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ABSTRACT

This paper addresses the problem of monitoring the state of
health of electric motor driven mechanisms. The proposed
condition monitoring procedure belongs to the data-driven
methods and employs a combination of wavelet analysis and
autoregressive model identification. It exploits the fact that
the torque motor signal is a readily available measurement in
industrial computers complying with the PLCopen standard
and how motion controllers execute electric cams. In particu-
lar, the torque provided by the PLC is represented as the sum
between the ideal torque and an additional contribution that
contains information about mechanism health condition. The
procedure completely removes the ideal torque and analyzes
the residual component to highlight and classify possible fault
conditions. The described condition monitoring procedure is
tested on real data in a laboratory setup.

1. INTRODUCTION

Prognostics and Health Management (PHM) have significant-
ly gained importance within the context of Industry 4.0, emerg-
ing as pivotal concepts in the research and development within
the industrial automation sector (Gouriveau, Medjaher, & Zer-
houni, 2016). In the realm of heavy-duty machinery, the oc-
currence of component failures is a common concern. Ad-
dressing the diagnosis of their health status and predicting
their remaining useful life (RUL) has become a focal point of
research efforts in the field (Soualhi et al., 2017; Qi, Zhang,
& Spencer, 2023). This advancement owes much to the ever-
increasing computational capabilities of computers, spanning
from on-board processing (edge-computing) to external sys-
tems like industrial computers and cloud-based computing.
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terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

Condition Monitoring (CM) concerns the evaluation of the
health status of equipment and components while they are ac-
tively engaged in machinery operations and tasks. Such no-
tion is the founding element of any implementation of PHM.
Indeed, research in this field primarily focuses on diagnosing
and predicting faults that may arise in critical machine com-
ponents, encompassing everything from bearings and gears to
mechanical drive components and electrical systems (Lee et
al., 2014). In particular, it’s possible to categorize the main
methods used in condition monitoring into three types, based
on their mathematical utilization of physical knowledge re-
lated to the systems involved: model-based, data-driven, and
hybrid methods (Gouriveau et al., 2016).

Firstly, Model-Based methods (Isermann, 2005) rely on phys-
ical modelling to build mathematical approximations of in-
creasing degree of complexity to characterise systems’ in-
put/output behaviour. These methods run together with the
machinery under monitoring to provide information on the in-
ternal state of the systems they represent. Physical modelling
is particularly effective for the diagnosis and prognosis of
faults. Its complexity may result prohibitive in terms of both
the time required to define a model suitable for CM and the
computational resources needed to run it on industrial com-
puters or edge-computing microprocessors. Secondly, Data-
Driven methods (Cerrada et al., 2018) exploit signals mea-
sured on-board the system to perform CM, mainly by means
of signal processing and machine learning techniques. The
implementation of such strategies is simpler and requires, in
general, less time and resources. The information such meth-
ods extract can be effectively used to perform CM and then
PHM on machinery even though it is typically of lesser qual-
ity than the model-based one. Finally, hybrid methods com-
bine the previously mentioned ones.

Properly defined CM-based procedures require significant sen-
sor measurements, suitable data processing algorithms and
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appropriate servicing choices (either automated or with hu-
man intervention). Condition-Based Maintenance (CBM) and
Predictive Maintenance (PM) encapsulate formally such con-
cepts by defining a broader picture of the course of actions
involved by dividing it into three macro-steps (Jardine, Lin,
& Banjevic, 2006)

1. Data acquisition.
2. Data processing.
3. Maintenance decision-making.

In this work, we focus mostly on the first two steps, laying
the groundwork for the third. The technique we exploit be-
longs to the data-driven methods and employs a combination
of wavelets (Strang & Nguyen, 1996) and black box system
identification theory (Söderström & Stoica, 1989): the first is
widely used in CM, mainly as a feature extraction methods
and filters, while the second consists in determining a para-
metric model (e.g. AR, ARMA) of the processed signals and
to extract discriminative features from it (Isermann, 2006).
We refer to the latter approach as Model-of-Signals, like in
(Barbieri et al., 2018; Barbieri, Diversi, & Tilli, 2019).

On the one hand, wavelets are a versatile mathematical tool
enabling the decomposition of complex signals and data into
multiple scales, allowing for efficient analysis of both time
and frequency domains simultaneously. They offer localized
analysis, which means they can capture and localize transient
events and variations in non-stationary signals. This property
is particularly useful for CM purposes, since it allows to filter
out unwanted components from signals. By considering dis-
crete wavelets, such filtering can be easily implemented on in-
dustrial computers. On the other hand, Model-of-Signals re-
lies on the signals measured and processed on-board the mon-
itored machine to build dynamic models by means of system
identification algorithms (Söderström & Stoica, 1989; Box,
Jenkins, Reinsel, & Ljung, 2015). Models carry inherent in-
formation about the system physical content and the avail-
ability of recursive algorithms permits the implementation di-
rectly on the PLC, exploiting its edge-computing capabilities.
Furthermore, Model-of-Signals methods compress signals in-
formation into models that are easier to handle. This allows
the use of distributed computing frameworks with models be-
coming features for PHM algorithms.

This work presents a CM application where the combina-
tion of wavelets and Model-of-Signals aims at monitoring the
state of health of electric motor driven mechanisms. In this
context, the major part of the proposed CM procedures relies
on vibration signals (Qi et al., 2023). An alternative con-
sists in exploiting current motor signals (Nandi, Toliyat, &
Li, 2005). The use of current measurements, that are related
to the motor torque, was initially adopted only to monitor the
internal health state of the motor (Nandi et al., 2005). Sub-
sequently, the approach has been extended to the CM of the
mechanism attached to the electric motor, leading to the so-

called motor current signature analysis (MCSA) method (Kar
& Mohanty, 2006; Singh & Kumar, 2017; Chai, Yang, Ni, &
Xu, 2018). The method proposed in this paper exploits the
fact that the torque signal is a readily available measurement
in industrial computers complying with the PLCopen stan-
dard (Foundation, 1992) and how motion controllers execute
electric cams. Indeed, nowadays most industrial automation
components manufactures comply with the standard, there-
fore the majority of motion controllers and PLCs with motion
control allow for the implementation of our proposition. The
described condition monitoring technique aims at providing
the manufacturer with a PLC practicable solution for drive-
mechanism fault detection.

