
International Journal of Prognostics and Health Management, ISSN 2153-2648, 2024 

  
1 

Chatter Identification in Milling of Titanium Alloy Using Machine 

Learning Approaches with Non-Linear Features of Cutting Force 

and Vibration Signatures 

Viswajith S. Nair1, Rameshkumar K.2 and Saravanamurugan S.3* 

1,2,3* Department of Mechanical Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, 

Tamil Nadu, 641112, India 

sn_viswajith@cb.students.amrita.edu 

k_rameshkumar@cb.amrita.edu 

s_saravana@cb.amrita.edu

ABSTRACT 

The generation of chatter during machining operations is 

extremely detrimental to the cutting tool life and the surface 

quality of the workpiece. The present study aims to identify 

chatter conditions during the end milling of Ti6Al4V alloy. 

Experimental modal analysis is carried out, and stability lobe 

diagrams (SLDs) are developed to identify machining 

parameters under stable and chatter conditions. Experiments 

are conducted to acquire cutting force and vibration 

signatures corresponding to machining conditions selected 

from the SLD. Non-linear chatter features, such as 

Approximate Entropy, Holder Exponent, and Lyapunov 

Exponent extracted from the sensor signatures, are used to 

build Machine Learning (ML) models to identify chatter 

using Decision Trees (DTs), Support Vector Machines 

(SVMs) and DT-based Ensembles. A feature-level fusion 

approach is adopted to improve the classification 

performance of the ML models. The DT-based Adaboost 

model trained using dominant non-linear features classifies 

chatter with an accuracy of 96.8%. The non-linear features 

extracted from the sensor signatures offer a direct indication 

of the chatter and are found to be effective in identifying the 

machining chatter with good accuracy. 

1. INTRODUCTION 

Titanium alloys are highly sought-after in aerospace, 

medical, chemical, automotive, and nuclear industries owing 

to their exceptional strength-to-weight ratio, corrosion 

resistance, biocompatibility, and high-temperature stability 

(G Welsch, R Boyer, 1994). Studies on the machinability of 

titanium alloys have revealed numerous issues associated 

with the process, such as high tool wear, high cutting 

temperatures, and built-up edge formation. Titanium alloy 

components often have thin walls with low stiffness, resulting 

in regenerative chatter during machining. The generation of 

chatter vibrations during machining operations is a major 

impediment to achieving good dimensional accuracy, high 

material removal rate, improved cutting tool life, and 

enhanced surface quality of machined components (Navarro-

Devia et al., 2023; Tobias, 1961).  

Stability Lobe Diagrams (SLDs) developed based on 

regenerative chatter theory can accommodate the complex 

non-linear behavior of chatter and clearly define the critical 

boundary between stable and unstable cutting conditions in 

terms of rotational speed and depth of cut (Altintaş & Budak, 

1995; Tobias, 1961). By constraining the machining 

parameters to those in the stable region of the SLD, it is 

possible to prevent the occurrence of chatter. However, from 

a practical standpoint, on-line monitoring and control of the 

machining parameters to eliminate instabilities prior to their 

occurrence seem a more favorable action (Aggogeri et al., 

2021). One of the drawbacks associated with the approach of 

constraining machining parameters to prevent chatter is that 

it sets limits on the machining capabilities. Furthermore, this 

approach may prove inadequate in addressing the variations 

and uncertainties in the machining process, such as tool wear, 

cutting forces fluctuations, and temperature effects, which 

may result in chatter under certain circumstances. 

Meanwhile, the online monitoring and control enables the 

machining system to adapt to changing conditions by 

dynamically adjusting the process parameters to prevent 

chatter. This approach may also be employed to 

simultaneously optimize the machining performance by 

selecting the best parameters for each situation. The 

challenge of identifying the process state/stability of 

automated machining systems can be effectively resolved 

through relevant sensor-based monitoring techniques 

(Navarro-Devia et al., 2023). Sensor signatures from various 

sources, including cutting force, voltage, acoustic, and 
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acceleration signals, can be effectively employed in an 

automated machining environment to predict critical factors 

like chatter vibrations, cutting forces, and surface topography 

of machined components (Kounta et al., 2022; Navarro-

Devia et al., 2023). These signatures can be processed to filter 

out unnecessary information and extract the required signal 

data relevant to the process conditions. The sensor signals can 

be represented in time, frequency, or time-frequency 

domains, and relevant features of the signal data can be 

extracted using techniques such as Fourier analysis, wavelet 

transforms, and time-frequency analysis. The sensor signal 

features characterize and quantify significant signal 

parameters correlating with the process conditions. By 

utilizing Artificial Intelligence (AI) and Machine Learning 

(ML) techniques, it is possible to analyze the complex 

relationships between sensor signatures and machining 

process conditions. ML techniques such as Support Vector 

Machines (SVMs), Artificial Neural Networks (ANNs), and 

Decision Trees (DTs) have been employed for condition 

monitoring in machining systems.  

Statistical measures of the sensor signals in the time, 

frequency, and time-frequency domains provide insights into 

the simple first-order characteristics of the signals and have 

been commonly utilized as linear features for chatter 

detection. However, these features may not adequately 

characterize complex phenomena, such as chaotic dynamics, 

self-similarity, fractal properties, or irregular fluctuations. 

Non-linear features such as fractal dimensions, Lyapunov 

exponent (LE), approximate entropy (ApEn), and Holder 

exponent (HE) that can describe the intricate patterns and 

complex phenomena present in the sensor signals have been 

employed to address this. The instabilities resulting from 

chatter are closely related to the irregularity and anti-

persistent behavior of sensor signals. The ApEn statistic has 

been used as a non-linear measure to identify chatter by 

quantifying the regularity and complexity of vibration and 

sound signals (Chu et al., 2022; Chu & Xie, 2021; Pérez-

Canales et al., 2011; Pincus, 1991). Pérez-Canales et al. 

