
International Journal of Prognostics and Health Management, ISSN 2153-2648, 2024

Efficient Differential Diagnosis using Cost-aware Active Testing

Emile van Gerwen1, Leonardo Barbini2, Michael Borth3, and Robert Passmann4

1,2,4TNO-ESI, Eindhoven, Noord-Brabant, 5656 AE, The Netherlands

emile.vangerwen@tno.nl

leonardo.barbini@tno.nl

robert.passmann@tno.nl

3TNO, Helmond, Noord-Brabant, 5708 JZ, The Netherlands

michael.borth@tno.nl

ABSTRACT

The diagnosis of complex systems benefits greatly from a

differential, multistep approach that narrows down the list of

possible conditions or failures that share the same observable

effects to a single root cause. We provide a suitable and

practically applicable methodology for this. In extension to

existing work, it covers all types of diagnostic actions, i.e.,

the observation of system properties, active testing, and

system interventions like providing a dedicated diagnostic

input or forcing the system into discriminating states, but also

the replacement of components. Combining all these possible

steps into one probabilistic and causal reasoning framework,

we I) stepwise generate the diagnostic model systematically

to correctly cover the interplay of observations and diagnostic

interventions, and II) provide decision support based on

counterfactuals for the selection of the next diagnostic step,

countering the vast number of possible actions that arise in

machine diagnostic processes, considering costs of actions to

minimize the expected overall cost of the diagnosis.

We developed and successfully tried our methodology for

diagnosing cyber-physical systems in the high-tech industry,

but we found that it supports more processes, such as

computing intervention actions for autonomous robots.

1. INTRODUCTION

Machine Diagnosis, understood as the identification of the

nature and cause of a certain and unwanted phenomenon

within a technical system by means of at least semi-

automated analytics, is key in after-sales processes of many

industries. It allows systems to partially self-diagnose, thus

offering users of production equipment reduced downtimes

either by enabling them to fix issues themselves or by

ensuring that service personnel come in with the right parts

for potential hardware failures. Further, it tunes maintenance

towards minimal costs and counters the shortage of

experienced service engineers by raising their efficiency and

by enabling less experienced personnel to perform the tasks.

One crucial design decision in the realization of a system for

machine diagnosis is which information it processes. Failure

effects and measurements of key performance indicators are

typical candidates that can be observed and processed, but

experienced service engineers consider more: they use active

testing, i.e., they set system states or provide the system with

tailored inputs to discriminate between root causes but also

undertake costly investigative part replacements.

We extend previous work for machine diagnosis (Barbini et

al., 2020) by introducing automated reasoning for differential

diagnosis with active testing and other interventions within a

unified framework. For this, we lay out our methodology with

causal Bayesian Networks in Section 2 and provide an

example in Section 3 that shows the power of interventions

in machine diagnosis. In Section 4, we introduce decision

support for selecting the best action, extending our previous

work (van Gerwen et al., 2023) with dynamic calculations on

diagnostic costs. Section 5 illustrates two of our use cases,

and Section 6 concludes with future research topics.

2. DIFFERENTIAL MACHINE DIAGNOSIS

2.1. Diagnosis using Causal Belief Networks

Bayesian Belief Networks, also known as Bayes Nets (BN),

are probabilistic graphical models that were shown to deliver

excellent diagnostic capabilities (Heckerman, 1995, among

other works). Introduced by Pearl (1986), they offer

probabilistic reasoning for taking an observable event and

inferring the likelihood that any one of several possible

known causes was the contributing factor. In this, they form

an efficient solution to compute the marginal distribution of

the known causes, i.e., of a hypothesis H, given observations

or evidence e, following Bayes’ Theorem:

Emile van Gerwen et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution 3.0 United States License,

which permits unrestricted use, distribution, and reproduction in any

medium, provided the original authors and source are credited.

https://doi.org/10.36001/IJPHM.2024.v15i3.3849

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

2

𝑃(𝐻|𝑒) =
𝑃(𝑒|𝐻) ∗ 𝑃(𝐻)

𝑃(𝑒)

with P(H), P(e) the probability of observing H and e (the

priors or marginal distributions), and P(H|e), P(e|H) the

conditional probability of H and e, given the other one.

Defined as directed acyclic graphs (DAGs) whose nodes

represent variables in the Bayesian sense and whose edges

represent conditional dependencies, BNs encode the joint

probability distribution over all their variables. Their

advantage for the purpose of diagnosis stems in part from the

versatility that those variables may be observable, latent, and

even unknown parameters or hypotheses, and that, with the

joint probability distribution, all arbitrary combinations of

variables may be considered. With this, BNs consider all

causes that are possible given the observations and rank them

according to their likelihood that depends on observations.

As Bayes nets are one of the few inference techniques that

combine knowledge- and data-driven modeling (Jensen &

Nielsen, 2007), there are many options to build or generate

BNs. Our approach for the construction of BNs for diagnosis

is based on modeling the causal knowledge on the system

decomposition, deployment, and functional behavior and the

use of generative techniques to compose the needed BN from

pre-build network fragments and rule-based elements such

that it conforms to that knowledge. Introduced by Borth &

von Hasseln (2002), this process translates system knowledge

that inherently adheres to the Markov condition directly to

Pearl’s interpretation of structural causal models, offering

automated network generation that we seek for industrial use

based on (Pfeffer et al., 1999), thus motivating our choice for

Bayesian networks. We detailed and extended this approach

in (Barbini & Borth, 2019) and (Barbini et al., 2020), but, so

far, limited ourselves to diagnostic processes that only use a

set of simultaneous observations or a sequence of

observations – but not a mixed sequence of observations and

interventions. In essence, we (and others, compare, e.g.,

Ricks & Mengshoel, 2009) generated diagnostic systems that

use the full power of causal Bayesian Belief Networks which

mirror a system as it is, but did not utilize the diagnostic

prowess of interventions to the system. A major reason for

this restriction was that interventions alter the system’s

causality – and neither modeling techniques nor inference

calculi were ready to handle this until quite recently.

