinpointed through their low 

likelihood of belonging to this distribution. 

 

Logistic regression It is a supervised learning method used 

for binary classification. It extends its utility to multiclass 

scenarios through the softmax function. It calculates the 

probability of each class based on training data, employing a 

cross-entropy loss function for optimization. This model is 

adept at class prediction, assigning the class with the highest 

probability as the predicted outcome. 

SVM stands out for its ability to delineate the optimal 

decision boundary, maximizing the margin between classes 

in the feature space. Applicable to both linear and nonlinear 

classification challenges, SVM's adaptability is further 

enhanced through the kernel trick for nonlinear data. 

Employing the One-vs-All method for multiclass 

classification, SVM constructs individual models for each 

class, treating the classification of each as a binary problem. 

Despite its non-probabilistic nature, Platt Scaling can be 

applied to SVM outputs, converting decision function 

outcomes into probabilities, thereby facilitating evaluation 

through AUC metrics. 

4.2. Diagnostics Scenarios 

After the preliminary steps of data augmentation and feature 

extraction, the diagnostic process unfolds through six distinct 

scenarios, aimed at determining whether the data indicates 

normal conditions, an unknown anomaly, a Solenoid Valve 

(SV) fault, a bubble anomaly, or a combination of SV fault 

and bubble anomaly. Moreover, for SV faults, bubble 

anomalies, and their combinations, the process seeks to 

pinpoint the specific locations of these occurrences. 

4.2.1. Scenario 1: Known Anomaly Detection 

The first scenario is centered on differentiating normal from 

abnormal data through the application of machine learning 

models, thereby filtering out the normal data. Unsupervised 

learning models, such as Principal Component Analysis 

(PCA), One-Class Support Vector Machine (OC-SVM), 

Mahalanobis distance, and Gaussian Mixture Model (GMM) 

are utilized and evaluated against each other. The choice for 

unsupervised models stems from the need to account for 

unknown anomalies in the test data, which could be 

inaccurately classified into known anomaly categories by a 

straightforward classification model. These models are 

trained exclusively on normal data to define the "normal 

space." When new data is introduced, the model assesses how 

significantly it deviates from the normal data, assigning an 

anomaly score. A threshold for anomaly detection is 

established based on the anomaly scores from the training 

phase, with data surpassing this threshold labeled as 

abnormal. This threshold is set using the 3-sigma rule, which 

involves adding three standard deviations to the mean of the 

anomaly scores. Given the presence of unknown anomalies, 

hyperparameter optimization is bypassed in favor of arbitrary 

parameter selection. 

4.2.2. Scenario 2: Unknown Anomaly Detection 

Scenario 2 aims to identify and segregating unknown 

anomaly data that does not fall within the scope of known 

anomalies covered in the training data. This scenario 

proceeds under the assumption that all normal data have been 

eliminated in scenario 1, employing the same models. While 

the threshold and feature optimization techniques mirror 

those of scenario 1, the distinction lies in using known 

anomaly data for training. This data is considered "normal" 

for the purpose of learning its characteristics, with the model 

evaluating the deviation of new data from this learned space 

to compute an anomaly score. 

4.2.3. Scenario 3: Categorization of SV Faults, Bubble 

Anomalies, and Their Combinations 

The third scenario categorizes the data into three groups: SV 

fault, bubble anomaly, or a combination of both. This is 

achieved using supervised learning models, such as logistic 

regression and SVM, with the assumption that both normal 

and unknown anomaly data have been previously removed. 

To mitigate overfitting and evaluate model performance on 

new data, the training data is split into smaller training and 

evaluation datasets. Hyperparameters, including the learning 

rate and regularization coefficient, are fine-tuned using the 

evaluation dataset, with Optuna employed for 

hyperparameter optimization. 

4.2.4. Scenario 4: Classification of SV Fault Locations 

Scenario 4 focuses on classifying the specific locations of SV 

faults among SV1-SV4. It is predicated on the removal of all 

data except for SV fault data through the initial three 

scenarios. Employing the same models as in scenario 3, this 

scenario treats different degrees of openness (0%, 50%) as 

indicative of the same fault location, framing it as a 4-class 

multiclass classification challenge. 

4.2.5. Scenario 5: Classification of Bubble Anomaly 

Locations 

This scenario is dedicated to pinpointing the locations of 

bubble anomalies among BP2, BP17, and BP32. Following 

the exclusion of all data except for bubble anomaly data, as 
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in previous scenarios, this scenario is structured as a 3-class 

multiclass classification problem, utilizing the methodologies 

and models from Scenarios 3 and 4. 

