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ABSTRACT 

Production planning and control (PPC) is the mainstay of 

every manufacturer and ensures flawless production pro-

cesses. However, PPC is jeopardized by breakdowns that 

can only be tackled with appropriate maintenance. In the 

past, static strategies, such as reactive and scheduled 

maintenance, have been used. Yet, with growing system 

complexity, Industry 4.0, and abundant sensor data, dynam-

ic strategies through PHM have emerged. The most ad-

vanced maintenance strategy is prescriptive maintenance 

(PxM), which allows manufacturers not only to predict 

failures but also to establish condition-based production 

plans and controls. To this end, our study explores the inte-

gration of PxM with PPC. First, we propose a fault predic-

tion model based on health indicators and future loads of a 

single-machine system. The proposed fault prediction is 

integrated into a joint PxM and PPC simulation model that 

compares the makespan of three joint PxM and PPC strate-

gies inter se and versus reactive and scheduled maintenance. 

A simulation study using industrial data from an extrusion 

process evaluates the different strategies across different 

time horizons (one month to a year). The findings indicate 

that joint PxM and PPC outperform other strategies, provid-

ing significant time savings over traditional methods. Fur-

ther, a sensitivity analysis is conducted to assess the robust-

ness of the PxM strategies under varying levels of meas-

urement noise, revealing potential challenges under high 

noise conditions. The study contributes to the field of PHM 

by providing insights into the effectiveness of joint PxM 

and PPC strategies and offering a comprehensive analysis of 

their performance under different conditions. 

1. INTRODUCTION  

Production planning and control (PPC) is the brain of any 

manufacturing company (Kiran, 2019). Its main objective is 

to ensure that products and services are produced efficiently, 

at the right cost, and in the quantities required to meet cus-

tomer demand (Cadavid, Lamouri, Grabot, Pellerin, & 

Fortin, 2020). Production planning is concerned with sched-

uling or lot sizing, while production control monitors and 

regulates production capacities (Schmidt & Schäfers, 2017). 

However, breakdowns are detrimental to these production 

plans and controls (Zarte, Wunder, & Pechmann, 2017). 

Maintenance is concerned with avoiding breakdowns and, in 

the best case, improving overall business performance 

(Bousdekis, Magoutas, Apostolou, & Mentzas, 2018), for 

which reactive and scheduled maintenance strategies were 

employed traditionally. The former maintains machines 

after failure, which does not eliminate losses of production 

capacity; the latter maintains machines regularly but is often 

overly strict, causing unnecessary maintenance activities 

(Liu, Chang, & Chen, 2023). 

With the abundance of sensor and production machine data, 

condition-based maintenance and prognostics and health 

management have been established, which help to maintain 

machines adequately through health detection, prognostics, 

and decision-making (Guillén, Crespo, Macchi, & Gómez, 

2016). While health detection and prognostics enable a 

predictive maintenance strategy, value is only generated 

through decision-making (Jia, Huang, Feng, Cai, & Lee, 

2018), i.e., prescriptive maintenance (PxM). PxM is an 

evolution of predictive maintenance (Meissner, Meyer, & 

Wicke, 2021) and enables adjusting production plans and 

controls based on condition information (Elbasheer et al., 

2022). 

For instance, PxM can help PPC decision-makers by con-

structing optimal schedules based on order-specific degrada-

tion (Zhai, Gehring, & Reinhart, 2021), finding production 

quantities so that a failure during a lot is prevented (Zheng, 

Zhou, Gu, & Zhang, 2021), or control machine speeds to 

postpone breakdowns (Broek, Teunter, Jonge, & Veldman, 

2021). However, while PxM gains popularity, the current 

literature is limited (Pinciroli, Baraldi, & Zio, 2023). 
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PxM decisions are generated through either optimization or 

simulation (Goby, Brandt, & Neumann, 2023). While the 

former is ideal for finding the best solution to well-defined 

problems with clear objectives and constraints, simulation is 

suitable for understanding complex systems and exploring 

different scenarios, especially when the underlying process-

es are not well-defined (Laguna & Marklund, 2018). 

The available literature on PxM is focused on the optimiza-

tion of singular PPC steps, such as scheduling, lot sizing, 

and production control. However, a) it is unclear how the 

different PxM strategies compare inter se and how they fare 

against ‘traditional’ strategies, such as reactive or scheduled 

maintenance; b) existing studies are based on optimization 

and assume perfect knowledge of the underlying system, 

e.g., by assuming the failure behavior of a machine or prod-

uct-specific degradation values are known (Bousdekis et al., 

2018); and c) most PxM studies are not validated with in-

dustrial data (Zhai et al., 2021). 

Therefore, this study’s research goal is as follows: 

Develop a simulation that compares joint prescriptive 

maintenance and production planning and control strate-

gies and showcases whether they outperform other mainte-

nance strategies using industrial data. 

The work is divided into multiple sections to address this 

goal. The following section describes a literature review of 

related works and outlines the addressed research gap in 

more detail. Section 3 describes the integrated PxM and 

PPC problem. Section 4 presents our joint PxM and PPC 

process simulation model. The penultimate section demon-

strates the instantiation of our model in a real industrial use 

case of an extrusion process. Section 6 concludes the work, 

highlights limitations, and derives a research agenda. 

2. LITERATURE REVIEW 

We retrieved related literature that employs PxM for at least 

one PPC-related decision. We found that most works focus 

on optimizing decisions related to joint PxM and production 

scheduling, lot sizing, or control, as shown in Table 1. 