The main idea is the following: the majority of electric cam
motion tasks for servo drives are implemented as piece-wise
polynomial trajectories with order lower or equal to 7. There-
fore, in the case of linear mechanisms the ideal torque de-
manded by their motion is linked to the second derivative of
such functions. In real applications, however, another com-
ponent is present alongside the ideal torque: smaller with re-
spect to the latter, but necessary to achieve the desired motion.
Our conjecture on that additional contribution is that it con-
tains information about the mechanism health condition and
it can be modelled by a an Auto-Regressive (AR) model. Its
analysis require the ideal contribution to be removed in or-
der to prevent it from masking changes within the useful one
(in this domain, the ideal torque is the ”noise” perturbing the
informative signal). A simple subtraction of the ideal torque
could be arranged in this respect, however, it would depend
on the given cam trajectory and on the equivalent inertia of
the mechanism. In this work, we propose to filter out that
ideal component using a particular property of a specific set
of wavelet-based filters, exploiting the polynomial nature of
the cam trajectory. Then, the useful part of the signal will be
modelled as an AR process. This allows Model-of-Signals to
be applied following its basic idea as in (Barbieri et al., 2018;
Barbieri, Diversi, & Tilli, 2020; Barbieri, Nguyen, Diversi,
Medjaher, & Tilli, 2021).

The remainder of the paper is organised as follows: Section 2
describes the torque model employed for condition monitor-
ing. Section 3 concerns the extraction of the informative part
of the torque signal through wavelet analysis. The proposed
CM procedure is described in Section 4. In Section 5 we ap-
ply the proposed procedure to real data in a laboratory setup
whose outcomes are shown in Section 6. Finally, conclusions
are drawn in Section 7.

2. TORQUE MODELLING FOR CONDITION MONITOR-
ING

The majority of industrial machines rely on cams to perform
complex tasks that require synchronisation among the various
mechanisms involved. Cams can be divided into mechanical
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and electrical. The use of the latter to perform synchronised
operations is increasing in the last decades due to their com-
parable precision and greater flexibility with respect to me-
chanical ones. Electric cams allow to coordinate the motion
of different mechanisms independently driven by electrical
motors. This is possible because servo drives have become
able to precisely track given position profiles commanded via
Fieldbus by the motion controller, allowing the synchronisa-
tion of movements via software. Here, the most commonly
used software library to program and command electric cams
motion trajectories to servodrive is the PLCopen standard for
motion control. Such library allows the implementation of
motion control using the programming languages of the IEC
61131-3 standard. In particular, a vendor compliant with both
standards has the built-in function MC ReadActualTorque to
sample the motor applied torque during a motion command,
providing a readily available signal to use for condition mon-
itoring.

2.1. PLC implementation of electric cams

Electric cams are performed by linking together the trajec-
tories of the different motors involved in the synchronised
task: a leader, known as master, performs the guiding tra-
jectory while one or more followers, called slaves, move ac-
cordingly. The coupling is established geometrically so that
any given master trajectory point corresponds to a given slave
trajectory point. This coupling is usually programmed by
the user on the PLC vendor Integrated Development Envi-
ronment (IDE). The typical implementations rely on the defi-
nition of via-points within the trajectory, which are then con-
nected through mathematical functions which depend on the
trajectory constraints. In most cases, polynomial functions,
with their smoothness degree dependent on the number of
constraints, are used. The constraints, in this case, originate
from the required trajectory derivatives at those via-points.
For instance, to build a master-slave synchronisation we need
the master trajectory in position, #(t) and the relative slave
position evolution q (#(t)), denoted as q(#) for simplicity.
This definition allows to geometrically connect the two trajec-
tories, while time enters indirectly with the master position,
allowing speed variations without affecting synchronisation.
Obviously, also the physical limits of the system affect the tra-
jectory (e.g. the maximum allowed speed and acceleration)
and have to be taken into account during the design phase.
An example of synchronisation definition procedure is given
as follows:

q1(0
�) = 0�, q2(180

�) = 360�, q3(360
�) = 0�,

q̇1(0
�) = 0, q̇2(180

�) = 0, q̇3(360
�) = 0, (1)

q̈1(0
�) = 0�

�1

, q̈2(180
�) = 0�

�1

, q̈3(360
�) = 0�

�1

,

where qi(#), q̇i(#), q̈i(#) denote the position, speed and ac-
celeration of the slave related to the i–th via-point. In this

case, q1 is connected to q2 with a polynomial function of or-
der 5 since there is a total of 6 constraints. The same reason-
ing can be done for the cam piece between q2 and q3, with the
final result shown in Fig.1. If we assume that master speed is
constant, #̇(t) = const = ⌦p, then the x-axis can be directly
translated in time by means of t = #(t)/⌦p. We refer to
(Biagiotti & Melchiorri, 2008) for a complete discussion on
how trajectories are generated.