This changed with Pearl’s do(x) operator (2009) that

represents interventions and allows to correctly predict

effects of such deliberate actions in causal networks. do(x)

operator interventions have a different meaning and

diagnostic power than statistical associations (Pearl & Mac-

kenzie, 2018): P(Y|x) > P(Y) simply states that observing x

raises the probability of Y, which might have other reasons

including a common cause, while P(Y|do(x)) describes the

situation after performing the action x that affects Y and

eliminates the effects of other confounding factors. Within

diagnosis, this translates, e.g., to the difference between

observing the availability of power at a connector – with the

conclusion that the functional chain to provide that power is

intact – and experimentally providing power at that point,

invalidating all assumptions about that chain while offering

deductions from the effects observed due to the intervention.

2.2. Differential Causal Reasoning with Bayes Nets

Within the probabilistic graphical model, the distinction of

observing x and do(x) is paramount, as the first provides

evidence for the variable x, i.e., setting the probability of the

observed state to 1, leaving the rest of the network as it was,

while the second also changes the network structure to reflect

the new causal flow. A differential diagnosis using a mixed

sequence of observations and interventions therefore requires

a new technique of stepwise inference and network

augmentation. Figure 1 depicts our methodology for this.

As the graph shows, the diagnostic model is generated from

the system design, with augmentations to the diagnostic

model following subsequently for conducted actions that

change the diagnosis and, in the case of interventions, the

system (Section 3). The observations from the system itself

allow us to compute the differential diagnosis at each step.

Using this process and given the encoded expert knowledge,

we generate diagnostic models that I) accurately represent a

sequence of diagnostic tests of all kinds, i.e., the observation

of additional properties, the setting of a different input,

system interventions, and the replacement of components,

and II) correctly carry the information between steps.

The resulting differential diagnosis covers single fault as well

as multi-fault scenarios. Intermittent faults, however, cannot

Figure 1. Differential Machine Diagnosis

Figure 2. Schematic representation of an all-in-one printer

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

3

be handled directly in this way (or any comparable approach),

as the absence of a fault effect observation potentially leads

to the diagnostic network ruling out the respective root-cause.

3. INTERVENTIONS

We use an idealized version of a printer as an example to

illustrate our approach to handle interventions in differential

diagnosis. Figure 2 shows a schema of the idealized printer.

Based on a given Command, either print or copy, the printer

should create a Bitmap and produce a printed sheet with the

Inkjetter. For the Command copy, the printer needs only the

Scanner working to produce a Bitmap. Similarly, for the

Command print, it needs only a working Image Processor to

produce a Bitmap. The BN to diagnose the printer is shown

in Figure 3, using [Bayes Server]. Each system component is

modelled with inputs, outputs, and health node. The system

is created by considering the outputs of a component as the

inputs of the following component. For details on how to

generate this BN, we refer to (Barbini et al., 2020).

3.1. System and Component Health

In the BN figures below, nodes with a green identifier in the

upper right corner represent the hidden health variable of

components. In this example, we assume that the Command

never fails, so it does not have a health node. The Scanner is

broken with prior probability 5%, the Image Processor with

1% and the Inkjetter with 10% respectively. The other nodes

in the BN are not hidden, i.e., are nodes for which the state

can be measured.

For our diagnostic task, we use the BN to infer the probability

distribution of the health nodes, given evidence in the other

nodes. An example of how to perform a diagnosis with the

BN is shown in Figure 3. We suppose that the Command is

set to copy, but we do not obtain a Printed Sheet. The

diagnosis, as the inferred probabilities on the health nodes, is

very uncertain and the goal of our differential diagnosis is to

perform diagnostic tests to reduce such uncertainty.

Figure 3. BN of all-in-one printer. Copying fails.

3.2. Diagnostics Tests

There are four different types of diagnostic tests. Each type

comes with specific modeling and BN interactions.

Type I: observe additional properties

The first type of diagnostic test, widely covered by existing

work on BN for diagnosis, consists of adding additional

evidence to one of the observable nodes. This is shown in

Figure 4, for the observation of an existing Bitmap. This test

is executed by probing the printer to collect the additional

observation on the presence of the Bitmap.

Figure 4. Type I: Observe additional properties

Type II: set a different input

A second type of diagnostic test consists of setting a different

input to the system. This is a fundamentally different type of

test than the previous one. Firstly, we are not only observing,

but we are intervening in the system, by doing the action of

changing an input. Secondly, the result of the action could

potentially lead to a different observation than in the absence

of said action, making it counterfactual.