(Pérez-Canales et al., 2011) determined that machining 

chatter could be correlated with the incremental increase of 

entropy of time-domain acceleration signals during milling. 

It was also found to be effective at identifying gradual as well 

as drastic changes in machining stability from a relatively 

small amount of data. HE has been employed as a measure of 

the degree of self-similarity to estimate the singularity of 

vibration, sound, and force signals for the purpose of 

monitoring machine tool conditions (Echelard & Lévy-

Véhel, 2008; Mohanraj et al., 2021; Zhou et al., 2021; Zhou, 

Guo, et al., 2020; Zhou, Yang, et al., 2020). Studies show that 

the presence of singularities in sound and vibration 

waveforms, which generally vary slowly, can correspond to 

the presence of chatter vibrations. Research on condition 

monitoring using vibration signals by Mohanraj et al. 

(Mohanraj et al., 2021) concluded that prediction using HE 

and wavelet coefficient features provided better performance 

than conventional statistical features during milling. 

Different 'chaos quantifiers' such as the fractal dimension, 

correlation dimension, Kolmogorov entropy, and LE have 

also been employed to classify random and chaotic machine 

tool vibrations (Gredelj, 2021). The LE has been used to 

analyze the stability of the systems by identifying regions of 

instability and to characterize the chaotic behavior in time-

domain sensor signals (Caesarendra et al., 2013; Guleria et 

al., 2022; Hamida et al., 2020; Pour, 2018; Rosenstein et al., 

1993). Tran et al. (Tran et al., 2021) utilized the largest LE 

index of time-domain force signals to distinguish between 

stable and chatter conditions in milling. Guleria et al. (Guleria 

et al., 2022) employed extreme learning machine models 

developed using the features of the vibration signal modes 

identified using the largest LE to predict surface roughness 

during a turning process.  

To improve the efficacy of detecting the process states during 

machining, recent studies have employed data fusion 

techniques that combine data from multiple sources 

(Gunatilaka & Baertlein, 2001; Krishnakumar et al., 2018; 

Navarro-Devia et al., 2023; Rameshkumar et al., 2022). In a 

recent study, Zhao et al.(Zhao et al., 2023) investigated an 

SVM-based model for the diagnosis of milling chatter using 

the non-linear features of energy entropy. The multi-signal 

fusion of cutting force and acceleration signal components 

was employed to improve the accuracy of the detection 

model. Ensemble methods have also been used in milling 

chatter prediction, where multiple models are ensembled to 

identify chatter states more accurately. Adaboost-SVMs have 

been employed with the fusion of vibration signal features to 

improve the accuracy and reliability of chatter detection 

(Wan et al., 2021). Ensemble models consisting of extreme 

learning machines have also been used for chatter detection 

in milling using features of cutting force and vibration signals 

(Liu et al., 2022).  

There are limited studies on the utilization of chatter indexes 

and sensor fusion to assess the stability of machining 

processes in the literature. A bibliometric analysis of chatter 

diagnosis research over the past two decades, conducted 

using SCOPUS with a focus on keywords related to 

quantifiable chatter indexes and sensor fusion, identified 

fewer than 20 relevant research articles out of more than 175 

publications on chatter diagnostic research. A large 

proportion of existing studies on chatter diagnosis seem to 

fall back on the use of statistical indicators. While these 

features are computationally efficient, they demonstrate 

limited generalization capabilities and exhibit poor 

adaptability to conditions beyond the initially trained 

parameters. Distinguishing chatter from other system 

vibrations may also prove difficult with these features. 

Quantifiable non-linear measures that can offer a direct 

indication of the chatter state, such as ApEn, HE, KE, and 

LE, are more favorable alternatives to statistical measures. 

Furthermore, these non-linear measures describe different 

characteristics of chatter, such as irregularity or chaos. 
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Considering both the irregularity and chaotic aspects of 

chatter may provide a more accurate description of the signal 

rather than considering them separately. The approach of 

fusing the different non-linear measures has been relatively 

unexplored and merits further investigation. The present 

work aims to address the challenge of accurately identifying 

and predicting the process state/stability during the milling of 

titanium alloy Ti6Al4V and expand on the area of chatter 

detection through ML using the feature-level fusion of ApEn, 

HE, and LE of cutting force and vibration signals.  

2. METHODOLOGY 

In this research, a multi-sensor feature-level fusion approach 

was suggested for the assessment of machining stability in 

milling using non-linear chatter features. The experimental 

methodology consisted of three parts: (a) Experimental 

Modal Analysis (EMA) to obtain the dynamic characteristics 

of the milling tool system needed to generate the stability 

lobes, (b) milling experiments on the titanium alloy Ti6Al4V 

to acquire the cutting force and vibration signatures at 

different stability conditions, and (c) signal processing, 

training, and testing of ML models to identify chatter. The 

overall methodology of the proposed study is depicted in 

Figure 1.  

An experimental setup was established to study the dynamics 

of the end milling of Ti6Al4V alloy on a ‘BMV 35 T12’ 

vertical CNC milling machine, as shown in Figure 2(a). The 

impact test setup consisted of an accelerometer mounted onto 

the milling tool, an impact hammer, and a DAQ system. The 

‘Dytranpulse 5800B2’ hammer, with a sensitivity of 22.5 

mV/N and resonant frequency of 75kHz, was used to excite 

the system, and the resulting vibrations were acquired using 

the ‘Dytran 3273 A2’ piezo-electric accelerometer with a 

sensitivity of 100mV/g, to generate the Frequency Response 

Function (FRF) for constructing the SLD for the milling 

operation.  