Joint PxM and production scheduling is concerned with 

sequencing production orders, jobs, or operations, and 

maintenance interventions on machines. Fitouri, Fnaiech, 

Varnier, Fnaiech, and Zerhouni (2016) propose a heuristic, 

and Ladj, Tayeb, Varnier, Dridi, and Selmane (2017; 2017), 

and Zhai, Riess, and Reinhart (2019) propose a mixed inte-

ger linear program and genetic algorithms that optimize the 

scheduling of orders on a single machine. As they use opti-

mization, all works assume that degradation values for each 

order are fixed and known. In contrast, Zarte et al. (2017) 

describe a laboratory simulation test bed and do not make 

assumptions about order-specific degradation values. How-

ever, breakdowns are simulated based on the mean time 

between failure, and other PPC steps are not addressed. 

Joint PxM and lot sizing determines economic production 

quantities that facilitate opportunistic maintenance windows 

between lots. Zheng et al. (2021) use a semi-Markov deci-

sion process to calculate optimal lot sizes and maintenance 

windows but do not make comparisons to other PPC or 

traditional maintenance strategies. Dehghan, Nourelfath, 

and Hajji (2023) optimize the lot sizes using mathematical 

programming applied to an artificial turbofan dataset. In 

contrast, Yang, Zhao, and Han (2022) use industrial data 

from a steel factory to find an economic production quanti-

ty.  

Joint PxM and production control adjusts the production 

levels or rates based on the degradation of the machines to 

postpone breakdowns. Broek, Teunter, Jonge, Veldman, and 

van Foreest (2021; 2020) control the machine degradation 

by dynamically adjusting the production rate using a simula-

tion with different parameter sets. Wesendrup and 

Hellingrath (2023) use simulation-based reinforcement 

learning to set production levels based on machine degrada-

tion. All three works compare their models to scheduled 

maintenance strategies, but do not make use of industrial 

data. 

While the identified works highlight the benefits of joint 

PxM and PPC, they also reveal some research gaps. First, 

no work compares multiple strategies, and only a few are 

benchmarked with ‘traditional’ maintenance (e.g., reactive, 

scheduled), leaving researchers and managers clueless about 

the relative strength of each strategy. Secondly, most works 

use optimization and, e.g., assume perfect knowledge of 

future degradation for each production order. This is unreal-
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(Ladj et al. 2017a; Ladj et al. 
2017b; Zhai, Riess, and Rein-

hart 2019; Fitouri et al. 2016) 
✓ ✓      

(Zarte, Wunder, and Pechmann 

2017) 
✓ ✓    ✓  

(Dehghan, Nourelfath, and 

Hajji 2023; Zheng et al. 2021) 
✓  ✓     

(Yang, Zhao, and Han 2022) ✓  ✓    ✓ 

(Broek et al. 2021; Broek et al. 
2020; Wesendrup and 

Hellingrath 2023) 
✓   ✓ ✓ ✓  

Our study ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Table 1. Comparison of related works 
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istic, as degradation is time-varying and “different opera-

tional conditions result in different system loads and thus 

different degradation effects” (Zhai et al., 2021, p. 2). Last-

ly, only a few studies validate their approaches with actual 

industrial data. 

In contrast, our work proposes a simulation that compares 

joint prescriptive maintenance and production scheduling, 

lot sizing, and control and showcases whether they outper-

form other maintenance strategies using industrial data. Our 

research involves a comparative analysis of various mainte-

nance strategies. Comparative studies are crucial in under-

standing the relative effectiveness of different approaches. 

By evaluating joint PxM alongside other strategies, our 

work provides valuable insights into which method offers 

the most efficient solution, a perspective the existing litera-

ture lacks. Furthermore, our work uses discrete-event simu-

lation, which is particularly useful when dealing with com-

plex and dynamic systems and allows us to examine differ-

ent maintenance and production strategies under time-

varying degradation effects and shocks, helping to identify 

resilient strategies. Lastly, many simulations rely on hypo-

thetical or simulated data, which might not accurately repre-

sent the complexities of real-world scenarios. Our study 

uses actual industrial data to provide practical insights and 

solutions directly applicable to industrial settings. 

3. SIMULATION PROBLEM 

The scope of our simulation problem comprises a set 𝑂 of 

𝑛 non-preemptive orders 𝑜 ∈ 𝑂 = {𝑜1, 𝑜2, … , 𝑜𝑛}  that each 

produce several products. Each order is available at the 

beginning, takes a fixed time 𝑡𝑆  to set up and a variable, 

order-dependent time 𝑡𝑖 to process. Orders are processed on 

a single-machine system with health ℎ  that is measurable 

between production runs using condition monitoring. Each 

order exerts a product-specific, known load 𝑙𝑖 over its pro-

cessing time 𝑡𝑖  that reduces ℎ by an unknown degradation 

factor. The load 𝑙 and processing time 𝑡, and consequently 

the degradation, are similar for similar products (i.e., prod-

ucts that consist of similar raw materials). If ℎ drops below 

0, the machine breaks down, and a reactive repair with a 

fixed repair time 𝑡𝑅 must be carried out. 

Machines can be preventively maintained in between orders 

to prevent lengthy breakdowns using condition-based main-

tenance, which requires a fixed maintenance time 𝑡𝑃 ≫ 𝑡𝑅. 

Additionally, by analyzing the load 𝑙  and processing time 

𝑡 of upcoming orders and whether they would lead to break-

downs, production plans and controls can be adjusted using 

one of three strategies: 

1) Joint PxM and production scheduling allows scheduling 

orders based on their load 𝑙𝑛 and processing time 𝑡𝑛. This 

allows heavier orders to be processed at the beginning and 

lighter orders at the end of the machine's life. Additionally, 

it allows to check whether lighter orders can still be pro-

duced when heavier orders would lead to failure. 

2) Joint PxM and lot sizing allows splitting an order into 

two lots. Here, 𝑙 stays the same, but the processing time 𝑡 is 

split, effectively “dividing” the caused deterioration. In 

between both lots, a condition-based maintenance interven-

tion can be performed.  

