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ABSTRACT 

The productivity and efficiency of industrial systems are 
highly affected by failures and machine breakdowns. Further, 
in asset-intensive industries, unexpected failures are 
considered the primary source of operational risk. In 
response, the maintenance department strives to calculate 
reliable estimates of the risk levels associated with such 
failures and develop resilient maintenance strategies that 
enable it to respond effectively to equipment failures. The 
research developed a framework for integrating fuzzy failure 
mode and effects analysis (FFMEA) with resilience 
engineering (RE) concepts for maintenance planning. The 
framework consists of four main stages: FFMEA, Risk iso-
surface (RI), resilience assessment, and maintenance 
planning. In FFMEA, multiple sub-factors were considered 
for each main risk factor and evaluated using fuzzy logic. 
Then, in the RI stage, the risk priority number (RPN) was 
calculated through a fuzzy approach that considered the order 
of the importance of the main three risk factors. The fuzzy 
resilience assessment was applied through a survey of fifty-
one questions related to the main four RE potentials to 
determine the need for resilient maintenance strategies. 
Finally, the RPN-Resilience diagram was employed to 
classify maintenance activities into six main maintenance 
strategies. A case study from a production line of plastic bags 
was used for illustration. The main advantage of the proposed 
FFMEA is that it divides the main risk criteria into sub-
criteria to increase the accuracy of risk assessment and 
evaluate resilience potentials under fuzziness. In conclusion, 
the integration of the risk-resilience evaluation is a valuable 
tool for effectively planning maintenance activities.  
 
Keywords: FMEA, Resilience, Fuzzy, Maintenance, Plastics 
industry. 

1. INTRODUCTION 

Industrial systems are continuously subjected to failures and 
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breakdowns that affect the capability of physical assets by 
increasing maintenance costs, reducing productivity and 
equipment availability, and decreasing the ability to maintain 
a satisfactory level of quality and safety (Al-Refaie et al., 
2020a; Jonge and Scarf, 2020). Maintenance can be defined 
as a combination of technical, administrative, and managerial 
actions that are implemented to maintain or recreate a perfect 
condition during the lifecycle of a unit to perform the 
required function. Generally, maintenance is classified into 
three main types: corrective maintenance, preventive 
maintenance, and predictive maintenance (Al-Refaie & 
Hamdieh, 2024; Ma, et al., 2020; Bumblauskas, 2017; 
Bashiri, et al., 2011). 

Maintenance planning is becoming more and more vital 
to organizations since effectiveness, product quality, 
maintenance service, and safety are becoming as important as 
the availability of machines and maintenance costs (Al-
Refaie & Al-Hawadi, 2024; Al-Refaie & Al-Hawadi, 2023; 
Al-Refaie et al., 2023; Piller, 2015). To reduce the adverse 
effects due to equipment failures, proper maintenance 
decisions have to be taken after a careful study of failure risks 
and available maintenance resources. Risk-based 
maintenance (RBM) is a maintenance strategy that combines 
risk assessment and maintenance planning by making use of 
the knowledge of failures to reduce maintenance costs, 
increase safety, and achieve tolerable risk levels by reducing 
failure probabilities and their consequences  (Al-Refaie et al., 
2022a; Al-Refaie and Almowas, 2021). Risk assessment 
helps in prioritizing failures according to their occurrence 
frequency, consequences, and the ability to detect them. 
Then, the decision about the maintenance type and frequency 
is made based on the risk assessment results (Al-Refaie and 
Al-Hawadi, 2022; Arunraj and Maiti, 2007).  
 
Several quantitative and qualitative risk assessment tools 
have been used in maintenance planning, such as failure 
mode effect criticality analysis, event tree analysis, fault tree 
analysis, Delphi technique, and failure mode and effects 
analysis (FMEA). The FMEA is a widely-used quantitative 
risk assessment tool that evaluates potential failure modes 
(FMs) and then prioritizes them to determine the required 
maintenance actions and support the decision-making 
process about maintenance policies (Dinmohammadi and 
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Shafiee, 2013). FMEA usually ranks FMs according to their 
risk priority number (RPN) which is the product of the three 
main risk factors: occurrence (O), severity (S), and detection 
(D) of a failure, where O is a measure of the failure frequency 
or probability (Smadi, 2014), while S assesses the impact and 
consequence of the failure (Balaraju, et al., 2019), and D 
refers to the probability of detecting the failure before it 
happens (Jamshidi, et al., 2015). However, FMEA usually 
uses a 10-point scale for evaluating risk factors, producing 
RPN values that lie between 1 and 1000. Equal RPN values 
can result from different combination sets of O, S, and D 
(Keskin and Özkan 2009), and thereby the difference in the 
importance of the three factors is not distinguished (Xiao et 
al., 2011).  Furthermore, describing the three risk factors of 
failures based on crisp numbers is unreliable. Consequently, 
the experts’ evaluation may include uncertainty that affects 
maintenance decisions. Instead, linguistic scales can be used 
in the risk assessment using the terms, high, low, and 
moderate to describe the risk factors for a given FM. To 
overcome the imprecise judgment and uncertainty that arise 
from experts’ evaluations due to using a linguistic scale 
during risk assessment, the fuzzy logic theory helps to 
translate the linguistic scale into a final crisp number by 
assigning a membership function (MF) for each linguistic 
term (Al-Refaie et al., 2021a; Al-Refaie et al., 2019a; 
Geramian, et al., 2017).  

 
In practice, it is impossible to prevent all failures from 
happening. Hence, resilience engineering has gained 
significant importance as a characteristic of the process 
industry, to react robustly to disruptive events and recover 
from failures rather than preventing them (Al-Refaie et al., 
2022b; Al-Refaie et al., 2020b; Dinh, et al., 2012). According 
to Hollnagel (2011), resilience is the intrinsic ability of a 
system to adjust its functioning before, during, or following 
changes and disturbances, so that it can sustain required 
operations under both expected and unexpected conditions 
(Al-Refaie & Kokash, 2023; Al-Refaie et al., 2022c; Al-
Refaie & Abedalqader, 2022; Al-Refaie & Abedalqader, 
2021). Implementing resilient maintenance strategies helps 
reduce the adverse consequences associated with failures; 
such as delays, increased cost, and severe effects on machines 
and workers, supports conducting more responsive and 
efficient maintenance actions, and facilitates the coordination 
and communication between the maintenance department 
and other departments. Resilience engineering (RE) 
comprises four main potentials: the potential to respond (PR), 
the potential to monitor (PM), the potential to learn (PL), and 
the potential to anticipate (PA) (Hollnagel, 2009).  The PR 
refers to the system’s ability to react or respond to any threat 
or hazard correctly by activating prepared actions, while the 
PM refers to the system’s ability to monitor internal and 
external signals that can positively or negatively affect the 
system’s performance in the short or long term. Further, the 
PL indicates the system’s ability to learn from previous 
experiences and hazards (Shirali et al., 2012). Finally, the PA 

refers to the system’s ability to predict and expect future 
events and developments; such as fluctuating operating 
conditions and potential disruptions (Bukowski and 
Werbińska-Wojciechowska, 2020a).  
 
