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ABSTRACT 

Accurately predicting the remaining useful life (RUL) of a 
system is a crucial factor in prognostics and health 
management (PHM). This paper introduces an auxiliary 
particle filter (APF) model, which has the advantages of 
dynamically updating the model parameters and being 
optimized in computational speed for prognosis applications 
in real engineering problems. The development of particle 
filter (PF) in the recent decade focused on increasing the PF 
model’s complexity to solve more difficult problems. 
However, the added complexity negatively impacts the 
computational speed. The number of particles is commonly 
reduced to compensate for this increased computational 
burden, but this significantly reduces the accuracy of PF’s 
posterior distribution. The developed APF model can 
estimate unknown states and model parameters at the same 
time with a large number of particles. This algorithm was 
demonstrated with a dataset from an electric motor 
accelerated aging experiment. The results show that this 
model can quickly and accurately predict the RUL and is 
robust to measurement noise. 

1. INTRODUCTION 

Prognostics and health management (PHM) is a process to 
assess, predict, and maintain the health condition of 
components, systems, and structures. It facilitates system 
health degradation models using monitoring data. PHM 
started to gain attention from both industry and academia in 
the 1970s (Pecht, 1991). It has proven to be an efficient way 
to reduce operational costs, increase system availability, and 
decrease system risks (Z. Zhang et al., 2018).  

Remaining Useful Life (RUL) is defined as the reasonable 
time remaining on a component or a system that still performs 

at the desired specification (Si et al., 2011). RUL estimation 
is a critical factor in PHM. Accurately predicting the RUL 
prevents corrective maintenance, reduces system downtime, 
and transitions the maintenance strategy from time-based 
maintenance to condition-based maintenance. This can 
directly improve operational efficiency and reduce lifecycle 
costs (Jardine et al., 2006). 

There are a large variety of simulations and modeling tools 
available for PHM purposes. Depending on the data available 
and knowledge of the predicted system, different methods 
can be deployed. The prognostic algorithms fall into two 
categories: experience-based approaches and data-driven 
approaches.  Experience-based methods require system 
physics to be well-understood. Fuzzy systems (Alamaniotis 
et al., 2014) or expert systems (Q. Zhang et al., 2015) 
compare the similarity between an observed situation and 
predefined failure trends. Those experience-based models 
correlate expert knowledge and engineering experience with 
the measurements to estimate RUL. The model is usually 
straightforward to interpret. Experience-based approaches 
can yield accurate and reliable predictions if the system and 
its degradation are well understood. However, in most 
systems, especially complex systems, fault modes, and 
physical degradation processes are not well-understood, 
limiting the usage of experience-based approaches. 

Data-driven approaches do not necessarily require a physical 
understanding of the system, making them more flexible for 
RUL estimation. Regression-based methods are commonly 
used, especially in industry, because they are easy to 
interpret. However, these kinds of methods require a 
monotonic assumption or stepwise approximation to find 
RUL (Park & Bae, 2010). This model may generate a 
conservative estimation if the degradation process is not 
always monotonic (Si et al., 2011). Deep learning methods 
(Li et al., 2018) use neural networks to solve problems with 
a massive dataset. Neural network-based models require a 
significant amount of data to fine-tune the model. Lacking 
proper data is a universal phenomenon in the research of 
PHM. It is hard to guarantee the robustness and accuracy of 
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neural network-based models without sufficient data. 
Stochastic process models, such as Wiener processes (Tseng 
& Peng, 2004), Gamma processes, and inverse Gaussian 
processes (Wang & Xu, 2010) have straightforward 
mathematical calculations and the physical meanings are 
easy to understand. However, the numeric computation 
requires a long run time, limiting the usage for online 
prognostics. Markovian-based models assume that the future 
degradation state depends only on the current state. However, 
these models rely on a strong assumption that each state is 
conditionally independent. Filtering-based methods (Orchard 
& Vachtsevanos, 2009), such as Kalman Filter and Particle 
Filter (PF) solve state-space models for the unobserved 
degradation process with observed measurement data. 

In recent decades, PF has drawn a lot of attention because it 
can be applied in a broad range of engineering problems 
(Baraldi et al., 2015; G. Kim et al., 2018; Zio & Peloni, 2011). 
This Bayesian-based framework is designed for nonlinear 
and non-gaussian state space model filtering (Gordon et al., 
1993). As PFs become more common for prognostic 
modeling, many modifications are being made for different 
applications. The typical model simulates or approximates 
the model parameters before the model initialization step and 
subsequently does not change the predicted model parameter. 
This method relies on a strong assumption that the model 
parameter is static. In real engineering problems, equipment 
operating conditions, such as environmental temperatures, 
moisture, and atmospheric pressure, may differ every day. 
The changing operational conditions might lead to a variable 
model parameter. Even though the model parameter is static 
in some cases, the prediction results heavily depend on how 
accurately the parameter is estimated beforehand, which 
increases the model uncertainty (Jouin et al., 2016). 

The augmented PF (Hu et al., 2015) considers the model 
parameters as state vectors and uses another state transition 
function to estimate the model parameters. This method 
dynamically estimates the model parameter and is applicable 
to engineering problems with variable model parameters. 
However, there is no way to quantify the accuracy of the 
model parameters’ state transition functions.  

In this paper, an Auxiliary Particle Filter Prognostic Model 
(APFPM) is proposed to estimate states and parameters 
simultaneously and apply it in prognostics. This method also 
treats model parameters as states. First, it performs a classical 
PF, and then it samples the model parameters in an auxiliary 
step. In the auxiliary step, model parameters are sampled 
from a distribution, and the posterior is updated. The weight 
is then calculated based on the new posterior.  

One drawback of PF is it requires more computational 
resources than other filters. Based on the classical PF model, 
a significant number of evolved PF models have appeared in 
the last 20 years. A risk sensitive PF-based prognostics model 
(Orchard et al., 2010) incorporates a cost function in the 
importance distribution to generate more particles in the 

regions with higher cost (possibility). It best fits systems with 
an anticipated sudden change in the operating conditions. 
Rabiei et al. (2018) also optimized the PF algorithm with 
relative entropy; Yu (2017) proposed a prognostic model 
based on logistic regression and PF; Daroogheh et al. (2017) 
used neural networks to train the PF model. However, the 
recent efforts to modify PFs continue to increase the 
complexity of the model, which makes it more challenging to 
execute without further increasing the computational cost.  