The equipment employed for the milling experiments on the 

Ti6Al4V alloy is shown in Figure 2(b). The milling tool used 

in the experiment was a four-flute tungsten carbide end mill 

tool of 10 mm diameter and 75 mm length. The ‘Dytran 3273 

A2’ piezo-electric accelerometer mounted on the CNC 

spindle was used to acquire the machining vibration 

components at a sample rate of 25,000 Hz. The ‘Kistler Type 

9257B’ dynamometer was attached to the work table of the 

milling machine to acquire cutting force components at a 

sampling rate of 25,000 Hz. The surface profile and 

roughness of the workpieces were measured using a Carl 

‘Zeiss E- 35B’ profilometer.  

3. THE DEVELOPMENT OF STABILITY LOBES FOR END 

MILLING OF TI6AL4V 

3.1. Analytical Modeling of Stability Lobes 

The SLDs provide valuable insight into the chatter 

characteristics of the machining operation on a theoretical 

basis. SLDs are specific to each machining system and vary 

for different combinations of machines, tools, and 

workpieces. SLDs utilize the FRF to evaluate the system 

response at various machining parameters. The FRF 

represents the transfer function containing valuable 

information about the system's dynamic response to external 

excitation. (Altintas, & Ber, 2001) The FRF quantifies the 

system behavior as a function of frequency, enabling analysis 

of vibrations, stability, and other dynamic characteristics.  

The simplified 2-degree-of-freedom end milling process is 

depicted in Figure 3. The relationships governing the chatter 

behavior for the end milling process based on the average 

tooth angle approach (Altintaş & Budak, 1995) are provided 

in equations (1)–(8).  

 

Figure 1. Methodology for development of ML model for chatter detection using non-linear features. 
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Figure 3. The modeling of the end milling process. 

The axial depth of cut limit for stability, 

𝑎𝑝𝑙𝑖𝑚  =  − 
1

2𝐾𝑠𝑚𝐴𝑅𝑜𝑟𝑖𝑒𝑛𝑡  
 (1) 

Tooth passing period, 

𝑇 =  
1

𝜔𝑐

 (2𝜋 − (2𝑐𝑜𝑡 ( 
𝐴𝑅𝑜𝑟𝑖𝑒𝑛𝑡

𝐴𝐼𝑜𝑟𝑖𝑒𝑛𝑡

 ))  + 2𝑘𝜋) (2) 

Spindle speed, 

𝑁 =  ( 
60

𝑛𝑇
 ) (3) 

The average number of teeth during the cut, 

𝑚 =  
𝜙𝑒 − 𝜙𝑠

360
𝑛

 (4) 

Here, Ks is the cutting coefficient, ωc is the chatter frequency, 

k is the lobe number, ar is the radial depth of cut, and n is the 

number of teeth. The ϕs and ϕe are the entry and exit angles 

of the tool during milling. For up milling, ϕs is zero degrees, 

and ϕe is calculated in degrees using the equation (5). The 

radius of the tool is denoted by r. 

𝜙𝑒 =  𝑐𝑜𝑠−1 ( 
𝑟 − 𝑎𝑟

𝑟
 ) (5) 

For the down milling operation, ϕe is 180°, and ϕs is 

calculated using the equation (6). 

𝜙𝑠 =  180 −  𝑐𝑜𝑠−1 ( 
𝑟 − 𝑎𝑟

𝑟
 ) (6) 

ARorient and AIorient are the real and imaginary components of 

the oriented FRF (FRForient). ARorient and AIorient are determined 

by calculating the FRForient for the current end milling process 

with 100% radial immersion from the FRFs in the x (feed 

direction) and y (direction of radial milling depth) directions 

using equation (7).  

𝐹𝑅𝐹𝑜𝑟𝑖𝑒𝑛𝑡  =  𝜇𝑥𝐹𝑅𝐹𝑥  +  𝜇𝑦𝐹𝑅𝐹𝑦  (7) 

 

Figure 2. Experimental setups: (a) impact test for modal analysis, (b) milling experiments to acquire force and vibration 

signals. (Component description: 1.Impulse Hammer, 2.Tool, 3.Accelerometer, 4.DAQ, 5.PC, 6.LabAmp, 7. Ti6Al4V 

Specimen, 8.Dynamometer) 
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The directional orientation factor μx is cos(β), where β is the 

force angle of the cutting force, and μy is zero, so equation (7) 

may be reduced to, 

𝐹𝑅𝐹𝑜𝑟𝑖𝑒𝑛𝑡 =  𝐹𝑅𝐹𝑥 𝑐𝑜𝑠(𝛽) (8) 

3.2. The Development of SLD 

The SLD for the end milling of the Ti6Al4V alloy was 

generated from the FRF and the governing equations (1)-(8). 

The FRF plots in the feed direction (FRFx) are illustrated in 

Figure 4. It is noted that the principal natural frequency (ωn) 

of the system obtained was 3252 Hz, corresponding to the 

maximum amplitude of the FRF. The real (AR) and imaginary 

(AI) components of FRF were also extracted for the 

construction of stability lobes. The range of frequencies 

above the obtained natural frequency was considered the 

chatter frequency range for the purpose of generating the 

stability lobes.  

The cutting coefficient (Ks) was determined to be 1204.744 

N/mm2 through milling trials conducted in the stable domain 

by dividing the obtained average cutting forces by the product 

of the feed rate and axial depth of cut. The force angle (β) was 

similarly calculated analytically as per the method reported 

by Altintas and Ber (Altintas, & Ber, 2001) and was found to 

be 68°. The methodology for the SLD generation, as 

proposed by Schmitz & Smith (Schmitz & Smith, 2009), is 

depicted in Figure 5. The stability lobes indicated in the 

figure define the critical boundary between the stable and 

unstable machining parameters in terms of the optimum axial 

depth of cut (ap) and spindle speed (N). Parameters below the 

lobe are selected for stable machining. The actual stability 

limits are presumed to be lower than the theoretical estimates. 