4.2.6. Scenario 6: Classification of SV Faults + Bubble 

Anomalies Locations 

The final scenario undertakes the classification of 

combinations of bubble anomalies and SV faults, 

encompassing 12 possible scenarios across BP2, BP17, 

BP32, and SV1-SV4. This scenario operates under the 

assumption that all data, except for the combined SV fault 

and bubble anomaly data, has been filtered out. It addresses 

this 12-class multiclass classification problem using the same 

models and approaches as outlined in scenarios 3, 4, and 5. 

4.3. Evaluation Metrics 

To gauge the effectiveness of each machine learning model 

deployed in this study, two widely recognized metrics, the F1 

Score and the Area Under the Curve (AUC) value, are 

employed. These metrics are pivotal for a holistic evaluation 

of a model's predictive accuracy. The F1 Score serves as a 

balanced measure of a model's precision and recall, 

calculated as the harmonic mean of these two metrics. 

Precision quantifies the accuracy of positive predictions 

made by the model, whereas recall measures the model's 

ability to identify actual positives. The F1 Score, therefore, 

offers a comprehensive metric that encapsulates both 

precision and recall, making it particularly valuable in 

scenarios with class imbalances. The formulae for computing 

the F1 Score, Precision, and Recall are as follows: 

 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2. 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

(2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

(3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

(4) 

 

 

A maximum F1 Score of 1 indicates exemplary model 

performance. In multi-class classification scenarios, where 

simple F1 Scores or AUC values are insufficient, Macro 

averaging is utilized. This technique averages the metrics 

computed for each class, ensuring equal contribution from all 

classes and mitigating the effects of class imbalance. The 

Macro F1 Score, derived from averaging the F1 Scores of 

individual classes, effectively addresses the challenges posed 

by classes with less data samples and provides insights into 

the model's performance variance across different classes. 

 

It should be noted that while the F1 Score provides a balanced 

measure of precision and recall, in the context of propulsion 

system autonomy, recall is of greater importance due to the 

critical need for fault accommodation. In practice, the 

system's many redundancies make it more crucial to 

minimize missed detections rather than false positives. 

However, to show a detailed example we will use F1 score, 

where precision is equally important as recall. 

4.4. Sequential Feature Selection (SFS) for Sensor and 

Feature Optimization 

Sequential Feature Selection (SFS), a component of the 

wrapper method in machine learning, employs a greedy 

search algorithm to identify the optimal feature combination, 

reducing the feature space from a higher dimension d to a 

lower dimension k (< k<d). This process aims to eliminate 

redundant features and noise, thereby potentially enhancing 

computational efficiency and reducing errors in non-

regularized algorithms. The study employs Sequential 

Forward Selection due to the computational challenges 

associated with backward selection in large feature sets. This 

method has proven effective in various applications, 

including cancer image classification and UAV image 

diagnostics. 

 

The optimization process unfolds in two stages: 

• Sensor Location Optimization: Utilizing the average F1 

score across all scenarios as the objective function, SFS 

selects the best sensor location from among those 

equipped with 11 statistical and 6 frequency domain 

features. 

• Feature Combination Optimization: With the optimal 

sensor location determined, SFS is then applied to each 

diagnostic scenarios to identify the most effective feature 

combinations, aiming for the highest F1 scores. 

This two-step approach ensures the selection of the most 

impactful sensor locations and feature combinations for each 

diagnostic scenario. 

4.5. Computational Environment 

The feasibility of executing the proposed method onboard 

spacecraft is assessed using a Raspberry Pi Zero W, a 

microcomputer with a proven track record in space missions, 

including CubeSat deployments. This device, chosen for its 

compatibility with Python and its lightweight computational 

capabilities, features a 1GHz single-core ARMv6 CPU and 

512MB RAM, operating on a 32-bit OS. The Raspberry Pi 

Zero W's specifications underscore its suitability for 

conducting lightweight computational tasks in space 

applications, offering a practical platform for implementing 

data-driven fault diagnosis in numerical spacecraft 

propulsion systems. 
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Figure 5: Appearance of the Raspberry Pi 

 

5. RESULTS AND DISCUSSION 

5.1. Sensor Optimization  

This section explores the application of the proposed 

framework to a dataset, focusing on optimizing sensor and 

feature selection, and comparing the performance in terms of 

accuracy and processing time on the Raspberry Pi Zero W. 

The framework's effectiveness is assessed through a 

structured approach that starts with sensor optimization and 

concludes with a detailed analysis of computational 

efficiency. 