The number of particles is a critical PF parameter. The rate 
of convergence of the approximate posterior probability 
distribution is inversely proportional to the square root of 
particle numbers (Bain & Crisan, 2009). In other words, the 
more particles, the more accurately the filter approximates 
the posterior distribution (Elvira et al., 2017). However, 
increasing the number of particles increases the 
computational burden significantly. When the model is 
complex, it is common to sacrifice the number of particles to 
manage the computational load. Daroogheh et al. (2017) only 
uses 150 particles for simulation, while Yu (2017) uses 500 
particles. Recent applications of PFs in prognostics 
introduced more degrees of freedom into the model, which 
significantly slow down the simulation. Researchers have 
decreased the number of particles to compensate for the extra 
complexity, but it also reduced the simulation accuracy. 

The most time-consuming part of PF is resampling. This 
paper compares different resampling methods and selects the 
systematic resampling for APFPM. It significantly reduces 
the time complexity compared with other common 
resampling methods, which makes APFPM capable of 
estimating the RUL using more than 100,000 particles. 

This model was demonstrated with data from an accelerated 
aging experiment on three-phase electrical motors. Induction 
motors are widely applied in the industry due to their 
robustness, reliability, and low maintenance requirements 
(Djeddi et al., 2007). Bearing failure is the most common 
failure mode for the electric motor, and it happens due to 
excessive load, high temperature, lousy lubrication, etc. 
(Gnanaprakasam & Chitra, 2014). A series of accelerated 
run-to-failure aging experiments was conducted to simulate 
degradation and extremely noisy measurement data were 
collected by low-precision sensors (Sharp, 2012; Barbieri et 
al., 2015).  

The paper is organized as follows. Section 2 introduces the 
methodology of APFPM used for RUL estimation. Section 3 
describes the experimental dataset and prognostic parameter 
generation process. Section 4 presents the results of applying 
APF to estimate RUL of the experimental dataset and 
compares it with naïve PF. Section 5 summarizes this work 
and highlights areas of future work. 
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2. METHODOLOGY 

Hidden Markov Models (HMM), or state-space models, are 
widely used for RUL estimation. A more detailed review of 
HMM can be found in (Cappé, 2005). They can be 
characterized by the following framework: 

  !! = #(!!"#, &!)  
 

(1) 

 (! = ℎ(!! , *!) (2) 

where xk and zk are hidden degradation state and observed 
state at time k, respectively; & and  *  are random process 
noise and random measurement noise, respectively; #(∙) is 
the physical state model of the degradation process; and ℎ(∙) 
is the measurement equation. 

Given the initial distribution ,(!$), the degradation state !! 
can be characterized by a transition probability ,(!! |!!"#). 
As shown in Eq. (2), noisy measurements (! are assumed to 
be conditioned on the current degradation state !!. Thus, the 
objective of solving this HMM is to address the posterior 
distribution ,(!!|(#:!) , denoting that (#:! ≜ {(#, ⋯ , (!} 
represent the measurements up to time k. 

Two sequential steps can solve this problem: the prediction 
step and the update step. In the prediction step, the prior state 
pdf ,(!!|(#:!) can be estimated using the Chapman-
Kolmogorov equation: 

 
,(!!|(#:!"#)

= 2,(!!|!!"#) ∙ ,(!!"#|(#:!"#)3!!"# (3) 

The update step uses Bayes Rule to calculate the posterior 
state pdf ,(!!|(#:!) ; the recursive factorization of the 
posterior state pdf is given as:  

 
,(!!|(#:!) ∝ ,((!|!!) ∙ 

2,(!!|!!"#) ∙ ,(!!"#|(#:!"#)3!!"# 
(4) 

However, the integrals in Eq. (3) and Eq. (4) are difficult to 
solve analytically. Filtering techniques provide an alternative 
approach to approximate their solutions. A PF is a Monte 
Carlo method with the capability to solve nonlinear and non-
Gaussian systems. 

2.1. State Estimation of Particle Filter 

A PF uses a set of N particles x!& , 6 = 1,⋯ ,8 to approximate 
the posterior state pdf ,(!!|(#:!)  with weight 9!& , where 
∑ 9!& = 1'
&(#  (Andrieu et al., 2001): 

 ,(!!|(#:!) ≈< 9!& ∙ =>!! − !!&@
'

&(#
 (5) 

Particles and their corresponding weights are obtained with 
importance sampling (Andrieu et al., 2001; H. Kim et al., 

2000). Samples !!&  are drawn from an importance density 
A(!!|(#:!) and the weights are defined as: 

 9!& ∝
,>!!&|(#:!@
A>!!&|(#:!@

        (6) 

The probability ,>!!&|(#:!@ is estimated with Bayes Rule Eq. 
(7) and the importance density A>!!&|(#:!@ is presented in Eq. 
(8): 

 ,>!!&|(#:!@
= ,((!|!!&) ∙ ,(!!&|!!"#& ) ∙ ,(!!"#& |(#:!"#) 

(7) 

 A>!!&|(#:!@ = A>!!&B!!"#& , (#:!@ ∙ A(!!"#& |(#:!) (8) 

 

Combining Eq. (7) and Eq. (8), the weight can be updated 
from Eq. (6) to Eq. (9) in a recursive format: 

 9!& ∝ 9!"#& ,((!|!!&) ∙ ,(!!&|!!"#& )
A>!!&B!!"#& , (#:!@

  
(9) 

The simplest form is to use the prior distribution ,(!!&|!!"#& ) 
as the importance density, yielding:  

 9!& ∝ 9!"#& ,((!|!!&) (10) 

However, a more reliable importance density was proposed 
in (Pitt & Shephard, 1999):  

 
A>!!&B!!"#& , (#:!@ 

∝ ,((!|C!&) ∙ ,(!!&|!!"#& )9!"#&  
(11) 

where the mean of ,(!!&|!!"#& )  is C!& . To derive the 
importance density, the particle index i serves as an auxiliary 
variable (Chen et al., 2005). This method allows new 
particles to generate based on the current measurement and 
particles from the previous timestep. The weight is then 
estimated with this auxiliary method as 