Fuzzy logic includes three main steps; fuzzification, fuzzy 
inference system (FIS), and defuzzification (Al-Refaie et al., 
2021b; Al-Refaie et al., 2019b; Gallab et al., 2019; Al-Refaie 
et al., 2018). In fuzzy logic, both the inputs and outputs are 
represented by fuzzy sets with associated MFs that are 
determined based on experts’ knowledge and experiences. 
The FIS consists of a fuzzy rule base used to process the 
inputs and produce a fuzzy output. The experts’ knowledge 
and experiences about the interactions between the inputs and 
output are translated through fuzzy rules in the form of  “if-
then rules”. If refers to an antecedent which is the input and 
then refers to a consequent which is the output. The Mamdani 
inference system is the preferable system to express human 
knowledge because it offers two operators for the conjunction 
of the rules:  AND (minimum) and OR (maximum). Finally, 
defuzzification is used to convert the fuzzy FIS output into a 
meaningful crisp number. Defuzzification methods include 
the max-membership principle, centroid method, and 
weighted average method. This research employs the 
centroid method for defuzzification (Zeng et al., 2007).  

 
In asset-intensive industries, unexpected failures are the 
primary source of operational risk (Moerman et al., 2017). 
Thus, the maintenance department strives to develop resilient 
maintenance strategies to respond effectively to failures and 
recover equipment as soon as possible. Consequently, this 
research develops a FFMEA-resilience framework for 
maintenance planning under fuzziness. The proposed 
framework helps organizations determine the appropriate 
maintenance policy and identify the resilience level in 
dealing with machine failures. The remainder of the research 
including the introduction is structured in the following 
sequence. Section 2 reviews the relevant previous studies on 
risk assessment and resilience. Section 3 develops the 
integrated FMEA-resilience framework. Section 4 presents a 
case study to illustrate the proposed framework. Section 5 
summarizes research conclusions and directions for future 
research.  

2. LITERATURE REVIEW 
 
FMEA was utilized in assessing risk in several research 
studies. For example, Braglia et al. (2007) proposed a 
methodology for performing built-in reliability as an 
extension of the Quality Functional Deployment using 
FMEA. The FMEA was used to translate customers’ 
requirements into functional requirements for the product. 
Taghipour et al. (2011) used the Analytical Hierarchy Process 
(AHP) to introduce a multi-criteria decision-making model to 
prioritize medical devices according to their criticality. The 
model included six main criteria: function, age, mission 
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criticality, risk, recalls and hazard alerts, and maintenance 
requirements. The failure consequence was divided into 
operational (e.g. downtime), non-operational (e.g. cost of 
repair), and safety and environment. Geum et al. (2011) 
integrated FMEA with grey relational analysis (GRA) to 
evaluate FMs in service sectors. The FMEA stage 
encompasses 19 sub-criteria, O includes four sub-criteria: 
frequency, repeatability, visibility, and single point failure, 
while D was divided into four sub-criteria: chance of non-
detection, method of systematic detection, customer/ 
employee detection, and hardness of proactive inspection. S 
was divided into three main dimensions: basic, customer, and 
process. The basic dimension includes impact, core process, 
typicality, and affected range, while the customer dimension 
includes customer participation, customer contact, service 
encounter, and process dimension includes interdependency, 
bottleneck possibility, hardness of isolation, and resource 
distribution. Liu et al. (2017) developed an FMEA approach 
that integrated cloud model theory with GRA. Cloud model 
theory was used to express the uncertainty of the linguistic 
assessment in the FMEA and GRA was used to prioritize 
FMs. Carpitella et al. (2018) combined failure mode effects 
and criticality analysis with a fuzzy Technique for Order of 
Preference by Similarity to Ideal Solution (TOPSIS) in 
prioritizing FMs and planning maintenance activities in a 
street-cleaning vehicle. The FMs were prioritized according 
to the operational time, the modality of the maintenance 
action execution, and the frequency of occurrence. Can 
(2018) combined FMEA and the weighted aggregated sum 
product assessment. The approach used an intuitionistic scale 
to deal with uncertainty and hesitancy in the assessment 
process. A medium-voltage cell assembly line was employed 
for illustration. Additional factors were included in 
computing the intuitionistic fuzzy RPN involving cost, 
exposure duration, and system safety. Eyuboglu et al. (2020) 
proposed an FMEA model to prevent power transformer 
failures while considering equipment aging. Each risk factor 
was divided into three weighted subdivisions. Failure 
severity was measured by damage, repair, and duration, while 
occurrence was assessed by location, failure type, and failure 
causes. Finally, detectability was evaluated by protection, 
monitoring, and inspection.  
 
However, the traditional FMEA fails to deal with the 
fuzziness and vagueness in the evaluation information due to 
the uncertainty of experts’ assessment and human thinking 
(Milašinović et al., 2023; Liu et al., 2019). Therefore, several 
studies combined fuzzy logic with FMEA. Jamshidi et al. 
(2013) developed a fuzzy-based risk assessment model to 
assess pipeline failures. Failure probability included third-
party damage, corrosion, design, and incorrect operation. 
While failure consequences covered product hazard, leak 
volume, dispersion, and receptors. Jee et al. (2015) 
introduced a fuzzy-based RPN approach utilizing genetic 
algorithm and monotonicity for prioritizing failures for a 
semiconductor manufacturing plant. Sankpal et al. (2015) 