2.2. The Torque Model

Suppose that the controller of the motors we want to synchro-
nise is correctly designed and tuned. The master operates at
constant speed followed by the slave with a trajectory defined
as in (1) driving a linear mechanism. The torque required to
perform the task in this case is

T̄ (t) = J ↵̈(t) = J ¨q(t), (2)

where J > 0 is the moment of inertia and ↵(t) = q(#(t))
is the angular position of the slave. If the number of via-
points is M , T̄ (t) is a piece-wise polynomial trajectory based
on M couples of master-slave points and their constraints,
with the former converted into their time counterparts t 2
[t1 . . . tM ] following the constant speed assumption (see
Subsection 2.1). Therefore, the torque trajectory segments
correspond to the second derivative of the related position
profile piece scaled by the inertia factor J . This can be for-
mally described as follows:

T̄ (t) =

8
>>>>>>><

>>>>>>>:

P
1
n1
(t) t 2 [t1, t2]

...
...

P
k
nk
(t) t 2 [tk, tk+1]

...
...

P
M�1
nM�1

(t) t 2 [tM�1, tM ]

(3)

where

P
k
nk
(t) = �

k
0 + �

k
1 t+ �

k
2 t

2 + · · ·+ �
k
nk

t
nk (4)

is the polynomial piece corresponding to the time interval
[tk, tk+1], with coefficients �ki , i = 1, . . . , nk, nk = dk�2 is
the polynomial degree and dk is the degree of the polynomial
of the respective trajectory position.

As previously mentioned, the torque measurement from the
slave axis is readily available in PLCs implementing electri-
cal cams. Indeed, motor applied torque can be sampled using
the PLCopen function MC ReadActualTorque in the majority
of motion control enabled industrial controllers. This signal
carries the ideal torque profile required by the mechanism, as
in (2), together with parametric uncertainties in J in addiction
to unmodelled ones (e.g friction, control adjustments and in-
duced vibrations). As stated in Section 1, our conjecture is
that the information about the machine state of health is con-
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Figure 1. Example of piece-wise polynomial cam: (a) Position; (b) Speed; (c) Acceleration. Via-points are denoted by circles,
master and slave positions are in degrees [deg], while the acceleration is in [deg�1].

tained in this unknown part. If we are able to take out the
ideal cam contribution, the remaining signal can then be used
in the Model-of-Signals fashion to perform diagnosis. Based
on these considerations, we propose to model the real torque
signal provided by the PLC as follows

T (t) = T̄ (t) + e(t), (5)

where T̄ (t) is the ideal torque (3) and e(t) is the remaining
part of the signal, which is assumed to be representative of the
health state of the system. The informative part of the signal
e(t) is modelled as an autoregressive (AR) process of order
p:

e(t) + a1 e(t� 1) + · · ·+ ap e(t� p) = w(t), (6)

where w(t) is a zero mean driving white noise process with
variance �2

w. Model (6) can be rewritten in the form

e(t) =
w(t)

A(z�1)
(7)

where A(z�1) = 1 + a1 z
�1 + · · ·+ ap z

�p is a polynomial
in the unit delay operator z�1, i.e.z�1

e(t) = e(t � 1). The
AR process e(t) can thus be seen as the output of an all-pole
filter driven by a white process. Model (6) can be rewritten in
the regression form

e(t) = '
T (t)✓ + w(t) (8)

where

'(t) = [�e(t� 1) � e(t� 2) · · · � e(t� p) ]T (9)

✓ = [ a1 a2 · · · ap ]T . (10)

Following these reasonings, the main steps of the proposed
procedure for condition monitoring can be summarized as
follows:

1. Remove from the measured torque T (t) the piece-wise
polynomial part T̄ (t), in order to extract the informative

part e(t).

2. Identify an autoregressive model of the signal e(t).

3. Extract, from the estimated AR model, the features for
condition monitoring and compute an healthy indicator.

3. ESTIMATION OF THE INFORMATIVE SIGNAL WITH
WAVELET ANALYSIS

The use of wavelets for condition monitoring of electric mo-
tor driven mechanisms is widely reported (Peng & Chu, 2004;
Yan, Gao, & Chen, 2014; Soualhi et al., 2018), especially to
improve the signal-to-noise ratio or to demodulate frequency
bands for diagnosis from the envelope of the spectrum.

In this Section we describe a completely different use of wave-
let analysis in order to extract the informative part of the
torque signal provided by the PLC. It exploits both the ad-
vantages of multiresolution analysis theory and the vanish-
ing moments property of the wavelet functions (Mallat, 1989;
Daubechies, 1992).

3.1. Multiresolution representation of a signal

A multiresolution analysis {Vk}k2Z consists in a nested se-
quence of closed subspaces of L2(R)

{0} ⇢ · · · ⇢ Vk�1 ⇢ Vk ⇢ Vk+1 · · · ⇢ L2(R).

For each scale k, all spaces must satisfy the property

s(t) 2 Vk , s(2t) 2 Vk+1

which ensures that signals in a space are simply scaled ver-
sions of those in the next one. Moreover, by introducing the
space Wk as the orthogonal complement of Vk in Vk+1, it
results

Vk+1 = Vk �Wk

An orthonormal wavelet system {'k,n, k,n}k,n2Z involves
an infinite collection of integer translated and dyadic scaled
versions of orthonormal scaling and wavelet functions respec-
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tively:

'k,n(t) = 2k/2'(2kt� n) k, n 2 Z
 k,n(t) = 2k/2 (2kt� n) k, n 2 Z

According to the theory, Vk is spanned by {'k,n}k,n2Z, Wk

is spanned by { k,n}k,n2Z and for s(t) 2 L2(R)

s(t) =
X

n2Z
ck0,n'k0,n(t) +

1X

k=k0

X

n2Z
dk,n k,n(t)

being k0 the coarsest scale (Mallat, 1989).