 9!& ∝
,((!|!!) )
,((!|C!&)

 (12) 

2.2. Parameter Estimation of Particle Filter 

Traditional PFs define state transition equations based on a 
physical model. The model parameters are either known or 
can be regressed with historical data. Thus, state vectors and 
model parameters can be initialized to train the model. 
Maximum Likelihood (Wicker et al., 2008), Expectation-
Maximization (Zhao et al., 2013) and a few other regression-
based methods can be used to estimate the model parameters 
based on a batch of historical data. These methods cannot 
dynamically update the model parameter, causing the 
parameter to be re-estimated every time a new measurement 
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becomes available. Previous calculations are not used in new 
estimations. 
However, traditional PF methods rely on a strong assumption 
that the model parameters are static. Equipment operational 
conditions, such as environmental temperatures, moisture, 
and atmospheric pressure, may differ every day in real 
engineering problems. The changing operational conditions 
might lead to a variable model parameter. Even if the model 
parameter is static in some cases, the prediction results still 
heavily depend on how accurately the parameter is estimated 
beforehand, which can increase the model uncertainty (Jouin 
et al., 2016).  

In some cases, not only is it necessary to estimate degradation 
states but it is also necessary to calculate the unknown 
parameters. Eq. (1) and Eq. (2) become Eq. (13) and Eq. (14) 
if both states and parameters are to be estimated: 

 !! = #(!!"#, &! , D!"#) (13) 

 (! = ℎ(!! , *! , D!) (14) 

given D  as the model parameter. The joint posterior 
distribution can then be written as Eq. (15) following Bayes’ 
theorem: 

 

,(!! , D!|(#:!) 
∝ ,((!|!! , D!) ∙ ,(D!|(#:!"#) 

∙ ,(!!"#|D! , (#:!"#) 
(15) 

There are two different approaches to define ,(D!|(#:!"#) in 
Eq. (15). One way is to incorporate the Markov Chain Monte 
Carlo (MCMC) method into the PF to estimate the state and 
provide likelihood information for MCMC to approximate 
parameters (Andrieu et al., 2010). The joint MCMC and PF 
approach adds significant computational complexity to the 
model, which is not suitable for many industrial applications. 

The other approach is to treat unknown parameters as states 
and use APF to estimate both states and parameters (J. Liu & 
West, 2001; Storvik, 2002). An et al. (2012) proposed to keep 
the distribution of model parameters unchanged during the 
prediction step to simulate the evolution of the model 
parameter. It is simple to implement, but the drawback of this 
method is that it is not applicable for variable parameter 
estimation. A proper way to sample the model parameter is 
required.  

A Gaussian random walk method (Chen et al., 2005) is 
proposed that adapts parameters into new data: 

 D! = D!"# + F!    (16) 

where F!~H(0,J!) is drawn from a Gaussian distribution 
with zero mean and J!  covariance matrix. Thus, 
,(D!|(#:!"#)  in Eq. (15) can be approximated in the 
framework of PF as: 

 
,(D!|(#:!"#)

=< 9!"#& ∙ H>D!|D!"#& ,J!@
'

&(#
 (17) 

We can define K!"# as covariance matrices of all weighted 
particles. The covariance in Eq. (17) is thus K!"# +J! , 
which increases over time. This results in more diffused 
particles. 

A kernel smoothing method (J. Liu & West, 2001) uses the 
shrinkage rule to force the particles to be closer to their mean. 
The Kernel location L!"#

&  is specified as Eq. (18) with 
smoothing factor ℎ ∈ (0,1) 

 
L!"#
&  

= N1 − ℎ*D!"#& + O1 − N1 − ℎ*P D̅!"# 
(18) 

where D̅!"#  is the parameter mean at time k-1. Thus, 
,(D!|(#:!"#) in (15) is approximated as 

 
,(D!|(#:!"#) 

=< 9!"#& ∙ H>D!|L!"#
& , ℎ*K!"#@

'

&(#
 

(19) 

The mixture probability in Eq. (19) has a mean of D̅!"# and a 
covariance matrix K!"# . This kernel smoothing method 
prevents the covariance from increasing and is ideal for 
parameter estimation. The weight is estimated as  

 9!& ∝
,((!|!!) , D!&)
,((!|C!& , L!"#

& )
 (20) 

2.3. Sequential Importance Resampling (SIR) 
Particle degeneracy is the main problem encountered for the 
naïve PF model. After a few iterations, more and more 
weights tend to be zero, effectively leaving only a few 
particles. Degeneracy occurs when some particles lose track 
of the actual degradation state, which results in increased 
weight variance and a more skewed importance weight 
distribution (Andrieu et al., 2001).  

Sequential Importance Resampling (SIR) is the solution to 
particle degeneracy (Doucet et al., 2000). A resampling 
algorithm samples a new set of particles x!+ for L = 1,⋯ ,8 
to replace x!& . After the particles are resampled, the particle 
weights are set to 1/N. 

There are various resampling algorithms. A good algorithm 
should select a representative population of particles with 
high probability and give enough consideration to low 
probability particles so that nonlinear behavior can be 
detected as well. Another essential metric to select a 
resampling algorithm is that the algorithm should be 
computationally efficient. 
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Multinomial resampling (Doucet et al., 2000) is a secure 
algorithm that is commonly used in many PF tutorials. It 
computes the cumulative distribution function (CDF) of the 
weights. A random number between 0 and 1 is generated 
uniformly. For each random number, this algorithm uses a 
binary search in the CDF of weights to find where the 
corresponding weight is. The corresponding particle’s array 
with the selected weights is chosen to form the new array of 
particles, x!+. This process has to be repeated N times until 
all spaces in x!+ are filled.  

Stratified resampling (Andrieu et al., 2001; Kitagawa, 1996) 
divides the weight CDF into N spaces, and then selects one 
particle from each space randomly. This method ensures that 
particles with significant weight are appropriately sampled, 
and all chosen particles are separated by R0, !"S.  
Systematic resampling (Kitagawa, 1996) is very similar to 
stratified resampling. It divides the weight CDF into N spaces 
with a random offset and ensures that all selected particles are 
apart precisely by #'. 

