
International Journal of Prognostics and Health Management, ISSN 2153-2648, 2024 

Anomaly Sign Detection for Automatic Ticket Gates by the 
Histogram Limitation Method 

Ken Ueno1, Shigeru Maya1, and Kiyoku Endo2 

 

1 System AI Lab., Corporate R&D Center, Toshiba Corporation, Kawasaki, Kanagawa 212-8582, Japan 
ken.ueno@toshiba.co.jp 

shigeru1.maya@toshiba.co.jp 

2 Toshiba Automation Systems Service Co., Ltd., Kawasaki, Kanagawa 210-8541, Japan 
endo.kiyoku@toshiba-tass.co.jp 

 
ABSTRACT 

It is crucial to appropriately maintain automatic ticket gates 
(ATGs) to keep transportation operating smoothly in urban 
areas. Although the average failure rate of new ATGs is 
extremely low, continuous operation for many years might 
lead to unstable performance due to deterioration, and the 
need for periodic maintenance to avoid fatal faults might halt 
operations for extended periods. To detect anomalies at an 
early stage, “anomaly signs” can be utilized to flag ATGs for 
maintenance by service engineers before anomalies occur. In 
addition, to minimize the cost of ATG monitoring, the 
necessary computing resources should be minimized, which 
means using only light-weight statistical methods rather than 
deep learning or machine learning. In this paper, we focus on 
the automatic separation modules inside ATGs that separate 
multiple tickets by complicated mechatronic controls because 
this module is the major cause of maintenance calls from 
station attendants. We propose a simple anomaly sign 
detection, called the histogram limitation method (HLM). We 
evaluated the anomaly sign scores over time with 
maintenance timing and compared them with the 
conventional fast unsupervised anomaly detection method, 
Histogram-Based Outlier Score (HBOS) widely used in 
various domains. The experimental results using real field 
ATG monitoring data show that HLM successfully detected 
anomaly signs before a maintenance call was necessary, 
which is better performance compared with HBOS. Despite 
being a simple modification based on HBOS, HLM also 
provides anomaly sign scores that agree adequately with 
assessments by maintenance service engineers.  

1. INTRODUCTION 

To smoothly operate public transportation for huge numbers 
of people in urban areas with highly developed railway 
transportation networks, it is essential to maintain and 
monitor automatic ticket gates (ATGs), also known as fare 
collection systems. Modern ATGs have fewer mechanical 
parts because e-tickets have become more popular; however, 
ATGs that use paper tickets must be maintained for at least 
10 years into the future as part of the basic railway 
infrastructure installed at almost all stations in Japan.  

In addition to performing scheduled inspections, service 
engineers (SEs) need to adjust or repair ATGs on-site when 
they are summoned by station attendants. It is important to 
prevent ticket jamming failures before they occur because 
SEs need time to adjust the gap between rollers to fix jams in 
the separation module; in some cases, they need to replace 
rollers and/or belts, making the ATG unavailable. When 
station attendants cannot resolve a jam, they call spot 
maintenance, which may cause delays for parts procurement 
and ultimately cause long periods of ATG downtime.  

For older ATGs, an efficient, low-cost, and compact 
monitoring function is required because it is necessary to 
keep hardware costs as low as possible; otherwise, service 
fees would increase, and consequently maintenance might be 
deferred.  

To mitigate these problems, we propose efficient and light-
weight anomaly detection at an early stage; in other words, a 
so-called “anomaly sign detection” for predictive 
maintenance based on condition-based maintenance. Here, an 
anomaly sign refers to symptoms in the normal operation _____________________ 
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state before an anomaly occurs. Anomaly sign detection can 
help prompt preventive action to prepare for part replacement 
or to summon SEs and avoid fatal defects.  

2. BACKGROUND 

2.1. Separation Module in ATGs 

To date, we have found that the most frequent failure in 
ATGs is related to the ticket-separation module (Figure 1) 
operated by complicated mechatronic controls located at the 
front of the ATG, for which the overall failure rate is about 
30%, although the failure rate of a new ATG is extremely low 
(around 1/10,000) according to our survey. Thus, we focus 
on the separation modules as the target of anomaly sign 

detection.  