3) Joint PxM and production control allows for a reduction 

in the production rate, which lowers 𝑙  and decreases the 

caused degradation. However, this causes delays in the 

order’s processing time 𝑡. 

The main objective of our simulation problem is to mini-

mize the total makespan of all orders 𝑂. 

4. SIMULATION MODEL 

The final concept of the discrete-event simulation model is 

summarized visually in Figure 1 and explained in the up-

coming sections. It comprises a health indicator construction 

and failure prediction that provides inputs for the three joint 

PxM and PPC strategies. 

4.1. Health and Load-based Failure Prediction 

To solve the described decision problem, first, we need to 

approximate the machine's health and find a way to predict 

failures. We assume that there exists historical time series 

data about the order 𝑜  (i.e., id), and sensor values of the 

machine's condition (e.g., vibration, temperature) and load 

parameters 𝑙 (e.g., conveyor speed, heater temperature) and 

its breakdowns and maintenance repairs. From there, one 

can construct a health indicator proposed by Medjaher, 

Zerhouni, and Baklouti (2013). Hereby, each run-to-failure 

sensor time series is correlated to a healthy machine refer-

ence time series. Then, correlations are sampled, standard-

ized to a failure threshold, smoothed, and a non-linear re-

gression is fitted. The resulting standardized correlation 

coefficient ℎ (from 0 to 1) of the two time series equals the 

machine's health. The further the sensor values deviate from 

the reference time series, the lower the correlation (i.e., ℎ →
0) and hence, the machine's health.  

This health indicator ℎ can be calculated for each historical 

time point and, consequently, the health at the beginning 

and end of an order 𝑜, depicted in Figure 2. 

This analysis allows us to get historical data about the health 

ℎ𝑖 before producing an order 𝑜𝑖, the order’s load parameters 

𝑙𝑖  and processing time 𝑡𝑖 , and whether the production of 

specific orders led to failure. We assume that the planned 

load 𝑙𝑖 and processing time 𝑡𝑖 of a new order 𝑜𝑖 is available. 

With this information, we trained a machine learning classi-

fier that is used as input in our simulation study. The fault 

predictor 𝑓(ℎ𝑖, 𝑙𝑖, 𝑡𝑖) is able to predict whether a new order 

is causing a failure based on the machine’s current health 

indicator ℎ𝑖, the planned load 𝑙𝑖 and the time 𝑡𝑖  the load is 
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exerted on the machine. For our fault prediction, most clas-

sifiers are usable, but it is recommend that models are cho-

sen that can handle many input variables and are supervised. 

For an exhaustive list of fault predictors, the reader is re-

ferred to Divya, Marath, and Santosh Kumar (2023).  

In the following, we show how the attained information and 

failure predictor is used for the three joint PxM and PPC 

strategies. 

4.2. Joint Prescriptive Maintenance and Scheduling 

Scheduling is the first task of our PxM and PPC simulation 

model. It receives 𝑛 orders and must decide the sequence in 

which the orders should be produced on the machine, as 

well as schedule maintenance interventions. Here, condi-

tion-based scheduling allows the assessment of each order’s 

‘intensity’ by looking at load and processing time used to 

sort the orders depending on their caused degradation. 

In our model, we use the common best-fit decreasing heuris-

tic suggested for condition-based scheduling by Ladj, Var-

nier, et al. (2017). We chose the best-fit decreasing heuristic 

due to its simplicity and ability to outperform other algo-

rithms “in important ways” (Coffman, Garey, & Johnson, 

1984, p. 38). With this algorithm, orders are sorted based on 

the product of 𝑙 and 𝑡, and the order with the highest value is 

chosen. Then, the current health and 𝑙 and 𝑡 are input into 

the failure predictor and the next orders are processed as 

long as they do not lead to failure. Should the next order 

risk a breakdown, it is skipped and the next, ‘less intense’ 

order is chosen until a fitting candidate is found. If no fitting 

order is found, the machine’s health is too low, and a pre-

 

Figure 1. Conceptual model of the simulation. 
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ventive condition-based maintenance intervention is per-

formed with time 𝑡𝑃.  

The advantage of condition-based scheduling is that orders 

are kept in their original state and are not split (which incurs 

additional setup time 𝑡𝑆) or processed with a slower speed 

(which extends 𝑡𝑖). The disadvantage is that it is less flexi-

ble and depends on the availability of adequate orders. If 

only orders with high processing time 𝑡 and load 𝑙 are left, 

more of the remaining useful life of the machine could be 

wasted. 

If PxM is not applied for scheduling, i.e., if we use other 

strategies, orders are processed first-in-first-out. 

4.3. Joint Prescriptive Maintenance and Lot Sizing 

After the orders are scheduled, they are forwarded to lot 

sizing. In case an order 𝑜𝑛 will not cause a breakdown, it is 

fully processed. In the other case, the order quantity is split 

into two (𝑜𝑖1  and 𝑜𝑖2)  by iteratively testing smaller split 

coefficients. Based on a decreasing lot split coefficient 𝑐 ∈

 ]0, 1[, a new lot size is calculated. We assume that the new 

lot size divides the processing time proportionally (i.e., 

𝑡𝑖1 = 𝑡𝑖 ⋅ 𝑐 and 𝑡𝑖2 = 𝑡𝑖 ⋅ (1 − 𝑐)), while the split does not 

have a significant effect on the load. Hereby, bigger lot 

splits are created first, and the new processing time of the 

first lot 𝑡𝑖1 is put into the fault predictor. 

As soon as the predictor is confident that the smaller lot 𝑜𝑛1 

is not leading to failure, it is produced, and the second lot 

𝑜𝑛2 is returned to the front of the order queue. Then, as the 

end of life of the machine has been reached, a condition-

based maintenance intervention is performed.  