Our approach is to augment the BN when doing a test

comprising an intervention. This augmentation procedure has

two steps. Firstly, we duplicate all the nodes in the BN except

for the health nodes and the input nodes which are not set to

a different value (with input nodes referring to BN nodes that

have no parents and are not of type health). Secondly, we

connect the duplicated nodes as children of the original health

nodes. This approach – and not, as is sometimes assumed,

just updating the priors using the result of the inference –

delivers the correct inference model, as shown in (Balke &

Pearl, 1994). Notice that with this augmentation procedure

there is no need to specify new conditional probability tables,

as they are the same as in the original, not augmented BN.

Figure 5 shows an example of this augmentation procedure.

The starting point is the diagnosis BN in Figure 3. The

duplicated nodes have a 1 at the end of their names, e.g.,

Command1. We now observe a Printed Sheet1 for the printer

input Command1 print. As the augmented BN’s reasoning

also includes the evidence coming from the situation when

copying failed, it infers that the only possible diagnostic

solution is that the Scanner is broken and the Image

Processor and InkJetter are OK.

Figure 5. Type II: set a different input

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

4

Type III: replace a component

The third type of diagnostic test is the replacement of a

component. This is also an active type of test, and thus of a

similar nature as the previous one. When doing differential

diagnosis with this type of test we also need to augment the

BN, but – differently than with Type II tests – we duplicate

its health node when we replace a component.

Figure 6 shows this procedure on the idealized printer for the

case that we replace the InkJetter after copying fails. For the

replaced component we assumed that InkJetter1 functions

(this is not necessary and might be relaxed). The input node

Command is not set to a different value when the printer has

a new Inkjetter, and is thus not duplicated, making it a

common parent for both the Bitmap and Bitmap1 node.

Figure 6. Type III: replace a component

The observation related to the action of replacing the

InkJetter is that there is still not a PrintedSeet1. The BN

infers that a broken Scanner explains the situation, allowing

even a switch back to the original InkJetter, as the diagnosis

established that the failure had to progress via the Bitmap, a

statement that could not have derived from another probe.

Type IV: intervene within the system

The fourth type of test consists of forcing physical quantities

to a given value. In practical situations this corresponds to

performing an action in the system, like connecting an

external power supply to a part, and then observing the results

in other parts, for example whether these are now correctly

functioning. This test type also entails an intervention on the

system and modeling it requires both an augmentation of the

BN and the do(x) operator introduced above.

Figure 7 shows an example of type IV testing: After copying

fails, we try to print, which is a Type II test, but then we still

do not get a Printed Sheet1. At this point, we intervene in the

system and manually provide a Bitmap2 to the InkJetter. The

light gray arrows pointing into Bitmap2 node indicate the

obstruction of information flow.

1 Without the do(x) operator, this evidence on Printed Sheet2 could not be
set. It would have a null probability of finding as we tried both printing and

copying and both failed. The do(x) operator deletes the dependence of

The BN is consequently augmented with the duplication

procedure described above, but in this type of test, we insert

evidence with the do(x) operator on the duplicated node on

which we force its physical quantity to a given value. In the

case of Figure 7, this is the Bitmap2 node, and the use of do(x)

to set the evidence is shown with a red check mark.

Figure 7. Type IV: intervene within the system

In our example, we finally observe a Printed Sheet2 after

providing Bitmap2. The augmented BN infers that the only

possible solution to the diagnostic problem is that both the

Scanner and the Image Processor are broken and the

InkJetter is OK.1

4. DECISION SUPPORT

A major part of our system for machine diagnosis is to

recommend the next best action to service engineers, as this

increases their efficiency and reduces system downtime. To

do so, we assess the value of possible diagnostic tests, i.e., we

determine how much we would learn from them using

counterfactual <what-if> reasoning. A test can be of any of

the types outlined in the previous section. The result of each

<what-if> scenario is the information gain or equivalently the

reduction of uncertainty, for which we use an entropy

measure (Oladyshkin & Nowak, 2019).

Ideally, we would consider all possible test sequences and

pick the one that is expected to lead to the diagnostic solution

with minimal effort.

However, considering that for large systems there are

hundreds of possible tests at any point, this approach seems

infeasible. Instead, encouraged by (de Kleer et al., 1992)

stating that “one step lookahead is pretty good”, we take the

myopic approach in which we look only at the currently

available tests, and pick the test based on the expected

entropy within the BN after doing that single test.

Bitmap2 on its parent nodes and as a result one can have a Bitmap2 even if
both the Scanner and the Image Processor are broken.

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

5

4.1. Entropy for Measuring Diagnostic Impact

Intuitively, the entropy over the component health states is a

measure of the uncertainty we have about the health of these

components. The diagnostic process is then doing tests to

reduce the entropy as much as possible.

If we denote the set of health nodes in the Bayesian network

with 𝛺, conditional entropy in model 𝑀 with 𝐸𝑀(∙ | ∙), and

𝑇𝑖 = (𝐴𝑖, 𝑂𝑖) a possible test that comprises of action 𝐴𝑖 and

observation 𝑂𝑖 , we calculate the recommended test 𝑇∗ as

𝑇∗ = argmax(
𝑇𝑖

𝐸𝑀(𝛺) − 𝐸𝑀←𝐴𝑖
(𝛺|𝑂𝑖)), (1)

where M is the model representing the current situation and

𝑀 ← 𝐴𝑖 the hypothetical situation if we would perform

action 𝐴𝑖 on model 𝑀 as described in Section 3. Notice that

in the same 𝑇𝑖 the action and the observation can be

performed in different system’s components. Calculating 𝑇∗

thus requires generating networks for every action 𝐴𝑖.