In real life situations where only the samples of a signal are
known, there exists a highest possible resolution. By select-
ing k0+1 as the sampling scale (with sampling rate of 2k0+1

per unit interval), there exists a highest resolution when the
finest scale is the sampling level. The signal can then be rep-
resented counting from k = k0 down to some k1 < k0 as

s(t) =
X

n2Z
ck1,n'k1,n(t) +

k0X

k=k1

X

n2Z
dk,n k,n(t)

= sk1(t) +
k0X

k=k1

dk(t) (11)

The first term sk1(t) (approximation) is the projection of s(t)
onto the coarse space Vk1 spanned by 'k1,n(t), and the sec-
ond one provides the high resolution information dk(t) (de-
tails) spanned by the wavelet functions. This representation
shows the signal components at each considered scale. The
coefficients ck1,n = hs,'k1,ni and dk,n = hs, k,ni rep-
resent the Discrete Wavelet Transform (DWT). They com-
pletely describe the original signal and can be used in a way
similar to Fourier series coefficients for analysis, approxima-
tion and filtering. Within the framework of the multiresolu-
tion analysis, to perform the DWT, one need just very simple
digital filters. Indeed, both the scaling and the wavelet func-
tions are solution of the two-scale difference equations

'(t) =
p
2
X

n2Z
h0[n]'(2t� n) (12)

 (t) =
p
2
X

n2Z
h1[n]'(2t� n) (13)

where h1[n] = (�1)nh0[1�n] and the sequences {h0[n]}n2Z
and {h1[n]}n2Z can be interpreted as the impulse response of
a digital low-pass scaling filter H0(z) and a high-pass wavelet
filter H1(z), having the same cutoff frequency. This fact leads
to an efficient discrete-time algorithm based on a filter bank
implementation to compute ck1,n and dk,n, making (11) use-
ful in practice.

As shown in Figure 2, the process of decomposing a sig-
nal into approximation and details is realized as a low-pass

H0(z) and high-pass H1(z) filtering followed by a dyadic
down-sampling (Mallat’s multilevel algorithm). For a signal
of length L, the maximum number of DWT levels is log2 L at
most. The process of analysis can be reversed by up-sampling
by 2 and filtering with reconstruction filters derived from h0[n]
and h1[n].

The design of the filter {h0[n]}n2Z allows for the construc-
tion of wavelet systems with desirable properties (Daubechies,
1992). For example, it is possible to construct FIR filters that
define compactly supported wavelets and scaling functions
having space and frequency localization and vanishing mo-
ment property. With regard to the latter, a wavelet  has N

vanishing moments when
Z

t
l
 (t)dt = 0 for l = 0, 1, 2 . . . , N � 1 (14)

or, equivalently, with the constraint on the low-pass filter:
X

n

(�1)nnl
h0[n] = 0 for l = 0, 1, 2 . . . , N � 1 (15)

Requiring the moments of the wavelet to be zero has several
interesting consequences. In particular, all polynomials of
degree up to (N � 1) can be express as a linear combination
of {'k0,n}n2Z (Strang & Nguyen, 1996), since, as shown
by (14), the wavelet can correlate with the polynomial ob-
taining zero correlation coefficients. This observation is at
the heart of the proposed approach.

3.2. Simulation example

To illustrate the use of the vanishing moments property, let us
consider in Figure 3a a simple test signal s(t) = P3(t)+ e(t)
where P3(t) is a third-degree polynomial and e(t) an AR sig-
nal of order p = 6. In the following, we use the Daubechies
wavelet family dbN with N = 4. If the signal is described as
in (11), the analysis with a wavelet having a sufficient number
of vanishing moments with respect to the degree of the poly-
nomial will produce a good approximation eP3(t) of P3(t)
which we can get rid of by difference. Figure 3b shows the
reconstructed AR process ê(t) = s(t)� eP3(t).

To test the accuracy of the estimated AR signal ê(t) an iden-
tification experiment has been performed. First, starting from
the estimated signal ê(t) of Figure 3b the order of suitable
AR model has been estimated by means of the minimum de-
scription length (MDL) criterion (Ljung, 1999). The results,
described in Figure 3c, clearly indicate p = 6 as the correct
order (the MDL function attains its minimum at p = 6). Sub-
sequently, two AR models of order 6 have been identified by
using the least squares method (Ljung, 1999) from the true
AR signal e(t) and its reconstruction ê(t) respectively. Fig-
ure 3d reports the poles identified from e(t) and ê(t). This
confirms that the proposed method leads to an excellent re-
construction of the stochastic part e(t).
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Figure 2. Two-channel filter bank implementation of the DWT algorithm. (a) and (b) are the details dk(t) at level 1 and 2
respectively; (c) is the approximation sk1(t) at level k1 = 2. The details have been magnified by a factor of 10 to make them
visible.
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Figure 3. Simulation example. i) Extraction of the stochastic AR signal through db4 wavelet: (a) original polynomial signal
with additive AR process; (b) reconstructed AR signal. ii) Identification of the AR model from the signal estimated through
db4 wavelet. (c) Estimation of the AR order p with the MDL criterion ; (d) Comparison of the AR poles identified from the true
AR signal (o) and from the reconstructed AR signal (x).
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4. CONDITION MONITORING PROCEDURE

Following the reasoning in Section 2, the torque signal pro-
vided by the PLC is modeled as the sum of a cam nominal
torque and an AR process containing information about the
system so its difference with the approximation obtained by
filtering with a suitable wavelet at scale ke can get rid of it
returning the stochastic part.

In our approach, the condition monitoring procedure can be
divided into two distinct phases depicted in Figure 4 and Fig-
ure 5 respectively: parameters setting and online monitoring.

4.1. Parameters setting

Figure 4 shows the flow chart of the different steps required
to obtain the main parameters used in the online monitoring
phase.

By operating on a set of data T0(t) acquired under normal op-
erating conditions (“Healthy case”), the wavelet type to use
and at which scale to operate are selected. Among the many
solutions in literature, we will focus on two-channel, com-
pactly supported, and real-valued wavelet systems, the most
fundamental and widely used in DSP applications. In par-
ticular, Daubechies wavelets dbN are optimal in the sense
that they have the minimum support of size 2N � 1 with
the largest possible number N of vanishing moments. The
finite support implies a finite number of coefficients in (12)
and (13) i.e. H0(z) and H1(z) are FIR filters (Daubechies,
1992). Although in the following only this wavelet system is
considered, other different families of functions that meet the
vanishing moments property (14) can be considered as well.

