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ABSTRACT 

This study presents a novel method for fault diagnosis of a 
hydrostatic rock drill. Hydraulic rock drills suffer from both 
domain discrepancy issues that arise due to their harsh 
working environment and indivisible difference. As a result, 
fault diagnosis is very challenging. To overcome these 
problems, we propose a novel diagnosis method that 
combines both data-driven and signal-process-based 
methods. In the proposed approach, data-driven methods are 
employed for overall fault classification, using domain 
adaptation, metric learning, and pseudo-label-based deep 
learning methods. Next, a signal-process-based method is 
used to diagnose the specific fault by generating a reference 
signal. Using the combined approach, the fault-diagnosis 
performance was 100%; the proposed method was able to 
perform well even in cases with domain discrepancy. 
 

1. INTRODUCTION 

A hydraulic rock drill (HRD) is a core component that is 
widely used in the mining, tunneling, and building industries. 
Such mechanical systems frequently work under harsh 
environmental conditions. A harsh environment is 
characterized by severe vibration, high humidity, and 
temperature variation; these issues cause diverse fault modes, 

including those of a missing seal and damage to a valve. As 
HRD faults cause huge economic and human costs due to 
work interruption, accurate fault diagnosis of HRDs is critical 
in real industrial fields.  

To solve this problem, various fault-diagnosis studies have 
been conducted on HRDs. Previously proposed approaches 
can be largely divided into two methods: deep-learning-based 
methods and signal-processing-based methods. For signal-
processing methods, first, features are extracted, and the 
pressure drop is studied to specifically capture the effect of 
accumulator performance (Erik, 2021). This feature is 
calculated as the slope of a straight line that is fit according 
to the physics equation. Prior research has confirmed that this 
feature is robust and allows accurate diagnosis of a pressure 
‘C’ fault, which does not overlap with other faults in its 
distribution. This method has the advantage of being highly 
accurate and robust for a specific fault. However, a 
comprehensive diagnosis method that is useful for diagnosis 
of each fault mode remains to be developed, as it is a time-
consuming and laborious task. 

As a deep-learning-based method, a purely 1D-CNN deep-
learning model that does not need feature engineering to 
diagnose the faults of a rock drill has been proposed (Senjoba, 
2021). Compared to the signal-processing method, the deep-
learning algorithm does not require expert knowledge and 
can perform well in multi-class fault diagnosis. However, its 
performance sharply decreases when the fault-diagnosis 
domain changes. For example, differences in the 
characteristics between different machines can cause changes 
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in the data distribution, which can make fault diagnosis 
difficult. 

To overcome the limitations mentioned above, various 
studies have been conducted in industrial fields to attempt to 
identify more robust solutions. Existing approaches can be 
divided into three methods: domain adaptation, the pseudo-
label technique, and metric learning. Developed a multi-
adversarial learning strategy for different bearing datasets to 
obtain feature representations that are invariant to the 
multiple domain shifts. Song et al. introduced a retraining 
strategy with a weighted pseudo-label technique that is able 
to adapt to the test dataset; this approach was verified on 
bearing datasets. 

With this context, the main contributions of this paper are as 
follows. 

1) To the best of our knowledge, this research is the first 
study to increase the generalized performance of rock 
drill fault diagnosis in a situation studying many 
different devices.  

2) The proposed approach improves generalized 
diagnostic performance using domain adaptation. 

3) Ensemble deep-learning models are proposed to 
increase diagnostic reliability. 

4) Faults that are difficult to diagnose through deep-
learning are supplemented by a fault-specific signal 
processing-based method, leveraging the strengths of 
each approach. 

2. BACKGROUND 

This section introduces the deep-learning-based and signal-
processing-based techniques that are used in the proposed 
method. The concepts and usage of each technique are 
summarized.  

2.1. Deep learning-based technique 

The deep-learning-based techniques used in the proposed 
method consist of depth-wise convolution, domain 
adaptation, metric learning, and a pseudo-label technique.  