 

Sensor optimization was conducted using Sequential 

Forward Selection (SFS), with the average F1 score serving 

as the primary metric. This optimization excluded scenario 2 

from validation due to its specific focus on unknown 

anomalies, which would require a different approach for 

accurate assessment. Figure 6 illustrates the optimization 

process, where different sensor positions were evaluated for 

their contribution to the F1 score. Initially, P9 emerged as the 

optimal sensor choice, providing the highest F1 score when 

considered alone. This selection was based on its ability to 

capture critical information with minimal redundancy. As the 

optimization progressed, the process evaluated additional 

sensors that, when combined with P9, further improved the 

F1 score. The second sensor selected was P15, which, 

although initially not as prominent as P3 in detecting water 

hammer effects, offered complementary information to P9, 

making it the next best choice. The sequence of sensor 

selection continued, with each step aiming to maximize the 

F1 score by adding the most beneficial sensor to the existing 

set. This method led to a combination that peaked with an F1 

score near 0.8. The process continued to add sensors, but after 

reaching a total of eight sensors, the F1 score began to 

stabilize. 

 

Interestingly, the addition of extra sensors beyond five 

sensors marked a turning point in the optimization process. 

Beyond this point, the accuracy starts to decline, suggesting 

that adding more sensors might introduce duplicated 

information or data that does not contribute meaningfully to 

the model. This pattern indicates that the effectiveness of 

additional sensors diminishes after a certain point, likely due 

to the redundancy of data or the limitations of the sensor 

array. Consequently, the study concluded that a minimalistic 

approach, favoring the use of P9 exclusively, strikes the best 

balance between accuracy and computational efficiency. By 

carefully selecting only the most informative sensors, the 

framework ensures that high accuracy is maintained without 

unnecessary computational overhead, particularly important 

when deploying the model on resource-constrained devices 

like the Raspberry Pi Zero W. 

 

It is important to clarify that the order of sensors on the X-

axis in Figure 6 reflects the sequence in which sensors were 

selected during the optimization process to maximize the F1 

score, rather than the individual peak F1 score of each sensor. 

For instance, while P6 might achieve the highest F1 score 

when considered alone, the optimization process prioritized 

combinations of sensors that collectively provided the best 

performance. Thus, P9 was selected first because it 

contributed most effectively to the combined score when 

starting the selection process, even though P6 may have 

shown a higher individual score later in the process. This 

approach underscores the importance of considering sensor 

combinations rather than just individual sensors, as the goal 

is to build a model that performs optimally with the selected 

set of sensors, rather than focusing solely on the highest-

scoring individual sensor. 

 

 

 
Figure 6: The result of sensor optimization by SFS 

 

To conclude, the order of the sensors on the X-axis in Figure 

6 represents the sequence in which sensor combinations were 

selected during the SFS process to maximize the F1 score. 

While P6 achieves the highest F1 score individually, P9 was 

chosen first because it provided the best initial contribution 

to the combined score 

5.2. Feature Optimization Results  

Following sensor optimization, feature selection through SFS 

focuses on identifying the most impactful features for each 
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diagnostic scenario, excluding scenario 2 for consistency. 

Figure 7 illustrates the optimization journey across scenario, 

with scenario 1 peaking at five features before experiencing 

a decline in accuracy. In contrast, scenarios 4, 5, and 6 

demonstrate a positive correlation between the number of 

features and accuracy, with scenario 5 achieving a perfect 

macro F1 score of 14 features. These trends underscore the 

nuanced impact of feature selection on model performance, 

highlighting the potential for overfitting or underfitting based 

on the feature set's complexity. 

 

 

 
Figure 7: The result of feature optimization by SFS (from top 

to bottom: scenarios 1,3-6) 

 

 

 

 

5.3. Comparative Analysis on Raspberry Pi Zero W  

The evaluation on the Raspberry Pi Zero W, detailed in 

Figure 8, contrasts the performance of all sensors and features 

against the streamlined approach of the proposed framework. 

Notably, scenarios 1 and 5 exhibit improved accuracy with 

the optimized framework, whereas scenarios 3, 4, and 6 see a 

reduction. ... the model's ability to capture complex patterns 

in specific assignments. 

 

 

Figure 8: Comparison of F1 scores between using all sensors 

and features, and the proposed method (above: all sensors and 

features, below: proposed method) 

5.4. Computational Efficiency  

The processing times outlined in Table 4 emphasize the 

significant reduction in computational load achieved through 

the proposed framework. By narrowing the focus to a single 

sensor and a curated set of features, the framework not only 

lowers spacecraft costs but also accelerates processing times 

by approximately 15-fold. This efficiency gain primarily 

affects feature extraction and standardization, crucial for 

onboard spacecraft execution given the typical 1Hz down 

sampling rate. However, the critical analysis reveals a 

nuanced landscape.  