used an integer linear programming approach to determine 
the appropriate maintenance strategy for failures identified 
using FFMEA. The aim was to maximize the reduction of 
RPN of each failure while considering the cost of each 
strategy, the compatibility constraint between failures and 
policies, and the available monetary resources. Nazeri and 
Jamshidi et al. (2015) developed a fuzzy risk assessment 
model to determine the appropriate maintenance policy for 
medical devices. Failure occurrence was assessed by 
repeatability, visibility, and mean time between failures 
(MTBF), while severity was measured by patient safety, the 
potential risk for the device operator and maintenance 
personnel, mean time to repair (MTTR), and economic loss. 
The detectability was evaluated by the probability of non-
detection and the method of detection. Wang et al. (2016) 
integrated FMEA with a complex proportional assessment 
and analytic process to evaluate FMs under interval-valued 
intuitionistic fuzzy context in a hospital service setting. In 
FMEA, occurrence was assessed by repeatability and 
frequency, while severity was measured by impact, customer 
participation, and interdependency. Finally, the detectability 
was evaluated by the chance of non-detection and method of 
systematic detection. Naderikia (2017) proposed an approach 
to develop the maintenance strategy for railway tamping 
equipment using FFMEA and fuzzy decision-making trial 
and evaluation laboratory technique. Yazdi (2018) integrated 
FMEA, AHP, and entropy techniques to assess failures in a 
piping area for the construction industry. The fuzzy AHP was 
adopted to assign expert weights, find the most important 
specific activity, and determine a subjective weighing of 
severity, occurrence, and detection, while the entropy 
technique was adopted to calculate objective weights of the 
three risk factors. Expert weights were assessed based on job 
position, job experience, and education level.  Liu et al. 
(2019) integrated cloud model theory and hierarchical 
technique for order of preference by similarity to the ideal 
solution (TOPSIS) method to produce an FMEA model that 
combined fuzziness and randomness of linguistic 
assessments and the advantages of hierarchical TOPSIS in 
solving complex decision-making problems. Kumar, et al. 
(2018) replaced the rule base development in FFMEA with a 
multi-criteria decision-making problem approach using Grey 
relational analysis to assess and prioritize different FMs in an 
auto Liquefied Petrol Gas dispensing station. Gallab et al. 
(2019) proposed a fuzzy risk assessment approach for three 
different equipment in the Liquefied Petrol Gas site. Jaderi et 
al. (2019) used both traditional and fuzzy risk-based 
maintenance (RBM) to evaluate asset failures in a 
petrochemical company to determine the criticality level of 
the company and identify the appropriate decisions regarding 
its maintenance strategy. Results revealed that the fuzzy 
RBM was more accurate than the traditional one. Wang et al. 
(2019) introduced an FMEA approach that took into 
consideration the psychological behavior of the decision-
makers and the interaction relationships among risk factors 
using the prospect theory and Choquet integral, respectively. 
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An aircraft landing system was used to illustrate the approach 
and a comparison between other FMEA models and the 
developed FFMEA was conducted. Godina et al. (2021) 
integrated FFMEA with the design, measure, analyze, 
improve, and control cycle and applied it to a production line 
in an automotive industrial unit. In the define phase, all 
defects and potential failures were identified and classified to 
exclude the obvious defects. The number of FM occurrences 
was determined in the measure phase and the FFMEA was 
implemented in the analyze phase. According to the FFMEA 
results, improvements were suggested in the improvement 
phase, then, implemented and monitored in the control phase. 
Ribas et al. (2021) presented a two-stage FFMEA approach 
in the assessment of FMs of a hydroelectric earth dam. The 
first stage included the severity and occurrence as inputs to 
the FIS and the risk criticality index as an output. After that, 
the risk criticality index and detection are inputs to another 
FIS to obtain FIS-RPN. Reza et al. (2021) used FFMEA to 
identify failures in an apartment building and their causes and 
determine RPN for each failure to suggest risk mitigation 
actions for the most critical ones. Yeganeh et al. (2021) 
proposed a FFMEA approach for risk management 
implementation in light steel frame systems. In addition to 
failure occurrence and its consequences, the risk criticality 
number included another factor related to the ability to 
control the risk. Cardiel-Ortega & Baeza-Serrato (2023) 
proposed a fuzzy logic evaluation system with a solid 
mathematical basis in the defuzzification stage of RPN values 
by adjusting the centroid method and treating each set 
individually. Simulations were carried out to determine the 
system’s best structure. A system of knitting machines in a 
textile company in southern Guanajuato was employed for 
validation.  
 
In the context of resilience, Azadeh et al. (2014) introduced 
four new factors: self-organization, teamwork, redundancy, 
and fault-tolerant to evaluate the performance of RE in a 
petrochemical factory using data envelopment analysis, in 
addition to the six resilience indices introduced by Wreathall 
(2006) for high-reliability organizations (HRO) (i.e. 
management commitment, reporting culture, learning 
culture, awareness, preparedness, and flexibility). Dinh et al. 
(2012) differentiated between resilience strategies and 
principles, they introduced three resilience strategies to 
control disturbances: failure probability minimization, failure 
consequences minimization, and minimization of recovery 
time and restoration, while the resilience principles are: 
flexibility, controllability, early detection, minimization of 
failure, limitation of effects, and administrative controls and 
procedures. Wang et al. (2015) introduced the resilience 
concept into preventive maintenance scheduling for multi-
aging production lines using a semi-Markov decision 
processes model. They aimed to minimize the system's 
average cost per unit of time under constrained preventive 
maintenance resources. Moerman et al. (2017) integrated RE 

and HRO concepts in a model to take into account 
engineering and organizational perspectives respectively in 
managing unexpected failures of a railway pit stop system. 
Jain et al. (2018) stated that resilience analysis is an important 
method in risk assessment and is divided into three phases; 
avoidance, survival, and recovery, which were represented by 
twenty-four resilience metrics. A survey was then conducted 
to identify the most important resilience metrics in each phase 
from the views of respondents from the chemical processes, 
and oil and gas fields. Bukowski and Werbińska-
Wojciechowska (2020a) evaluated the maintenance 
capability level using a fuzzy-based method integrated with 
resilience potentials: PR, PM, PL, and PL. Two maintenance 
support parameters; potential readiness level and process 
regency, were introduced for each resilience potential. 
Bukowski and Werbińska-Wojciechowska (2020b) utilized 
resilience concepts and FMEA to investigate whether an 
automotive air conditioning compressors manufacturer 
followed RBM concepts. 
 
However, little research was reported on the integration of 
FFMEA and resilience engineering to determine the 
appropriate maintenance policy. Moreover, prioritizing the 
RPN components; severity, detection, and occurrence, during 
PRN calculation was not considered. This research, therefore, 
contributes to the ongoing research on fuzzy risk assessment 
by developing a framework that integrates FFMEA with 
resilience under fuzziness. The proposed FFMEA differs 
from the traditional FMEA by dividing the main risk criteria 
into main sub-criteria to increase the accuracy of the risk 
assessment process and consider the order of importance of 
the three risk factors. Moreover, the resilience potentials and 
their characteristics are evaluated to determine the need for 
resilient maintenance strategies under fuzziness. 
Collectively, the developed combination of the FFMEA and 
fuzzy resilience shall greatly help decision-makers and 
maintenance experts assess the risk level associated with 
failures and determine the appropriate maintenance policies.  

3. FMEA-RESILIENCE INTEGRATION 

The methodology includes four stages, including FFMEA, 
resilience assessment, and maintenance planning. These 
stages are presented as follows. 

 
3.1 FFMEA assessment  
A typical production line usually consists of n machines; 
where each machine is subjected to several FMs. The FMEA 
is used to identify the system and sub-systems and then 
determine potential FMs, their causes, effects, and the current 
maintenance strategies. For each FM, the three risk factors O, 
S, and D have to be evaluated. In this research, each of the 
three risk factors is divided into sub-criteria as shown in 
Figure 1. The evaluation of failure risk using FFMEA is 
shown in Figure 2.   
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Figure 1. FMEA criteria and sub-criteria.  