Figure 1. Separation Module in an Automatic Ticket Gate  
(https://www.global.toshiba/jp/products-solutions/security-automation/fare- 

collection/automatic-gate-system.html) 

ATGs can automatically separate multiple tickets by feed and 
reverse rollers at very high speed after these tickets enter the 
separation module. First, the feed roller and reverse roller 
rotate in the same direction. When thickness sensors detect 
multiple tickets, the reverse roller rotates in the opposite 
direction to send only the upper ticket back toward the entry 
slot. The feed roller then sends only the lower ticket to the 
exit slot, and after that, sends multiple tickets down the line 
once they are aligned horizontally. This process is illustrated 
in Figure 2. 

During maintenance, SEs adjust the gap between the reverse 
and feed rollers. If the gap is not appropriate, the ATG cannot 
separate multiple tickets correctly. Some ATGs have an 
automatic gap adjustment mechanism, but the roller can 
become enlarged or develop uneven wear due to the presence 
of fluids such as water and oil. In that case, even ATGs with 
automatic gap adjustment might require new rollers. In other 
cases, when the friction between tickets is high, the 
separation module may need more time to separate them. 
Furthermore, when an ATG has difficulty separating tickets 
for some reason, it sends them away from the separation 
module and attempts the separation again, which increases 
the amount of time needed to successfully separate the tickets. 

Figure 2. Process for Separating Tickets in the Separation 
Module 
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2.2. Related Research 

Previous studies have investigated failure prediction for 
ATGs (Yokoyama, Kono, Matsuda, Shiomi, and Yokoyama, 
2023), rule-based diagnosis for ATGs (Shimamura, 2019), 
and anomaly detection for ticket-selling devices, using deep 
learning (Xie, Zhu, Wang, Li, and Wang, 2020). Ueno, 
Ishikawa, Kobayashi, Sunaoshi, and Endo (2023) detected 
anomalies in ATG control sequences by using a sequential 
data mining approach to generate common frequent 
sequential patterns as normal control sequences and applying 
these normal patterns to monitor control sequences. However, 
to our knowledge, no existing anomaly detection method for 
the ATG separation module uses only a single variable to 
monitor the time it takes the ticket to pass through the 
separation module. In case that only single variable is 
available for anomaly sign detection, the anomaly sign score 
can be easily disturbed by unstable control results, also hard 
to see the anomaly sign due to low resolution.  

Recent studies have reported anomaly sign detection by an 
autoencoder for power plants (Naito, Taguchi, Kato, Nakata, 
Miyake, Nagura, Tominaga, and Aoki, 2021) and anomaly 
sign detection for steel manufacturing facilities (Hirata, 
Hachiya, and Suzuki, 2021). These approaches are based on 
multivariate sensor data; therefore, it would be difficult to 
apply these methods to univariate data.  

In the present paper, we introduce our anomaly sign detection 
histogram limitation method (HLM) for ATGs, in terms of 
practical anomaly detection system development for 
infrastructure in urban areas. HLM can remove the effect of 
unstable control results and improve the anomaly sign 
resolution by tracking cumulative histogram changes over 
time.  

We describe the basic mechanism of the ATG separation 
module in Sec. 2. Next, we discuss our anomaly sign 
detection HLM in Sec. 3. The evaluation results are reported 
in Sec. 4 and discussed in Sec. 5. Finally, we summarize our 
research and identify future work. 

3. OBJECTIVE OF THE RESEARCH 

In this paper, we describe our new anomaly sign detection 
method enhanced by histogram-based anomaly detection. To 
compare it with the baseline method, we evaluated the 
anomaly sign detection performance for separation modules 
of ATGs based on the following three metrics. 

(1) Warning Timing: how early the anomaly sign warning 
occurs within 2 months before maintenance. Note that 
only more than two consecutive warnings can be 
counted to omit uncertainty factors such as slow-release 
timing of the tickets, or wet or greasy tickets causing 
bad separation. 

(2) Warning frequency: how many times warnings occur 
within 3 months before maintenance. Note that only 

two consecutive warnings can be counted to omit 
uncertainty factors such as slow-release timing of the 
tickets, or wet or greasy tickets causing bad separation. 

(3) Soundness: Anomaly sign scores should return to 
normal immediately after maintenance is performed. 

4. METHODOLOGY 

4.1. ATG Log Data and the Target Feature 

ATGs record firmware logs of all ticket processing. The logs 
contain mainly the parts under control and their timing. We 
obtained monitoring data from five real ATGs at an actual 
railway station for about 1 or 2 years. We extracted only 
maintenance records related to separation modules from 
firmware logs. Through our investigation of the time needed 
to pass through the separation module, we chose the passing 
time from just before the separation module to just after. 
Because our target is the separation module, we focused on 
processing two ticket combinations: an 85-mm and an 
Edmonson ticket as well as a pair of 85-mm tickets.  