 

Figure 6. Experimental parameters selected from the SLD. 

 

Figure 4. Plots of magnitude, real part, and imaginary part of FRF (in the feed direction) for milling tool system. 

 

Figure 5. Flowchart for generating SLD. 
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In order to process and analyze the signals from stable and 

chatter conditions at specific spindle speeds, a series of the 

axial depth of cut values from the stable and unstable regions 

of the SLD were selected, as shown in Figure 6. A constant 

feed rate (fd) of 200 mm/min and a radial milling depth (ar) 

of 1 mm were chosen to conduct the experiments.  

4. VIBRATION AND CUTTING FORCE SIGNAL PROCESSING  

4.1. Feature Extraction  

 

Figure 7. Time domain plots of vibration and force signals; 

(a) stable machining, (b) chatter. 

The time domain cutting force and vibration signals recorded 

for the milling experiments corresponding to stable and 

chatter machining conditions are plotted in Figure 7. The 

force and vibration signal components in the radial feed 

direction (x-direction) were observed to be the most sensitive 

to the machining state. Meanwhile, the signal components 

perpendicular to the feed in the radial direction (y-direction) 

showed only slight responsiveness, and the signal 

components along the axis of the milling tool (z-direction) 

exhibited the least responsiveness. However, it is not easy to 

distinguish chatter and stable machining conditions in real 

time using sensor signatures alone.  

In this study, LE, HE, and ApEn features were extracted from 

the time domain data to describe the state of the signals. The 

LE, HE, and ApEn features were extracted from the x, y, and 

z components of the force and vibration signals by 

considering a window size of 500. The computations for 

extracting LE, HE, and ApEn features are depicted in Figure 

8, and the corresponding MATLAB code is provided in 

Appendix A. The extracted features were used to create three 

different ML datasets: the cutting force feature dataset, the 

vibration feature dataset, and the sensor-fusion dataset. The 

datasets were labeled as 'stable' or 'chatter' based on data from 

the SLD. The labeled feature datasets were used to train the 

ML models to identify the presence or absence of chatter 

during machining.  

The feature-level fusion approach was adopted to improve 

the performance of the ML models. The fusion of data from 

multiple sensors serves to provide high signal-to-noise ratios, 

increased accuracy and reliability in the event of sensor 

breakdown, and reduced data ambiguity (Hall & Llinas, 

1997). A total of 59,700 sets of vibration features and 59,700 

sets of cutting force features were extracted from the stable 

and chatter machining conditions for training the ML models.  

The statistical analysis of the extracted features in Figure 9 

and Appendix B indicate that the non-linear features of 

chatter signals demonstrate greater complexity and 

variability than the more consistent stable signal features. 

Specifically, ApEn features of force signal components tend 

towards higher mean (μ) and standard deviation (σ) values in 

 

Figure 8. Computation of ApEn, HE, and LE features from time domain sensor signal data. 
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the presence of chatter, indicating increased complexity and 

irregularity. Conversely, LE features of force signal 

components display lower μ values in relation to chatter. 

Notably, ApEn and LE features of the signal component Ax 

show the most pronounced differentiation between stable and 

chatter conditions. In contrast, Fx exhibits notable 

separability with HE features. Nonetheless, identifying 

distinct trends for chatter and stable conditions through the 

statistical analysis of these features remains challenging. The 

degree of separability varies among different features, with 

some trends being more prominent than others. Features of 

the force components prove to be more distinguishable than 

features of acceleration signals.  

4.2. Statistical Classification based on Mahalanobis 

Distance 

The statistical differences between the features enable some 

level of discrimination between chatter and stable features. 

The features were classified using a multivariate threshold 

based on the Mahalanobis distance (MD) metric (Hart et al., 

2000). The MDs of the non-linear features from a reference 

distribution (denoted as R) were computed using equation 

(9), where F represents the set of non-linear features, and μ 

and Σ denote the mean and covariance of the reference 

distribution, respectively. The reference distribution was 

established using the stable condition features. 

MD = √(F − μ)′∑−1(R − μ) (9) 

The threshold of MD demarcating the stable and chatter 

conditions was selected so as to minimize the instances of 

missed chatter conditions, which is of greater importance for 

the present scenario. The threshold, which covers over 80 % 

of the chatter data, was calculated using equation (10), where 

μc and σc are the mean and standard deviation of the MDs of 

chatter condition features. The thresholds were computed for 

force and vibration features separately, as well as for the 

fused features, as illustrated in Figure 10. 

Threshold =  𝜇𝑐 − 𝜎𝑐  (10) 

 

Figure 10. Thresholds based on MDs of (a) force features, 

(b) vibration features, and (c) fused features. 

The performances of classifiers were evaluated using the 

confusion matrix, which represents the instances of true 

 
Figure 9. Statistics of extracted non-linear features: normal distribution curves. 
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stable, true chatter, false stable, and false chatter 

classifications made by the classifier model. It provided a 

thorough assessment of how well the model classifications 

conformed to actual stability conditions. The classifiers were 

evaluated with the help of various performance measures 

derived from the confusion matrix, such as accuracy, Cohen's 

Kappa, precision, recall, and F-score (Landis & Koch, 1977; 

Sokolova & Lapalme, 2009). The performance metrics of the 

statistical classification based on MD for the three feature 

datasets are tabulated in Table 1. The statistical classifier 

identified almost all the true chatter conditions owing to the 

threshold selection criteria, as signified by the high recall. 

However, this also resulted in the large misclassification of 

true stable conditions, as indicated by the low precision. The 

overall performance of the statistical classifier was also found 

to be lacking in the present scenario, as assessed through its 

F1 score and kappa metrics, despite the notable recall and 

accuracy. ML classification algorithms are explored in the 

subsequent sections to improve the overall classification 

performance. 