 
 

 
Figure 2. FFMEA approach. 

 

The risk factors are described as follows: 
1. The O factor donates the probability of a failure to happen 

or the frequency of failure occurrence. To evaluate O more 
accurately, it can be divided into two sub-criteria: 
repeatability (O1), MTBF (O2), and visibility (O3). 
Repeatability represents the frequency of failure 
occurrence due to the same source within a period (Geum 
et al., 2011), while the MTBF is a measure of reliability 
engineering and is defined as the expected time between 
two successive failures from the same type for the same 
machine. Visibility is another important factor in 
measuring the occurrence since it determines whether the 
failure is visible to the operators or maintenance experts 
during operating, inspection, or maintenance activities. 
Table 1 shows the linguistic terms used to evaluate the 
occurrence of sub-criteria and the corresponding fuzzy 
numbers.  

2. The S factor refers to all the adverse consequences 
associated with the failure in terms of delay, cost, safety, 
and environment. In this study, severity is divided into four 
sub-criteria: operators and maintenance team safety (S1), 
product quality (S2), MTTR (S3), and economic loss (S4). 
It is important to investigate the effect of the failures on 
human wellbeing because some failures may lead to severe 
injuries or even death; thus S1 represents the impact of the 
failure on the safety of operators and maintenance 
personnel. Also, failures may have adverse on the produced 
product, thus, S2 is concerned about the impact of the 
failure on the product quality.  MTTR is another measure 
of reliability that refers to the average time taken to define 
failure causes and get the equipment repaired (Kaur and 
Bahl, 2014). Moreover, there are economic losses 

associated with each failure, mainly due to reduced 
machine utilization, delay, and maintenance-related 
activities. In this study, the economic losses are due to 
maintenance labor and material costs and the loss of 
production. Table 2 shows the linguistic terms used to 
evaluate severity sub-criteria and the corresponding fuzzy 
numbers. 

3. The D criterion refers to the ability to detect the failure 
before happening and it is divided into two sub-criteria: the 
probability of not detecting a failure (D1) and the method 
of failure detection (D2). D1 is concerned about the ability 
of maintenance personnel to detect the failure and this is 
influenced by failure visibility, whether it can be detected 
through the naked eye or scheduled inspection or with the 
aid of diagnostic tools; such as automatic controls, alarms, 
and sensors (Sharma et al., 2005). While, D2 refers to the 
method used in detecting the failure, whether it is detected 
through automated or manual inspection or cannot be 
detected at all. Tables 3 and 4 illustrate how D1 and D2 are 
evaluated using linguistic terms and the corresponding 
fuzzy numbers based on experts’ experiences, respectively.  

Experts are requested to evaluate FMs using linguistic terms 
that describe each sub-criterion. Then, the evaluation of 
experts is converted into triangular fuzzy numbers (TFNs) as 
follows (Yucel et al., 2011):  
 
𝑇𝐹𝑁 =  ∑ 𝑤௜

௡
௜ୀଵ . 𝑀𝐹௜                                                      (1) 

 
where TFN is the fuzzy number of the sub-criteria, n is the 
number of experts, 𝑤௜  is the weight of expert i, and 𝑀𝐹௜ is the 
MF corresponding to the linguistic term chosen by expert i in 
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the evaluation. The resulting TFNs are transformed into crisp 
values as follows (Jamshidi, et al., 2015): 
 
𝐷 =  ଵ

ଷ
((𝑈 − 𝐿) + (𝑀 − 𝐿)) + 𝐿                                     (2) 

 

where D is the defuzzified value of sub-criteria, U, L, and M 
are the upper, lower, and middle numbers of TFN, 
respectively. The defuzzified values of the sub-criteria are 
then inserted into the FIS of the main criteria using MATLAB 
to obtain the crisp values of O, S, and D for each FM utilizing 
Table 5. The next step is to calculate the RPN of each FM. In 
most cases, the three risk factors may differ in their 
importance. The RI function aims to involve this difference 
in RPN calculation and FM prioritization. Anes et al. (2018) 
introduced Eqs. (3) and (4) for calculating the RI for two and 
three risk factors with different importance, respectively. 
 

𝑅𝐼 (𝐴, 𝐵)஺வ஻ = 𝛼. 𝐴 + B −  𝛼                                           (3) 
 
𝑅𝐼(𝐴, 𝐵, 𝐶)஼வ஺வ஻ = 𝛼. 𝐴 + 𝐵 − 𝛼 + (𝐶 − 1) ∗ 𝛼ଶ               (4) 
 
where A, B, and C are risk factors, and α is the scale length of 
the risk factors.  Because there are three risk factors involved 
in FMEA analysis (O, S, and D), six combinations will result 
according to the order of importance: SOD, SDO, OSD, 
ODS, DOS, and DSO. For example, the combination OSD 
means that O is more important than S, and S is more 
important than D. Based on an evaluation scale of 10 points, 
the RI is calculated as: 
 
 𝑅𝐼(𝑂𝑆𝐷)ைவௌவ஽ = (𝑂 − 1). 10ଶ + 𝑆. 10 + (𝐷 − 10)      (5) 

 
 
 

Table 1. Description and fuzzy rating of O sub-criteria. 
Fuzzy rating O1: Repeatability  

(Gargama and Chaturvedi, 2011) 
O2: MTBF  
(Braglia, 2000) 

O3: Visibility 
(Jamshidi, et al., 2015) Rating 

Very high (VH) Failure is almost happening ( < 1 
month) 

< 3 months It is not visible at all (8,10,10) 

High (H) Repeated failure (1-6 months) 3-6 months Visible while using the machine (6,7.5,9) 
Moderate (M) Occasional failure (6-12 months) 6-24 months Visible between two inspection 

intervals 
(3.5,5,6.5) 

Low (L) Relatively few failures (12-24 
months) 

2-10 years Visible while inspecting (1,2.5,4) 

Very low (VL) Failure is unlikely ( >2 years) > 10 years Visible before an inspection (0,0,2) 
 
 

Table 2. Description and fuzzy rating of S sub-criteria. 
Fuzzy  
rating 

S1: Impact on operators and 
maintenance team safety. 
(Jamshidi, et al., 2015) 

S2: Impact on product quality 
(based on experts' experiences) 

S3: MTTR  
(Sharma, et al., 2005) 

S4: Economic loss 
(based on experts 
experiences) 

Rating 

VH Death Serious effect (product is 
scraped and cannot be recycled) 

Production line shut 
down.  