Based on the known orders nk of the polynomials in the ideal
torque model (3), it is possible to choose the most suitable
wavelet to be used for processing with N � max{nk}. Hence,
the choice of a wavelet function is a trade-off between N

and its support. In an ideal situation similar to the exam-
ple described in Section 3.2, choosing the wavelet dbN with
N = nk would require the use of only one analysis level
ke = 1. However, real cases are more complex. In order to
perform detection and isolation, we determine the number ke
of analysis levels to be performed (i.e. the number of steps
in the Mallat’s algorithm) by considering an appropriate indi-
cator of signal regularity. As well known, the behavior of a
time series is the more predictable the greater the presence of
repetitive patterns (periodicity). Due to (14), wavelet process-
ing deletes the strongly regular polynomial component of the
torque signal, producing a sequence in which almost exclu-
sively random components are present: since entropy quanti-
fies the amount of information, it also measures the degree of
randomness in the system. To measure the non-predictability
of the time series trend, among the entropy functions avail-
able, the Approximate Entropy (ApEn) (Pincus, 1995) was
chosen. By doing so, a time series with many repetitive pat-

Table 1. Comparison of ApEn performance results for dif-
ferent type of Daubechies wavelets dbN and analysis levels
ke. For ke = 0 no processing has been done: the ApEn low
value of is due to the strong regular periodic component in
the torque signal.

ke db2 db3 db4 db5 db6

0 0.1000
1 1.3407 1.2716 1.3671 1.3627 1.3287
2 1.0488 1.1280 1.3592 1.2406 1.2801
3 0.7329 0.7257 0.7536 0.7192 0.7146
4 0.5992 0.4063 0.4190 0.4179 0.4466

terns produces a relatively small value of ApEn, while a less
predictable process has a higher value of ApEn.

Therefore, in real cases the presence of non-idealities can be
managed either by investigating several wavelets of the same
family with slightly different values of N or considering ke >

1 by performing at most one or two successive analyses. In
this work, we have identified as a good criterion for choosing
the ke level the value that immediately precedes a significant
decrease of ApEn. Examples of ApEn performance results
depending on the type of Daubechies wavelets and different
levels of analysis are shown in Table 1. By setting k0 = 0
and k1 = �ke, the first term in (11) will represent a good
approximation of T̄ (t) with which to estimate the AR signal
ê(t) by difference.

At this point, an AR model of type (6)-(10) can be identified
and reference features obtained for the next step. First, a suit-
able model order p is selected by means of some model order
criteria like FPE, AIC, MDL (Ljung, 1999). They consist in
selecting the order p as follows

FPE : p = min
i

✓
L+ p

L� p
J(✓̂i)

◆
(16)

AIC : p = min
i

⇣
L log J(✓̂i) + 2 i

⌘
(17)

MDL : p = min
i

⇣
L log J(✓̂i) + i logL

⌘
(18)

where L is the number of available samples of ê(t), J(✓̂i) is
the least squares loss function

J(✓̂i) =
1

L� i

LX

t=i+1

(ê(t)� '
T (t)✓̂i)2 (19)

and ✓̂i is the least squares estimate of an i–th order AR model:

✓̂
i =

1

L� i

 
LX

t=i+1

'(t)'T (t)

!�1
1

L� i

LX

t=i+1

'(t)ê(t).

(20)
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T (t) = T0(t)

WL type and
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WL processing

AR order
estimation AR identification

ê(t)

p S0(f)

dbN, ke

Figure 4. Flowchart of the parameters setting phase. The starting point is a set of L samples of the PLC torque
T0(1), T0(2), . . . , T0(L), collected under normal (healthy) operating conditions. The Daubechies wavelet dbN and the number
of wavelet analysis levels ke are selected. Then, the informative signal ê(t) is estimated. On the basis of ê(t), the AR model
order p is selected and the nominal p-order AR model is identified. Finally, the associated PSD S0(f) is computed.

Once that the order p is estimated, the nominal (reference)
model ✓̂0 is obtained by evaluating (20) for i = p: ✓̂0 = ✓̂

p.
The feature that will be exploited for condition monitoring is
the power spectral density (PSD) of the identified AR model,
given by (Box et al., 2015)

S0(f) =
�̂
2
w0

|Â0(e�j2⇡f )|2
=

�̂
2
w0

|1 +
Pp

k=1 âk0 e
�j2k⇡f |2

(21)
where â10 . . . , âp0 are the entries of the estimated vector ✓̂0
and �̂2

w0 = J(✓̂0).

4.2. Online monitoring

Figure 5 shows the main steps of the proposed condition mon-
itoring method. They can be summarized as follows:

1. Preprocessing of the PLC torque signal T (t) (buffering
and windowing)

2. Wavelet analysis (MRA representation) to obtain the es-
timation ê(t) of the informative part of the torque signal;

3. Identification of an AR model of ê(t) and determination
of the associated PSD S(f);

4. Generation of the healthy indicator by comparing S(f)
with the nominal PSD S0(f).

In the first step, the real-time signal T (t) is divided in buffered
and windowed sequences of L samples to improve the results
of the processing. Since the buffered signal has a finite length,
artificial discontinuities are introduced at its edges, which, if
not handled correctly, can damage subsequent analysis steps.
In the second step, a wavelet analysis at the ke scale with the
chosen  (t) function is performed. By doing so, the ke-level
approximation eT (t) of the periodic component of the torque
is subtracted from the data to obtain the AR signal ê(t). In the
third step, a p–order AR model ✓̂ of the extracted signal ê(t)
is estimated by means of the least squares method, see (20).
The variance �̂2

w = J(✓̂) is also estimated. From ✓̂ and �̂2
w

the power spectral density S(f) is computed, see (21). In the
last step, the healthy indicator is obtained by comparing the
current PSD S(f) with the nominal one S0(f). In particular,
we propose to use the Symmetric Itakura-Saito Spectral Dis-
tance (SISSD), also called COSH distance (Wei & Gibson,
2000):