2.1.1. Depth-wise convolution 

In contrast to conventional convolution operation, depth-wise 
convolution can extract unique features from each input 
channel. In particular, for a situation like this dataset that uses 
different sensors, a feature extractor for each sensor can 
extract sensor-specific information better than would be 
possible through general convolution. In addition, since 
convolution is carried out in a divided manner, the number of 
parameters can be reduced, as compared to general 
convolution. This may help prevent overfitting.  

2.1.2. Domain adaptation  

In industrial sites, working conditions change constantly due 
to differences between users and devices; thus, there will 
always be discrepancies between the training and testing 
datasets. For this reason, it is impossible to diagnose a fault 
through the use of a general supervised learning technique. 
Many studies have been proposed to attempt to solve this 
problem by introducing domain adaptation (DA). 

Li et al. (2021) proposed a deep CORAL method that was 
combined with CNN to deal with bearing fault diagnosis in 
several load torque conditions. Li et al.’s  method extracted 
the fault feature using CNN and was more adaptive to diverse 
load torque conditions through its use of the deep CORAL 
approach. In other work, Mao et al. (2020) added loss 
functions (e.g., discriminative loss with maximum 
correlation entropy and a loss function that constrains the 
relatedness matrix L such that it is symmetric to the Domain 
Adversarial Neural Network (DANN)) to consider more 
information about the target domain. As a result, Mao et al.’s 
proposed method can effectively use DANN to extract 
domain-invariant features of a bearing under different 
working conditions.  

For all DA methods described above, since learning is 
conducted with consideration of the target domain, the deep-
learning model can be adapted even if data distribution occurs 
due to changes in working conditions or as a result of 
environmental changes. 

2.1.3. Metric learning 

Metric learning means learning the distance between input 
data. In the process of learning embedding through similarity, 
there is an assumption that the process of identifying the 
similarity between data is to understand the input data well, 
that the purpose of the deep-learning model’s learning is to 
understand the similarity between the data, and that this 
approach is an effective way to directly learn the similarity. 

Wang et al. (2021) proposed a metric-learning model for 
imbalanced situations, for example, when the difference in 
the number of samples in each class is large. Wang et al.’s  
method enlarges the inter-class margin and compresses the 
intra-class angle distribution. This kind of metric-learning-
based model can learn the relationship between each fault 
easily in conditions of imbalanced fault data. 

2.1.4. Pseudo label technique 

The pseudo-label technique aims to help deep-learning 
models learn wider data distribution by imposing labels on 
the unlabeled data (Lee, 2013). These models can learn 
features from pseudo-labeled data by incorporating them into 
the training data. The general form of the objective function 
with pseudo-label loss integrated is as follows:  
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where Lt is cross-entropy loss based on the ground truth label, 
and Lp is the loss based on the pseudo label. n and C refer to 
the number of data and classes. y and f are a ground truth 
label and a model prediction of the labeled data. y’ and f’ 
refers to the pseudo label and the model prediction of the 
unlabeled data, respectively. α is a constraint term that 
determines the extent to where which the pseudo label loss is 
used. 

Recently, pseudo-label-based methods have been widely 
developed and have shown promising performance in diverse 
industrial fields. As unlabeled data is abundant in real 
industrial fields, in contrast to labeled data, the need for using 
the information from unlabeled data is significant. A bin 
pseudo label learning method was recently developed to 
reduce the distribution discrepancy between the source and 
target domains in bearing fault diagnosis (Yang et al, 2020). 
Other work introduced a pseudo-label-based retraining 
method, where the weights of each loss term are balanced; 
this approach was introduced to reduce the effect of noisy 
data to increase the generalization performance (Yan et al, 
2019). 

2.2. Signal processing-based technique 

2.2.1. Dynamic Time Warping 

Dynamic Time Warping (DTW) is an optimization algorithm 
to align two signals (Sakoe and Chiba, 1978). The DTW 
approach extends or contracts the signal nonlinearly to find 
the warping path that minimizes the difference between two 
signals in time series. The warping path can be acquired by 
computing the cumulative distance matrix(𝛄) as follows. 