Economic loss ≥ $10,000 (8,10,10) 

H Serious long-term injury
  

Significant effect (product is 
scraped but can be recycled) 

External intervention for 
repairs  

$7000 ≤ Economic loss < 
$10,000 

(6, 7.5, 9) 

M Moderate injury Moderate effect (product can be 
reworked) 

1 day ≤MTTR< 4 days $4000 ≤ Economic loss < 
$7000 

(3.5 ,5, 6.5) 

L Minor injury  Minor effect (product can be 
sold at a lower price) 

1hour ≤ MTTR< 1 day $1000<Economic loss 
<$4000 

(1, 2.5 ,4) 

VL Less or no effect  Less or no effect (product 
quality is not affected) 

MTTR<1 hour  Economic loss< $1000 (0, 0, 2) 

Table 3. Description and fuzzy rating of D1. 

Fuzzy rating Visible to the naked eye Detection via automatic 
diagnostic aids  

Detection after 
an inspection  Rating 

Yes Partially No Directly Indirectly No Yes  No 
Almost certain (AC)  X             (0.5, 1.5, 2.5) 
High (H)   X    X      X    (1.5, 3 ,4.5) 
Moderate (M)     X   X    X    (3,4.5, 6) 
Low (L)     X   X 

 
  X  (4.5, 6, 7.5) 

Remote (R)     X     X   X   (6, 7.5, 9) 
Almost uncertain (AU)     X     X      X (8,9,10) 
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Table 4. Description and fuzzy rating of D2. 
Rating Description Rating 
VL 100% automatic inspection. (0 ,0 ,2) 
L 100% manual inspection. (1, 2.5 ,4) 
M Manual inspection for some components. (3.5,5,6.5) 
H No inspection for failure and it is allowed to occur. (6, 7.5, 9) 

VH No known inspection process and it is hard to detect 
failure. 

(8,10,10) 

 
Table 5. Fuzzy rating of O, S, and D. 
Fuzzy rating Fuzzy number 
VL (0, 0, 2.5) 
L (0, 2.5, 5) 
M (2.5, 5, 7) 
H (5, 7.5, 10) 
VH (7.5,10, 10) 

 
However, getting six RI values from the six combinations 
does not provide an accurate RPN to prioritize all FMs based 
on one combination. Therefore, three fuzzy numbers are 
generated from the six combinations, one when S is the most 
critical factor (SOD and SDO), one when O is the most 
important factor (OSD and ODS), and one when D is the most 
critical factor (DOS and DSO). Assuming that RI is 
represented by triangular MFs, the TFN of RI is generated 
from two RI combinations using Eq. (6). 
 
 𝑅𝐼෪ = (𝑋ത − 𝑠,  𝑋ഥ , 𝑋 ഥ + 𝑠)                                               (6) 
 
where 𝑅𝐼෪ is the TFN of RI resulting from two combinations, 
𝑋ത and 𝑠 are the average and estimated standard deviation of 
two RI combinations of the same risk factor, respectively. For 
instance, the TFN for O combinations (OSD and ODS) is 
given as: 
 
𝑅𝐼෪(𝑂) = (𝑋ത − 𝑠 , 𝑋ത , 𝑋 ഥ + 𝑠)                                              (7) 
 
where 𝑅𝐼෪(𝑂) is the TFN of RI when O is the most important 
factor, 𝑋ത  and 𝑠  are the average and standard deviation of 
OSD and ODS, respectively. As a result, each FM has three 
𝑅𝐼෪ TFNs, as shown in Figure 3 are then introduced into FIS 
to obtain a crisp RPN. The interaction between the three RIs 
is represented using the fuzzy rule base in the form of IF-
THEN rules. Since the TFNs are numerical values, they 
should be converted into matching fuzzy sets to become 
compatible with the IF-THEN fuzzy rules that are 
constructed using linguistic terms. Table 6 displays the 
linguistic terms used to describe the RPN. The matching 
fuzzy sets are obtained from the intersection between TFN 
and the MF of the corresponding 𝑅𝐼෪ as shown in Figure 4.  
 

 

 
Figure 3. MFs of 𝑅𝐼(𝑂)෫ , 𝑅𝐼(𝑆)෫ and 𝑅𝐼(𝐷)෫ .  

 

 
Figure 4. Matching fuzzy sets of 𝑅𝐼(𝑂)෫ , 𝑅𝐼(𝑆)෫  and 𝑅𝐼(𝐷)෫ . 

 
Table 6. Linguistic variables and MFs of 𝑅𝑃𝑁෫ .  
Fuzzy rating Fuzzy number 
None (N) (0, 0, 200) 
Very low (VL) (100, 200, 300) 
Low (L) (200, 300, 400) 
High Low (HL) (300, 400, 500) 
Low Moderate (LM) (400, 500, 600) 
Moderate (M) (500, 600, 700) 
High Moderate (HM) (600, 700, 800) 
Low High (LH) (700, 800, 900) 
High (H) (800, 900, 1000) 
Very high (VH) (900, 1000, 1000) 

 
After that, the strength of the fire rules is obtained using fuzzy 
intersection (minimum) operation as  
µோ =  µோூ෪(ை)(𝑥ଵ)⋀ µோூ෪(ௌ)(𝑥ଶ)⋀ µோூ෪(஽)(𝑥ଷ)⋀ µோ௉ே(𝑦)       (8) 
 
where µோ is the MF of the rule, µோூ෪(ை),  µோூ෪(ௌ),  µோூ෪(஽),  µோ௉ே  
are the MF of 𝑅𝐼(𝑂)෫ , 𝑅𝐼(𝑆)෫ and 𝑅𝐼(𝐷)෫ , and RPN, 
respectively, 𝑥ଵ ∈ X1, 𝑥ଶ ∈ X2, 𝑥ଷ  ∈ X3, y ∈ U, X1, X2, X3, 
and U represent the universe of 𝑅𝐼(𝑂)෫ , 𝑅𝐼(𝑆)෫ , 𝑅𝐼(𝐷)෫ , and 
𝑅𝑃𝑁෫ , respectively. Then, the MF of the output is obtained 
using the fuzzy union (maximum) operation using Eq. (9): 
 
𝜇ோ௉ே = ∨௜ୀଵ

௞ 𝑅௞(𝑥, 𝑦)                                   (9) 
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where 𝜇ோ௉ே is the MF of the output (RPN), k is the number 
of rules, and  𝑅௞ is the strength of rule k. Table 9 displays the 
MFs of 𝑅𝑃𝑁෫ . Finally, the fuzzy RPN is defuzzified using the 
centroid method as stated in Eq. (10). 