Once the recommended test is executed, we generate the

corresponding network, add the evidence that reflects the

outcome of the test, and calculate the posterior probabilities

of the components’ health, thereby presenting the new failure

hypotheses. This procedure is repeated until a solution to the

diagnostic problem is found.

4.2. Dynamic and Fixed Costs of Tests

Equation (1) does not consider the costs of various tests, such

as time spent and parts expenses. In industrial practice, these

must be considered to achieve low total costs of ownership.

It is crucial to note that such costs are not static but depend

dynamically on the system’s current state. For example, the

time of replacing a component (Type III above) depends not

only on the specific component but also on the necessary

work to make the system ready for the replacement. This

work is dynamic as, for example, some cover of the machine

might already have been removed for a previous test.2

Including dynamic costs is not only important for a proper

estimate of the effort required for the next test but also

crucially influences the order in which tests are

recommended: a test becomes cheaper when its dynamic

costs are lowered due to a previous test having been

performed. In other words, if a test has complicated

requirements that are currently met, it may be sensible to

perform it even though another test is more insightful, i.e. it

reduces the entropy more strongly.

2 We consider dynamic costs to be those that change during the diagnostic

procedure. We do not consider costs that depend on external factors rather

than the system’s state, for example, the time to replace may depend on the
engineer’s level of proficiency, or the availability of parts in the warehouse.
3 In this situation the test can thus be performed independently of the value

of 𝑐𝑖. If, however, the costs of performing the test are different depending on

We first describe the abstract mathematical framework for

incorporating dynamic costs, and then apply it to a concrete

example for illustration. In what follows, we assume that

costs are non-negative numbers (i.e. one dimensional;

generalizing to different types of costs is straightforward).

A system state is a function 𝑠: {1, … , 𝑛} → {0, 1}. We will

use the notation 𝑠(𝑖) to denote the value of a so-called system

condition 𝑖 in state 𝑠. In other words, a system state is an

instantiated configuration of all system conditions.

Semantically, 𝑠(𝑖) = 1 corresponds to condition 𝑖 being true

in system state 𝑠, and 𝑠(𝑖) = 0 to condition 𝑖 being false in

system state 𝑠.

To aggregate the dynamic cost of a test, we need to know the

costs of changing the system conditions. To do so, we

introduce a dynamic cost function, i.e. a map

𝑐: {1, … , 𝑛} × {0,1} → ℝ≥0, (2)

where 𝑐(𝑖, 0) is the cost of setting condition i to 0, and 𝑐(𝑖, 1)

is the cost of setting condition i to 1.

To every diagnostic test 𝑇𝑖 , we assign a (potentially empty)

set 𝐶𝑖 of tuples (𝑗, 𝑏), where 1 ≤ 𝑗 ≤ 𝑛, and 𝑏 ∈ {0, 1}. The

intended meaning is that (𝑗, 0) ∈ 𝐶𝑖 if and only if test 𝑖
requires condition 𝑗 to be false, and (𝑗, 1) ∈ 𝐶𝑖 if and only if

test 𝑖 requires condition 𝑗 to be true. If a condition 𝑗 does not

occur in any tuple in 𝐶𝑖, then the intended meaning is that test

𝑖 depends neither on 𝑐𝑗 being true nor on 𝑐𝑗 being false.3

Finally, given a system state 𝑠, a dynamic cost function 𝑐, and

a set of conditions 𝐶𝑖 for a diagnostic test 𝑇𝑖 , we can compute

its dynamic cost as follows:

 𝑐𝑑𝑦𝑛
𝑠 (𝑇𝑖) = ∑ 𝑐(𝑗, 𝑏)(𝑗,𝑘)∈𝐶𝑖 with𝑠(𝑗)≠k (3)

The total cost of performing a diagnostic test consists of the

sum of its fixed costs, denoted by 𝑐fix(𝑇𝑖) , as well as its

dynamic costs:

𝑐𝑡𝑜𝑡𝑎𝑙
𝑠 (𝑇𝑖) = 𝑐𝑓𝑖𝑥(𝑇𝑖) + 𝑐𝑑𝑦𝑛

𝑠 (𝑇𝑖) (4)

We left the system state implicit in the previous equation; if

necessary, it may be denoted by adding a superscript 𝑠 to any

of the cost functions that depend on it.

When a diagnostic test 𝑇𝑖 is performed, the system state 𝑠 is

updated to 𝑠𝑛𝑒𝑤 according to the conditions required by the

diagnostic test:

𝑠𝑛𝑒𝑤(𝑗) = {
𝑘, if (𝑗, 𝑘) in 𝐶𝑖 ,

𝑠(𝑗), otherwise.
 (5)

values of 𝑐𝑖, then one may need to introduce a helper condition 𝑐𝑗 that models

those costs. If required by the diagnostic context, one could make a

modification to move the dynamic costs per condition from system-wide to
test-specific.

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

6

For illustration, let’s consider an example connecting to the

printing systems described in Section 3, a printing system that

has, among others, the following three system conditions:

1. system_covers_open, referring to whether the

covers of the printing units are on or off. Assuming

the system broke down during operation, the initial

value is False as the covers are closed.4

2. ink_drained, referring to whether the ink has been

drained from the system. Assuming that the system

broke down during operation, the ink is still in the

system and, therefore, the initial value is False.

3. cooled_down, referring to whether high

temperature subsystems have been given enough

time to cool down before service engineers can

actually perform measurements in them. As the

system was in operation when breaking down, the

initial value is False.

