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ABSTRACT 

The diagnosis of complex systems benefits greatly from a 

differential, multistep approach that narrows down the list of 

possible conditions or failures that share the same observable 

effects to a single root cause. We provide a suitable and 

practically applicable methodology for this. In extension to 

existing work, it covers all types of diagnostic actions, i.e., 

the observation of system properties, active testing, and 

system interventions like providing a dedicated diagnostic 

input or forcing the system into discriminating states, but also 

the replacement of components. Combining all these possible 

steps into one probabilistic and causal reasoning framework, 

we I) stepwise generate the diagnostic model systematically 

to correctly cover the interplay of observations and diagnostic 

interventions, and II) provide decision support based on 

counterfactuals for the selection of the next diagnostic step, 

countering the vast number of possible actions that arise in 

machine diagnostic processes, considering costs of actions to 

minimize the expected overall cost of the diagnosis. 

We developed and successfully tried our methodology for 

diagnosing cyber-physical systems in the high-tech industry, 

but we found that it supports more processes, such as 

computing intervention actions for autonomous robots. 

1. INTRODUCTION 

Machine Diagnosis, understood as the identification of the 

nature and cause of a certain and unwanted phenomenon 

within a technical system by means of at least semi-

automated analytics, is key in after-sales processes of many 

industries. It allows systems to partially self-diagnose, thus 

offering users of production equipment reduced downtimes 

either by enabling them to fix issues themselves or by 

ensuring that service personnel come in with the right parts 

for potential hardware failures. Further, it tunes maintenance 

towards minimal costs and counters the shortage of 

experienced service engineers by raising their efficiency and 

by enabling less experienced personnel to perform the tasks. 

One crucial design decision in the realization of a system for 

machine diagnosis is which information it processes. Failure 

effects and measurements of key performance indicators are 

typical candidates that can be observed and processed, but 

experienced service engineers consider more: they use active 

testing, i.e., they set system states or provide the system with 

tailored inputs to discriminate between root causes but also 

undertake costly investigative part replacements. 

We extend previous work for machine diagnosis (Barbini et 

al., 2020) by introducing automated reasoning for differential 

diagnosis with active testing and other interventions within a 

unified framework. For this, we lay out our methodology with 

causal Bayesian Networks in Section 2 and provide an 

example in Section 3 that shows the power of interventions 

in machine diagnosis. In Section 4, we introduce decision 

support for selecting the best action, extending our previous 

work (van Gerwen et al., 2023) with dynamic calculations on 

diagnostic costs. Section 5 illustrates two of our use cases, 

and Section 6 concludes with future research topics. 

2. DIFFERENTIAL MACHINE DIAGNOSIS 

2.1. Diagnosis using Causal Belief Networks 

Bayesian Belief Networks, also known as Bayes Nets (BN), 

are probabilistic graphical models that were shown to deliver 

excellent diagnostic capabilities (Heckerman, 1995, among 

other works). Introduced by Pearl (1986), they offer 

probabilistic reasoning for taking an observable event and 

inferring the likelihood that any one of several possible 

known causes was the contributing factor. In this, they form 

an efficient solution to compute the marginal distribution of 

the known causes, i.e., of a hypothesis H, given observations 

or evidence e, following Bayes’ Theorem:  
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𝑃(𝐻|𝑒) =
𝑃(𝑒|𝐻) ∗ 𝑃(𝐻)

𝑃(𝑒)
 

with P(H), P(e) the probability of observing H and e (the 

priors or marginal distributions), and P(H|e), P(e|H) the 

conditional probability of H and e, given the other one. 

Defined as directed acyclic graphs (DAGs) whose nodes 

represent variables in the Bayesian sense and whose edges 

represent conditional dependencies, BNs encode the joint 

probability distribution over all their variables. Their 

advantage for the purpose of diagnosis stems in part from the 

versatility that those variables may be observable, latent, and 

even unknown parameters or hypotheses, and that, with the 

joint probability distribution, all arbitrary combinations of 

variables may be considered. With this, BNs consider all 

causes that are possible given the observations and rank them 

according to their likelihood that depends on observations. 

As Bayes nets are one of the few inference techniques that 

combine knowledge- and data-driven modeling (Jensen & 

Nielsen, 2007), there are many options to build or generate 

BNs. Our approach for the construction of BNs for diagnosis 

is based on modeling the causal knowledge on the system 

decomposition, deployment, and functional behavior and the 

use of generative techniques to compose the needed BN from 

pre-build network fragments and rule-based elements such 

that it conforms to that knowledge. Introduced by Borth & 

von Hasseln (2002), this process translates system knowledge 

that inherently adheres to the Markov condition directly to 

Pearl’s interpretation of structural causal models, offering 

automated network generation that we seek for industrial use 

based on (Pfeffer et al., 1999), thus motivating our choice for 

Bayesian networks. We detailed and extended this approach 

in (Barbini & Borth, 2019) and (Barbini et al., 2020), but, so 

far, limited ourselves to diagnostic processes that only use a 

set of simultaneous observations or a sequence of 

observations – but not a mixed sequence of observations and 

interventions. In essence, we (and others, compare, e.g., 

Ricks & Mengshoel, 2009) generated diagnostic systems that 

use the full power of causal Bayesian Belief Networks which 

mirror a system as it is, but did not utilize the diagnostic 

prowess of interventions to the system. A major reason for 

this restriction was that interventions alter the system’s 

causality – and neither modeling techniques nor inference 

calculi were ready to handle this until quite recently.  