The advantage of condition-based lot sizing is its flexibility, 

as orders can be split to exploit the remaining useful life of 

orders optimally. The disadvantage is that additional setup 

time 𝑡𝑆  is incurred for each new lot, and exploiting more 

remaining useful life of the machine increases the risk of an 

unexpected failure. 

If PxM is not applied for lot sizing, orders are not split. 

4.4. Joint Prescriptive Maintenance and Production 

Control 

After the lot sizes to be produced are defined, short-term 

production control ensures that the operating regimes are 

adequately adjusted. This might include setting machine 

control parameters such as cutting, conveyor speeds, or 

working temperatures. In PHM theory, it is assumed that 

different operating regimes influence the degradation of a 

machine (Wang, Yu, Siegel, & Lee, 2008). 

In our work, we assume that the load can be reduced at the 

beginning of processing an order 𝑜𝑖 , leading to a new load 

𝑙𝑖  which in turn extends the processing time = 𝑡𝑖  but also 

decreases degradation overall. By how much 𝑡𝑖 is extended 

is known if the desired 𝑙𝑖  is determined. For instance, halv-

ing the trajectory speed of a single-conveyor machine dou-

bles the processing time 𝑡. Both 𝑡𝑖  and 𝑙𝑖  can then be input 

into the fault predictor again to approximate whether they 

would lead to failure. 

In our model, we process orders with their standard control 

parameters if they do not cause a failure. When this is not 

the case, we reduce 𝑙𝑖 by small increments, compute 𝑡𝑖  and 

produce the order with the maximum 𝑙𝑖  that does not lead 

to failure. After processing the order with a reduced load, a 

preventive condition-based maintenance intervention is 

performed with processing time 𝑡𝑃. 

The advantage of joint PxM and production control is its 

flexibility to adjust 𝑙𝑖. In turn, this might lead to increases in 

𝑡𝑖 that might exceed 𝑡𝑃, which is a big disadvantage. In this 

case, performing a preventive maintenance intervention 

might make more sense without adjusting the production 

control. Additionally, maxing out the use of machine life 

also increases the risk of an unexpected failure. 

If PxM is not applied for production control, orders are 

always produced with their standard operating regime. 

4.5. Traditional Maintenance Strategies 

To not only compare the joint PxM and PPC strategies inter 

se, we will also compare them to traditional maintenance 

strategies (i.e., reactive, scheduled), which are explained 

next.  

Reactive maintenance. In the case of reactive maintenance, 

no condition data is available. The best-fit-decreasing heu-

ristic is not applied during scheduling, and orders are pro-

cessed first-in-first-out. Further, original lot sizes are kept, 

and the machine control is not adjusted. As neither ℎ nor 

failures can be predicted, the machine is run to failure and 

then subsequently repaired with a repair time of 𝑡𝑅.  

Scheduled maintenance. The reactive maintenance strategy 

allows us to calculate the mean time between failures that 

can be a reference for setting an appropriate scheduled 

maintenance interval. Our simulation study uses an optimal 

interval that minimizes the makespan objective. Like reac-

tive maintenance, PPC decisions are not changed within this 

strategy. In contrast, however, preventive maintenance in-

terventions with a processing time of 𝑡𝑃 are performed regu-

larly. Hence, scheduled maintenance prevents some of the 

time-consuming reactive repairs but might also lead to over-

maintenance as the actual condition of the machine can not 

be regarded. 

5. SIMULATION STUDY 

Our simulation study was carried out at a plastic packaging 

manufacturer that currently uses a balanced mixture of 

scheduled and reactive maintenance strategies. The investi-

gated production process is an extrusion process transform-
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ing different raw materials (e.g., plastic granules, dye) into 

different types of plastic films. The focal machine is an 

extrusion machine comprising extruders, a blowhead, an air 

ring, haul-off, edge trim, and a winder, as shown in Figure 

3. Here, the latter is the critical component comprising mul-

tiple mechanical failure modes such as deformations or 

bearing failures. 

To perform our simulation study, we have used the VDI 

3633 standard that distinguishes between the phases of sim-

ulation preparation, execution, and evaluation. 

5.1. Simulation Preparation 

We acquired roughly one year of failure, maintenance, and 

sensor data (e.g., condition monitoring and load) to build the 

simulation model. The latter was available with a frequency 

of 0.1 Hertz, leading to almost 2 million observations, and 

comprised 329 features for each observation that could be 

attributed to the extruder, blowhead, winder, or that were 

metadata. The features comprised information about the 

load, temperature, force, energy consumption, raw material, 

and finished product. Each observation can be attributed to 

one of 256 unique orders with a processing time between 1 

and 17 hours. The setup time between two production orders 

is fixed at one hour (𝑡𝑆 = 1  hour). Over 35 failure and 

maintenance events were available, each attributed to each 

observation of the preceding order (e.g., we assumed that 

the order was ‘responsible’ for failure). 

Using t-SNE (Maaten & Hinton, 2008) for dimensionality 

reduction, we could condense the load of each order into 

one dimension. In contrast to other techniques (e.g., princi-

pal component or linear discriminant analysis), t-SNE can 

capture non-linear relationships and preserve local struc-

tures, and showed good performances for fault prediction 

(Liang, Zhang, & Wang, 2023). Thus, it allows to reveal 

patterns that are not apparent in high dimensional data and, 

together with the constructed health indicators for each 

observation, shows the influence of processing time and 

load on degradation. Figure 4 depicts the relationship be-

tween processing time (x-axis) and load (y-axis) on degra-

dation (bubble size and color). The marginal histograms 

show the statistical distribution of different loads and pro-

cessing times. The histograms show that lower processing 

times are more common, while the loads are uniformly 

distributed with a gap between low to moderate and high 

load orders. The bubble sizes and colors show that higher 

processing times increase degradation even for low-load 

orders, while high-load orders can be processed for smaller 

durations without causing much degradation. Logically, 

high-load orders with long processing times cause the most 

degradation.  