4.2. Anomaly Sign Detection Methods 

We employed light-weight detection methods because we 
have to keep hardware costs as low as possible to avoid 
maintenance fees for older ATGs. As a baseline method, the 
Histogram-Based Outlier Score (HBOS) was adopted. To 
improve anomaly sign detection, we applied our developed 
anomaly sign detection with the HLM.  

4.2.1. Histogram-Based Outlier Score (HBOS) 

The HBOS is a widely used conventional unsupervised 
anomaly detection method (Goldstein., Lewis, and Dengel, 
2012), including oil steel industry (Carrasco, Lopez, 
Aguilera-Martos, Garcia-Gil, Markova, Garcia-Barzana, 
Arias-Rodil, Luengo and Herrera, 2021), gas industry 
(Barbariol, Feltresi, and Suusto, 2019), etc. The HBOS is 
calculated as HBOS(p) with (1). Note that d is the dimension, 
p means each instance, and hist means the height of i-th bin 
representing a density estimation. 

𝐻𝐵𝑂𝑆(𝑝) = ∑ 𝑙𝑜𝑔( ଵ
௛௜௦௧೔

)ௗ
௜ୀ଴   (1) 

Then, based on the HBOS, we calculate the daily histogram-
based outlier score DHOS by (2). Note that 𝛿 represents the 
date (year, month, and day).  

𝐷𝐻𝑂𝑆(𝛿) =
∑ ு஻ைௌ(௣ೕ)ಿ

ೕసబ
ே

  (2) 

Due to its simplicity, it is even very useful when the target 
values are close to a normal distribution.  

As an extension of the HBOS, recently, the Multi-step HBOS 
was proposed for steel-plant monitoring (Aguilera-Martos, 
Garcia-Barzana, Garcia-Gil, Carrasco, Lopez, Luengo, and 
Herrera, 2023). A histogram-based random forest was also 
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proposed for predicting NOx sensor failure in heavy-duty 
trucks (Gurung, Lindgren, and Boström, 2017). Although 
these approaches are both based on HBOS, they achieve 
successful results only when they can use multivariate data. 

4.2.2. Histogram Limitation Method (HLM) 

Our preliminary research revealed that slight anomaly signs 
tend to appear in the tail of a histogram for passing time 
during separation (i.e., the time needed for a ticket to pass 
through the separator). Based on this observation, it seems 
easy to detect anomaly signs by monitoring the histogram tail. 
However, the shape of the histogram is also affected by ticket 
defects such as those caused by bending, folding, and being 
wet or oily, which make it difficult to decide which area of 
the histogram should be focused on. 

For these reasons, we developed the HLM as a first concept 
that enables us to calculate the rate of the anomaly score after 
maintenance by automatically selecting the anomaly sign 
area (Figure 3) that makes the passing time fastest compared 
with the one before maintenance in the modeling step. The 
score can be calculated by the ratio of the calculated anomaly 
sign area (red area in Figure 4) to the entire area (blue and red 
areas in Figure 4) in the detection step as follows. Here, we 
define sets Sଵ and Sଶ as defined in (3) and (4), respectively. 
Then, we calculate the daily anomaly sign score DASS as 
shown in (5). Note that the calculated anomaly sign area 
exists from T1 to T2, U refers to the bound for HLM, |∙| refers 
to the number of elements in the set, and 𝛿 means the date 
(year, month, and day).  

Sଵ
ఋ =  {𝑖 | 0 ≦ 𝑡௜

ఋ ≦ 𝑈}   (3) 

Sଶ
ఋ =  {𝑗 |𝑇ଵ ≦ 𝑡௝

ఋ ≦ 𝑇ଶ}   (4) 

𝐷𝐴𝑆𝑆(𝛿)  =  | ୗమ
ഃ|

 | ୗభ
ഃ|

   (5) 

 

Times T1 and T2 can be calculated as follows. First, we choose 
samples of passing time through the separation module for 1 
week before maintenance and define these as  Sଵ

௩ and Sଶ
௩ . 

Then, we choose samples for 1 week after maintenance and 
define them as Sଵ

௪ and Sଶ
௪ . Here, we search L, the best 

combination of T1 and T2 that maximizes the difference d(L) 
defined as (6) and (7). Note that Sത means the sample mean of 
S and 𝜎 means standard deviation.  