 

While the proposed framework promises substantial benefits 

in terms of efficiency and cost, the observed decrease in 

accuracy for specific assignments raises important 

considerations. The balance between computational speed 

and diagnostic precision becomes a pivotal factor, especially 

in the context of space missions, where both are paramount. 

Moreover, the reliance on simulated data for optimization 

underscores the need for further validation with actual 

spacecraft data to ensure the framework's robustness and 

reliability in operational settings. 

 

Table 4: Comparison of the total execution time and each 

scenario’s execution time between using all sensors and 

features, and the proposed method 

Scenario 

All Sensors, 

All Features 

[ms] 

Proposed 

Framework 

[ms] 

Feature 

Extraction 
9983 525 

Standardization 

(Total of each Scenario) 
850 182 

Scenario 1 58.0 6.26 

Scenario 2 57.7 6.45 

Scenario 3 8.63 3.09 

Scenario 4 4.32 2.83 

Scenario 5 3.89 2.88 

Scenario 6 7.14 3.20 

Total 10972 731 

 

6. CONCLUSION 

This study presents a forward-looking approach aimed at 

enhancing the autonomy of spacecraft by introducing an 

efficient diagnostic framework specifically designed for 

spacecraft propulsion systems. Incorporating real-world data, 

conducting a detailed trade-off analysis, broadening the 

literature review, and focusing on handling unknown 

anomalies will significantly enhance the framework's 
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practical utility and robustness. Leveraging data derived from 

simulations, this method seeks to streamline the diagnostic 

process by minimizing the number of sensors required on the 

spacecraft. It achieves this by optimizing sensor placement 

and feature selection, using Sequential Forward Selection 

(SFS) to greatly reduce the system's execution time. When 

implemented on a microcomputer with a proven track record 

in spacecraft operations, the framework demonstrated a 

substantial reduction in execution time—approximately 15-

fold—compared to traditional methods utilizing all available 

sensors and features. This efficiency gain notably surpasses 

the standard downsampling rate of spacecraft, albeit at the 

expense of a slight decrease in overall accuracy.  

 

6.1. Future Work 

Looking ahead, this study has identified several key areas for 

further development to enhance the framework's 

effectiveness and applicability in real-world spacecraft 

operations.  

Improving accuracy: By enhancing the accuracy of the 

proposed method, we can incorporate a greater number of 

sensors and features. This will provide more detailed data, 

improving diagnostic precision.  

Addressing data discrepancies: The issue is with the 

differences between simulated data and actual spacecraft 

data. A possible solution is to quantify and address any 

discrepancies to ensure the framework accurately reflects 

real-world conditions.  

Expanding diagnostic scope: The framework needs to 

support autonomous reconfiguration, control, and decision-

making based on diagnostic outcomes. This will help go 

beyond just fault identification. As a result, future work 

should investigate other advanced machine learning 

techniques, such as Deep Learning and Reinforcement 

Learning to adapt and accurately identify novel fault types.  

Handling unknown anomalies: Another challenge is the 

with detecting and managing unforeseen anomalies. This 

warrants investigation into ensemble learning methods to 

combine multiple models, leveraging their collective 

strengths to create a more robust and resilient diagnostic 

system.  

Developing a comprehensive solution: We not only want to 

diagnose faults accurately, but also enable automatic system 

adjustments and decision-making processes. It is important to 

take a more holistic approach for real-world spacecraft 

operations, where the ability to autonomously adapt and 

respond to diagnostic findings is essential for mission 

success.  

Hydrazine valve operation: Operating hydrazine valves 

more slowly could extend their lifespan by reducing 

mechanical stress and wear. However, slower operations 

might obscure prognostic signals, making early fault 

detection more challenging. As a result, further investigation 

is needed to balance these trade-offs. Integrating additional 

sensing technologies or advanced data analytics techniques 

may help capture subtle anomalies even at slower operation 

speeds.  

Cost-Benefit analysis of sensor and feature optimization: 

Additional sensors and features come with costs such as 

increased weight, space, and computational load. It is useful 

to conduct a cost-benefit analysis to balance improved 

diagnostic capability against the added resource 

requirements. This ensures a practical and feasible diagnostic 

framework.  

 

By addressing these challenges and areas for improvement, 

future research will significantly advance the field of 

spacecraft autonomy. This will pave the way for more 

resilient and self-sufficient space exploration missions, 

ensuring mission success through enhanced diagnostic and 

adaptive capabilities. 
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