Further, we were able to generate a realistic machine and 

degradation model of the winder using the failure, mainte-

nance, and sensor data and the Python package progPy 

(Teubert, Jarvis, Corbetta, Kulkarni, & Daigle, 2023). 

Therefore, we tuned the ‘loading’ by inputting the pro-

cessing times of our dataset and adjusting the ‘states’ pa-

rameters so that the variances and mean-time-between-

failures match our real-world data using sensor values. We 

used the observed sensor values and expert knowledge from 

the manufacturer to inform our parameter estimation. The 

resulting model exponentially degrades with random shocks 

(e.g., through bearing spalling). The maintenance data and 

experts also indicated that reactive repairs of the winder take 

 

Figure 3. Overview of extrusion machine. 
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roughly two days to fix (𝑡𝑅 = 48 hours), while a preventive 

maintenance intervention takes roughly half a working day 

(𝑡𝑃 = 4 hours). 

5.2. Simulation Execution 

For the PxM and PPC simulation experiments, the Java-

based simulation software AnyLogic® was used with an 

interface connected to the failure predictor programmed in 

Python. All training, testing, and simulation runs were car-

ried out on a Windows computer with 8 GB RAM and a 

3.00 GHz Intel® g Core™ i5-9500 CPU with six cores. 

Failure prediction. We have used 160,000 random obser-

vations to train the fault predictor presented in section 4.1. 

The predictor variables comprise an order's dimensionality-

reduced sensor values and load information. The outcome 

variable contains information about whether a breakdown 

occurred during or after processing the current order or not. 

As with many other condition monitoring datasets, this 

implies that the dataset is strongly imbalanced with many 

‘healthy’ data points but only a few failures. Hence, we 

have used the Synthetic Minority Over-sampling Technique 

(SMOTE), presented by Chawla, Bowyer, Hall, and Keg-

elmeyer (2011), to balance the training set and generate new 

failure instances. SMOTE preserves the failure class charac-

teristics and non-linear relationships, does not limit the 

choice of other classification models, and showed excellent 

performance over other techniques for condition-based 

maintenance (Sridhar & Sanagavarapu, 2021). 

We used the Python packages scikit-learn and xgboost to 

implement our failure prediction, providing state-of-the-art 

machine learning algorithms. Using these packages, we 

have analyzed nine different combinations of hyperparame-

ters for three machine learning algorithms (XGBoost, ran-

dom forest, and Gradient Boosting) using a random search 

and five-fold cross-validation ( 9 ∗ 3 ∗ 5 = 135  fits). We 

found that a random forest with a maximum depth of 20 and 

150 trees performed best. 

Joint PxM & PPC strategies. The final computational 

implementation of our conceptual model is shown in Figure 

5. We generate 𝑂, following the statistical distribution of 

orders shown in the histograms of Figure 4, during ‘order-

Source’ which is forwarded to a queue. From then, orders 

are processed through the different stages of PPC, as pre-

sented in section 4. The different PxM or ‘traditional’ 

maintenance strategies can be activated using the parameter 

‘maintenanceStrategy’. Different process elements and 

functions realize the described behavior. When plans and 

controls have been finalized, an order is produced in the 

service block ‘production’, which is connected to the extru-

sion machine.  

To model the machine, we used a resource pool entity in 

AnyLogic® (‘extruder’), which is connected to a Python 

implementation of the machine model based on progPy 

(Teubert et al., 2023). 

To simulate the planning of our model, namely the three 

joint PxM and PPC strategies (scheduling, lot sizing, con-

trol), and to compare them with ‘traditional’ (reactive, 

scheduled) maintenance strategies, we ran five experiments 

(by setting ‘maintenanceStrategy’) for four different time 

horizons for 100 replications each (= 2,000 runs) to ensure 

the robustness of the evaluation. Different time horizons 

from one month to a whole year were simulated by setting 

the size of 𝑂  (‘numOrders’)  to 75 (~1 month), 200 (~3 

months), 400 (~6 months), and 800 (~1 year). 

5.3. Simulation Evaluation 

The fault predictor's total training time, including hyperpa-

rameter tuning, was 6.5 hours. The total computation time 

for all 2,000 simulation runs was 14 hours. 

Failure prediction. We tested the forest on 40,000 random 

observations not included in the training dataset, which led 

to an excellent accuracy of 0.94. As an overall objective, we 

wanted to predict every costly breakdown, even if that im-

plies that some healthy machine states are misclassified as 

failures. Therefore, we have used recall as the loss criterion 

to make the model sensitive to finding failures. This led to a 

good overall recall of 0.91 but a poor precision of 0.42. This 

means that more than every second failure was classified 

wrongly. Fortunately, these misclassifications often happen 

at the end of the life of the machine, so in the worst case, it 

means that the machine is maintained even though it can 

maintain a few further orders without failure. Consequently, 

the F1 score, which is the harmonic mean of precision and 

recall, is only mediocre, with a score of 0.57. 

 
Figure 4. Influence of load and processing time on degrada-

tion. 
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The predictions can be visualized in a confusion matrix 

(Figure 6) to understand our model's behavior better. The 

matrix shows that most failure-free observations are classi-

fied correctly (36274 true negatives). Additionally, 1462 

observations have been correctly classified as failures (true 

positives). However, many failure-free observations still 

have been classified as failures (2058 false positives), while 

luckily, only a few failures have not been identified (148 

false negatives). Saxena et al. (2008) state that false posi-

tives are suboptimal as they may lead to unnecessary 

maintenance interventions, while false negatives are much 

more critical, as they would lead to unexpected failures. 