      γ(i, j) = d(𝑎𝑖, 𝑏𝑗) + 
                        mi n{γ(i − 1, j − 1), γ(i − 1, j), γ(i, j − 1)}              (1) 

where 𝑎 and 𝑏 are the signals in time series and d(, ) is one 
of the distance metrics, including Euclidean distance and 
magnitude of difference.  

The main advantage of DTW is that it makes two signals 
become similar shapes, although they have differences in 
terms of shifting and scaling (Cassisi, 2012). Further, DTW 
can also cope with different signal lengths. However, DTW 
can’t be used as a metric because it does not follow the 
triangle inequality. 

2.2.2. Cross-correlation 

Cross-correlation measures the similarity between one signal 
and a lagged signal. The cross-correlation definition is as 
follows. 

𝒓𝒂𝒃(𝒍) = ∑ (𝒂𝒊−𝒎𝒂)(𝒃𝒊−𝒍−𝒎𝒃)𝒏
𝒊=𝟏

√∑ (𝒂𝒊−𝒎𝒂)𝟐𝒏
𝒊=𝟏 √∑ (𝒃𝒊−𝒍−𝒎𝒃)𝟐𝒏

𝒊=𝟏

               (2)  

where 𝒎𝒂  and 𝒎𝒃  are the means, and 𝒍 is a time lag. The 
correlation 𝒓𝒂𝒃(𝒍)  gives the degree of linear dependence 
between two signals, from -1 to 1[10]. 

3. PROPOSED METHOD 

This section introduces the proposed method, which is 
divided into both deep-learning-based and signal processing-
based methods, as shown in Figure 1.  Figure 1 provides a 
flow chart of the proposed algorithm. The overall fault is 
diagnosed through a deep-learning algorithm, and samples 
that are difficult to diagnose through deep learning are 
diagnosed through a signal processing step. 

(3)  

3.1. Deep-learning-based method of the proposed 
approach 

First, in order to be used for deep learning, the length of all 
input data must be constant. However, the length of the 
acquired data is different in most real-world settings because 
the operation time and users are different for each device. To 
address this issue, the slicing method was used. The data 
length was unified and cut to 557,  the minimum length of the 
entire dataset. This strategy was largely implemented on three 
grounds. First, the accuracy when the data length was sliced 
from 0 to 556 was better than when sliced to 557 from the 
back and learned with resampled data. Second, for fault 
classes that are difficult to classify with deep learning, this 
was not a problem for the overall classification work because 
the data that contains the important information is in the 280-
370 section. 

After data preprocessing, each feature was extracted for three 
sensor data through a depth-wise-based encoder. The 
proposed depth-wise CNN is composed of multi-scale 
kernels. Since the area that can be convolved varies for each 
kernel size, the characteristics of the extracted features are 
also different. Consequently, this method of convolution is 
advantageous in the task of classifying many fault classes. 
During the training of the model, a slight difference in 
distribution may occur even in the same fault class, due to 
differences in the device; thus, metric learning was 
introduced to provide robust feature learning for multiple 
fault classifications. To this end, a special dataloader was 
used, and positive samples were randomly extracted from 
among classes, such as anchor samples, which can be a 
standard; negative samples randomly extracted from among 
other classes were learned at the same time. The special 
dataloader was calculated using the triplet loss function of the 
Euclidean-based loss function, combined with the margin so 
that the anchor and the positive could be close to each other 
and so that the anchor and negative could be pushed out of 

𝐿𝑜𝑠𝑠𝑇𝑜𝑡𝑎𝑙 = 𝐿𝑜𝑠𝑠𝐶𝑙𝑎𝑠𝑠 + 𝐿𝑜𝑠𝑠𝑡𝑟𝑖𝑝𝑙𝑒𝑡 + 
                    𝐿𝑜𝑠𝑠𝐶𝑂𝑅𝐴𝐿 + 𝐿𝑜𝑠𝑠𝑝𝑠𝑒𝑢𝑑𝑜 
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each other. Triplet loss was applied to a feature space 
consisting of 30 channels and the value was learned by 
backpropagating. 