Feature Set 
Performance Metrics 

Recall Precision F1 Score Kappa Accuracy 

Vibration 

Features 
82.69 26.03 39.60 0.06 41.05 

Force 

Features 
85.58 67.28 75.33 0.67 86.90 

Fused 

Features 
84.47 59.04 69.50 0.58 82.68 

Table 1. Performance metrics of statistical classification. 

5. MILLING STABILITY IDENTIFICATION USING ML  

The DT, SVM, and ensemble learning algorithms were 

utilized with the feature datasets of vibration and force 

signals. The models were trained and tested using MATLAB 

R2022b software on a system equipped with an AMD Ryzen 

5-2500U 2GHz CPU, 16 GB of RAM, and a 4 GB NVIDIA 

GTX 1050 GPU. The 5-fold cross-validation method was 

employed to train and test the DTs, SVMs, and DT-based 

ensemble models. DTs are prominent supervised ML 

classification algorithms widely used to solve complex 

problems by breaking them down into more minor, simpler 

decisions (Salzberg, 1994). The present study utilized DT 

models with various split criteria, such as Gini's Diversity 

Index (GDI), Maximum Deviance Reduction (MDR), and the 

twoing rule, to classify machining conditions.  

SVM is another supervised learning algorithm that can be 

used for classification by identifying a hyperplane that 

separates the data points of different classes with maximum 

margin (Cortes & Vapnik, 1995). SVMs with linear, 

quadratic, and cubic kernel functions were trained in the 

study to identify the machining conditions from the cutting 

force and vibration features. 

Ensemble methods are a type of ML algorithm that combines 

the strengths of multiple individual models to create a more 

robust and accurate prediction model while also reducing 

model complexity (Dong et al., 2020). Bagging and boosting 

ensemble methods based on DT algorithms were used to train 

classifiers to identify the machining conditions in the study. 

The primary boosting algorithm employed was Adaptive 

Boosting (AdaBoost), an ensemble algorithm that iteratively 

builds a robust classifier by combining multiple weak 

classifiers (Freund & Schapire, 1996). The basic idea behind 

it is to set the weights of classifiers and train the sample 

dataset in each iteration to ensure accurate predictions of 

unfamiliar observations. More weight is provided to the 

misclassified data in each iteration, which forces the 

algorithm to focus more on challenging sample datasets. By 

combining the results of these iterations, the algorithm builds 

a robust classifier that can accurately classify both simple and 

complex data, making it highly suitable for the present study. 

6. RESULTS AND DISCUSSIONS  

In the study, a grid search approach was employed for 

hyperparameter tuning to investigate the influence of model 

hyperparameters on the performance of the ML algorithms. 

Specifically, the DT models were fine-tuned by adjusting two 

key hyperparameters: the maximum number of splits and the 

split criterion. Meanwhile, the SVMs were tuned using 

Algorithm Hyperparameter Search Parameter Details Optimal Results 

DT Maximum Splits 4 to 100 (25 steps) 100 

Split Criterion GDI, MDR, Twoing Rule GDI 

SVM Kernel Function Linear, Quadratic, Cubic Cubic 

Box Constraint Level 1 - 

Kernel Scale Auto - 

Multiclass Method One-vs-One - 

Ensemble Ensemble Type AdaBoost, Bagging AdaBoost 

Base Learner Decision Tree - 

Number of Base Learner 6 to 30 (5 steps) 30 

Maximum Splits (Base Learner) 20 - 

Split Criterion (Base Learner) GDI - 

Learning Rate (AdaBoost) 0.1 - 

 Table 2. Hyperparameter settings for the ML models. 
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different linear, quadratic, and cubic kernel functions. For the 

ensemble models, Adaboost and bagged tree algorithms were 

utilized with varying numbers of DT base learners, 

employing the best-performing GDI split criteria. The 

specific hyperparameter settings used for model training and 

the optimal hyperparameters identified using grid search are 

detailed in Table 2.  

The comparisons of the overall performances of ML models 

are presented in Figure 11 and Table 3. The DT models are 

categorized according to their maximum number of splits as 

coarse DT (four splits), medium DT (twenty splits), and fine 

DT (one hundred splits). The SVM models are distinguished 

by their kernel function, and the ensemble models are labeled 

based on the employed ensemble type.  

The force-based models were observed to have better 

performance compared to vibration-based models. In the DT 

models, increasing the maximum splits improved the 

performance, while the split criteria had minimal impact. The 

non-linear SVM models performed relatively better 

compared to linear SVM. The Adaboost models showcased 

better performance than the Bagged models, and increasing 

the number of base learners improved the model performance 

in both cases at the cost of increased model complexity.  

It was observed that the feature-level fusion methodology 

could improve the performance of DT and ensemble models. 

The sensor-fused Adaboost model showcased the best 

performance with high accuracy, recall, precision, and F-

score values. The model also had a kappa value extremely 

close to 1, indicating that the predictions made were 

incredibly close to the true conditions. The high precision 

signifies that a vast majority of the conditions identified as 

‘chatter’ by the model were truly chatter conditions. The high 

recall indicates that the model is proficient in identifying 

almost all the true chatter conditions. A high recall is vital in 

the present scenario so as to not miss any of the instances of 

chatter. Misidentification of some stable instances as chatter 

is acceptable, whereas misidentification of chatter instances 

 

Figure 11. Comparison of classification accuracies of the ML models. 
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Coarse DT 0.34 81.52 99.29 89.54 0.72 91.28 97.37 94.23 0.73 91.47 97.60 94.44 

Medium DT 0.51 85.04 98.41 91.24 0.83 95.26 97.00 96.12 0.85 95.34 97.88 96.59 

Fine DT: Twoing Rule 0.53 85.65 98.23 91.51 0.53 96.62 98.25 97.43 0.90 96.96 98.56 97.75 