𝑑(𝐿) = ௌೢതതതതିௌೡതതത

ఙೢିఙೡ
    (6) 

𝐿 = argmax
௅

𝑑(𝐿)
 

   (7) 

 

 
Figure 3. Anomaly Sign Calculation by the HLM in the 
Model Construction Step 

 

As a result of this evaluation, we found that the 𝐷𝐴𝑆𝑆(𝛿) can 
partially detect anomaly signs correctly before maintenance. 
However, the detection results tend to be unstable for a short 
time (i.e., days) before maintenance, and therefore the SE 
assessments generally do not agree with the calculated scores. 
This may be because the method often selects a narrow area, 
especially when the anomaly sign occurs outside the 
calculated anomaly sign area, which results in false negatives 
and is affected by outliers, as shown in Figure 4.  

 

 
Figure 4. Anomaly Sign Calculation by the HLM in the 
Detection Step 
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4.2.3. Improving the HLM 

To improve the stability of the anomaly score, we then 
calculate a stable score by focusing on an area wider than the 
original HLM, and including almost normal areas on a 
cumulative histogram (Figure 5). Improved HLM also 
excludes outlier values caused by complicated ATG 
mechatronic controls and variations of ticket insert timing 
and position. 

Specifically, first we set the lower percentile A as 10% to 
remove outliers and set the lower percentile B as 90%, and 
then calculated the lower values A and B. In this illustrative 
example, we set the upper value U as 100% (100 msec). In 
the detection step, we focus on the frequency between A and 
B. Figure 6 shows an illustrative example to show the 
difference in the focus area of cumulative histograms 
between a normal period (about 2 months after maintenance) 
and anomaly period (about 2 months before maintenance) for 
the same ATG. The cumulative histogram is steeper than that 
of the abnormal period. Based on the observation, we revised 
the HLM as described below. 

Here, we define sets Sଵ
ఋ and Sଶ

ఋ  as given in (8) and (9). Then, 
we calculate the 𝐷𝐴𝑆𝑆(𝛿)  as given in (10). Note that |∙| 
refers to the number of elements in each set.  

 

Sଵ
ఋ =  {𝑖 |𝐴 ≦ 𝑡௜

ఋ ≦ 𝑈}   (8) 

Sଶ
ఋ =  {𝑗 |𝐵 ≦ 𝑡௝

ఋ ≦ 𝑇ଶ}   (9) 

𝐷𝐴𝑆𝑆(𝛿)  =  | ୗమ
ഃ|

 | ୗభ
ഃ|

   (10) 

 

 

Figure 5. Anomaly Sign Calculation by Improved HLM in 
the Model Construction Step 

 

 

Figure 6. Anomaly Sign Calculation by improved HLM in 
the Detection Step 

 

In this example, we set the denominator as the frequency 
between lower value A (35 msec) and U (100 msec), and the 
numerator as the frequency between lower value B (41 msec) 
and U (100 msec) based on the observation that the focus area 
shows slightly different anomaly periods from a normal 
period in the cumulative histogram. Then, we calculate the 
fraction as the 𝐷𝐴𝑆𝑆(𝛿).  

4.2.4. Monitoring System by HLM 

We developed the monitoring system by HLM to detect 
anomaly signs of real ATGs in operation at train stations in 
Japan. The process flow of the improved HLM consists of the 
model construction step (Figure 7) and anomaly sign 
detection step (Figure 8). In the model construction step, for 
example, the system calculates A and B based on the data for 
the set of passing time in the separation module containing 
normal or abnormal periods for about 2 months before 
maintenance. Then the system memorizes the parameters A, 
B, and U, and the anomaly sign judgement threshold TH, 
which is set by the system user, currently based on our 
experience. In the detection step, the system calculates the 
frequencies |S1| and |S2| by using A, B, and U. By calculating 
the fraction described above, the 𝐷𝐴𝑆𝑆(𝛿). 
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Figure 7. Process Flow of improved HLM in the Model 
Construction Step 

 

The judgment results on each day can be calculated and 
visualized on the web page for the improved HLM as shown 
in Figure 9. We can construct anomaly sign detection models 
and detect anomaly signs by calculating the score and judge 
the anomaly sign score with threshold.  