In addition, domain discrepancy occurs because each device 
is different. The coral loss was introduced in the proposed 
approach to reduce the effects of domain discrepancy. This 
domain adaptation approach was applied to the vector 
extracted through the global average pooling from among the 
classifier parts. Through this method, domain discrepancy 
can be reduced through a process of aligning the covariance 
of both the six training domains and the test domain. 

Finally, a pseudo-labeling process was added to learn the 
information in the test dataset. The test dataset was evaluated 
with a model that learned from the training dataset, a pseudo 
label was given, and then the pseudo-labeled test dataset was 

retrained. This process updates the pseudo label and loss 
backpropagation for every 50th batch of the epoch. 

The final best model can be obtained through this procedure. 
In the case of the total loss function, the model is learned by 
configuring it, as shown in the following equation. 

The best model created was thus obtained, and to further 
compare the results, six models consisting of ablation models, 
additional models with attention, and serresnet were 
ensembled. Hard voting was used as the ensemble method, 
and the results obtained through this and the results obtained 
through the best model were compared. Most of the classes 
were well classified; however, the unmatched samples were 
extracted. In the independent seven dataset, classes 1 and 5 
and classes 4 and 7 were partially different than the 
independent 8 dataset, so a specific signal-processing method 
was introduced in these four classes. 

 
Figure 1. Flow chart of the proposed method 
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Figure 2. Framework of proposed method 

 



International Journal of Prognostics and Health Management, ISSN 2153-2648, 2023 6 

3.2. Signal processing-based diagnosis 

3.2.1. Reference signal generation 

Because all of the data, including the reference signals in the 
dataset, are not aligned and have different lengths, they need 
to be aligned. For that purpose, first, we generate three global 
reference signals (pin, pdin, pout) by using DTW and cross-
correlation; these signals are used to align the whole dataset. 
The reference data are resampled into 748 samples. Then, 
using DTW, we align the reference signals from the same 
individual signal. To make a representative reference signal 
for each individual signal, we averaged the aligned signals. 
After acquiring the averaged reference signals from each 
individual signal, cross-correlation is used to align them. 
Finally, the signals that result from the cross-correlation are 
averaged to obtain three global reference signals that 
represent all of the individual reference signals. 

 

3.2.2. Signal alignment and section selection  

Before aligning, data are also resampled to have 748 samples 
per cycle. Then, cross-correlation is used to align the data by 
using the global reference signals, regardless of the individual 
signal. After aligning all the data, sections are selected at each 
pin, pdin, pout signal to capture the fault-specific features in 
this section. This section can be generalized into total data, 
due to the aligning procedure.  

3.2.3.  Feature Extraction 

In the proposed method, three kinds of feature extraction 
methods are used in total. The statistical features are RMS, 
variance, and kurtosis, each of which is used to measure the 
energy, overall slope, and peakedness of the data.  

• Statistical features from the aligned signals, 
• Statistical features from the selected sections, 
• Time lag value used in signal alignment. 

For 1, the features are extracted to consider the statistical 
properties using the whole signal. For 2, which involves a 
deep investigation of the fault-specific features, selected 
sections are also used to extract the features. Finally, the time 
lags are used to consider the faults that are closely related to 
the time-domain delay. 

 

 

3.2.4. Support Vector Machine 

Support Vector Machine (SVM) is the supervised machine-
learning model used for the classification problems. The 
hyperplane equation that divides the data points is as follows. 

𝑓(𝑥) = 𝑤𝑇x + b = ∑ 𝑤𝑗𝑥𝑗 + 𝑏 = 0𝑀
𝑗=1         (4) 

where the vector 𝐰 is an M-dimensional vector and 𝒃 is a 
bias term. To find the optimal hyperplane with slack 
variables, the following optimization problem is solved. 
 