Given these conditions, and ignoring anything else for the

sake of this example, the current system state can be

described formally with a function 𝑠 as follows:

𝑠(1) = 0,
𝑠(2) = 0,
𝑠(3) = 0.

(6)

To dynamically compute costs, we still need to specify the

dynamic cost function 𝑐 as follows:

𝑐(1,0) = 50, 𝑐(1,1) = 50
𝑐(2,0) = 150, 𝑐(2,1) = 50

𝑐(3,0) = 0, 𝑐(3,1) = 50

(7)

Note that the values are chosen to roughly represent the

complexity of changing the system condition accordingly;

they are not based on real data. For example, concerning the

second line, we estimate that draining the ink from the system

is roughly 3 times simpler than filling it back in. In a real-

world scenario, one could choose the numbers to represent

actual monetary effort required for the tests.

To finish the example, consider a diagnostic test 𝑇0, which is

a measurement of the boiler, a high-temperature subsystem.

This test requires removing the system covers as well as

waiting for the boiler to cool down:

𝐶0 = {(1,1), (3,1)}. (8)

Note that condition 2 does not appear in 𝐶0 as we assume, in

this example, that it does not matter for 𝑇0 whether the ink

has been drained from the system.

Assuming the test has a fixed cost of 100, we compute its

total cost given the current system state 𝑠:

4 When one opens the system covers, then one, eventually has to close them
again. These cost are covered by our framework in Eq. (7) by specifying the

costs for setting this condition from true to false.

𝑐𝑡𝑜𝑡𝑎𝑙
𝑠 (𝑇0) = 𝑐𝑓𝑖𝑥(𝑇0) + 𝑐(1,1) + 𝑐(3,1) = 200. (9)

We can see that condition 2 is neglected in this calculation,

as it does not matter for 𝑇0. Finally, we update the system

state 𝑠 to 𝑠’:

𝑠′(1) = 1,
𝑠′(2) = 0,
𝑠′(3) = 1.

(10)

The crucial observation is that, for example, a test 𝑇1

concerning the boiler as well, with the same preconditions,

𝐶1 = 𝐶0, will now be cheaper:

𝑐𝑡𝑜𝑡𝑎𝑙
𝑠 = 𝑐𝑓𝑖𝑥(𝑇1) + 𝑐(1,1) + 𝑐(3,1),

𝑐𝑡𝑜𝑡𝑎𝑙
𝑠′

= 𝑐𝑓𝑖𝑥(𝑇1).
(11)

The costs for 𝑇1 are reduced by the amount required to bring

the system in the prerequisite state for performing the test.

The example lets us conclude that calculating dynamic costs

of diagnostics tests is insightful for making good

recommendations to service engineers. In a next step, where

we combine entropy (information gain) and dynamic costs,

we will see that 𝑇1 becomes more preferable after 𝑇0 has

been performed due to the reduced cost.

4.3. Combining Entropy and Cost in Loss

Our approach for combining information gain and cost is to

combine them into a single loss value, aggregating

recommendations that take both criteria into account.

Recalling that, by Eq. (1), we want to select the test 𝑇𝑖 that

maximizes the information gain, i.e. the difference calculated

in Eq. (1). Note that maximizing the difference there is

equivalent to minimizing the conditional entropy

𝐸𝑀←𝐴𝑖
(Ω|𝑂𝑖), given that the value 𝐸𝑀(𝛺) is independent of

the test 𝑇𝑖 . Hence, we can equivalently state Eq. (1) as:

𝑇∗ = argmin
𝑇𝑖

𝐸𝑀←𝐴𝑖
(𝛺|𝑂𝑖) (12)

This observation is useful in the remainder of this section as

we can now formulate our test selection problem as a two-

fold minimalization exercise: Given a test 𝑇𝑖 = (𝐴𝑖 , 𝑂𝑖), we

want to minimize the conditional entropy 𝐸𝑀←𝐴𝑖
(𝛺|𝑂𝑖) as

well as the cost 𝑐𝑡𝑜𝑡𝑎𝑙(𝑇𝑖).

We want to minimize both at the same time, which is not

always possible as sometimes the most insightful diagnostic

action might also be the most expensive. Hence, we need to

balance the two appropriately to achieve a reduction of total

diagnostic costs by a balanced reduction of both the expected

conditional entropy as well as the cost of the next action.

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

7

Formally, we propose the following formula for aggregating

the loss 𝑙(𝑇𝑖) of a diagnostic action 𝑇𝑖:

𝑙𝑏
𝑠(𝑇𝑖) = 𝑏

𝐸𝑀←𝐴𝑖
(Ω|𝑂𝑖)

𝑚𝑎𝑥
𝑖

𝐸𝑀←𝐴𝑖
(Ω|𝑂𝑖)

+ (1 − 𝑏)
𝑐total

𝑠 (𝑇𝑖)

𝑚𝑎𝑥
𝑖

𝑐total
𝑠 (𝑇𝑖)

, (13)

where the balance 𝑏 ∈ [0,1] . Note that we omit the

superscript s when it is clear from the context. It follows from

Eq. (13) that minimizing 𝑙0(𝑇𝑖) is equivalent to minimizing

𝑐total(𝑇𝑖) and minimizing 𝑙1(𝑇𝑖) is equivalent to minimizing

E(𝛺|𝑇𝑖). Any value strictly between 0 and 1 minimizes a

combination of cost and entropy. We normalize both entropy

and cost with respect to their maximal values (at the current

stage); the range of 𝑙𝑏 is thus contained in [0,1] .