Residual resampling (J. S. Liu & Chen, 1998) calculates a 
particles’ weight index using the weight of each particle 
divided by the normalized weight N-1. For particles with a 
weighted index greater than 1, they are sampled t times, in 
which t equals the integer part of the weight index. It is not 
guaranteed to select N particles; the remaining spaces of  !!+ 
are filled with other resampling methods mentioned above.  

The most significant disadvantage of PFs is that it is 
computationally expensive. Resampling is the most time-
consuming part of PF algorithms. Time complexity is usually 
introduced in computer science to describe an algorithm's 
computational complexity by counting the number of 
elementary operations performed. It utilizes the big O 
notation to represent the worst-case scenario computational 
complexity. This notation was adopted to calculate the time 
complexity of each resampling algorithm. 

Multinomial resampling requires generating N random 
numbers and performs a binary search in space for N times; 
therefore, it has O(T log T) time complexity per iteration. 
Since the sampling is entirely random, it cannot guarantee 
that large weights are adequately sampled. Stratified and 
systematic resampling have a similar sampling distribution in 
that all parts of particle spaces are sampled, and large weights 
are sampled more often. However, stratified resampling also 
requires the generation of N random numbers and performs a 
binary search for N times, which makes it have the same time 
complexity as multinomial resampling. Systematic 
resampling only needs to generate one random number and 
compares N times only at each space boundary. It has a time 
complexity of O(n), which is much faster than either the 
multinomial or stratified resampling method. The only 
drawback is that systematic resampling samples particles 
uniformly, which is not as good as stratified resampling in 

ensuring more resampling for higher weights. Residual 
resampling sacrifices some stochasticity to ensure that all 
large weights are sampled. Experiments showed that half of 
the particles are determined by weight index (Hol et al., 
2006), and the other half of the particles have to be 
determined using other resampling methods. Residual 
resampling does not distribute samples across the entire CDF 
evenly and cannot guarantee sampling for reasonably large 
particles. It is hard to tell the time complexity of residual 
resampling. It depends on which resampling algorithm is 
used to deal with the remaining spaces after heavier weights 
are resampled. 

Most PF-based prognostic model researchers use a 
multinomial resampling method, which is the slowest 
method. Yu (2017) used residual resampling, and Dong et al. 
(2014) proposed a resampling procedure based on support 
vector regression (SVR). The SVR method usually requires 
O(N3) time complexity, which is much slower than most of 
the resampling methods, but optimization may be used to 
speed up the SVR resampling process. It is extremely 
important to use fast resampling method to boost the 
computational speed. 

In most cases, it is not always necessary to resample at each 
iteration. It is only required to resample occasionally, when 
the weight variance exceeds a certain threshold. Effective 
sample size 8,-- (Doucet et al., 2000; Kong & Liu, 1994) is 
used in Eq. (21) to measure the weight variance. When the 
effective sample size is below a predefined threshold, 
resampling is performed. 

 8,-- =
1

∑ 9!&'
&(#

                            (21) 

Resampling 
Method 

Time 
Complexity for 

Single Time 
Resampling 

Particle Sampling 
Distribution 

Multinomial 
Resampling 

O(T log T) No guarantee either 
large particles or 
reasonably large 

particles are properly 
sampled 

Residual 
Resampling 

Residual part 
O(T), the rest 

part depends on 
implemented 

method 

Large particles are well 
sampled but reasonably 
large particles may not 
be sampled properly 

Stratified 
Resampling 

 
O(T log T) 

Both large and 
reasonably large 
particles are well 

sampled 
Systematic 
Resampling 

 O(T) Even distribution on 
weight space, similar 

distribution as 
stratified resampling, 
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but not as good as 
stratified resampling in 

sampling large 
particles 

Table 1. Resampling method summaries 

 

2.4. Prognosis Using Particle Filter 
Prognostics describes the long-term degradation of the 
system. PFs can predict the future degradation trajectory and 
the corresponding particle distribution for each time step. 
This application goes beyond the traditional filtering 
method’s horizon because there are no new measurements for 
Bayesian updating. The predicted posterior PDF 
,(!./0 , D./0|(#:.)  at time X + Y  is calculated from the last 
updated posterior PDF ,(!. , D.|(#:.)  and propagated using 
the state equation until time X + Y . The computation of 
,(!./0 , D./0|(#:.) is shown (Doucet et al., 2000): 

 

,(!./0 , D./0|(#:.) 

= 2⋯2Z ,>!& , D&|!&"#, D&"#@
./0

&(./#
 

∙ ,(!. , D.|(#:.)	 Z 3!&
./0"#

&(.
 

(22) 

Orchard et al. (2008) provided the method of computing the 
above equation, but it is too computationally expensive to 
solve the above equation numerically. Doucet et al. (2000) 
proposed to neglect the error generated by particles from time 
t to X + Y. Therefore, the posterior PDF can be estimated at 
time X + Y using 

 
,(!./0 , D./0|(#:.) 

≈< 9.& ∙ =>!./0 − !./0& @
'

&(#
 

(23) 

Each particle state !./0&  is calculated by applying the 
degradation state equation from !./0"#& . 

At time t, when the last measurement data (. is processed by 
the model, the PF model converts from training to the 
prognosis step. The parameter D.& becomes unchanged in the 
prognosis step, and the degradation model propagates until 
all particles exceed a predefined threshold. The time of 
failure (TOF) can be determined when the mean of the 
weighted particles C!&  exceeds the threshold, while a 95% 
confidence interval is recorded when 2.5 percentile and 97.5 
percentile of particles exceeds the threshold. The predicted 
RUL distribution can be calculated as in Eq. (24) (Zio & 
Peloni, 2011): 

 ,(\]^) ≈< 9123& =(\]^ − \]^123& )
'

&(#
 (24) 

2.5. Auxiliary Particle Filter Prognostics Model 
Framework 

The Auxiliary Particle Filter Prognostics Model (APFPM) 
framework allows prognostics with an unknown physical 
model and disparate data sources. The assumptions of 
APFPM require the following information to be available as 
model input: 

(1) A degradation state transition model to estimate the 
evolution of states. PF-based models use a physical model to 
estimate state posteriors. Dynamic updating of states and 
model parameters adds a lot of flexibility to the model. 
However, a rough estimate of the degradation state transition 
model from either visual inspection or regression is required.  