SISSD =
1

Nf

NfX

k=1

✓
S0(fk)

S(fk)
� log

S0(fk)

S(fk)

+
S(fk)

S0(fk)
� log

S(fk)

S0(fk)
� 2

◆
(22)
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� � � �
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� �� �
PLC WL processing AR identification Health indicator

dbN, ke p S0(f)

T (t) ê(t) S(f) SISSD

Figure 5. Flowchart of the online monitoring procedure. After buffering and windowing, a wavelet processing is performed on
the measured torque signal T (t) to extract the informative signal ê(t). AR identification is then performed to estimate the AR
parameters and the corresponding PSD S(f). Finally, the healthy indicator SISSD is computed by comparing the current PSD
S(f) with the reference one S0(f). The quantities dbN, ke, p and S0(f) are fixed as they are computed during the parameters
setting phase.

where Nf is the number of frequencies considered in the eval-
uation of the power spectral densities. It is worthwhile not-
ing that spectral distances have to be preferred w.r.t the eu-
clidean distance k✓̂ � ✓̂0k2 when AR models are exploited
in detecting signal changes (Basseville, 1988). Moreover, in
the Gaussian case, the Itakura-Saito distance corresponds to
the Kullback-Leibler divergence up to a multiplicative factor
(Grivel, Diversi, & Merchan, 2021) so that it has also a statis-
tical interpretation.

By exploiting the multiresolution representation and the wave-
let zero moment property, the proposed approach allows both
real-time analysis and no invasive procedure in standard in-
dustrial set-up since it is based on an efficient digital filtering
of a signal normally available in PLCs. Similar considera-
tions can also be made for the identification of AR models of
the extracted informative signals. For instance, the LS esti-
mate (20) can be computed by means of the recursive least
squares algorithm (Söderström & Stoica, 1989), whose com-
putational efficiency allows an easy implementation on a PLC
(Barbieri et al., 2018, 2021).

5. CASE STUDY

5.1. Experimental setup

The experimental setup utilised is presented in Fig. 6 and is
composed by: electrical motor (1), rigid joint (2), shaft and
flywheel with two half-moon shaped weights (3). The cabled
encoder (4) in the figure is not used in this experimental anal-
ysis and is not taken into account. The inertia of the system
can be divided into two parts: one is fixed, with a value of
Jfix = 0.0015[kg/m2], and one is variable Jw = Jw1 + Jw2

depending on the two attached weights, Jw1 and Jw2 . The
mechanism is driven by B&R equipment: the PLC is the Au-
tomation PC 910 connected to an ACOPOS P3 servo drive
controlling a brushless motor 8LSA36DB030S000-3. The elec-
tric cam utilised is the same as in (1) (see also Fig. 1) per-
formed using a virtual master running at constant speed ⌦p =
1080�/s. The synchronised motion task time was chosen to
be Ts = 0.0008s since the system only allows time-steps of
0.0004s or multiples and that was the recommended setting.

Therefore, the measurement of the torque signal has the same
resolution and is collected by means of the tracing system
provided by B&R IDE, Automation Studio, with a sampling
frequency of 1250Hz and can be directly saved into .mat
format. To test the proposed monitoring approach we sam-
pled the slave drive torque during the synchronised motion
of the system with both symmetric and asymmetric (i.e un-
balanced) load. The former being the healthy reference op-
erating point and the latter being the faulty one achieved by
modifying one of the two half-moon shaped weights with a
slightly thicker and a slightly thinner one. In addition, in the
symmetrical case, one of the two weights has been loosened
by sightly unfastening the bolts that keeps it in place to sim-
ulate a fault with increased degree of severity. Those unbal-
anced loads should generate changes in the informative part
of the torque measurement which in turn should be captured
by the models. The four tested configurations are reported
below:

Config. (1) Symmetric load:

Jw1 = 7.1305 · 10�4
, Jw2 = 7.1305 · 10�4[kg/m2]

(23)
Config. (2) Asymmetric increased load:

Jw1 = 7.1305 · 10�4
, Jw2 = 7.5030 · 10�4[kg/m2]

(24)
Config. (3) Asymmetric decreased load:

Jw1 = 7.1305 · 10�4
, Jw2 = 6.1725 · 10�4[kg/m2]

(25)
Config. (4) Loose Symmetric load: same as Config. (1) but

with loosened bolts in one of the weights:

Jw1 = 7.1305 · 10�4
, Jw2 = 7.1305 · 10�4[kg/m2]

(loosened bolts) (26)

Various measurements of the slave torque were collected dur-
ing operations in all configurations. Then, they were pro-
cessed by simulating a PLC implementation via Matlab ac-
cording to the procedures summarized in Figs. 4 and 5 for
the parameters setting and the online monitoring respectively.
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Figure 6. Experimental linear rigid mechanism setup. Variable weights are attached to the flywheel (number 3) on the left side
of the shaft using bolts.

The buffer and process architecture is applicable to any PLC
since it allows the storage of L data samples to be coded
within the main priority task, in this case with a sampling
time of Ts = 0.0008s, and the implementation of their pro-
cessing in a secondary task of lower priority, without affect-
ing significantly the system memory and the control program
computational load. This keeps the condition monitoring task
on-line, still able to check machine health state with respect
to degrading faults. For instance, the procedure summarized
in Fig. 5 can be performed every few seconds while mecha-
nism degradation due to friction or wearing or heat typically
takes minutes to hours to even days.