 

 

 
Figure 8. Process Flow of improved HLM in the Detection 
Step 

 
Figure 9. Monitoring Display on the Web Browser 

 

4.2.5. Parameters for Anomaly Sign Detection 

For both methods (HBOS and improved HLM) we set the 
threshold by calculating the 3𝜎 values during a normal period 
based on our preliminary experiments. We also used 𝛼 = 0.1 
for HBOS and B is calculated based on 90%-tile for HLM. It 
may be better to set 𝛼 as ≤0.05 and B based on more than 
95%-tile when the monitoring target ATGs are remarkably 
stable. 
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5. EXPERIMENTAL EVALUATION 

5.1. Results of HLM Improvements 

We evaluated the HLM performance focused on the most 
critical index “warning timing”, “warning frequency”, and 
“soundness” as mentioned in Section 3 with the datasets from 
five real ATGs in operation at train stations. In original HLM, 
the earliest warning case was seen about 14 days before 
maintenance (Figure 10).  However, the judged anomaly 
signs were too localized immediately before maintenance. 

The result of the improved HLM, shown in Figure 11, shows 
that the improved method successfully detected four anomaly 
signs, and the earliest warning was 58 days before 
maintenance as well as the anomaly sign score gradually 
increased. As for warning frequency, both methods detect 4 
warnings before maintenance, which has no difference. As 
for soundness, we confirmed that the improved HLM results 
matched the SEs’ evaluation of the field ATG in which 
operation had degraded before maintenance, while the score 
tendency of original HLM was not agreed with their 
evaluation.  

5.2. Comparison with Conventional HBOS 

Here we compare the anomaly sign detection performance of 
the HBOS and the improved HLM based on the three metrics 
described in Sec. 2.2.  

5.2.1. Warning Timing 

The first metric is how early the warning occurs. The results 
of Earliest dates for warning (days before maintenance) by 
HBOS and the improved HLM is shown in Table 1. Note that 
M means Maintenance timing and number followed by M is 
maintenance ID within same ATG. From this table, we can 
see that the HLM detects anomalies sooner than the HBOS 
by 10 days; however, both methods detect anomaly signs 
more than 35 days before maintenance on average. 

 

 

 
Figure 10. Results of Anomaly Sign Detection by the 
Original HLM 

 
Figure 11. Results of Anomaly Sign Detection by the 

improved HLM 

    
Maintenance ID HBOS HLM 
ATG1 M1 33 57 
ATG1 M2 74 68 
ATG2 M1 32 42 
ATG2 M2 16 67 
ATG2 M3 16 27 
ATG2 M4 24 7 
ATG3 M1 32 34 
ATG4 M1 53 55 
Days Before 
Maintenance (avg.) 

35 44.6 

   
Table 1. Earliest dates for warning  

(days before maintenance)  

Especially for ATG1 M1 around 7/6/2020, the HLM reveals 
anomaly signs from end of April to the middle of May (Figure 
12), whereas the HBOS graphs do not show these signs 
(Figure 13). It seems much easier for SEs to notice anomaly 
signs in the HLM graphs. The earliest warning by HLM is 
5/10/2020, while HBOS is 6/3/2020. These results suggests 
that HLM can warn 3 weeks earlier compared to that of 
HBOS in this case.  

 

 
Figure 12. HBOS anomaly sign scores (M1 and M2 in ATG1) 
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Figure 13. HLM anomaly sign scores (M1 and M2 in ATG1) 

According to the valuation results on ATG1 M2 around 
10/10/2020, the earliest warning by HBOS is 7/28/2020, 
while that of HLM is 8/3/2020. The difference of warning 
timing is less than 1 week. It shows that the warning time by 
HLM is sometimes slightly delayed compared to that of 
HBOS, although the average of the warning timing is earlier 
by 9.6 days.  

In another case, for ATG4 M1 around 2020/10/7, the score 
by HBOS (Figure 14) shows a similar score tendency of 
HLM (Figure 15); however, the score difference in score 
between before and after the maintenance by HBOS is 
smaller than that for the HLM. In contrast, the HLM score 
shows a remarkably larger difference between before and 
after the maintenance. The earliest warning by HBOS is 
8/15/2020, while it is 8/13/2020 by HLM. It suggests that the 
timing of warning by HLM is almost the same as HBOS in 
this case.  