(2) A measurement transition model that maps the observed 
measurements to the degradation state x. This step can be 
done in data extraction and manipulation. Raw data are 
collected from sensors and need to be processed and fused 
into a prognostic parameter, also known as a health index. 
The prognostic parameter simplifies the measurement 
transition model and can be considered to be a degradation 
state. 

(3) A failure threshold that defines the boundary between the 
acceptable working state and the failure state. When the 
degradation prediction crosses the failure threshold, the 
system is considered to be failed. The RUL is estimated by 
subtracting current time from the TOF. 

(4) All historical measurements and their corresponding 
measurement time from 0 to time t. Measurements are 
process data that can be accessed with the condition 
monitoring system. For online prognostics, it includes all 
historical measurements and new measurements. 
Measurements are mapped into degradation states via 
measurement transition models. 

The APFPM has three major steps: initialization step, model 
training step, and prognosis step. In the initialization step, the 
initial particles and model parameters are sampled, and 
constants are determined based on engineering judgment. It 
usually requires the initial particles and model parameters to 
be sampled uniformly unless they have other known 
distributions. An uncertainty test is required to determine the 
variance of state transition and measurement noise level. 

The model training step occurs when new measurements are 
available.  Eq. (11) is adopted as the importance density 
function and the mean of ,(!!&|!!"#& , D!"#& ) is calculated as 
C!&  and the kernel location of parameters L!"#

&  as Eq. (20). 
Then, ,((!|C!& , L!"#

& 	) can be estimated. 
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As mentioned in Section 2.2, in the auxiliary step, an 
auxiliary integer variable i is sampled from the range of [1, 
N], such that 

 Pr	!)(& = 9!) ∙ ,((!|C!) , L!"#
) ) (25) 

New model parameters D!)  are then sampled from the a.4 
normal component kernel density using a Gaussian 
distribution H>∙ |L!"#

& , ℎ*K!"#@.  
Particle states !!)  can then be sampled. It is important to note 
that !!)  is sampled from the state transition function using 
!!"#)  and D!)  instead of !!"#)  and D!"#) , because the final 
weight, calculated with Eq. (20), is required to test the 
accuracy of both state and model parameters. Since the new 
parameter is sampled in the auxiliary step, the weight needs 
to verify that those parameters are sampled correctly. 

Now ,((!|!!) , D!&)  can be estimated to further calculate 
particle weight 9!)  using Eq. (20). Particle weights are 
normalized and then be used to calculate the effective number 
of particles, as in Eq. (21). If the effective number of particles 
falls below a pre-defined threshold, SIR is performed, and a 
systematic resampling method is used. 

In the prognosis step, the posterior distribution is calculated 
with Eq. (23). For simplicity, it is assumed that the error 
generated by particles from time X  to X + Y  is negligible. 
There is another important assumption in the prognosis step. 
It is also assumed that the model parameter is changing in the 
model training step, but the model parameter cannot be 
updated without a new measurement. The model parameter 
used in the prognosis step is fixed to the last estimated model 
parameter. Thus, in the prognosis step, it is assumed that the 
model parameter does not change substantially from the last 
estimated model parameter so that the RUL does not deviate 
significantly from the true value. The pseudo-code of 
APFPM is here: 

1. Initialization Step 

Sample !$& and D$& uniformly from a predefined range 

b = 1 

2. Model Training Step 

2.1 While b ≤ d, T is the time that the last measurement data 
is obtained. 

For j=1:N 

        Calculate C!& = e(!!&|!!"#& , D!"#& )    
        Calculate L!"#

&  using (18)                                   

        Calculate ,((!|C!& , L!"#
& 	) 

End 

2.2 Normalize weight 9!& 
2.3 Determine if 8 < 8,-- , if so, perform systematic 
resampling (step 2.4), if not, go to step 2.5 

2.4 Auxiliary SIR 

For i=1:N 

        Sample an auxiliary integer variable a ∈ {1:8}  such 
that 

        Pr	!)(& = 9!) ∙ ,((!|C!) , L!"#
) )  

        Sample new D!)  from ith normal component of kernel 
density using Gaussian distribution. 

D!)~H>∙ |L!"#
& , ℎ*K!"#@ 

        Sample !!)~,>∙ |!!"#& , D!) @ 
        Calculate ,((!|!!) , D!&) 
        Assign weight 9!)  using (20) 

End 

2.5 Normalize 9!&() 
b = b + 1 

End 

3. Prognosis Step 

While ∃!!& > ,, where , is the threshold of failure 

 Propagate !!&~,>∙ |!!"#& , D1&@ 
 b = b + 1 

End 

3. MODEL APPLICATION ON EXPERIMENTAL DATA 

3.1. Experimental Data Set Description 

Accelerated degradation experiments were performed with a 
series of five horsepower (HP), three-phase, and 220-volt 
squirrel cage induction motors (Sharp, 2012). Those motors 
were baked in an oven at 160°C for three days. The motors 
were then placed in a condensation chamber in a sealed 
container for a total of 48 hours at 100% humidity.  Then 
those motors were placed back in the oven for a 24-hour 
heating process to get rid of any residual moisture, also at 
160°C. Following the second heating process, the motors 
were cooled and run for an hour with data collected from an 
array of sensors. A single cycle took slightly over one week, 
and the motor underwent thermal and moisture induced 
degradation. The accelerated degradation testing was adapted 
from the studies of Upadhyaya et al. (1997) and as suggested 
by the relevant IEEE Standard (‘IEEE Standard Test 
Procedure for Evaluation of Systems of Insulating Materials 
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for Random-Wound AC Electric Machinery’, 1974). The 
detailed experiment plan can be found in (Barbieri et al., 
2015). The list of collected dataset variables is shown in 
Table 2. 