Normalization is necessary to overcome imbalances resulting

from the very different scales of entropy and cost (the

difference can easily span several orders of magnitude). The

latter point is also an advantage we see of our loss function

over other approaches, such as minimizing the information

gain per cost.

The recommended next diagnostic test is the one that has

least loss value:

𝑇∗ = argmin
𝑇𝑖

𝑙𝑏(𝑇𝑖), (14)

where 𝑏 has been appropriately chosen.

Our suggestion is that 𝑏 should be chosen in such a way as to

minimize the overall expected diagnostic cost of the system.

Computing this is a non-trivial task due to the complexity of

the systems under consideration. First investigations show

that the right 𝑏 is highly unstable and depends not only on the

system model but also on the distribution of costs and prior

probabilities of the health of components.

We conclude this section by relating the theory back to our

example above. We saw above that test 𝑇1 became cheaper

after performing test 𝑇0 because they had the same

requirements on the system, namely, that the system covers

are open (condition 1) and that system has cooled down

sufficiently (condition 3). Assume, for now, that the

conditional entropy of 𝑇1 was unchanged after performing

𝑇0, and that 𝑏 ≠ 0. Given our observation that 𝑐𝑡𝑜𝑡𝑎𝑙
𝑠 (𝑇1) <

𝑐𝑡𝑜𝑡𝑎𝑙
𝑠’ (𝑇1), we derive

𝑙𝑏
𝑠′(𝑇1) < 𝑙𝑏

𝑠 (𝑇1). (15)

5 By design of our dummy system, this always happens when there is a single
fault. Note that we do not consider the case of false positive or false negative

test results in this scenario.

Hence, the loss of performing 𝑇1 decreased after performing

𝑇0, and, 𝑇1 is more likely to be recommended as next best

diagnostic test. Note, also, that tests that require, e.g., the

system covers to be closed, will be more expensive after

performing 𝑇0 , and are therefore less likely to be

recommended as next diagnostic test.

For an initial verification of our approach, we ran a range of

simulations to study the impact of including costs on the

average overall diagnostic costs. We start with a description

of the dummy system on which we ran the simulation, and

then describe the simulation and outcomes afterwards.

We consider a dummy system of 7 sequentially connected

pipes where water is entering but not leaving the system

because one of the pipes leaking (see Figure 8). Under this

one-fault assumption, our goal is to identify the leaking pipe

with minimal costs. Each of the 7 pipes can be inspected for

the presence of water individually, with individual costs

assigned to each such inspection, as there might be different

degrees of difficulty in reaching the pipes. Failures propagate

through the system, i.e., if a pipe does not have water, then

all succeeding pipes are also empty.

During the simulation, we fix a distribution of costs for

diagnosing each of the 7 pipes. We then consider all possible

single faults (i.e. each of the 7 pipes could be the failure pipe)

and run a diagnostic procedure for each parameter 𝑏 ∈ [0,1]
with steps of size 10−3. The procedure stops when the correct

fault has been identified with high probability (i.e. > 0.99).5

With a fixed fault and parameter 𝑏, we define the diagnostic

cost of the procedure to be the sum of the costs of each

diagnostic action that was taken in the course of the

procedure. Given a fixed parameter 𝑏 , we calculate the

average diagnostic cost by averaging out the diagnostic costs

for each fault. We present the results of two particularly

interesting simulation instances in Figure 9.

In general, we conclude that the optimal choice for parameter

𝑏 highly depends on the distribution of costs in the systems.

The simulations (including those in Figure 9) already indicate

that including costs is (in some situations) beneficial over

considering only the entropy of a diagnostic test. However, a

verification of our methodology in an “industry-as-a-lab”

setting is on-going and future work. The latter also includes

further mathematical analysis and methods for identifying the

optimal parameter 𝑏.

Figure 8. Topology of the system used for the verification. Our software generates the corresponding

BN from this System Design Model as outlined in Section 2.2.

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

8

5. USE CASES

We applied our methodology to two use cases, targeting

support service engineers in one, and autonomous decision of

surveillance robots in the other. As we illustrate below, the

system descriptions that underline our approach focus on

different aspects in the respective cases, including behaviors

in the latter. This gives us confidence that our methodology

is applicable to many scenarios, allowing us to consider

active testing in other domains as well.

5.1. Production Printing

Canon Production Printing, part of Canon Inc., designs and

manufactures large professional printers. In professional

markets, like book on-demand printing, minimal downtime is

key to reduce total costs of ownership, with the avoidance of

unscheduled downtimes of equal importance. Especially for

the first objective, service engineers must quickly diagnose

misbehaving printers – a task that is complicated by the high

system complexity that resulted from increasing demands on

print quality as well as on production throughput. To assist

these service engineers, we pioneered and established our

methodology on a subsystem of about 50 components and

qualitatively assessed the recommendations given by our

diagnostic system in different scenarios.

The results exceeded expectations, leading to Canon

Production Printing incorporating the method in their service

tooling, for which a prototype is shown in Figure 10. Factors

in this success were stringent diagnostic conclusions that

stem from our diagnostics’ basis in system modeling, and the

push towards the most likely root cause that follows from the

a priori data on component failure likelihoods but also from

the tool’s ability to propose novel diagnostic strategies that

minimize efforts. On the latter, we saw our model ruling out

many potential faults with quick active tests that were

seemingly unrelated to the current issue, but surprisingly

greatly reduced the uncertainty about the system’s state.