This changed with Pearl’s do(x) operator (2009) that 

represents interventions and allows to correctly predict 

effects of such deliberate actions in causal networks. do(x) 

operator interventions have a different meaning and 

diagnostic power than statistical associations (Pearl & Mac-

kenzie, 2018): P(Y|x) > P(Y) simply states that observing x 

raises the probability of Y, which might have other reasons 

including a common cause, while P(Y|do(x)) describes the 

situation after performing the action x that affects Y and 

eliminates the effects of other confounding factors. Within 

diagnosis, this translates, e.g., to the difference between 

observing the availability of power at a connector – with the 

conclusion that the functional chain to provide that power is 

intact – and experimentally providing power at that point, 

invalidating all assumptions about that chain while offering 

deductions from the effects observed due to the intervention. 

2.2. Differential Causal Reasoning with Bayes Nets 

Within the probabilistic graphical model, the distinction of 

observing x and do(x) is paramount, as the first provides 

evidence for the variable x, i.e., setting the probability of the 

observed state to 1, leaving the rest of the network as it was, 

while the second also changes the network structure to reflect 

the new causal flow. A differential diagnosis using a mixed 

sequence of observations and interventions therefore requires 

a new technique of stepwise inference and network 

augmentation. Figure 1 depicts our methodology for this. 

 

As the graph shows, the diagnostic model is generated from 

the system design, with augmentations to the diagnostic 

model following subsequently for conducted actions that 

change the diagnosis and, in the case of interventions, the 

system (Section 3). The observations from the system itself 

allow us to compute the differential diagnosis at each step. 

Using this process and given the encoded expert knowledge, 

we generate diagnostic models that I) accurately represent a 

sequence of diagnostic tests of all kinds, i.e., the observation 

of additional properties, the setting of a different input, 

system interventions, and the replacement of components, 

and II) correctly carry the information between steps. 

The resulting differential diagnosis covers single fault as well 

as multi-fault scenarios. Intermittent faults, however, cannot 

            

     

                

                                            

                   

                      

       

     

      

         

            

             

       

                      

             

              

       

       

      
         

        

Figure 1. Differential Machine Diagnosis 

Figure 2. Schematic representation of an all-in-one printer 
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be handled directly in this way (or any comparable approach), 

as the absence of a fault effect observation potentially leads 

to the diagnostic network ruling out the respective root-cause. 

3. INTERVENTIONS 

We use an idealized version of a printer as an example to 

illustrate our approach to handle interventions in differential 

diagnosis. Figure 2 shows a schema of the idealized printer.  

Based on a given Command, either print or copy, the printer 

should create a Bitmap and produce a printed sheet with the 

Inkjetter. For the Command copy, the printer needs only the 

Scanner working to produce a Bitmap. Similarly, for the 

Command print, it needs only a working Image Processor to 

produce a Bitmap. The BN to diagnose the printer is shown 

in Figure 3, using [Bayes Server]. Each system component is 

modelled with inputs, outputs, and health node. The system 

is created by considering the outputs of a component as the 

inputs of the following component. For details on how to 

generate this BN, we refer to (Barbini et al., 2020).  

3.1. System and Component Health 

In the BN figures below, nodes with a green identifier in the 

upper right corner represent the hidden health variable of 

components. In this example, we assume that the Command 

never fails, so it does not have a health node. The Scanner is 

broken with prior probability 5%, the Image Processor with 

1% and the Inkjetter with 10% respectively. The other nodes 

in the BN are not hidden, i.e., are nodes for which the state 

can be measured.  

For our diagnostic task, we use the BN to infer the probability 

distribution of the health nodes, given evidence in the other 

nodes. An example of how to perform a diagnosis with the 

BN is shown in Figure 3. We suppose that the Command is 

set to copy, but we do not obtain a Printed Sheet. The 

diagnosis, as the inferred probabilities on the health nodes, is 

very uncertain and the goal of our differential diagnosis is to 

perform diagnostic tests to reduce such uncertainty.  

 

Figure 3. BN of all-in-one printer. Copying fails. 

3.2. Diagnostics Tests 

There are four different types of diagnostic tests. Each type 

comes with specific modeling and BN interactions. 

Type I: observe additional properties 

The first type of diagnostic test, widely covered by existing 

work on BN for diagnosis, consists of adding additional 

evidence to one of the observable nodes. This is shown in 

Figure 4, for the observation of an existing Bitmap. This test 

is executed by probing the printer to collect the additional 

observation on the presence of the Bitmap.  