Table 2. Raw Data Variables from Motor Testbed 

The data were collected at 10,240Hz for two seconds every 
15 minutes in a one-hour collection period. Thus, four data 
files were obtained in one experimental cycle. In the analysis, 
data from five different motors were used. Each motor was 
run-to-failure, and the number of tests (degradation cycles) 
for each motor is reported in Table 2. In the analysis, there 
are a few data files that are incredibly faulty due to data 
collection anomalies. Those outliers were excluded from 
future data analysis. The number of cycles in the cleaned test 
to failure data is also shown in Table 3. Each test represents 
a two-second snapshot of data collection.  

3.2. Feature Extraction and Prognostic Parameter 
Generation 

Both time and frequency domain features were extracted 
from the original data. Time-domain features were extracted 
for all variables. These features are: variance, kurtosis, mean, 
skewness, rooted mean square (RMS), and the ratio of peak 
magnitude to RMS. Variance and kurtosis of motor voltage z 
and kurtosis of motor voltage x were excluded because they 
have a few huge peaks, which affected the performance of 
later Principal Component Analysis (PCA) analysis. 

Frequency domain features were extracted for X and Y 
direction vibrational data. Given the possible bearing fault 
band, as shown in Table 4, peak tracking for these three 
frequency ranges were extracted (Barbieri et al., 2015). RMS 
of both X and Y directions on these three faulty frequency 
ranges were also calculated. Other frequency domain 
features, including peak to peak, shape factor, impulse factor, 
and margin factor, were also extracted. There are in total 97 
different features extracted from the data set; Table 5 gives a 
complete list of extracted features. 

Motor Tests to 
Failure 

Cleaned Tests to 
Failure 

1 108 102 
2 103 98 
3 110 101 
4 109 109 
5 107 102 

Table 3. Tests to failure data for each motor 

Bearing Fault Fault Frequency 
(Hz) 

Ball pass frequency of inner 
race 

325 

Ball pass frequency of outer 
race 

215 

General ball pass frequency 283 

Table 4. Bearing Fault and Corresponding Frequency 

Dimensionality reduction techniques reduce the number of 
variables and thus the complexity of the problem. Two-step 
dimensionality reduction methods were utilized in this 
research. The first step was to perform a feature Importance 
Ranking Test (IRT). Variables with high ranks can be 
retained. Feature importance is ranked by monotonicity based 
on the algorithm shown in Eq. (26) because monotonicity is 
the most intuitive feature for degradation trend. 

 
jL,klXmTno	\mTbaTp						 

=< qpT[!(Y + 1) − !(Y)]
t − 1

5"#

0(#
 

(26) 

where M is the number of measurements in a variable. The 
result of importance ranking is shown in Fig. 1. Variables 
with IRT values greater than 0.1 were retained for future 
analysis. The number of variables was reduced from 97 to 26. 

Feature Number of features 
applied 

Variance 13 (exclude variable 6 
in Table 2) 

Kurtosis 12 (exclude variable 4 
and 6 in Table 2) 

Mean 14 
Skewness 14 

RMS 14 
Peak Magnitude to RMS 14 
Peak Tracking of Faulty 

Frequency Range 
6 

RMS of Faulty Frequency 
Range 

2 

Peak to Peak 2 
Shape Factor 2 

Impulse Factor 2 

Number Variable Description 

1 Motor Current x (Amperes) 
2 Motor Current y (Amperes) 
3 Motor Current z (Amperes) 
4 Motor Voltage x (Volts) 
5 Motor Voltage y (Volts) 
6 Motor Voltage z (Volts) 
7 X Direction Accelerometer (g) 
8 Y Direction Accelerometer (g) 
9 Industrial Microphone (g) 
10 Tachometer (RPM) 
11 Speed (m/s) 
12 Output Current (Amperes) 
13 Output Voltage (Volts) 
14 Temperature (°C) 
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Margin Factor 2 

Table 5. List of features extracted for analysis 

 
Figure 1. Importance Ranking of all variables extracted 

from raw data 

The second step used PCA to reduce the dimensionality 
further. PCA is a linear technique that maps variables to a 
low-dimensional space. It is a useful procedure to reduce the 
dimensionality of collinear data without losing much 
information. The first Principal Component (PC) contains the 
maximum variance of the data set, and the next PC always 
has less variance than the preceding PC. Remaining variables 
from IRT were mapped to form PCs, and 18 PCs are retained 
that contained 90% of the variance. 

A Genetic Algorithm (GA) is a stochastic optimization 
method that has successfully been applied to generate 
prognostic parameters (Coble & Hines, 2009). A GA was 
used to construct an optimal prognostic parameter through 
the maximization of three prognostic metrics: monotonicity, 
prognosability, and trendability and prognostic parameter 
metrics score is calculated (Coble, 2010). First, a Savitzky-
Golay filter (Savitzky & Golay, 1964) was used to smooth 
the data. Finally, the output from GA was normalized 
between 0 and 1 to form the prognostic parameter. Fig. 2 
shows the prognostic parameter of 5 motors. The diagram of 
prognostic parameter generation steps can be found in Fig. 3.  

  
Figure 2. Prognostic Parameter of 5 Motors 

 
Figure 3. Steps of Prognostic Parameter Generation from 

Raw Data 

From the generated prognostic parameter, the degradation 
process starts from the beginning of the lifecycle. Different 
motors degrade at different rates from each other, but in 
general, they follow a similar degradation path. The 
prognostic parameter is not very smooth and linear, which 
makes a PF an ideal method to model this data. 

Monotonicity is the most direct and relevant metric for 
degradation of induction motors. It is expected that these 
components degrade over time and have no self-healing. The 
IRT selection phase eliminated a majority of variables that do 
not have a strong monotonic trend over time. From another 
aspect, if IRT were skipped and PCA was applied to the entire 
97 variables, the degradation-irrelevant variance would be 
taken into consideration when mapping those variables into 
PC spaces. It would not only affect the useful variance in the 
generated PCs but also force the model to contain more PCs 
to capture (potentially irrelevant) information. Table 6 shows 
a comparison of prognostic parameter metric scores with a 
few different data processing methods using the same motor 
data. It shows that combining IRT, PCA, and GA can 
generate the best prognostic parameter for the current data set 
from the choices considered. 