5.2. Adaptive Behavior in Robot Dogs

The ability to compute which intervention yields best results

has applications beyond diagnostics: It also allows to select

the response of an autonomous system to circumstances that

do not permit successful operations. We investigated this for

an autonomous robot dog (TNO, 2022) based on the mobile

robot Spot from Boston Dynamics that we develop for several

use cases, including indoor search and rescue and inspection

of industrial sites.

Equipped with lights, microphones, both visual and acoustic

cameras, and gas sensors, this robot navigates on its own,

moving in potentially dangerous environments, to find people

or objects, e.g., victims of a hazard or leaking pipes.

These search operations are often affected by adverse

conditions, like noise from wind, smog, and fog. It is thus not

sensible to simply follow prescribed procedures for the

inspections or a pre-defined search pattern: the robots must

instead actively seek to improve their performance,

especially their detection and perception capabilities, to

overcome the environmental disturbances. We reached such

adaptive behavior with an online diagnosis system that

reasons about causes for low performance and computes the

most promising action, like moving in the line of the wind to

be able to detect gas or out of a zone with high noise to

achieve a better performance of an acoustic camera in a

search or classification task.

Figure 9. The graphs show the average cost of a diagnosis depending on the parameter 𝑏 for two example distributions of costs

in the system described below. The results indicate (1) that the optimal choice of the parameter 𝑏 is highly dependent not only

on the system but also the cost distribution, and (2) including cost has the potential to reduce average diagnostic cost if the

parameter 𝑏 is chosen correctly.

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

9

The first part of this process, determining the likely cause of

low performance, is a classical diagnostic task, even though

the system design model that provides for the generation of

the differential machine diagnosis differs strongly from the

system design schematics that we used in the Canon printing

use case. Focusing on the behavior of the robot and the

impact of environmental factors on its performance instead,

we use a knowledge base along the lines of the concepts

shown in Figure 10 as input for the generator.

This knowledge base expresses objects and their possible

relationships (Sijs & Fletcher, 2021, 2022), but also possible

actions of the robot and expectations on their outcome. Figure

11 provides some examples for this, depicting, e.g., that a gas

leak will cause a sound that can be picked up by audio

measurements provided that the distance to the sound is not

too large, the sound is not covered by noise or other sounds,

and the sensor for the audio measurements is in a good state.

Regarding the possible actions of the robot, the knowledge

base contains the information that the robot can move itself,

thus changing the distance to the gas leak and to interfering

sound sources and their impact on the audio measurements,

or that it can switch sensors. These actions are interventions,

as they change the causality of the overall system, i.e., the

robot dog within its environment. This enables the same line

of reasoning that we introduced above to determine the most

beneficial action to take, only this time by the autonomous

robot itself, and not by a human fixing an issue.

Same principle, different process

Changing our task from service diagnostics to active behavior

adaptations required a re-interpretation of the reasoning

processes and of the elements within them:

The initial diagnostic identification of the components that

likely caused a machine to fail is extended towards a broader

set of root causes, which now includes environmental impact

factors, and moreover reasons for loss of performance instead

of strict failures. This extension towards performance

diagnostics of a system seen within its environmental context

introduces extra factors and enlarges the state-space of the

reasoning model but does not pose a fundamental change.

Figure 11. Part of a knowledge base on autonomous robots

Figure 10. Prototype of the diagnosis application with the reported problem shown on top. On the right, the

components are listed in decreasing failure probability with a graphical representation for demonstration purposes.

The left middle section lists possible tests in recommended order, allowing the user to vary the cost/entropy trade-off

for experimentation via the slider. By selecting a test, the user is presented with the test instructions and the test result

entry fields (not shown here). The lower left section shows the history of diagnostic tests that have been conducted

thus far and their outcomes. The Bayesian Belief Networks, matching those in Section 3, are generated on the fly

during the diagnostic procedure.

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

10

Once a likely root cause of low performance is identified by

the robot’s reasoning, the selection of the appropriate action

is based on calculations of the likely effect of that particular

intervention, essentially asking <if the robot takes this action,

would the problem go away?> This changes, at first glance,

the calculation of the expected reduction of entropy following

diagnostics towards the calculation of the expected reduction

of performance loss. However, it maps to an active diagnostic

process that only allows diagnostic tests of types II, III, and

IV (i.e., interventions) and keeps going through interventions

until it finds a configuration in which the robot performs.

An important aspect in this is that our methodology includes

the information gained in previous attempts in its diagnostic

reasoning. In the case of the autonomous robot, this solves a

potential issue of machine reasoning: It prevents –

figuratively and possibly literally – that the robot runs in

circles, i.e., that it alternates between actions that look

promising for solving the performance issue but actually fail

to do so. Such a situation, in which multiple computational

attractors must be interpreted as in-between steps towards a

solution that should only be tried once, would not confound

a human diagnosis expert – but a simpler reasoner trying to

handle an open world might fail by switching between them.

6. CONCLUSION AND FUTURE WORK

Being able to efficiently conduct active diagnostics with

intervening tests is crucial for asset life-cycle management.