 
Figure 4. Type I: Observe additional properties 

 

Type II: set a different input 

A second type of diagnostic test consists of setting a different 

input to the system. This is a fundamentally different type of 

test than the previous one. Firstly, we are not only observing, 

but we are intervening in the system, by doing the action of 

changing an input. Secondly, the result of the action could 

potentially lead to a different observation than in the absence 

of said action, making it counterfactual.  

Our approach is to augment the BN when doing a test 

comprising an intervention. This augmentation procedure has 

two steps. Firstly, we duplicate all the nodes in the BN except 

for the health nodes and the input nodes which are not set to 

a different value (with input nodes referring to BN nodes that 

have no parents and are not of type health). Secondly, we 

connect the duplicated nodes as children of the original health 

nodes. This approach – and not, as is sometimes assumed, 

just updating the priors using the result of the inference – 

delivers the correct inference model, as shown in (Balke & 

Pearl, 1994). Notice that with this augmentation procedure 

there is no need to specify new conditional probability tables, 

as they are the same as in the original, not augmented BN. 

Figure 5 shows an example of this augmentation procedure. 

The starting point is the diagnosis BN in Figure 3. The 

duplicated nodes have a 1 at the end of their names, e.g., 

Command1. We now observe a Printed Sheet1 for the printer 

input Command1 print. As the augmented BN’s reasoning 

also includes the evidence coming from the situation when 

copying failed, it infers that the only possible diagnostic 

solution is that the Scanner is broken and the Image 

Processor and InkJetter are OK.  

 

Figure 5. Type II: set a different input 
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Type III: replace a component 

The third type of diagnostic test is the replacement of a 

component. This is also an active type of test, and thus of a 

similar nature as the previous one. When doing differential 

diagnosis with this type of test we also need to augment the 

BN, but – differently than with Type II tests – we duplicate 

its health node when we replace a component.  

Figure 6 shows this procedure on the idealized printer for the 

case that we replace the InkJetter after copying fails. For the 

replaced component we assumed that InkJetter1 functions 

(this is not necessary and might be relaxed). The input node 

Command is not set to a different value when the printer has 

a new Inkjetter, and is thus not duplicated, making it a 

common parent for both the Bitmap and Bitmap1 node. 

 

Figure 6. Type III: replace a component 

The observation related to the action of replacing the 

InkJetter is that there is still not a PrintedSeet1. The BN 

infers that a broken Scanner explains the situation, allowing 

even a switch back to the original InkJetter, as the diagnosis 

established that the failure had to progress via the Bitmap, a 

statement that could not have derived from another probe. 

Type IV: intervene within the system 

The fourth type of test consists of forcing physical quantities 

to a given value. In practical situations this corresponds to 

performing an action in the system, like connecting an 

external power supply to a part, and then observing the results 

in other parts, for example whether these are now correctly 

functioning. This test type also entails an intervention on the 

system and modeling it requires both an augmentation of the 

BN and the do(x) operator introduced above.  

Figure 7 shows an example of type IV testing: After copying 

fails, we try to print, which is a Type II test, but then we still 

do not get a Printed Sheet1. At this point, we intervene in the 

system and manually provide a Bitmap2 to the InkJetter. The 

light gray arrows pointing into Bitmap2 node indicate the 

obstruction of information flow. 

 
1 Without the do(x) operator, this evidence on Printed Sheet2 could not be 
set. It would have a null probability of finding as we tried both printing and 

copying and both failed. The do(x) operator deletes the dependence of 

The BN is consequently augmented with the duplication 

procedure described above, but in this type of test, we insert 

evidence with the do(x) operator on the duplicated node on 

which we force its physical quantity to a given value.  In the 

case of Figure 7, this is the Bitmap2 node, and the use of do(x) 

to set the evidence is shown with a red check mark.  

 

Figure 7. Type IV: intervene within the system 

 

In our example, we finally observe a Printed Sheet2 after 

providing Bitmap2. The augmented BN infers that the only 

possible solution to the diagnostic problem is that both the 

Scanner and the Image Processor are broken and the 

InkJetter is OK.1  

4. DECISION SUPPORT 

A major part of our system for machine diagnosis is to 

recommend the next best action to service engineers, as this 

increases their efficiency and reduces system downtime. To 

do so, we assess the value of possible diagnostic tests, i.e., we 

determine how much we would learn from them using 

counterfactual <what-if> reasoning. A test can be of any of 

the types outlined in the previous section. The result of each 

<what-if> scenario is the information gain or equivalently the 

reduction of uncertainty, for which we use an entropy 

measure (Oladyshkin & Nowak, 2019). 

Ideally, we would consider all possible test sequences and 

pick the one that is expected to lead to the diagnostic solution 

with minimal effort.  

However, considering that for large systems there are 

hundreds of possible tests at any point, this approach seems 

infeasible. Instead, encouraged by (de Kleer et al., 1992) 

stating that “one step lookahead is pretty good”, we take the 

myopic approach in which we look only at the currently 

available tests, and pick the test based on the expected 

entropy within the BN after doing that single test.  