Data Processing 
Method 

Prognostic Parameter 
Metrics Score 

Only GA 1.35 
Only IRT and GA 2.37 
Only PCA and GA 1.65 
IRT, PCA, and GA 2.76 

Table 6. Comparison of Prognostic Parameter Metrics Score 
with Different Data Processing Methods 

Feature	
Extraction

Importance	
Ranking	Test

Principal	
Component	
Ananlysis

Genetic	
Algorithm
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4. PARTICLE FILTER MODEL FOR PROGNOSIS 

There is no well-recognized physical model to simulate a 
complex system like motors. In this research an exponential 
model is selected to model the degradation: 

 u = mexp	(−xX) (27) 

where a and b are unknown model parameters. According to 
Eq. (13), the degradation model Eq. (27) can be rewritten in 
the following recursive format: 

 !! = exp	(−x! ∙ ∆X) ∙ !!"# (28) 

In the prognostic parameter generation step, all parameters 
are normalized to have a starting point of 1, indicating the 
system is completely healthy. By assuming an arbitrary 
uncertainty, the state !$  is uniformly sampled from [0.85, 
1.15]. By roughly calculating the model parameter, it is 
around 0.013, that is in the range of [0.01, 0.02]. Then the 
parameter x$ is uniformly sampled from [0.01, 0.02].  Model 
measurement noise standard deviation s was set to be 0.1. 
Process noise &! was already incorporated in the uncertainty 
of the model parameter so that it can be ignored. The 
smoothing factor h was set to 0.2, as suggested by (J. Liu & 
West, 2001). The likelihood function of measurement, shown 
in Eq. (29), assumes that the measurement noise *!  in Eq. 
(14) is normally distributed 

 

^>(!BC!& , L!"#
& 	@ 

= 1
√2|}

o!,~−>(! − C!
&@*

2}* � 
(29) 

The number of particles was chosen to be 100,000, compared 
with other research that use 30 to 5,000 particles. 
Computational speed for multinomial, residual, and 
systematic resampling method was tested using our dataset. 
It showed that systematic resampling is around 500 times 
faster than multinomial. Systematic resampling is also 
significantly quicker than residual resampling, which is why 
a systematic resampling algorithm was used in our model. 

Models were trained for each of the five motors separately 
using a leave one out method. When one is trained, the failure 
data from the remaining four motors are used to calculate the 
failure threshold. The failure threshold was determined at the 
50th percentile among the four remaining motors’ prognostic 
parameter value at failure.   

The mean and standard deviation of the weighted particles 
were also calculated for each iteration to determine the 
simulated degradation trajectory. A 95% confidence interval 
was also calculated.  

Fig. 4 shows the predicted degradation compared with the 
actual prognostic parameter. The model was trained until the 
75th cycle. The mean of the particles in the training step, 
representing the degradation trajectory, is shown with the red 

line. The tail of the simulated curve, shown by the green line, 
is the mean of the particles in the prognosis step, representing 
the predicted degradation trajectory. The time of failure is 
achieved when the mean of the particles crossed the 
threshold, as shown by the black dashed line equal to ~0.24. 
The blue dashed lines show the 95% confidence intervals. 

 
Figure 4. Motor 2 prognostic parameter with accelerated 

degradation using APFPM 

Although the prognostic parameter is noisy and non-
monotonic, the simulated APF trajectory is much smoother. 
The particles are sparse at the beginning of the cycle, 
indicated by the broad range of 95% confidence interval. 
They are more closely clustered later on. This means that the 
resampling algorithm selects a representative population of 
particles with high probability. 

Relative accuracy (RA) is a metric to estimate the accuracy 
of RUL. It is a measure of the error in prediction relative to 
the actual value at a specific time, as shown in Eq. (30)  

 RA = 1 − B\6 − \.B\.
 (30) 

where \6 is the predicted RUL, and \. is the true RUL. The 
prediction is more accurate when RA is close to 1. 

Precision Index (PI) is another metric that can be applied to 
estimate the precision of RUL, which measures the relative 
width of prediction interval. PI can be defined with  

 PI = B\6,$.9:; − \6,$.$*;B
\6

 (31) 

where \6,$.9:; and \6,$.$*; are the upper and lower bound of 
predicted RUL’s 95% confidence interval. The prediction is 
more precious when PI is close to 0. 

In practice, it is not as important to acquire accurate RUL in 
early life as it is towards the end of life. α-λ performance 
(Saxena et al., 2010) is a binary metric that evaluates whether 
the accuracy at a specific time falls within a defined bound. 
By setting up a bound α equals to 20%, it can be determined 
if the RUL predictions fall within the bound at λ-fraction of 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

11 

the entire life. It requires the predictions to stay within a cone 
of accuracy, which is roughly loose at the beginning of life 
but more stringent as the system approaches the end of life.  

A series of simulations were performed using different 
numbers of measurements to train the model. Fig. 5 shows 
the α-λ performance of the RUL estimation of Motor 2 as an 
example case. The horizontal axis “lifetime of learning” 
indicates the percentage of measurement data in the entire life 
cycle that was used for APF training. RA and PI of all five 
motors through their fractional lifetime can be found in Fig. 
6 and Fig. 7, respectively.  

 
Figure 5. α-λ performance of RUL estimation of Motor 2 

using APFPM 

 
Figure 6. RA of all five motors 

 
Figure 7. PI of all five motors 

From Fig. 5-7, the model has an accurate prediction on Motor 
2 at the end of life. When the prognostic parameter gets noisy 
in the middle of life, the RA drops slightly but comes back to 
around one as more data are observed to reinforce the 
degradation trend. Motor 2 has a similar PI performance; it 
slightly increases with noisy measurements but it decreases 
as more measurements are available. Motor 1 has a similar 
prognostic parameter trend with Motor 2. Both prognostic 
parameters have a significant amount of noise added to the 
measurement, which causes a drop in RA and roughly high 
PI in the mid-life cycle prediction.  

The prognostic parameter for Motor 3 started to flat out in the 
middle of life cycle and showed a prolonged degradation until 
around cycle 90, followed by a dramatic decrease in value 
(Fig. 2). In the model training step, measurement after 0.80-
time index, which is approximately 80 cycles, has not been 
used to train the APF. Thus, the model could not catch this 
change. Besides, this Bayesian model is not designed to 
handle a sudden and significant change in states, which 
caused the model to have a bigger span of particle distribution 
as indicated by high PI value. 