5.2. Experimental results

The torque measurements collected during the experiment in
the four tested configurations (23)–(26) are divided into se-
quences of length L = 5000 samples, corresponding to 4 sec-
onds. The first ten sequences of Configuration (1) (symmetric
load) have been used to perform the parameters setting phase
summarized in Fig. 4 since this configuration can be consid-
ered as the healthy condition of the mechanism. According
to the procedure described in Subsection 4.1 the Daubechies
wavelets db4 with ke = 2 analysis levels was first selected.
Then, for each of the ten healthy sequences, the correspond-
ing informative signal ê(t) was extracted. The model selec-
tion criteria (16)–(18) were applied on the ten informative
signals to determine a suitable order for the AR models. The
most clear indication was obtained with the MDL criterion,
that exhibits a minimum around the order 50 in all sequences.
The AR order p = 46 was finally selected. The reference
AR model ✓̂0 is computed as the mean of the ten AR mod-
els of order 46 identified from the informative signals and the

associated reference PSD S0(f) was computed, see (21).

The online monitoring phase was performed on the rest of the
healthy sequences (Configuration (1)) and on all the faulty se-
quences related to Configurations (2), (3) and (4) according
to the procedure described in Subsection 4.2 and summarized
in Fig. 5. This means that every torque sequence of length
L = 5000 leads to a value of the healthy indicator SISSD
computed from (22). Figure 7 shows a sequence of the mea-
sured torque T (t) for each of the four conditions (23)–(26)
and the corresponding informative part ê(t) obtained through
the wavelet analysis. Figure 8a reports the evolution of the
healthy indicator SISDD in the four configurations (23)–
(26) while Fig. 8b is a zoom that better highlights the be-
haviour of SISSD in the first three conditions. Figure 9
compares the nominal PSD S0(f) obtained in the parame-
ters setting phase with one the PSDs S(f) obtained in the
four configurations (23)–(26) during online condition moni-
toring. It is evident that the condition monitoring task is car-
ried out successfully. In healthy conditions (Configuration
(1)) the SISSD is close to zero (see Fig. 8a) as the current
PSD is quite close to the reference one, see. Fig. 9a as an ex-
ample. In all faulty conditions, the mean value of the SISSD
increases by a factor of at least 5 w.r.t the healthy condition,
as shown in Fig. 8 and Table 2. A robust fault detection is
thus obtained as the healthy status (1) can be clearly distin-
guished from the faulty conditions (2), (3) and (4). It is worth
noting that the adopted scalar indicator allows also to perform
the fault isolation task. In fact, it is clear from Fig. 8 that it is
possible to set robust thresholds that allow to distinguish each
condition from the others.

To show the influence of signal windowing on the whole pro-
cedure, both the parameters setting and the online monitoring

10
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Figure 7. Real torque signals and corresponding informative parts extracted through Daubechies db4 wavelet in different
conditions: (a)(b) symmetric load (healthy state); (c)(d) asymmetric increased load; (e)(f) asymmetric decreased load; (g)(h)
loose symmetric load. For the sake of readability only the first 2 seconds (2500 samples) are shown.
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Figure 8. Evolution of the healthy indicator SISSD in the different conditions (23)–(26). Each value of the SISSD has
been obtained starting from a sequence of length L = 5000, a db4 wavelet analysis and an AR model of order p = 46. (a) all
configurations are considered; (b) zoom of (a) to clearly show the behaviour of the SISSD in the first three conditions.
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Figure 9. The reference PSD S0(f) is compared with one of the PSDs S(f) obtained in the four conditions (23)–(26): (a)
symmetric load (healthy state); (b) asymmetric increased load; (c) asymmetric decreased load; (d) loose symmetric load.

phases are carried out by considering different values of the
length L of the sequences. Every value of the healthy indica-
tor SISSD has been obtained by considering a db4 wavelet
and an AR model order p = 46. Table 2 reports, for each
value of L, the mean values and the corresponding standard
deviations of the SISSD in the different conditions. Figure
10 reports the evolution of the healthy indicator SISDD for
different values of L. Only the first three configurations (23)–
(25) are shown as Configuration (4) is always detected with a
very large margin, as shown in Fig. (8b) and Table 2. Even
though the different status of the mechanical systems can be
recognized also when L = 1250(1s), they start to be well

separated when L = 2500(2s) and very robust thresholds can
be defined for values of L equal to or greater than 5000(4s).
The smoother behaviour of the SISSD for large values of
L is not surprising since AR models are identified by using
more samples. It can be noted from the first column of Table 2
that the mean value of the indicator in the healthy condition
tends to stabilize when L increases.The choice L = 5000(4s)
could be a good trade-off (see also Fig. 8); nevertheless, if
the mechanism degradation takes hours or days (as expected
in this kind of mechanisms) window lengths of 6 seconds or
more are still quite reasonable.

The sensitivity of the proposed approach to noise is analyzed
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Table 2. Mean and standard deviation of the SISSD for the four Configurations (23)–(26) for different lengths L of the signal
windows. Every value of the SISSD has been obtained starting from a db4 wavelet analysis and an AR model of order p = 46.