Bitmap2 on its parent nodes and as a result one can have a Bitmap2 even if 
both the Scanner and the Image Processor are broken. 
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4.1. Entropy for Measuring Diagnostic Impact 

Intuitively, the entropy over the component health states is a 

measure of the uncertainty we have about the health of these 

components. The diagnostic process is then doing tests to 

reduce the entropy as much as possible.  

If we denote the set of health nodes in the Bayesian network 

with 𝛺, conditional entropy in model 𝑀 with 𝐸𝑀(∙ | ∙), and 

𝑇𝑖 = (𝐴𝑖, 𝑂𝑖) a possible test that comprises of action 𝐴𝑖 and 

observation 𝑂𝑖 , we calculate the recommended test 𝑇∗ as 

𝑇∗ =  argmax(
𝑇𝑖

𝐸𝑀(𝛺) − 𝐸𝑀←𝐴𝑖
( 𝛺|𝑂𝑖)), (1) 

where M is the model representing the current situation and 

𝑀 ← 𝐴𝑖  the hypothetical situation if we would perform 

action 𝐴𝑖 on model 𝑀 as described in Section 3. Notice that 

in the same 𝑇𝑖  the action and the observation can be 

performed in different system’s components. Calculating 𝑇∗ 

thus requires generating networks for every action 𝐴𝑖. 

Once the recommended test is executed, we generate the 

corresponding network, add the evidence that reflects the 

outcome of the test, and calculate the posterior probabilities 

of the components’ health, thereby presenting the new failure 

hypotheses. This procedure is repeated until a solution to the 

diagnostic problem is found. 

4.2. Dynamic and Fixed Costs of Tests 

Equation (1) does not consider the costs of various tests, such 

as time spent and parts expenses. In industrial practice, these 

must be considered to achieve low total costs of ownership. 

It is crucial to note that such costs are not static but depend 

dynamically on the system’s current state. For example, the 

time of replacing a component (Type III above) depends not 

only on the specific component but also on the necessary 

work to make the system ready for the replacement. This 

work is dynamic as, for example, some cover of the machine 

might already have been removed for a previous test.2 

Including dynamic costs is not only important for a proper 

estimate of the effort required for the next test but also 

crucially influences the order in which tests are 

recommended: a test becomes cheaper when its dynamic 

costs are lowered due to a previous test having been 

performed. In other words, if a test has complicated 

requirements that are currently met, it may be sensible to 

perform it even though another test is more insightful, i.e. it 

reduces the entropy more strongly. 

 
2 We consider dynamic costs to be those that change during the diagnostic 

procedure. We do not consider costs that depend on external factors rather 

than the system’s state, for example, the time to replace may depend on the 
engineer’s level of proficiency, or the availability of parts in the warehouse.  
3 In this situation the test can thus be performed independently of the value 

of 𝑐𝑖. If, however, the costs of performing the test are different depending on 

We first describe the abstract mathematical framework for 

incorporating dynamic costs, and then apply it to a concrete 

example for illustration. In what follows, we assume that 

costs are non-negative numbers (i.e. one dimensional; 

generalizing to different types of costs is straightforward). 

A system state is a function 𝑠: {1, … , 𝑛}  → {0, 1}. We will 

use the notation 𝑠(𝑖) to denote the value of a so-called system 

condition 𝑖  in state 𝑠. In other words, a system state is an 

instantiated configuration of all system conditions. 

Semantically, 𝑠(𝑖) = 1 corresponds to condition 𝑖 being true 

in system state 𝑠, and 𝑠(𝑖) = 0 to condition 𝑖 being false in 

system state 𝑠.  

To aggregate the dynamic cost of a test, we need to know the 

costs of changing the system conditions. To do so, we 

introduce a dynamic cost function, i.e. a map  

𝑐: {1, … , 𝑛} × {0,1} → ℝ≥0, (2) 

where 𝑐(𝑖, 0) is the cost of setting condition i to 0, and 𝑐(𝑖, 1) 

is the cost of setting condition i to 1. 

To every diagnostic test 𝑇𝑖 , we assign a (potentially empty) 

set 𝐶𝑖 of tuples (𝑗, 𝑏), where 1 ≤ 𝑗 ≤ 𝑛, and 𝑏 ∈ {0, 1}. The 

intended meaning is that (𝑗, 0) ∈ 𝐶𝑖  if and only if test 𝑖 
requires condition 𝑗 to be false, and (𝑗, 1) ∈ 𝐶𝑖 if and only if 

test 𝑖 requires condition 𝑗 to be true. If a condition 𝑗 does not 

occur in any tuple in 𝐶𝑖, then the intended meaning is that test 

𝑖 depends neither on 𝑐𝑗 being true nor on 𝑐𝑗 being false.3 

Finally, given a system state 𝑠, a dynamic cost function 𝑐, and 

a set of conditions 𝐶𝑖 for a diagnostic test 𝑇𝑖 , we can compute 

its dynamic cost as follows: 

 𝑐𝑑𝑦𝑛
𝑠 (𝑇𝑖)  =  ∑ 𝑐(𝑗, 𝑏)(𝑗,𝑘)∈𝐶𝑖 with𝑠(𝑗)≠k  (3) 

The total cost of performing a diagnostic test consists of the 

sum of its fixed costs, denoted by 𝑐fix(𝑇𝑖) , as well as its 

dynamic costs: 

𝑐𝑡𝑜𝑡𝑎𝑙
𝑠 (𝑇𝑖) =  𝑐𝑓𝑖𝑥(𝑇𝑖)  + 𝑐𝑑𝑦𝑛

𝑠 (𝑇𝑖) (4) 

We left the system state implicit in the previous equation; if 

necessary, it may be denoted by adding a superscript 𝑠 to any 

of the cost functions that depend on it.  