Based on the theory of counter factual reasoning, we can now

integrate such interventions in industrial practice and tool

support, where our results indicate that the method enables a

structured way of efficiently and effectively deciding among

possible diagnostic actions. Nevertheless, the decision

support as outlined in Section 4 can be refined to further scale

up to complex scenarios.

Firstly, Eq. (1), which is inspired by existing service manual

procedures, assumes a fixed relation between an action 𝐴𝑖

and observation 𝑂𝑖 . In theory, however, we could do any

action 𝐴𝑖 and then observe some 𝑂𝑗, leading to

𝑇∗ = argmin
𝑇𝑖

𝑙𝑏(𝐴𝑖, 𝑂𝑗), (16)

i.e., recommending the combination of observation and

action that has least loss. However, many of the pairs (𝐴𝑖 , 𝑂𝑗)

make no sense in a practical situation, so the computational

complexity might not be worth the additional information

gain – but deciding this depends on many factors, including

business reasoning, and warrants future investigations.

Secondly, it is not clear how to choose the optimal balance

value 𝑏 in the loss function 𝑙𝑏 to reduce overall diagnostic

cost. Initial investigations show that the optimal b varies

greatly with the selected model, distribution of costs, and

prior failure probabilities. Consequently, we will investigate

further optimization of this value and, potentially, related loss

functions in future work as well.

ACKNOWLEDGEMENT

The research is carried out as part of the Carefree project under the

responsibility of TNO-ESI with Canon Production Printing as the

carrying industrial partner. The Carefree research is supported by

the Netherlands Organisation for Applied Scientific Research TNO

as part of the Appl.AI program, which is also supporting the

research’s application on the autonomous robot as part of the

SEAMLESS and SNOW projects.

REFERENCES

Balke A, Pearl J, (1994). Probabilistic evaluation of counter-

factual queries. Annual AAAI Conference on Artificial

Intelligence AAAI-94 (230-237), Seattle, USA.

Bayes Server, www.bayesserver.com, retrieved 24-03-2023.

Barbini, L., & Borth, M. (2019). Probabilistic Health and

Mission Readiness Assessment at System-Level. 11th

Annual Conference of the PHM Society, 11(1)

Scottsdale, USA.

Barbini, L., Bratosin, C., & van Gerwen, E. (2020). Model-

based diagnosis in complex industrial systems. 5th

European PHM Society Conference, 5(1), 8, Turin, Italy.

Borth, M., & von Hasseln, H. (2002). Systematic generation

of Bayesian networks from systems specifications. IFIP

17th World Computer Congress on Intelligent

Information Processing (155-166), Montréal, Canada.

van Gerwen, E., Barbini, L. & Borth, M. (2023). Differential

Diagnosis with Active Testing. Asia-Pacific Conference

of the PHM Society, vol. 4, no. 1, Tokyo, Japan.

de Kleer, J., Raiman, O. & Shirley, M. (1992). One Step

Lookahead is Pretty Good, In Hamscher, W., de Kleer,

J. and Console, L. (Eds), Readings in Model-Based

Diagnosis, (138-142). Morgan Kaufmann.

Heckerman, D., Mamdani, A. & Wellman, M.P. (1995).

Real-world applications of Bayesian networks.

Communications of the ACM, 38.3, 24-26.

Jensen, F.V. & Nielsen, T.D. (2007). Bayesian Networks and

Decision Graphs, Springer, New York, USA.

Oladyshkin, S. & Nowak, W. (2019). The Connection

between Bayesian Inference and Information Theory for

Model Selection, Information Gain and Experimental

Design. Entropy, vol. 21, no. 11, doi: 10.3390/e21111081.

Pearl, J. (1986). Fusion, propagation, and structuring in belief

networks. Artificial intelligence, 29(3), 241-288.

Pearl, J. (2009). Causality. Cambridge University Press.

Pearl, J. & Mackenzie, D. (2018). The Book of Why: The

New Science of Cause and Effect. Basic Books.

Pfeffer, A., Koller, D., Milch, B. & Takusagawa, K.T. (1999).

SPOOK: A System for Probabilistic Object-Oriented

Knowledge Representation. Fifteenth Conference on

Uncertainty in Artificial Intelligence (541-550),

Stockholm, Schweden.

Ricks, B. W., & Mengshoel, O. J. (2009). Methods for

probabilistic fault diagnosis: An electrical power system

case study. Annual Conference of the PHM Society

2009, 1(1), San Diego, USA.

http://www.bayesserver.com/
https://doi.org/10.3390/e21111081

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

11

Sijs, J. & Fletcher, J. (2021). A knowledge base for robots to

model the real-world as a hypergraph. Fifth IEEE

International Conference on Robotic Computing (IRC),

(119-120),Taiwan. doi: 10.1109/IRC52146.2021.00027.

Sijs, J. & Fletcher, J. (2022). On a hypergraph structuring

semantic information for robots navigating and

conducting their task in real-world, indoor environ-

ments. 26th International Conference on Methods and

Models in Automation and Robotics (430-435), Poland.

doi: 10.1109/MMAR55195.2022.9874265.

TNO (2022). Situational awareness in robot dogs.

www.tno.nl/en/digital/artifical-intelligence/safe-

autonomous-systems/situational-awareness-robot-dogs/

http://www.tno.nl/en/digital/artifical-intelligence/safe-autonomous-systems/situational-awareness-robot-dogs/
http://www.tno.nl/en/digital/artifical-intelligence/safe-autonomous-systems/situational-awareness-robot-dogs/