Config. (1) Config. (2) Config. (3) Config. (4)

L = 1250 (1s) 0.0350± 0.0090 0.0707± 0.0137 0.1301± 0.0234 0.9186± 0.1668

L = 2500 (2s) 0.0119± 0.0030 0.0513± 0.0078 0.1113± 0.0129 0.8602± 0.0998

L = 5000 (4s) 0.0088± 0.0027 0.0492± 0.0064 0.1055± 0.0103 0.8599± 0.1062

L = 7500 (6s) 0.0073± 0.0026 0.0472± 0.0044 0.1028± 0.0085 0.8476± 0.0842

L = 10000 (8s) 0.0064± 0.0026 0.0456± 0.0036 0.1007± 0.0079 0.8434± 0.0807

L = 12500 (10s) 0.0058± 0.0017 0.0436± 0.0030 0.0993± 0.0075 0.8424± 0.0771
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Figure 10. Evolution of the healthy indicator SISSD for different values of the sequences length L: (a) L = 1250; (b)
L = 2500; (c) L = 7500; (d) L = 10000. Each value of the SISSD has been obtained starting from a db4 wavelet analysis
and an AR model of order p = 46. Only the first three configurations are shown.

by adding white gaussian noise to the PLC torque signal (see
left column of Fig. 7). The variance of the noise is selected to
set a desired signal to noise ratio evaluated with respect to the
informative signal extracted in healthy conditions, see Fig.
7b. The obtained results are reported in Figures 11 and 12 that
refer to signal to noise ratios of 5 dB and 0 dB respectively.
The procedure seems quite robust w.r.t. the presence of noise
even if, by comparing Fig. 8b with Figs. 11 and 12, it can
be noted that the distance between the healthy status and the
faulty one decreases as the level of noise increases.

To show the robustness of the approach with respect to the
wavelet parameters, both the parameters setting and online
monitoring steps were repeated by exploiting the db5 wavelet.

The torque signals is divided into sequences of length L =
5000. The setting step led to the selection of ke = 2 analy-
sis levels and of an AR model order p = 46, as for the db4
wavelet. Fig. 13 reports the evolution of the healthy indicator
SISDD in the four configurations (23)–(26). Table 3 reports
the mean values and the corresponding standard deviations of
the SISSD in the different conditions for various values of
the sequences length L. By comparing Figs. 8 and 13 and
Tables 2 and 3 it follows that the obtained results are in line
with those we got by using the db4 wavelet.

Finally, the performance of the method is tested in a dif-
ferent operating conditions of the electric-cam mechanism,
that is, the master runs at a constant speed ⌦p = 720�/s,
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(a) (b)

Figure 11. Evolution of the healthy indicator SISSD in the different conditions (23)–(25) in the presence of noise (SNR=5
dB): (a) L = 5000; (b) L = 10000. Each value of the SISSD has been obtained starting from a db4 wavelet analysis and an
AR model of order p = 46.

(a) (b)

Figure 12. Evolution of the healthy indicator SISSD in the different conditions (23)–(25) in the presence of noise (SNR=0
dB): (a) L = 5000; (b) L = 10000. Each value of the SISSD has been obtained starting from a db4 wavelet analysis and an
AR model of order p = 46.
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Figure 13. Evolution of the healthy indicator SISSD in the different conditions (23)–(26). Each value of the SISSD has
been obtained starting from a sequence of length L = 5000, a db5 wavelet analysis and an AR model of order p = 46. (a) all
configurations are considered; (b) zoom of (a) to clearly show the behaviour of the SISSD in the first three conditions.

lower than the speed of the first experiments ⌦p = 1080�/s.
Both the parameters setting and the online monitoring phases
are carried out by using a db4 wavelet with ke = 2 anal-
ysis levels and AR models of order p = 46. This condi-
tion is more challenging than the previous one as the number
of window samples L required to get a successful detection
has to be increased. Figure 14 reports the evolution of the

healthy indicator SISDD in the three configurations (23)–
(25) for L = 7500 and L = 12500. In this case, acceptable
results are obtained by considering at least L = 7500(6s)
and more robust detection thresholds can be defined when
L = 12500(10s). As already mentioned, a window length of
10s is quite reasonable for this kind of systems.
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Table 3. Mean and standard deviation of the SISSD for the four Configurations (23)–(26) for different lengths L of the signal
windows. Every value of the SISSD has been obtained starting from a db5 wavelet analysis and an AR model of order p = 46.

Config. (1) Config. (2) Config. (3) Config. (4)

L = 1250 (1s) 0.334± 0.0086 0.0703± 0.141 0.1403± 0.0208 0.9093± 0.1431

L = 2500 (2s) 0.0123± 0.0034 0.0540± 0.0085 0.1229± 0.0140 0.8675± 0.1170

L = 5000 (4s) 0.0092± 0.0030 0.0514± 0.0068 0.1175± 0.00118 0.8621± 0.1213

L = 7500 (6s) 0.0073± 0.0021 0.0477± 0.0049 0.1145± 0.0091 0.8327± 0.0824

L = 10000 (8s) 0.0065± 0.0027 0.0478± 0.0043 0.1123± 0.0090 0.8323± 0.0777

L = 12500 (10s) 0.0060± 0.0017 0.0457± 0.0037 0.1125± 0.0089 0.8353± 0.0768

(a) (b)

Figure 14. Evolution of the healthy indicator SISSD in the different conditions (23)–(25) for a lower speed of master (720�/s
instead of 1080�/s): (a) L = 7500(6s); (b) L = 12500(10s). Each value of the SISSD has been obtained starting from a db4
wavelet analysis and an AR model of order p = 46.

6. CONCLUSION

This paper describes a new procedure for the condition mon-
itoring of electric-cam mechanisms in PLC controlled ma-
chines. The proposed data-driven approach is based on the
motor absorbed torqued provided by the PLC. The torque
signal is modelled as the sum between the nominal (ideal)
torque and an additive contribution containing information on
the state of health of the mechanism. In order to get the in-
formative part of the measured torque, a new combination of
wavelets analysis and autoregressive model identification is
employed. The whole procedure is non invasive and allows
real-time analysis since it is based on efficient filtering and
estimation techniques performed on a signal readily available
in industrial computers complying with the PLCopen stan-
dard. The results obtained on real data collected in a lab-
oratory setup demonstrate the effectiveness of the proposed
method in both detecting and classifying faults.
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