While in the context, the results look promising at first 

glance, Saxena et al. (2008) also suggest analyzing the re-

ceiver operator characteristic curve to visualize the trade-off 

between true and false positives for different prediction 

thresholds, depicted in Figure 7. 

It can be seen that the curve looks very good, which is con-

firmed by an excellent area under the curve score of 0.93, 

which signifies a good trade-off has been achieved with our 

model. 

Still, there are some caveats, as few false negatives and 

many false positives are predicted. To understand the effects 

of these false predictions, we can look at a run-to-failure to 

see how the algorithm would have influenced decision-

making. Figure 8 shows an example of particularly bad 

model behavior during one run-to-failure. The x-axis depicts 

the elapsed time; the y-axis and black solid line the true 

health of the machine. Each vertical line denotes the time 

point between two orders, where a fault prediction is made. 

Black dotted lines denote that the fault prediction correctly 

estimated that the next order will not lead to a failure (true 

 
Figure 6. Confusion matrix of failure prediction 

  
Figure 5. Computer simulation model. 
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Figure 8. Misclassification of failures 
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negatives). Red dotted lines denote failure predictions, even 

though the machine could produce the order without failure 

(false positives). The green solid line depicts correct failure 

predictions (true positives). Here,  the predictor suggests 

maintaining early (the first red vertical line) even though the 

machine can still run six more orders. Also, an alert would 

have been triggered twice before an actual failure was cor-

rectly identified. 

We could derive reasons for false positives and negatives 

from analyzing multiple predictions. The former happens 

when the health is low (< 0.1) while either the load (<20) or 

processing time (> 800 minutes) is high. It also happens 

when the health is only moderately low (0.3 > ℎ > 0.1) 

while load and processing time are high. False negatives can 

be attributed to observations when the machine health indi-

cator is > 0.1, while winder clamping forces or rotational 

speeds are very high, and processing times are moderate but 

not extremely high (800 < 𝑡 < 1100 minutes).  

Condition-based Production Planning and Control. The 

fault predictor has been used as an input for decision-

making, leading to joint PxM and PPC. Table 2 shows the 

average makespan and number of breakdowns and mainte-

nance interventions of each strategy for the four different 

sizes of 𝑂 over 100 replications each. 

The results show that for #𝑂 = 75  (~1 month), PxM-

enabled PPC strategies already lead to one to multiple days 

of savings in the makespan versus scheduled or reactive 

maintenance strategies. Looking at only one month, joint 

PxM and lot sizing performs best, but the other strategies are 

very close. Why reactive maintenance fails to perform well 

becomes clear when looking at the number of breakdowns 

and repairs per run. The winder must be repaired 2.81 times 

on average in just a month. In contrast, scheduled mainte-

nance reduces the average number of breakdowns per 

month to 0.52, but at the cost of 3.28 maintenance interven-

tions. In contrast to PxM, scheduled maintenance has higher 

average numbers of breakdowns and maintenance interven-

tions, highlighting the inflexibility of the predetermined 

maintenance interval. 

In contrast, the PxM strategies allow prescribing optimal 

actions based on the real condition of the machine and, thus, 

reduce the number of preventive maintenance interventions 

while maintaining a low level of failures. Surprisingly, joint 

PxM and production control is the ‘safest’ strategy, as it 

reduces failures to a minimum of 0.25 per 75 orders, while it 

matches the number of maintenance interventions of the 

best PxM strategy (i.e., joint PxM and lot sizing). However, 

reducing the load of the winder also decreases production 

speed so that the ‘safest’ strategy does not outperform the 

other PxM strategies. 

Increasing the planning horizon to three months (#𝑂 =
200), half a year (#𝑂 = 400), and one year (#𝑂 = 800) 

leads to similar results, although there are some perfor-

mance fluctuations. For instance, when looking at a quarter 

of a year, joint PxM and production scheduling performs 

best, while PxM and lot sizing is the worst PxM strategy. 

Also, for half a year, joint PxM and lot sizing is the safest 

strategy, with an average of only 1.85 breakdowns.  

Over most periods, joint PxM and lot sizing consistently 

performs best, closely followed by the other two PxM strat-

egies. Moreover, joint PxM and control is also consistently 

the safest strategy (i.e., leads to the fewest breakdowns), 

while PxM and scheduling is the most efficient (i.e. mini-

mizes the number of maintenance interventions). Hence, if 

the objective was concerned with safety or maintenance 

 
Figure 7. Receiver operating characteristic curve. 
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cost, the other PxM strategies might perform better and 

should not be disregarded. However, this does not apply to 

reactive and scheduled maintenance that consistently per-

formed worse than PxM strategies. Compared to the ‘tradi-

tional’ strategies, time savings of over 15% or 50 days can 

be achieved over one year (#𝑂 = 800) with joint PxM and 

PPC strategies. 

While these figures draw a conclusive picture of the ad-

vantages of PxM for PPC, it is interesting to see how this is 

achieved precisely. Therefore, we visualized an excerpt of 

one week of an exemplary simulation run, close before and 

after a first failure or maintenance, for each of the five strat-

egies in Figure 9. The excerpt starts with a relatively healthy 

machine with an indicator of 0.6. Using a reactive mainte-

nance strategy, the machine fails after producing the twelfth 

order and is subsequently repaired during two working days. 

After repair, the machine's state is as good as new and fur-

ther orders can be produced. Scheduled maintenance per-

forms interventions at regular intervals. In the shown exam-

ple, instead of producing twelve orders, only seven orders 

are produced before the scheduled maintenance interval is 

reached. 