When a diagnostic test 𝑇𝑖  is performed, the system state 𝑠 is 

updated to 𝑠𝑛𝑒𝑤 according to the conditions required by the 

diagnostic test: 

𝑠𝑛𝑒𝑤(𝑗)  =  {
𝑘, if (𝑗, 𝑘) in 𝐶𝑖 ,

𝑠(𝑗), otherwise.
 (5) 

values of 𝑐𝑖, then one may need to introduce a helper condition 𝑐𝑗 that models 

those costs. If required by the diagnostic context, one could make a 

modification to move the dynamic costs per condition from system-wide to 
test-specific. 
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For illustration, let’s consider an example connecting to the 

printing systems described in Section 3, a printing system that 

has, among others, the following three system conditions: 

1. system_covers_open, referring to whether the 

covers of the printing units are on or off. Assuming 

the system broke down during operation, the initial 

value is False as the covers are closed.4 

2. ink_drained, referring to whether the ink has been 

drained from the system. Assuming that the system 

broke down during operation, the ink is still in the 

system and, therefore, the initial value is False. 

3. cooled_down, referring to whether high 

temperature subsystems have been given enough 

time to cool down before service engineers can 

actually perform measurements in them. As the 

system was in operation when breaking down, the 

initial value is False. 

Given these conditions, and ignoring anything else for the 

sake of this example, the current system state can be 

described formally with a function 𝑠 as follows: 

𝑠(1) = 0, 
𝑠(2) = 0, 
𝑠(3) = 0. 

(6) 

To dynamically compute costs, we still need to specify the 

dynamic cost function 𝑐 as follows: 

𝑐(1,0) = 50, 𝑐(1,1) = 50 
𝑐(2,0) = 150, 𝑐(2,1) = 50 

𝑐(3,0) = 0, 𝑐(3,1) = 50 

(7) 

Note that the values are chosen to roughly represent the 

complexity of changing the system condition accordingly; 

they are not based on real data. For example, concerning the 

second line, we estimate that draining the ink from the system 

is roughly 3 times simpler than filling it back in. In a real-

world scenario, one could choose the numbers to represent 

actual monetary effort required for the tests. 

To finish the example, consider a diagnostic test 𝑇0, which is 

a measurement of the boiler, a high-temperature subsystem. 

This test requires removing the system covers as well as 

waiting for the boiler to cool down: 

𝐶0 = {(1,1), (3,1)}. (8) 

Note that condition 2 does not appear in 𝐶0 as we assume, in 

this example, that it does not matter for 𝑇0 whether the ink 

has been drained from the system. 

Assuming the test has a fixed cost of 100, we compute its 

total cost given the current system state 𝑠: 

 
4 When one opens the system covers, then one, eventually has to close them 
again. These cost are covered by our framework in Eq. (7) by specifying the 

costs for setting this condition from true to false.  

𝑐𝑡𝑜𝑡𝑎𝑙
𝑠 (𝑇0) = 𝑐𝑓𝑖𝑥(𝑇0) + 𝑐(1,1) + 𝑐(3,1) = 200. (9) 

We can see that condition 2 is neglected in this calculation, 

as it does not matter for 𝑇0. Finally, we update the system 

state 𝑠 to 𝑠’: 

𝑠′(1) = 1, 
𝑠′(2) = 0, 
𝑠′(3) = 1. 

(10) 

The crucial observation is that, for example, a test 𝑇1 

concerning the boiler as well, with the same preconditions, 

𝐶1 = 𝐶0, will now be cheaper: 

𝑐𝑡𝑜𝑡𝑎𝑙
𝑠 = 𝑐𝑓𝑖𝑥(𝑇1) + 𝑐(1,1) + 𝑐(3,1), 

𝑐𝑡𝑜𝑡𝑎𝑙
𝑠′

= 𝑐𝑓𝑖𝑥(𝑇1). 
(11) 

The costs for 𝑇1 are reduced by the amount required to bring 

the system in the prerequisite state for performing the test.  

The example lets us conclude that calculating dynamic costs 

of diagnostics tests is insightful for making good 

recommendations to service engineers. In a next step, where 

we combine entropy (information gain) and dynamic costs, 

we will see that 𝑇1  becomes more preferable after 𝑇0  has 

been performed due to the reduced cost. 

4.3. Combining Entropy and Cost in Loss 

Our approach for combining information gain and cost is to 

combine them into a single loss value, aggregating 

recommendations that take both criteria into account.  