Fine DT: MDR 0.53 85.67 98.15 91.49 0.53 96.34 98.26 97.29 0.88 96.45 98.32 97.38 

Fine DT: GDI 0.53 85.64 98.16 91.47 0.53 96.62 98.29 97.45 0.90 97.24 98.38 97.81 

Cubic SVM 0.35 83.01 92.37 87.44 0.92 97.10 99.16 98.12 0.85 94.47 99.40 96.87 

Quadratic SVM 0.46 84.06 98.64 90.77 0.90 96.58 98.86 97.71 0.85 94.33 99.39 96.79 

Linear SVM 0.37 82.34 97.42 89.25 0.79 93.06 98.08 95.50 0.76 92.02 98.33 95.07 

Adaboost 0.52 85.17 98.74 91.46 0.97 97.25 98.52 97.88 0.92 97.72 98.76 98.24 

Bagging 0.51 85.06 98.49 91.28 0.85 95.19 98.03 96.59 0.86 94.99 98.82 96.87 

Table 3. Performance metrics of ML models. 
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as stable is highly detrimental to machining. The high F-score 

of the model confirms its superior performance, as it 

demonstrates that the model has attained a balance between 

precision and recall, making it effective in identifying most 

of the chatter conditions with minimal errors. The ML models 

were also observed to provide considerably better overall 

performance than the statistical classification using MD. 

Furthermore, feature selection was implemented on the best-

performing algorithm to reduce computational costs and 

model complexity. A T-test (Livingston, 2004) was used to 

select dominant features from the feature-fused dataset for 

training the best-performing Adaboost ensemble model. 

Among the 18 features, the best 12 features (HE features of 

Fx, Fy, Fz, Ax, & Ay, ApEn features of Fx, Fy, Ax, & Ay, and 

LE features of Fx, Fz, & Ay), which have rich information on 

the process conditions, were chosen. The performances of 

Adaboost ensembles trained with all features and selected 

features are given in Table 4 and Figure 12. The findings 

demonstrate that feature selection offers improved 

computational efficiency and faster model training without 

compromising the model's classification accuracy.  

Adaboost 

without 

Feature 

Selection 

Predicted (%) Adaboost 

with 

Feature 

Selection 

Predicted (%) 

Chatter* Stable* Chatter* Stable* 

A
ct

u
a

l 
(%

) 

Chatter 21.60  1.77 

A
ct

u
a

l 
(%

) 

Chatter 21.38 1.99 

Stable 0.95 75.68 Stable 1.19 75.44 

Table 4. The confusion matrices of boosted ensemble 

models with and without feature selection. 

 

Figure 12. Effects of feature selection in the DT-based 

Adaboost model with feature-level fusion. 

6.1. Validation of the Chatter Detection Model 

The capability of the developed Adaboost model to detect 

chatter was validated using milling trials. Machining 

parameters for validation experiments were chosen from the 

SLDs for stable and chatter machining conditions. Fifty-five 

milling experiments were carried out on the Ti6Al4V alloy 

with different cutting speeds and axial depth of cuts. The 

force and vibration signals were acquired from the 

experiments, and the features were extracted and given as 

input to the best-performing DT-based ensemble model for 

classification. The surface profiles of the machined surfaces 

were obtained using the Carl ‘Zeiss E- 35B’ profilometer, and 

the surface roughness features were measured according to 

the ‘ISO 4288’ (International Standards Organization, 1996) 

standard, filtered using Gaussian filtering for a cutoff of 0.25 

mm, a measuring length of 4 mm, and a measuring range of 

20 μm. 

 

Figure 13. Statistical assessment of the surface feature: (a) 

progression of Pt with machining parameters, (b) normal 

distributions of the Pt corresponding to stability conditions. 

The chip thickness variation corresponding to chatter can be 

correlated with the surface feature Pt (total profile peak 

height). This feature was taken as the primary consideration 

for chatter assessment, as given in Figure 13. The Pt values 

were observed to increase with the increase in the axial depth 

of cut for a given spindle speed (refer to Figure 13(a)). The 

fitted normal distributions for the Pt features corresponding 

to stable and chatter conditions are provided in Figure 13(b). 

For the stable points (as per the SLD), the Pt features obtained 
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through experiments presented a µ of 2.5382 with a tight σ of 

0.3387. 

In contrast, the chatter points had a much higher µ of 4.1782 

and a wider σ of 0.7103. This indicates that the Pt values for 

stable and chatter conditions form distinct distributions with 

well-separated means. The wide σ observed in chatter 

conditions may be attributed to inherent variability associated 

with chatter. The conditions above the Pt value of 3.34 μm 

were observed to have a high probability of falling in the 

chatter region. 

The vibration signals were further processed to obtain 

Moving Window Standard Deviation (MWSD) features for 

the stable and chatter machining conditions, as represented in 

the plots in Figure 14. The utilization of MWSD features of 

vibration signals, computed with a window size of 125, was 

chosen due to their effectiveness in revealing intricate 

patterns and trends in time-series data, which might remain 

concealed when analyzing the entire dataset (Nair et al., 

2022). It is evident from the MWSD time domain plots that 

the vibration signature displays minimal amplitude variation 

during stable conditions. In contrast, during unstable/chatter 

conditions, there is a substantial increase in amplitude 

fluctuations. Notably, this amplitude variation is most 

pronounced in the Ax signal, indicative of chatter-induced 

vibrations in the feed direction, as depicted in Figure 14.  

 

Figure 14. MWSD plots of machining vibration in stable 

and chatter machining conditions. 