Table 1. HRD fault modes 
Label Letter Description 

1 NF No-fault 

2 T Thicker drill steel 

3 A A-seal missing. Leakage from high pressure channel to control channel 

4 B B-seal missing. Leakage from the control channel to the return channel 

5 R Return accumulator, damaged 

6 S Longer drill steel 

7 D Damper orifice is larger than usual 

8 Q Low flow to the damper circuit 

9 V Valve damage. A small wear-flat on one of the valves lands 

10 O Orifice on the control line outlet is larger than usual. 

11 C The charge level in high pressure accumulator is low 
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        minimize 1
2

‖𝑤‖2 + 𝐶 ∑ 𝜉𝑖
𝑀
𝑖=1                (5) 

           s. t.  𝑦𝑖(𝑤𝑇xi + 𝑏) ≥ 1 − 𝜉𝑖,   𝑖 = 1, ⋯ , 𝑀         (6) 

where 𝝃𝒊 measures the distance between the margin and the 
data 𝐱𝐢 which are placed on the wrong side. 

4. RESULTS 

4.1. Problem Description 

4.1.1. Problem definition: Hydraulic rock drill fault 

In the 2022 PHM Data Challenge, we participated with the 
goal of classifying the fault of the Hydraulic Rock Drill. Our 
goal is to classify 11 classes, including ten faults of HDR and 
normal state. Labels 2 to 11 were assigned to 10 types of 
faults, and label one was assigned to the normal state. The ten 
faults are shown in Table 1.  

4.1.2. Data description: Data size, number of individuals 

The data used to solve the 11 classification problems are 
the training data obtained from five individuals and the 
validation data obtained from 1 individual. Using the data 
obtained from a total of 6 people, separate labels were 
assigned from individual 1 to individual 6. Individuals 1, 2, 
4, 5, and 6 were used as the training data, and individual 3 
was used as the validation data. There was a difference in the 
data length for each individual; the size of the data acquired 
from each individual is as shown in Table 2. 

Also, the data acquired from each individual consists of data 
obtained from three types of sensors. Pressure measurement 
was performed on sensors attached to different locations, and 
the data acquired from each sensor were named “pin”, “pdin”, 
and “po”. “Pin” was obtained from the inlet fitting as the 
percussion pressure and “pdin” was measured in the outer 
chamber as the damper pressure. Finally, “po” is the pressure 
measured near the piston.  

In summary, to train the classification model, data from six 
different individuals were used, with three types of data from 
each individual, giving a total of 18 types of data.  

4.1.3. Scoring metric: Accuracy 

To measure the performance of the algorithm, accuracy was 
used as a scoring metric. The algorithm was made to solve 11 
classification problems, and the accuracy was calculated by 
comparing the predicted value with the actual value. To 
maximize the accuracy, the predicted fault mode was set to 
be the same as the actual fault mode. 

4.2. Deep learning-based diagnosis 

This section aims to show the diagnostic performance of the 
deep-learning method, from among the proposed methods. 
Figure 3 shows the overall diagnostic performance of each 
model. Three studies were conducted to show the 
performance of the proposed deep-learning algorithm. The 
first is a comparison with conventional methods for the 
classification tasks; the results of this performance 
comparison are summarized in Table 3. The second was the 
ablation study of the proposed method, which was 
implemented to understand the effect on the results of each 
step. The third is the extraction of unmatched samples by 
comparing the results with the ensemble-based method to 
determine which sample to use in the fault-specific signal 
process method. 