Recalling that, by Eq. (1), we want to select the test 𝑇𝑖  that 

maximizes the information gain, i.e. the difference calculated 

in Eq. (1). Note that maximizing the difference there is 

equivalent to minimizing the conditional entropy 

𝐸𝑀←𝐴𝑖
(Ω|𝑂𝑖), given that the value 𝐸𝑀(𝛺) is independent of 

the test 𝑇𝑖 . Hence, we can equivalently state Eq. (1) as: 

𝑇∗ =  argmin
𝑇𝑖

𝐸𝑀←𝐴𝑖
( 𝛺|𝑂𝑖) (12) 

This observation is useful in the remainder of this section as 

we can now formulate our test selection problem as a two-

fold minimalization exercise: Given a test 𝑇𝑖 = (𝐴𝑖 , 𝑂𝑖), we 

want to minimize the conditional entropy 𝐸𝑀←𝐴𝑖
(𝛺|𝑂𝑖) as 

well as the cost 𝑐𝑡𝑜𝑡𝑎𝑙(𝑇𝑖). 

We want to minimize both at the same time, which is not 

always possible as sometimes the most insightful diagnostic 

action might also be the most expensive. Hence, we need to 

balance the two appropriately to achieve a reduction of total 

diagnostic costs by a balanced reduction of both the expected 

conditional entropy as well as the cost of the next action. 
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Formally, we propose the following formula for aggregating 

the loss 𝑙(𝑇𝑖) of a diagnostic action 𝑇𝑖: 

𝑙𝑏
𝑠(𝑇𝑖) = 𝑏

𝐸𝑀←𝐴𝑖
(Ω|𝑂𝑖)

𝑚𝑎𝑥
𝑖

𝐸𝑀←𝐴𝑖
(Ω|𝑂𝑖)

+ (1 − 𝑏)
𝑐total

𝑠 (𝑇𝑖)

𝑚𝑎𝑥
𝑖

𝑐total
𝑠 (𝑇𝑖)

, (13) 

where the balance 𝑏 ∈ [0,1] . Note that we omit the 

superscript s when it is clear from the context. It follows from 

Eq. (13) that minimizing 𝑙0(𝑇𝑖) is equivalent to minimizing 

𝑐total(𝑇𝑖) and minimizing 𝑙1(𝑇𝑖) is equivalent to minimizing 

E(𝛺|𝑇𝑖). Any value strictly between 0 and 1 minimizes a 

combination of cost and entropy. We normalize both entropy 

and cost with respect to their maximal values (at the current 

stage); the range of 𝑙𝑏  is thus contained in [0,1] . 

Normalization is necessary to overcome imbalances resulting 

from the very different scales of entropy and cost (the 

difference can easily span several orders of magnitude). The 

latter point is also an advantage we see of our loss function 

over other approaches, such as minimizing the information 

gain per cost. 

The recommended next diagnostic test is the one that has 

least loss value: 

𝑇∗ =  argmin
𝑇𝑖

𝑙𝑏(𝑇𝑖), (14) 

where 𝑏 has been appropriately chosen.  

Our suggestion is that 𝑏 should be chosen in such a way as to 

minimize the overall expected diagnostic cost of the system. 

Computing this is a non-trivial task due to the complexity of 

the systems under consideration. First investigations show 

that the right 𝑏 is highly unstable and depends not only on the 

system model but also on the distribution of costs and prior 

probabilities of the health of components.  

We conclude this section by relating the theory back to our 

example above. We saw above that test 𝑇1 became cheaper 

after performing test 𝑇0  because they had the same 

requirements on the system, namely, that the system covers 

are open (condition 1) and that system has cooled down 

sufficiently (condition 3). Assume, for now, that the 

conditional entropy of 𝑇1  was unchanged after performing 

𝑇0, and that 𝑏 ≠ 0. Given our observation that  𝑐𝑡𝑜𝑡𝑎𝑙
𝑠 (𝑇1) <

𝑐𝑡𝑜𝑡𝑎𝑙
𝑠’ (𝑇1), we derive 

𝑙𝑏
𝑠′(𝑇1)  <  𝑙𝑏

𝑠 (𝑇1). (15) 

 
5 By design of our dummy system, this always happens when there is a single 
fault. Note that we do not consider the case of false positive or false negative 

test results in this scenario. 

Hence, the loss of performing 𝑇1 decreased after performing 

𝑇0, and, 𝑇1 is more likely to be recommended as next best 

diagnostic test. Note, also, that tests that require, e.g., the 

system covers to be closed, will be more expensive after 

performing 𝑇0 , and are therefore less likely to be 

recommended as next diagnostic test.  

For an initial verification of our approach, we ran a range of 

simulations to study the impact of including costs on the 

average overall diagnostic costs. We start with a description 

of the dummy system on which we ran the simulation, and 

then describe the simulation and outcomes afterwards. 