APFPM is benchmarked with naïve PF-based prognostic 
model. In the benchmark, resampling is set to occur in each 
iteration, instead of waiting until the effective number of 
particles drop by a half. This approach ensures that both 
models resample at similar times. The naïve PF model is also 
initialized the same way as APFPM on Motor 2, without 
worrying about the auxiliary part and kernel smoothing 
technique. The naïve PF model utilized the multinomial 
resampling method, as it is the most commonly seen method 
in the literature. Both models were run fourteen times with 
different breakpoints to estimate RULs on a 2015 Macbook 
Pro with 16GB memories and 2.2GHz Quad-core Intel Core 
i7 processers. APFPM model finishes the calculation in 
19.628 seconds, while the naïve PF model took 471.036 
seconds to finish. Since 100,000 particles are used to train the 
model, APFPM is 24 times faster than naïve PF, which is 
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close to their theoretical difference: 16 times, calculated by 
their time complexity difference <(> ?@A>)<(>) .  

Fig. 8 shows the α-λ performance of RUL estimation of 
Motor 2 using naïve PF model. By comparing it with Fig. 5, 
it is clear that the naïve PF model has a bigger particle 
distribution span than APFPM in each data point. Fig. 9 and 
Fig. 10 shows the particle and parameter distribution of naïve 
PF model at cycle 20, 50 and 70, respectively. In comparison 
with APFPM, Fig. 11 and Fig. 12 shows the particle and 
parameter distribution of APFPM at cycle 20, 50, and 70, 
respectively. As the particle and parameter distribution span 
is extremely narrow at later stage, separate plots of particle 
and parameter distribution of APFPM at cycle 70 is shown in 
Fig. 13 and Fig. 14, respectively. A comparison between 
prognostic parameter with simulated degradation of naïve PF 
model is shown in Fig. 15 using the first 70 measurements as 
training data. 

 
Figure 8. α-λ performance of RUL estimation of Motor 2 

using PF 

 

 
Figure 9. Particle distribution of naïve PF model at 20th, 

50th, and 70th cycle 

 

 
Figure 10. Parameter distribution of naïve PF model at 20th, 

50th, and 70th cycle 

  
Figure 11. Particle distribution of APFPM model at 20th, 

50th, and 70th cycle 

 

 
Figure 12. Parameter distribution of APFPM model at 20th, 

50th, and 70th cycle 
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Figure 13. Particle distribution of APFPM at 70th cycle 

 
Figure 14. Parameter distribution of APFPM at 70th cycle 

 

 
Figure 15. Motor 2 prognostic parameter with accelerated 

degradation using naïve PF 

 

The particle distribution span decreases over time as more 
data are trained by both models. In naïve PF, the parameter is 

resampled when particles are resampled, based on ,((!|!!) ). 
However, a high ,((!|!!) )  does not guarantee a more 
accurate model parameter. Thus the selection of the model 
parameter is rather random, causing the distribution to be not 
ideally normal.  

In comparison, the parameter distribution of APFPM is 
strictly normal and resampled using a kernel smoothing 
method to avoid deviation from the mean value. This 
algorithm guarantees the parameter and particle to be 
constrained in a tighter distribution. It is why the APFPM has 
a smaller 95% confidence interval of particles at each 
datapoint, seen by comparing the confidence intervals in Fig. 
4 and Fig. 15. 

The benchmark result also indicates that naïve PF model is 
more sensitive to a sudden change in the data, while APFPM 
is more robust to such changes. Following a rapid drop in the 
measurement data after the 35th cycle, the trend of naïve PF 
is dragged downward and predicts an early failure even with 
very good model initialization. This makes naïve PF model 
more sensitive to noise, and it is easy for naïve PF model to 
pick up measurement noise and cause overfitting. 
Conversely, APFPM requires a good initialization and it 
takes more iterations to correct itself if there is a change in 
the process. Thus APFPM is more suitable for situations that 
have noisier measurement data, smaller time steps, or the 
process is unlikely to change very often.  

5. CONCLUSION 

This paper introduced an auxiliary particle filter-based 
prognostic framework, APFPM. This APF model can 
estimate both unknown states and parameters at the same 
time using a large number of particles. This method is 
demonstrated using a dataset obtained from an accelerated 
motor degradation experiment. 

Preprocessing of motor degradation data allows it to fuse raw 
experimental data into prognostic parameters. This paper 
introduced a data fusion method that combines IRT, PCA, 
and GA algorithms from a set of features extracted from the 
original data. It proves that the combination of these three 
algorithms generates prognostic parameter with highest score 
in monotonicity, prognosability, and trendability. 

APFPM learns the degradation pattern using a prognostic 
parameter and further estimates the RUL by extrapolating the 
degradation curve until it crosses a predefined failure 
threshold. The results showed that this model could 
accurately predict the RUL.  

The initialization step of APFPM requires particles and 
parameters to be set in a range. By learning the degradation 
curve, the particles and parameters can automatically adjust 
themselves to fit the curve using SIR. The kernel smoothing 
method is applied in sampling parameters to ensure the newly 
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sampled parameters are close to their mean. It does not result 
in the increase of particle covariance.  

Different resampling methods are compared based on the 
time complexity and the resampling performance of both 
particles with big weights and particles with reasonably big 
weights. The systematic resampling method is favored 
because of its low computational time complexity, which is 
extremely important in particle filter-based simulations. The 
systematic resampling method also has good performance on 
resampling particles with different weights.  

A benchmarking between naïve PF-based prognostic model 
and APFPM is conducted and the use case of two models are 
discussed. Although APFPM requires an auxiliary step in 
each iteration, it is still significantly faster than naïve PF 
because systematic resampling method is deployed. The 
particles in APFPM are more concentrated in the distribution 
than naïve PF and the distribution of particle parameters is 
guaranteed to be normal. APFPM is not sensitive to noise in 
the prognostic parameter, which makes it more suitable for 
systems with more measurements and is unlikely to change 
much. 
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