 
Figure 14. HBOS anomaly sign scores (M1 in ATG4) 

 
Figure 15. HLM anomaly sign scores (M1 in ATG4) 

 

   
Maintenance ID HBOS HLM 
ATG1 M1 30 32 
ATG1 M2 50 47 
ATG2 M1 9 12 
ATG2 M2 14 17 
ATG2 M3 12 16 
ATG2 M4 11 6 
ATG3 M1 17 20 
ATG4 M1 28 40 
Number of 
Warnings (avg.) 21.4  23.8  

   
Table 2. Warning frequency  

(number of warnings up to 3 months before maintenance) 

5.2.2. Warning frequency 

Next, we evaluated the warning frequency, which means the 
number of warnings within 3 months before maintenance. We 
found that each method provided more than 20 warnings on 
average; however, HLM provided slightly more warnings by 
2.4 in average. Note that in ATG4 M1 the difference of 
warning frequencies between HBOS and HLM is 12 which is 
the largest among all cases for evaluations. As shown in 
figure 13, the score for HBOS tend to decrease below the 
threshold continuously in Sep. 2020, which leads to be lower 
warning frequency in HBOS. 

 

5.2.3. Soundness 

We found that anomaly sign scores almost successfully return 
to normal levels immediately after the maintenance almost 
every time for both methods. Especially for M1 in ATG4, we 
found that anomaly sign scores gradually decrease 1 month 
before maintenance date both by HBOS and HLM. However, 
the scores keep the difference between before and after 
maintenance. In other words, the scores are high before 
maintenance and low after maintenance in both methods.  

6. DISCUSSION 

As a practical monitoring system for ATGs in urban areas, 
we developed HLM as an anomaly sign detection method and 
evaluated its performance compared with the conventional 
method HBOS. HLM showed good performance, especially 
when roller gap adjustments are needed. Only occasionally 
did anomaly sign scores go up and then down without any 
maintenance (Figure 15). This might have been caused by 
reduced ticket quality due to sweat, rainwater, or some 
seasonal factors. It is difficult to identify the cause more 
precisely because the ticket quality was not recorded.  
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As shown in Sec. 5, the results suggest that HBOS performs 
well as an anomaly detection method; however, it does not 
detect anomaly signs before an anomaly occurs. In contrast, 
HLM successfully detects anomaly signs before an anomaly 
occurs, with earlier warnings and much stronger warnings. It 
also provides warnings without any mechanical factors, such 
as releasing tickets slowly or receiving greasy tickets. 

Another benefit of the HLM is that SEs can much more easily 
understand its score value in comparison to the HBOS. The 
HLM score value is a simple probability (0-1); however, the 
HBOS may change depending on the ATG, which SEs would 
find hard to discern.  

In the ATG monitoring task, it is hard to use deep learning or 
machine learning with high computational power due to cost 
limitations; however, some other applications in this 
framework can permit the use of these methods.  

In another aspects for anomaly sign detection, HLM can be 
used with more sophisticated method like machine learning, 
deep learning, and other statistical methods in case with the 
better computing resources because HLM generate new 
feature values by using input variable into the advanced 
learning algorithms. It is possible to obtain higher accuracy 
or sensitivity by combining HLM and other advanced 
methods. Note that it is not possible to generate new feature 
like anomaly sign score without feature generation like HLM.  

Among deep learning method, LSTM (Braei, and Wagner, 
2020) or its variant dLTSM (Maya, Ueno, and Nishikawa,  
2019) seems plausible for the ATG monitoring task because 
of its sensitivity and accuracy, however, these methods need 
much more data and computing resources for learning 
sufficient anomaly detection models. 

In our evaluation it was no big problem to simply use 3 sigma 
values of anomaly sign scores during model construction 
period, however, I think we probably need to learn the 
optimal threshold for other applications especially for 
complicated systems. 

7. CONCLUSION 

In this study, for a practical anomaly detection system for 
infrastructure in urban areas, we developed HLM as an 
anomaly sign detection method for ATGs and evaluated its 
performance with five real ATGs. In particular, the HLM 
detected anomalies 6 weeks on average before the 
maintenance day, and furthermore, SEs agreed with the 
results. Despite it being a very simple approach, HLM 
successfully detected anomaly signs for ATGs. To 
understand anomaly signs, SEs can perform predictive 
maintenance to avoid breakdowns. We are now applying 
HLM to real ATG monitoring at several sites.  

For future research, we plan to apply the method to other 
infrastructure facilities in urban areas and increase the 
number of ATG monitoring sites for effective and preventive 

maintenance, and to improve the method in the aspects of 
practicality and scalability.  
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