We consider a dummy system of 7 sequentially connected 

pipes where water is entering but not leaving the system 

because one of the pipes leaking (see Figure 8). Under this 

one-fault assumption, our goal is to identify the leaking pipe 

with minimal costs. Each of the 7 pipes can be inspected for 

the presence of water individually, with individual costs 

assigned to each such inspection, as there might be different 

degrees of difficulty in reaching the pipes. Failures propagate 

through the system, i.e., if a pipe does not have water, then 

all succeeding pipes are also empty.  

During the simulation, we fix a distribution of costs for 

diagnosing each of the 7 pipes. We then consider all possible 

single faults (i.e. each of the 7 pipes could be the failure pipe) 

and run a diagnostic procedure for each parameter 𝑏 ∈ [0,1] 
with steps of size 10−3. The procedure stops when the correct 

fault has been identified with high probability (i.e. > 0.99).5 

With a fixed fault and parameter 𝑏, we define the diagnostic 

cost of the procedure to be the sum of the costs of each 

diagnostic action that was taken in the course of the 

procedure. Given a fixed parameter 𝑏 , we calculate the 

average diagnostic cost by averaging out the diagnostic costs 

for each fault. We present the results of two particularly 

interesting simulation instances in Figure 9. 

In general, we conclude that the optimal choice for parameter 

𝑏 highly depends on the distribution of costs in the systems. 

The simulations (including those in Figure 9) already indicate 

that including costs is (in some situations) beneficial over 

considering only the entropy of a diagnostic test. However, a 

verification of our methodology in an “industry-as-a-lab” 

setting is on-going and future work. The latter also includes 

further mathematical analysis and methods for identifying the 

optimal parameter 𝑏. 

Figure 8. Topology of the system used for the verification. Our software generates the corresponding 

BN from this System Design Model as outlined in Section 2.2. 
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5. USE CASES 

We applied our methodology to two use cases, targeting 

support service engineers in one, and autonomous decision of 

surveillance robots in the other. As we illustrate below, the 

system descriptions that underline our approach focus on 

different aspects in the respective cases, including behaviors 

in the latter. This gives us confidence that our methodology 

is applicable to many scenarios, allowing us to consider 

active testing in other domains as well. 

5.1. Production Printing 

Canon Production Printing, part of Canon Inc., designs and 

manufactures large professional printers. In professional 

markets, like book on-demand printing, minimal downtime is 

key to reduce total costs of ownership, with the avoidance of 

unscheduled downtimes of equal importance. Especially for 

the first objective, service engineers must quickly diagnose 

misbehaving printers – a task that is complicated by the high 

system complexity that resulted from increasing demands on 

print quality as well as on production throughput. To assist 

these service engineers, we pioneered and established our 

methodology on a subsystem of about 50 components and 

qualitatively assessed the recommendations given by our 

diagnostic system in different scenarios. 

The results exceeded expectations, leading to Canon 

Production Printing incorporating the method in their service 

tooling, for which a prototype is shown in Figure 10. Factors 

in this success were stringent diagnostic conclusions that 

stem from our diagnostics’ basis in system modeling, and the 

push towards the most likely root cause that follows from the 

a priori data on component failure likelihoods but also from 

the tool’s ability to propose novel diagnostic strategies that 

minimize efforts. On the latter, we saw our model ruling out 

many potential faults with quick active tests that were 

seemingly unrelated to the current issue, but surprisingly 

greatly reduced the uncertainty about the system’s state. 

5.2. Adaptive Behavior in Robot Dogs 

The ability to compute which intervention yields best results 

has applications beyond diagnostics: It also allows to select 

the response of an autonomous system to circumstances that 

do not permit successful operations. We investigated this for 

an autonomous robot dog (TNO, 2022) based on the mobile 

robot Spot from Boston Dynamics that we develop for several 

use cases, including indoor search and rescue and inspection 

of industrial sites.  

Equipped with lights, microphones, both visual and acoustic 

cameras, and gas sensors, this robot navigates on its own, 

moving in potentially dangerous environments, to find people 

or objects, e.g., victims of a hazard or leaking pipes.  

These search operations are often affected by adverse 

conditions, like noise from wind, smog, and fog. It is thus not 

sensible to simply follow prescribed procedures for the 

inspections or a pre-defined search pattern: the robots must 

instead actively seek to improve their performance, 

especially their detection and perception capabilities, to 

overcome the environmental disturbances. We reached such 

adaptive behavior with an online diagnosis system that 

reasons about causes for low performance and computes the 

most promising action, like moving in the line of the wind to 

be able to detect gas or out of a zone with high noise to 

achieve a better performance of an acoustic camera in a 

search or classification task.  

Figure 9. The graphs show the average cost of a diagnosis depending on the parameter 𝑏 for two example distributions of costs 

in the system described below. The results indicate (1) that the optimal choice of the parameter 𝑏 is highly dependent not only 

on the system but also the cost distribution, and (2) including cost has the potential to reduce average diagnostic cost if the 

parameter 𝑏 is chosen correctly. 
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The first part of this process, determining the likely cause of 

low performance, is a classical diagnostic task, even though 

the system design model that provides for the generation of 

the differential machine diagnosis differs strongly from the 

system design schematics that we used in the Canon printing 

use case. Focusing on the behavior of the robot and the 

impact of environmental factors on its performance instead, 

we use a knowledge base along the lines of the concepts 

shown in Figure 10 as input for the generator.  