Using joint PxM and production scheduling, the machine is 

maintained even earlier, but this is because orders with 

higher loads are produced first (best-fit first scheduling 

heuristic). Thus, the initial health indicator is also much 

lower at the beginning of the excerpt. Nevertheless, due to 

PxM, the machine's useful life is exploited much better than 

the previous ‘traditional’ strategies. Joint PxM and lot sizing 

showcases the advantage of dynamic maintenance times in 

contrast to fixed scheduled maintenance intervals. Instead of 

maintaining after seven orders, our failure prediction pro-

vides confidence for production planning to produce three 

further orders. Then, instead of maintaining directly, joint 

PxM and lot sizing splits 𝑜56 into two lots and maintains in-

between. Joint PxM and production control maintains at a 

similar point in time, but the strategy works slightly differ-

ently. Instead of splitting up the order into lots, the machine 

produces order 𝑜56 with a lower load and reduces degrada-

tion while extending its processing time. This leaves a 

slightly higher health safety margin but extends processing 

time slightly compared to its joint PxM and lot sizing pen-

dant. 

5.4. Sensitivity Analysis 

The considerable makespan reductions through our joint 

PxM and PPC strategies can be attributed to the excellent 

performance of our underlying failure prediction model. 

However, such performances are not always the case, and 

many uncertainties, particularly occurring in sensor meas-

urements, can impede the usefulness of condition-based 

maintenance (Sankararaman, 2015). Hence, we performed a 

sensitivity analysis to showcase how robust our model is 

and whether it is also useful for more uncertain production 

contexts. 

To achieve that, we induce measurement noise that influ-

ences the health indicator, the central component in our 

failure classification model. In the analysis, Gaussian noise 

is added to the health ℎ with a standard deviation of 0.01 to 

0.1 (in 0.01 steps). In the worst case, this means that the 

health indicator ℎ is, on average, 10% higher than the true 

health of the machine. We added noise to the same 40,000 

observations we used for evaluation earlier and tested the 

No. of orders / 

strategy 
75  200  400  800  

Makespan in days 

PxM scheduling 
32.45 
(±2.17) 

86.85 
(±3.53) 

174.38 
(±4.55) 

348.02 
(±6.56) 

PxM lot sizing 
32.43 
(±2.14) 

87.45 
(±3.70) 

173.22 
(±4.35) 

347.14 
(±6.77) 

PxM control 
32.58 
(±1.93) 

87.12 
(±3.49) 

174.78 
(±4.51) 

347.92 
(±6.92) 

Reactive 
36.84 
(±2.35) 

100.09 
(±3.97) 

199.44 
(±5.18) 

400.93 
(±7.37) 

Scheduled 
33.62 
(±2.22) 

90.42 
(±3.34) 

181.55 
(±6.19) 

363.87 
(±6.84) 

Average number of breakdowns and repairs 

PxM scheduling 0.42 
(±0.67) 

1.07 
(±1.03) 

2.54 
(±1.41) 

4.87 
(±2.22) 

PxM lot sizing 0.44 
(±0.62) 

1.13 
(±1.16) 

1.85 
(±1.23) 

4.1 
(±2.01) 

PxM control 0.25 
(±0.48) 

1.02 
(±0.83) 

2.07 
(±1.44) 

3.88 
(±1.87) 

Reactive  2.81 
(±0.53) 

8.19 
(±0.84) 

16.49 
(±0.94) 

33.86 
(±1.37) 

Scheduled  0.52 
(±0.70) 

1.72 
(±1.31) 

3.72 
(±1.72) 

7.32 
(±2.50) 

Average number of maintenance interventions 

PxM scheduling 2.59 
(±0.77) 

7.84 
(±1.27) 

15.97 
(±1.67) 

32.45 
(±2.54) 

PxM lot sizing 2.75 
(±0.78) 

8.09 
(±1.36) 

16.91 
(±1.67) 

33.84 
(±2.11) 

PxM control 2.74 
(±0.68) 

7.96 
(±0.95) 

16.36 
(±1.80) 

33.43 
(±2.27) 

Reactive  - - - - 

Scheduled  3.28 
(±0.68) 

9.08 
(±1.15) 

18.43 
(±1.49) 

37.57 
(±2.38) 

Table 2. Simulation results (± standard deviation) 
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noisy data with our failure prediction algorithm, as shown in 

Table 3. 

With increasing noise, the accuracy stays stable and even 

increases with high noise levels. The higher the noise, the 

more observations are classified as non-failure. Because of 

the imbalance of the classes, this leads to a net benefit in 

accuracy. However, our main classification objective, recall, 

suffers from the increased noise, and now, critical false 

negatives increase. While our recall without noise was 0.91, 

which means more than nine out of ten breakdowns can be 

predicted correctly, with a noise level of 0.1, only two of 

three breakdowns can be correctly identified ( recall =
0.68 ). In contrast, this leads to inversely proportional 

changes in the precision, while consequently, the F1 score, 

the harmonic mean of precision and recall, is stable. Addi-

tionally, the area under the receiver operator characteristic 

curve decreases, which indicates worse discrimination be-

tween failure and non-failures. 

The failure prediction scores indicate that noise might also 

substantially impact our joint PxM and PPC strategies. To 

analyze their impact, we simulated the three PxM strategies 

for approximately one year (#𝑂 = 800) over the ten noise 

levels with 100 replications each (= 3,000  runs), which 

took two days and 17 hours to compute. The results are 

shown in Table 4. 

 
Figure 9. Direct comparison of different strategies 
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Overall, noise and the decreased failure prediction perfor-

mance also significantly negatively affected the PxM re-

sults. Joint PxM and scheduling performance suffers the 

most. Each percent of noise causes delays in the makespan 

of multiple days on average. Above a moderate noise level 

of 0.07, the joint PxM strategy is inferior to a scheduled 

maintenance approach. However, it is not outperformed by 

reactive maintenance, even at the highest noise levels. 