𝑂𝑢𝑡𝑝𝑢𝑡 =  
∑ ఓ೔(௬೔).௒೔

೜
೔సభ
∑ ఓ೔(௬೔)೜

೔సభ
                                                   (10) 

 
3.2 Resilience assessment  
 
This research considers four resilience potentials proposed by 
Hollnagel (2011), including PR, PM, PL, and PA as shown in 
Figure 5. The resilience characteristics, measures, and 
concepts are classified under the four resilience potentials. 
Seven PR characteristics are considered including rapidity 
(Cai et al., 2018), emergency preparedness (Jain et al., 2018, 
Van der Beek and Schraagen, 2015, Tadic et al., 2014), 
robustness (Guo, et al., 2021, Attoh-Okine et al., 2009), 
recoverability (Muller, 2012), resource availability (Van der 
Beek and Schraagen, 2015), redundancy: (Yodo and Wang, 
2016; Okoh and Haugen, 2015; Carvalho et al., 2012) and 
flexibility: (Woods 2006; Woods and wreath, 2003). Further, 
four PM characteristics are examined including 
controllability (Dinh et al., 2012), minimization of failure, 
resourcefulness (Bruneau et al. 2003), and limitation of 
effect. Furthermore, six PL characteristics are assessed 
involving adaptability (Tong et al., 2020), agility (Muller, 
2012), administration controls and procedures (Dinh et al., 
2012), learning capability (Park et al., 2012; Mentes and 
Turan, 2018), and reporting culture (Azadeh and Salehi, 
2014, Costella et al., 2009, Woods and wreath, 2003) 
Communicating culture (Jain, et al., 2018). Finally, three PA 
characteristics are investigated including early detection 
(Sheffi and Rice, 2005; Jain et al., 2018, Tadic et al., 2014), 
anticipation/ forecast capability, and proactivity/ 
preparedness (Shirali, et al., 2013). A five-level Likert scale 
is used to assess RPN elements and resilience potentials. The 
fuzzy logic follows to aggregate the experts’ evaluation and 
obtain a final resilience index using Eq. (10) that describes 
the need for resilience maintenance strategies. Table 7 
displays the linguistic terms for PR, PM, PL, PA, and 
resilience index.  
 

Table 7. MFs of Resilience potentials. 
Linguistic term Fuzzy number 
VL (0,0,0.3) 
L (0.1,0.3,0.5) 
M (0.3,0.5,0.7) 
H (0.5,0.7,0.9) 
VH (0.7,1,1) 

 

3.3 Maintenance Planning 
 
FMEA helps to determine the criticality of FMs, the higher 
the RPN, the more proactive maintenance strategy is 
required. For instance, an FM with high RPN may require 
predictive or preventive maintenance while a FM with low 
RPN may require corrective maintenance. However, the 
resilience index is used to determine whether the 
maintenance policy chosen based on RPN should be resilient 
or not. Moreover, FMEA is used to make improvements and 
adjustments based on O, S, and D values to reduce the risks 
of FMs. Also, the four resilience potentials are used to 
determine the critical resilience aspects and needed 
improvements. Figure 6 shows the resilience-RPN diagram 
which can be utilized to determine the maintenance 
strategies.  

4. APPLICATION 

A production line that produces plastic bags with different 
types of shopping bags, food packaging, multilayer bags, and 
heavy-duty bags is employed to illustrate the developed 
framework. The main goal of the factory is to respond 
effectively to customers’ demands, in terms of delivery on 
time, cost, and product quality. To achieve this goal, the 
maintenance team should maintain continuous production 
with minimum interruptions and failures affecting production 
capacity. Thus, having resilient maintenance strategies with 
risk-based thinking will drive the production process to be 
more resilient and robust against undesired events. The 
required data were collected from two maintenance experts: 
the head of the department and the maintenance engineer and 
they were given equal weights (i.e. 𝑤ଵ=0.5 and 𝑤ଶ=0.5). The 
production line consists of three main machines: a plastic 
filming machine, a Flexo printing machine, and a cutting 
machine. First, the granular raw materials are transformed 
into plain plastic rolls using the plastic filming machine. 
Then, the plain, unprinted roll is driven into a Flexo printing 
machine to print the required design on the roll. Finally, the 
cutting machine cuts the printed roll into identical bags of the 
desired dimensions.  
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Figure 5. Resilience assessment framework. 

4.1 FFMEA results 
  
The FMs, effects, and current maintenance strategy are 
represented in Table 8. Two experts evaluated the RPN and 
resilience sub-criteria. For illustration, the experts evaluated 
O for FM1 of machine 1 (FM11) as shown in Table 9. In Table 
9, O1 was evaluated by E1 and E2 as H (6, 7.5, 9) and M (3, 
4.5, 6), respectively. Then, the evaluation of O1 was 
converted into TFN using Eq. (1) as follows: 
 
TFN(𝑂ଵ) = (6, 7.5, 9) ⊗ 0.5 ⊕ (6, 7.5, 9) ⊗ 0.5 = (6, 7.5, 9) 

The defuzzified TFN of O1 was calculated as follows: 

𝐷(𝑂ଵ) =
1
3

. ൫(9 − 6) + (7.5 − 6)൯ + 6 = 7.5 

Similarly, the evaluation was performed for the remaining 
sub-criteria. The aggregated TFNs of the O, S, and D sub-
criteria are displayed in Table 11. The six RI combinations 
SOD, SDO, OSD, ODS, DOS, and DSO were calculated 
using Eq. (4) and then shown in Table 12. Then, the six RI 
values were converted into three TFNs; 𝑅𝐼(𝑂)෫ , 𝑅𝐼(𝑆),   ෫ and 
𝑅𝐼(𝐷)෫  as also listed in Table 12.  

 
Table 8. FMEA of plastic bags production line.  

Machine Failure mode Failure effect Current maintenance  

Plastic 
filming  
  

FM11: The sensor was not placed properly leading to 
an inaccurate temperature reading  

Defective  products Predictive   

FM12: Improper lubrication of bearing  Work accidents Preventive  
FM13: Air sensor failure  Defective products Corrective  

Flexo- 
printing  
  

FM21: Tension controller failure due to  load cell error  Solid ink leading to  unprinted roll  Corrective  
FM22: Inoperative  door sensor  Work accidents Predictive  
FM23: Worn bearing  Work accidents Preventive  

Cutting  

FM31: Photocell error Defective products and accumulated 
materials may lead to fire 

Corrective  

FM32: Rubber Cylinder cut Defective products and accumulated 
materials may lead to fire 

Preventive  

FM33: Damaged heater Defective products Corrective  
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Table 9. An illustrative evaluation of O for FM11. 
FM Expert O1 O2 O3 
FM11 E1 H VH VH 
FM11 E2 H VH H 

Table 10. Aggregated TFNs of O, S, and D sub-criteria. 
FM Occurrence Severity Detection 