During stable machining, the mean MWSD values of the 

vibration amplitude signatures, Ax, Ay, and Az, were observed 

to be 0.201, 0.001, and 0.023, respectively, with σ of 0.0720, 

0.0001, and 0.0002. In contrast, when machined in chatter 

conditions, the mean MWSD values for Ax, Ay, and Az 

signatures were determined to be 0.629, 0.001, and 0.024, 

respectively, with σ of 0.1710, 0.0003, and 0.007. The 

MWSD values and standard deviations of Ax and Ay 

signatures increased during chatter, indicating greater 

variability in the vibration amplitudes. Inspection of the 

machined surface produced under chatter conditions revealed 

the presence of chatter marks.  

The true stable and chatter conditions were assessed through 

MWSD values, surface roughness features, and the visual 

inspection of the machined surface. A univariate threshold-

based statistical classification using the MWSD feature of the 

Ax signal was used as a baseline to highlight the performance 

of the best-performing ML-based classifier model developed 

in the study. The performance measures of the univariate 

threshold-based classifier using the MWSD feature and the 

ML-based classifier using non-linear features are provided in 

Tables 5 and 6, respectively. In the case of the statistical 

classifier, the threshold separating the stable and chatter 

conditions was computed from the mean and standard 

deviation of the MWSDs of chatter condition Ax signals, 

using the relation established in equation (10). The threshold-

based classification was found to be inefficient, with a low 

accuracy of 30.91 % and a Kappa of 0. It was also found to 

be lacking in terms of F1 score, precision, and recall. The 

comparison of the ML-based classification against the 

threshold-based statistical classification indicated that the 

performance of the ML model is superior across all the 

performance measures considered in the study. The 

validation results comparing the actual machining conditions 

and those predicted by the ML model are provided in Figure 

15. It was observed that the ML model was able to classify 

52 out of the 55 experimental conditions correctly as chatter 

or stable based on the non-linear features. The 

misclassifications were observed in conditions with lower 

speeds and axial depth of cuts close to the stability limits. It 

is also to be noted that no chatter conditions were 

misclassified as stable conditions.  

Model Validation 
Model Prediction (%) 

Chatter* Stable* 

Actual (%) 
Chatter 16.36 3.64 

Stable 14.54 65.45 

Performance Metrics 

Recall Precision F1 Score Kappa Accuracy 

81.82 20 32.14 0.00 30.91 

Table 5. Performance of the threshold-based statistical 

classifier. 

Model Validation 
Model Prediction (%) 

Chatter* Stable* 

Actual (%) 
Chatter 20 0 

Stable 5.45 74.55 

Performance Metrics 

Recall Precision F1 Score Kappa Accuracy 

100 78.57 88 0.84 94.54 

Table 6. Performance of the ML-based classifier. 
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Figure 15. Results of model validation experiments. 

The surface topographies of the machined surfaces for 

experimental trials 41 (stable), 42 (stable), 52 (chatter), and 

53 (chatter) are provided in Figure 16. The validation 

experiments demonstrated that the SLDs and ML models 

developed in this study capture the dynamics of machining of 

Ti6Al4V alloy and can be implemented in a real-time 

machining environment. 

 

Figure 16. The surface topography of Ti-alloy workpieces: 

(a) under stable machining and (b) under unstable 

machining with noticeable chatter marks. 

7. CONCLUSION 

ML models were developed to identify stable and chatter 

conditions in the milling of Ti6Al4V alloy. SLDs were 

generated to understand the dynamics of machining and to 

arrive at the limiting values of the axial depth of cut and 

spindle speed for chatter-free milling. Experimental studies 

revealed that the surface roughness features and vibration 

characteristics correlated with the SLD conditions. Setting 

the spindle speed in the range of 2500 to 3500 rpm and axial 

depth of cut below 0.6 mm resulted in stable, chatter-free 

machining. 

ML models were developed using force and vibration 

features separately and fused features of force and vibration. 

The proposed fusion methodology improved the 

classification accuracies of the DT and ensemble models by 

leveraging the complementarity of the non-linear features. 

All the feature-level fusion ML models proposed in the study 

using all features of vibration and force were able to identify 

the chatter condition with an accuracy of more than 91%. The 

DT-based Adaboost algorithm provided the highest 

classification accuracy of 97.3%. The Adaboost ensemble 

model utilized the variability of multiple base learners and an 

adaptive sampling strategy of assigning varying weights to 

challenging instances in the training data to reduce 

misclassifications. This may account for its superior 

performance. 

The best-performing Adaboost model was trained using 

selected dominant features and identified the chatter 

conditions with an accuracy of 96.8%. Notably, the 

computational time required for training and testing the 

algorithm was reduced by 21%. Validation of the ML models 

using experimental data showed that the predicted conditions 

were in agreement with the actual chatter conditions, with an 

accuracy of 94.5% and a recall of 100%. 

The developed ML models hold promise for adaptation in 

critical machining processes such as thin-wall machining for 

defense, aerospace, and medical applications. Subsequent 

research may investigate the feasibility of fine-tuning these 

models for application in diverse machining processes 

featuring distinct geometries, tools, and materials.  