Joint PxM and lot sizing, which outperformed other strate-

gies over most of the ‘regular’ experiments, consistently 

exceeds the makespan of joint PxM and production control 

for comparable noise levels when a moderately low noise of 

0.03 and higher is reached. Still, while it seems to be inferi-

or to its PxM counterpart, it outperforms scheduled and 

reactive maintenance strategies. However, the residual dif-

ference at 10% noise is only marginal, and at least sched-

uled maintenance is expected to prove superior when more 

noise is increased. 

Joint PxM and production control is the most noise-resilient 

strategy. While it also suffers from noise, the makespan 

increases are minor for each percent noise increment, and it 

quickly surpasses the performance of other strategies. This 

is in line with it being the safest joint PxM and PPC strate-

gy, as described previously. Similarly to joint PxM and lot 

sizing, it is still superior to ‘traditional’ maintenance strate-

gies even at a noise level of 0.1. 

6. CONCLUSION 

In this paper, we have developed a simulation that compares 

joint PxM and PPC strategies and showcases whether they 

outperform other maintenance strategies using industrial 

data. We have created a conceptual simulation model using 

health- and load-based failure prediction to implement PxM 

for production scheduling, lot sizing, and production con-

trol. Within an extensive simulation study, we have instanti-

ated our model using industrial data of an extrusion process 

and compared the performance of the three joint PxM and 

PPC with ‘traditional’ maintenance strategies. The failure 

prediction showed excellent results that translated well into 

our production planning and control simulation and led to 

multiple days of makespan savings compared to reactive 

and scheduled maintenance strategies. Further, a sensitivity 

analysis based on sensor measurement noise revealed that 

the PxM-based strategies are robust in uncertain environ-

ments.  

However, our work also comes with some limitations. First, 

we used only simple heuristics to integrate PHM knowledge 

into PPC and did not use advanced optimizations such as 

mathematical programming, genetic algorithms, or rein-

forcement learning, which could improve results further. For 

more information about how this can be achieved for pro-

duction scheduling, lot sizing, or production control, the 

reader is referred to the literature analyzed in Section 2. 

Further, we did not combine multiple PxM-based PPC strat-

egies. For instance, one could first perform prescriptive 

maintenance and scheduling and use production control or 

lot sizing if no ‘light’ order is available. Thirdly, we con-

structed a health indicator and used it a) as the ‘true’ health 
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0.00 0.94 0.91 0.42 0.57 0.93 

0.01 0.95 0.88 0.43 0.58 0.92 

0.02 0.95 0.86 0.45 0.59 0.91 

0.03 0.95 0.84 0.46 0.60 0.90 

0.04 0.96 0.82 0.48 0.60 0.89 

0.05 0.96 0.80 0.48 0.60 0.88 

0.06 0.96 0.76 0.49 0.60 0.87 

0.07 0.96 0.75 0.50 0.60 0.86 

0.08 0.96 0.72 0.52 0.60 0.85 

0.09 0.96 0.70 0.52 0.60 0.84 

0.10 0.96 0.68 0.54 0.60 0.83 

Table 3. Failure prediction under noise 
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0.00 
348.02 
(±6.56) 

347.14 
(±6.77) 

347.92 
(±6.92) 

400.93 
(±7.37) 

363.87 
(±6.84) 

0.01 
352.83 
(±7.32) 

349.46 
(±6.40) 

349.02 
(±7.04) 

0.02 
354.53 
(±7.74) 

349.88 
(±7.25) 

350.25 
(±6.80) 

0.03 
357.19 
(±8.03) 

353.46 
(±7.30) 

351.28 
(±7.45) 

0.04 
359.45 
(±7.44) 

353.56 
(±6.70) 

352.83 
(±6.81) 

0.05 
362.03 
(±7.82) 

355.06 
(±6.54) 

353.50 
(±7.08) 

0.06 
361.75 
(±7.70) 

356.67 
(±7.12) 

355.19 
(±6.76) 

0.07 
362.97 
(±8.23) 

357.20 
(±8.12) 

356.93 
(±7.54) 

0.08 
364.97 
(±8.14) 

358.55 
(±7.57) 

357.99 
(±9.12) 

0.09 
367.38 
(±8.70) 

360.24 
(±8.29) 

359.71 
(±7.67) 

0.10 
368.02 
(±7.82) 

362.35 
(±7.54) 

361.94 
(±7.16) 

Table 4. Simulated average makespan (± standard devia-

tion) in days under noise 
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to construct our simulation model and b) as direct input to 

our joint PxM and PPC strategies. However, this might lead 

to a machine simulation model with unrealistically good 

predictions that are hard to attain in practice. Still, the per-

formed sensitivity analysis could indicate that our model 

might be robust if the health had to be predicted, too. How-

ever, our sensitivity analysis is only limited to sensor meas-

urement noise, and uncertainties in processing times and 

load are not analyzed. Lastly, we only analyzed the 

makespan and did not regard monetary or other objectives. 

This leads to some avenues for future research. First, future 

PxM models should compare to other advanced strategies 

and, if not possible, at least to ‘traditional’ maintenance. 

Additionally, it is interesting to investigate how joint PxM 

and scheduling, lot sizing, and production control strategies 

can be combined. Further, modeling uncertainties of the 

health indicator and extending sensitivity analyses to incor-

porate noise in processing time and load could validate the 

model more realistically. In the same vein, the proposed 

results should be validated in additional industrial settings, 

using real-world data and considering variations in machin-

ery types, operational conditions, maintenance practices, or 

even industrial sectors. Lastly, how PxM solutions can be 

implemented in real production environments must be in-

vestigated, e.g., by investigating the human-in-the-loop. 

Still, our work contributes to research by showcasing how 

complex production environments can be modeled and 

simulated and by benchmarking different condition-based 

PPC strategies, ultimately fostering the understanding of 

complex, dynamic industrial PHM systems. On the practical 

side, the simulation provides managerial insights on where 

to implement joint PxM and PPC and supports the justifica-

tion of PHM business cases.  
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