O1 O2 O3 S1 S2 S3 S4 D1 D2 
FM11 (6, 7.5,9) (8,10,10) (7,8.75,9.5) (0.5,1.25, 3) (0.5,1.25, 3) (0.5,1.25, 3) (3.5,5,6.5) (1,2.25,3.5) (2.25,3.75,5.25) 
FM12 (4.75,6.25,7.75) (7,8.75,9.5) (6,7.5,9) (6,7.5,9) (6,7.5,9) (6,7.5,9) (2.25,3.75,5.25) (0.5,1.5,2.5) (2.25,3.75,5.25) 
FM13 (2.25,3.75,5.25) (0.5,1.25, 3) (3.5,5,6.5) (0,0,2) (0,0,2) (0,0,2) (3.5,5,6.5) (0.5,1.5,2.5) (0,0,2) 
FM21 (2.25,3.75,5.25) (3.5,5,6.5) (2.25,3.75,5.25) (0.5,1.25, 3) (0.5,1.25, 3) (0.5,1.25, 3) (3.5,5,6.5) (3,4.5,6) (2.25,3.75,5.25) 
FM22 (4.75,6.25,7.75) (8,10,10) (4.75,6.25,7.75) (8,10,10) (8,10,10) (8,10,10) (6,7.5,9) (5.25,6.75.8.25) (6,7.5,9) 
FM23 (4.75,6.25,7.75) (6,7.5,9) (4.75,6.25,7.75) (2.25,3.75,5.25) (2.25,3.75,5.25) (2.25,3.75,5.25) (2.25,3.75,5.25) (0.5,1.5,2.5) (6,7.5,9) 
FM31 (7,8.75,9.5) (6,7.5,9) (7,8.75,9.5) (3.5,5,6.5) (3.5,5,6.5) (3.5,5,6.5) (2.25,3.75,5.25) (2.25,3.75,5.25) (2.25,3.75,5.25) 
FM32 (0.5,1.25, 3) (7,8.75,9.5) (0.5,1.25, 3) (2.25,3.75,5.25) (2.25,3.75,5.25) (2.25,3.75,5.25) (3.5,5,6.5) (6,7.5,9) (3.5,5,6.5) 
FM33 (4.75,6.25,7.75) (6,7.5,9) (4.75,6.25,7.75) (3.5,5,6.5) (3.5,5,6.5) (3.5,5,6.5) (4.75,6.25,7.75) (6,7.5,9) (3.5,5,6.5) 

 
Table 11. Defuzzified values of O, S, and D sub-criteria. 

FM Occurrence O Severity S Detection D 
O1 O2 O3 S1 S2 S3 S4 D1 D2 

FM11 7.5 9.3 8.4 9 1.58 9.3 3.75 5 5 2.25 3.75 2.5 
FM12 6.25 8.4 7.5 7.63 7.5 0.67 5 3.75 5 1.5 3.75 2.5 
FM13 3.75 1.6 5 3.62 0.67 9.3 1.58 5 5 1.5 0.67 0.88 
FM21 3.75 5 3.75 3.75 1.6 9.3 5 5 5 4.5 3.75 2.5 
FM22 6.25 9.3 6.25 7.63 9.3 1.58 6.25 7.5 7.5 6.75 7.5 6.25 
FM23 6.25 7.5 6.25 7.63 3.75 5 5 3.75 5 1.5 7.5 2.5 
FM31 8.4 7.5 8.4 9 5 7.5 2.5 3.75 5 3.75 3.75 2.5 
FM32 1.6 8.4 1.6 4.12 3.75 7.5 5 5 5 7.5 5 7.5 
FM33 6.25 7.5 6.25 7.63 5 8.41 5 6.25 6.25 7.5 5 7.5 

Table 12. SOD, SDO, OSD, ODS, DOS, and DSO values. 

  
The TFNs were then converted to matching fuzzy sets. For 
illustration, the matching sets for FM11 are shown in Figure 6.  

 
 

Figure 6. The matching sets for FM11. 

The TFNs of 𝑅𝐼(𝑂)෫ , 𝑅𝐼(𝑆),   ෫ and 𝑅𝐼(𝐷)෫  are 
(544.12,551.41,558.7), (333.25, 350.125, 367), and (187.45, 
197.035, 206.62), respectively. Table 13 displays the 
matching sets for FM11. The fuzzy RPN (= 457) was then 
defuzzified using Eq. (10).   

 
Table 13. The outputs of the fired rules and RPN for FM11. 

RI(O) RI(S) RI(D) RPN 
VL 0.19 L 0.88  

H 0.69 
L 0.27 L 0.19 HL 0.27 L 0.19 
M 0.83 HL 0.19 LM 0.69 HL 0.27 

VH 0.35 L 0.27 HL 0.19 LM 0.27 LM 0.69 
M 0.83 LM 0.19 M 0.35 M 0.35 

 

FM SOD SDO OSD ODS DOS DSO 𝑅𝐼(𝑂)෫  𝑅𝐼(𝑆)෫  𝑅𝐼(𝐷)෫  RPN 
FM11 843 820 482.5 424 235 199 (820, 831.3, 842.5) (424, 453.3, 482.5) (199, 217, 235) 457 
FM12 706 683 469 423 221 198 (683, 694.3, 705.5) (422.6, 445.7, 468.8) (197.6, 209.5, 221.3) 409 
FM13 303 266 427 402 19 31 (265.8, 284.3, 302.9) (402.4, 414.7, 427.1) (18.8, 25.0, 31.2) 244 
FM21 318 295 430 419 183 194 (295, 306.3, 317.5) (418.8, 424.4, 430) (182.5, 188.1, 193.8) 289 
FM22 734 723 723 710 599 598 (723, 728.6, 734.3) (710.1, 716.3, 722.6) (597.6, 598.2, 598.8) 702 
FM23 706 683 469 423 221 198 (683, 694.3, 705.5) (422.6, 445.7, 468.8) (197.6, 209.5, 221.3) 408 
FM31 843 820 483 424 235 199 (820, 831.3, 842.5) (424, 453.3, 482.5) (199, 217, 235) 380 
FM32 360 382 439 469 686 694 (359.5, 370.8, 382) (438.7, 453.9, 469.1) (686.2, 690.2, 694.1) 586 
FM33 723 734 599 598 723 710 (723, 728.6, 734.3) (597.6, 598.2, 598.8) (710.1, 716.3, 722.55) 702 
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Table 12 shows that the highest RPN values correspond to 
FM22 and FM33, whereas the lowest RPN values correspond 
to FM13 and FM21. Accordingly, FM22 and FM33 require a 
more proactive maintenance policy than FM13 and FM21. 
  
4.2 Fuzzy resilience results 
 
The experts were requested to fill out a survey of 51 questions 
regarding the four resilience potentials and their 
characteristics for each FM separately. Table 14 displays the 
corresponding TFNs and defuzzified values of PR, PM, PL, 
and PA. Finally, the values of the defuzzified potentials were 
set inputs to the resilience FIS to calculate the resilience 
index for all FMs as also listed in Table 14, where it is found 
that FM11, FM12, FM31, FM32, and FM33 require resilient 
maintenance policies.  
 