This knowledge base expresses objects and their possible 

relationships (Sijs & Fletcher, 2021, 2022), but also possible 

actions of the robot and expectations on their outcome. Figure 

11 provides some examples for this, depicting, e.g., that a gas 

leak will cause a sound that can be picked up by audio 

measurements provided that the distance to the sound is not 

too large, the sound is not covered by noise or other sounds, 

and the sensor for the audio measurements is in a good state.  

Regarding the possible actions of the robot, the knowledge 

base contains the information that the robot can move itself, 

thus changing the distance to the gas leak and to interfering 

sound sources and their impact on the audio measurements, 

or that it can switch sensors. These actions are interventions, 

as they change the causality of the overall system, i.e., the 

robot dog within its environment. This enables the same line 

of reasoning that we introduced above to determine the most 

beneficial action to take, only this time by the autonomous 

robot itself, and not by a human fixing an issue. 

Same principle, different process 

Changing our task from service diagnostics to active behavior 

adaptations required a re-interpretation of the reasoning 

processes and of the elements within them:  

The initial diagnostic identification of the components that 

likely caused a machine to fail is extended towards a broader 

set of root causes, which now includes environmental impact 

factors, and moreover reasons for loss of performance instead 

of strict failures. This extension towards performance 

diagnostics of a system seen within its environmental context 

introduces extra factors and enlarges the state-space of the 

reasoning model but does not pose a fundamental change. 

Figure 11. Part of a knowledge base on autonomous robots 

Figure 10. Prototype of the diagnosis application with the reported problem shown on top. On the right, the 

components are listed in decreasing failure probability with a graphical representation for demonstration purposes. 

The left middle section lists possible tests in recommended order, allowing the user to vary the cost/entropy trade-off 

for experimentation via the slider. By selecting a test, the user is presented with the test instructions and the test result 

entry fields (not shown here). The lower left section shows the history of diagnostic tests that have been conducted 

thus far and their outcomes. The Bayesian Belief Networks, matching those in Section 3, are generated on the fly 

during the diagnostic procedure. 

 

         
        

             

         
              

            
              

            
            

            
            

      
            

                       

         
        

           
                          

            



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

10 

Once a likely root cause of low performance is identified by 

the robot’s reasoning, the selection of the appropriate action 

is based on calculations of the likely effect of that particular 

intervention, essentially asking <if the robot takes this action, 

would the problem go away?> This changes, at first glance, 

the calculation of the expected reduction of entropy following 

diagnostics towards the calculation of the expected reduction 

of performance loss. However, it maps to an active diagnostic 

process that only allows diagnostic tests of types II, III, and 

IV (i.e., interventions) and keeps going through interventions 

until it finds a configuration in which the robot performs. 

An important aspect in this is that our methodology includes 

the information gained in previous attempts in its diagnostic 

reasoning. In the case of the autonomous robot, this solves a 

potential issue of machine reasoning: It prevents – 

figuratively and possibly literally – that the robot runs in 

circles, i.e., that it alternates between actions that look 

promising for solving the performance issue but actually fail 

to do so. Such a situation, in which multiple computational 

attractors must be interpreted as in-between steps towards a 

solution that should only be tried once, would not confound 

a human diagnosis expert – but a simpler reasoner trying to 

handle an open world might fail by switching between them. 

6. CONCLUSION AND FUTURE WORK 

Being able to efficiently conduct active diagnostics with 

intervening tests is crucial for asset life-cycle management. 

Based on the theory of counter factual reasoning, we can now 

integrate such interventions in industrial practice and tool 

support, where our results indicate that the method enables a 

structured way of efficiently and effectively deciding among 

possible diagnostic actions. Nevertheless, the decision 

support as outlined in Section 4 can be refined to further scale 

up to complex scenarios. 

Firstly, Eq. (1), which is inspired by existing service manual 

procedures, assumes a fixed relation between an action 𝐴𝑖 

and observation 𝑂𝑖 . In theory, however, we could do any 

action 𝐴𝑖 and then observe some 𝑂𝑗, leading to  

𝑇∗ =  argmin
𝑇𝑖

𝑙𝑏(𝐴𝑖, 𝑂𝑗), (16) 

i.e., recommending the combination of observation and 

action that has least loss. However, many of the pairs (𝐴𝑖 , 𝑂𝑗) 

make no sense in a practical situation, so the computational 

complexity might not be worth the additional information 

gain – but deciding this depends on many factors, including 

business reasoning, and warrants future investigations.  

Secondly, it is not clear how to choose the optimal balance 

value 𝑏 in the loss function 𝑙𝑏  to reduce overall diagnostic 

cost. Initial investigations show that the optimal b varies 

greatly with the selected model, distribution of costs, and 

prior failure probabilities. Consequently, we will investigate 

further optimization of this value and, potentially, related loss 

functions in future work as well. 
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