The proposed ML models were trained on stable and chatter 

states and did not address the transition behavior. The 

identification of the transition state may help to improve the 

reliability of the models further. Future studies may explore 

the development of an on-line chatter detection and control 

system.  
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APPENDIX A - MATLAB CODE FOR EXTRACTION OF NON-

LINEAR FEATURES 

clear all; 

close all; 

clc; 

 

% Define file paths 

raw_force_data_path = 'C:\Milling\Raw\Dynoware 

Data\RAWForce_Exp_01.xlsx'; 

 

raw_accel_data_path = 'C:\Milling\Raw\Accelerometer 

Data\RawAccel_Exp_01.lvm'; 

 

feature_data_path = 'C:\Milling\Features_Compiled\Non-

linear_Featureset_Exp_01.xlsx'; 

 

% Define time range and sampling rates 

T1 = 5; % Start time in seconds 

T2 = 25; % End time in seconds 

sample_rate_force = 25000; % Sample rate of force signal 

sample_rate_vibration = 25000; % Sample rate of 

accelerometer signal 

 

% Calculate sample indices for data extraction 

force_data_samples = (T2 - T1) * sample_rate_force; 

vibration_data_samples = (T2 - T1) * 

sample_rate_vibration; 

force_start_idx = (sample_rate_force * T1) + 3; 

vibration_start_idx = (sample_rate_vibration * T1) + 23; 

force_end_idx = (sample_rate_force * T2) + 2; 

vibration_end_idx = (sample_rate_vibration * T2) + 22; 

 

% Read data 

force_data = readmatrix(raw_force_data_path, 'Range', 

[force_start_idx 2 force_end_idx 4]); 

accel_data = dlmread(raw_accel_data_path, '\t', 

[vibration_start_idx 1 vibration_end_idx 3]); 

 

% Extract individual force components 

Fx = force_data(:, 1); 

Fy = force_data(:, 2); 
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Fz = force_data(:, 3); 

 

% Extract individual accelerometer components 

Ax = accel_data(:, 1); 

Ay = accel_data(:, 2); 

Az = accel_data(:, 3); 

 

% Initialize feature extraction parameters 

window_size_force = 500; 

window_size_accel = 500; 

num_windows_force = floor(force_data_samples / 

window_size_force); 

num_windows_accel = floor(vibration_data_samples / 

window_size_accel); 

 

% Initialize feature matrix 

Feat = zeros(num_windows_force + num_windows_accel, 

18); 

 

% Feature extraction from force and accelerometer signals 

for i = 1:num_windows_force 

    Feat(i, 1:9) = feature_extraction(Fx, Fy, Fz, (i - 1) * 

window_size_force + 1, window_size_force); 

end 

for i = 1:num_windows_accel 

    Feat(i, 10:18) = feature_extraction(Ax, Ay, Az, (i - 1) * 

window_size_accel + 1, window_size_accel); 

end 

 

% Define header for the feature table 

Header = {'ApEn Fx'; 'ApEn Fy'; 'ApEn Fz'; 'LE Fx'; 'LE 

Fy'; 'LE Fz'; 'HE Fx'; 'HE Fy'; 'HE Fz'; 'ApEn Ax'; 'ApEn 

Ay'; 'ApEn Az'; 'LE Ax'; 'LE Ay'; 'LE Az'; 'HE Ax'; 'HE 

Ay'; 'HE Az'}; 

 

% Create a table of extracted features 

Feat_Table = array2table(Feat, 'VariableNames', Header) 

 

% Write the extracted features to a file 

writetable(Feat_Table, feature_data_path); 

 

% Function to extract features from a signal 

function features = feature_extraction(X, Y, Z, start_idx, 

win_size) 

    subset_X = X(start_idx : start_idx + win_size - 1); 

    subset_Y = Y(start_idx : start_idx + win_size - 1); 

    subset_Z = Z(start_idx : start_idx + win_size - 1); 

    features = [approximateEntropy(subset_X), 

approximateEntropy(subset_Y), 

approximateEntropy(subset_Z), 

lyapunovExponent(subset_X), 

lyapunovExponent(subset_Y), 

lyapunovExponent(subset_Z), wtmm(subset_X), 

wtmm(subset_Y), wtmm(subset_Z)]; 

end 

APPENDIX B – STATISTICS OF NON-LINEAR FEATURES 

Feature 
Stability 

Condition 

Statistics 

Min Max Mean 
Standard 

Deviation 

A
p

E
n
 

Fx  
Stable 0.252 1.232 0.539 0.197 

Chatter 0.303 1.292 0.736 0.321 

Fy  
Stable 0.151 1.225 0.430 0.213 

Chatter 0.277 1.330 0.770 0.316 

Fz  
Stable 0.383 1.186 0.636 0.149 

Chatter 0.406 1.219 0.716 0.170 

Ax  
Stable 0.363 1.461 0.904 0.256 

Chatter 0.522 1.051 0.764 0.061 

Ay  
Stable 0.151 1.471 1.333 0.063 

Chatter 0.264 1.455 1.358 0.046 

Az  
Stable 0.059 1.461 1.289 0.060 

Chatter 0.912 1.420 1.257 0.054 

H
E

 
Fx  

Stable -0.560 0.550 -0.004 0.149 

Chatter -0.642 0.377 -0.130 0.186 

Fy  
Stable 0.000 0.806 0.465 0.102 

Chatter -0.224 0.723 0.263 0.175 

Fz  
Stable -1.006 0.277 -0.288 0.201 

Chatter -1.111 0.088 -0.429 0.164 

Ax  
Stable -0.565 0.412 -0.060 0.172 

Chatter -0.284 0.402 0.019 0.097 

Ay  
Stable -0.831 1.104 -0.181 0.294 

Chatter -0.948 0.956 -0.114 0.188 

Az  
Stable -1.465 0.438 -0.632 0.264 

Chatter -1.484 0.298 -0.752 0.208 

L
E

 

Fx  
Stable 0.215 3.385 2.617 0.508 

Chatter 0.505 3.240 1.951 0.701 

Fy  
Stable -1.835 2.923 0.291 0.768 

Chatter -2.065 2.890 0.425 0.963 

Fz  
Stable -2.264 3.317 2.374 0.653 

Chatter 0.326 3.054 1.724 0.739 

Ax  
Stable -0.860 2.407 1.565 0.349 

Chatter 1.211 2.269 1.742 0.126 

Ay  
Stable -3.223 1.830 0.973 0.121 

Chatter 0.453 1.526 0.940 0.107 

Az  
Stable 0.571 1.749 1.196 0.180 

Chatter 0.367 2.090 1.146 0.315 

 