 
 

4.3 RPN-Resilience results 
 
The RPN-Resilience diagram is shown in Figure 7, which 
reveals that a corrective maintenance strategy should be 
applied to FM13, however, resilient corrective maintenance is 
the appropriate maintenance policy for FM21. Moreover, 
preventive maintenance should be performed for FM31 and 
FM32, while resilient preventive maintenance should be used 
for FM11, FM12, and FM23. Furthermore, the appropriate 
policies for FM33 and FM22 are predictive maintenance and 
resilient predictive maintenance, respectively. Finally, the 
required maintenance strategies and improvements that could 
be implemented to improve the performance of the 
maintenance department are provided in Table 15. 

 
 
 
 

Table 14. Defuzzified PR, PM, PL, PA, and RI. 
FM PR PM PL PA PR RI 

FM11 (0.394, 0.605, 0.786) (0.363, 0.575, 0.750) (0.379, 0.579, 0.779) (0.405, 0.605, 0.805) (0.394, 0.605, 0.786) 0.594 
FM12 (0.517, 0.744, 0.889) (0.408, 0.608, 0.808) (0.453, 0.667, 0.839) (0.483, 0.689, 0.877) (0.517, 0.744, 0.889) 0.646 
FM13 (0.245, 0.444, 0.645) (0.233, 0.433, 0.633) (0.218, 0.410, 0.610) (0.233, 0.433, 0.633) (0.245, 0.444, 0.645) 0.428 
FM21 (0.417, 0.619. 0.819) (0.300, 0.500, 0.700) (0.308, 0.500, 0.700) (0.322, 0.522, 0.722) (0.417, 0.619. 0.819) 0.532 
FM22 (0.508, 0.736, 0.883) (0.450, 0.656, 0.844) (0.469, 0.721, 0.854) (0.450, 0.655, 0.844) (0.508, 0.736, 0.883) 0.634 
FM23 (0.403, 0.609, 0.800) (0.383, 0.583, 0.783) (0.388, 0.624, 0.788) (0.366, 0.566, 0.766) (0.403, 0.609, 0.800) 0.587 
FM31 (0.321, 0.520, 0.720) (0.267, 0.467, 0.654) (0.226, 0.389, 0.597) (0.161, 0.350, 0.555) (0.321, 0.520, 0.720) 0.409 
FM32 (0.178, 0.359, 0.569) (0.179, 0.354, 0.567) (0.150, 0.333, 0.542) (0.166, 0.333, 0.550) (0.178, 0.359, 0.569) 0.369 
FM33 (0.124, 0.249, 0.470) (0.165, 0.308, 0.533) (0.226, 0.376, 0.589) (0.061, 0.161, 0.411) (0.124, 0.249, 0.470) 0.334 

 
  

Table 15. Suggested improvements for FM maintenance. 

Machine FMs Current 
maintenance  

Suggested  
maintenance 

Suggested actions 

Plastic filming  
  

FM11 Preventive    Moderate resilient 
preventive 

Conduct pre-startup review, use checklists,  conduct regular inspections, 
monitor deviations, and near-misses, review operational and 
maintenance procedures 

FM12 Preventive  Moderate resilient 
preventive 

Continuous inspection, improving shift handover communications, 
conducting pre-startup review, defining authorities and responsibilities. 

FM13 Corrective   Low resilient 
corrective  

Maintain resource availability and redundant tools and spare parts, 
develop contingency plans, and employee training, using previous 
experiences in future corrective actions. 

Flexo printing  
 

FM21 Corrective  Moderate resilient 
corrective 

Train employees to deal with failure, keep redundant tools and spare 
parts, and define emergency and contingency plans. 

FM22 Predictive  Moderate resilient 
predictive 

Observe and interpret signals of failures, facilitate failure reporting, and 
review operational and maintenance procedures. 

FM23 Preventive  Moderate resilient 
preventive 

Regular inspection, conduct a pre-startup review, and define authorities 
and responsibilities. 

Cutting 
machine 
 

FM31 Corrective  Low resilient 
preventive  

Routine inspection, regular cleaning, plan for maintenance activities, and 
continuous monitoring. 

FM32 Preventive  Low resilient 
preventive  

Conduct pre-startup review, continuous inspection, monitor deviations, 
improve shift handover communications, and review operational and 
maintenance procedures. 

FM33 Corrective  Low resilient 
predictive  

Gather data and information, consistent condition monitoring, define 
procedures for failure detection, anticipate the obsolescence of 
components and equipment 
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4.4    Comparison with previous studies  

Compared to the reported approaches in previous literature, 
the proposed framework for risk and resilience assessment 
using fuzzy FMEA-resilience indices has the following 
benefits: (1) obtaining a risk-resilience index by fuzzy 
assessment of various FMEA components and resilience 
potentials; (2) utilizing the risk and resilience indices to 
determine the appropriate maintenance policy under 
uncertainty, and (3) developing iso-surface and matching sets 
to determine the resultant RPN that was employed to 
prioritize the importance of occurrence, detection, and 
severity. In practice, the proposed framework can provide a 
valuable evaluation of risk and resilience indices that can 
support maintenance engineering in enhancing maintenance 
performance by improving operational safety, productivity, 
and availability of machines. These advantages can 
significantly reduce maintenance costs, failure probabilities, 
and failure consequences. 

5. CONCLUSIONS 

This research proposed a framework that integrates FFMEA 
and resilience engineering for fuzzy maintenance planning. 
In FFMEA, the main risk factors O, S, and D were divided 
into sub-factors. Then, the fuzzy logic approach was used to 
estimate RPNs, taking into account the order of importance 
of O, S, and D. In resilience assessment, a survey of fifty-one 
questions was developed to help experts evaluate the need for 
resilient maintenance strategies for potential FMs. The expert 
evaluation was analyzed using a fuzzy logic approach. 
Finally, the appropriate maintenance strategies for FMs were 
selected according to the results of FFMEA and resilience 
assessment through the Resilience-RPN diagram. A case 
study of the plastic bags production line in a plastic factory 
was conducted to illustrate the proposed framework and 
identify the appropriate maintenance policies with the 
suggested actions for regular and resilient corrective, 
preventive, and predictive maintenance.  Results showed that 
the proposed framework is effective in handling the 
vagueness and uncertainty of experts’ judgment, calculating 
RPN through the Fuzzy iso-surface approach, and 
determining the proper resilience characteristics and 
principles for the main resilience potentials. In conclusion, 
the benefits of the developed framework make it a valuable 
tool for maintenance engineering for reducing the probability 
and impacts of failures, reducing economic losses due to 
maintenance activities and production interruptions, and 
increasing production capacity and profit. However, the main 
limitation of this framework is that it requires a good 
understanding of statistical and mathematical techniques, 
experience in failure assessment, and knowledge of fuzzy sets 
and theory. Future research considers implementing machine 
learning for failure detection and maintenance planning.   
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