In the first study, the performance of the proposed method 
was verified by comparing it with other existing methods. 
The first method is basic 1d CNN. This model evaluates the 
test dataset by learning only from information from 
individuals 1 to 6, without using any data from the target 
domain. The second model is a multi-kernel-based 1d CNN. 
This algorithm is advantageous for classification tasks of 
many classes because it can extract multiple pieces of 
information from the data using various kernels. For the third 
model, an algorithm was constructed by considering the 
information from the target domain. The third model used the 
maximum mean discrepancy (MMD), which reduces the 
distance between the two domains through a kernel-based 
approach. The fourth model used was the Deep CORAL 
model, which aligns the covariance of the source domain and 

Table 2. Data descriptions 
 

Individual Data type Data Length 
Individual 1 Training 7311 
Individual 2 Training 7867 
Individual 3 Validation 3184 
Individual 4 Training 7597 
Individual 5 Training 7977 
Individual 6 Training 3293 
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the target domain. The fifth model used the metric learning 
to consider the relationship between each fault condition. 

Compared to these methods, the proposed method performed 
overwhelmingly well for both the individual 7 dataset and the 
individual 8 dataset. This method was able to show excellent 
performance because it reduced the domain discrepancy, 
while considering the relationship between each class. In 
addition, as shown in Table 3, it was confirmed that the 
performance increased dramatically when domain adaptation 
was used. Although the proposed approach shows 
sufficiently high performance already, it is possible to record 
100% performance because the metric learning enables more 
robust feature learning and uses a pseudo-label approach to 
more actively utilize information in the target domain. 

4.3. Signal processing-based diagnosis performance 

As mentioned in the introduction, the signal-processing-
based method was used to classify the confused fault modes, 
which are 1 & 5, 4 & 7. For these classes, 280~370, 365~415 
from the Pout signal and 115~195, 270~330 from the Pdin 
signal were chosen as the sections. Then all features were 
used in the SVM to classify the fault modes. To show how 
the features work, the following figures are provided. Figure 
3(a) shows the slope difference clearly between class 1 and 
class 5 for the 280~370 samples in the Pout signal. Further, 
Figure 3(b) shows a clear difference in the variance 
distribution for classes 1 & 5. In Figure 4(a), it is hard to see 
the difference between those two Pin signals at a glance. 
However, Figure 4(b) shows the distributions separately 
expressed by RMS and kurtosis, which used aligned signals 
for classes 4 & 7.   

After extracting all features, SVM was trained using the 
training data. In this method, all the datasets from individuals 
1~6 and the confident data (not-confused) from individuals 7 
and 8 was used to train the SVM model.  

 

(a) 

 

(b) 

Figure 3. (a) Slope difference between classes 1 & 5 at 
the 280 to 370 samples in the Pout signal, (b) Clearly 

separated distributions of variance for the selected section 

 

(a) 

 

(b) 

Figure 4. (a) The aligned Pin signals  (b) Clearly 
separated distributions with RMS and kurtosis features 

Thus, the signal-processing-based method was able to 
make a perfect decision as to which fault mode was correct 
for the confusing data.  

5. CONCLUSION 

This paper outlines our proposed method to diagnose the 
failure of a hydraulic rock drill. To solve 11 classification 
problems, we proposed a hybrid of both deep-learning and 
signal-processing techniques to maximize the overall 
algorithm's performance. 

Table 3. Diagnosis Performance 
Methods Model 1 Model 2 Model 3-1 Model 3-2 Model 4 Proposed Method 

Deep Learning 
Model CNN Multi-kernel CNN Multi-kernel CNN Multi-kernel CNN Multi-kernel CNN Multi-kernel CNN 

Domain 
Adaptation X X MMD Deep CORAL Deep CORAL Deep CORAL 

Metric 
Learning X X X X Triplet Triplet 

Pseudo 
Label X X X X X O 

Individual 7 
Accuracy (%) 98.79 98.88 99.22 99.86 99.87 100 

Individual 8 
Accuracy (%) 86.14 89.53 96.14 99.35 99.46 100 
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The first step for the deep-learning method is feature 
extraction using a depth-wise-based encoder in the deep-
learning model. In this case, a Euclidean-based loss function 
using triplet loss was used as the loss function. Also, for this 
data, since there is a domain discrepancy between the 
individuals’ datasets, a coral loss is used to reduce the domain 
discrepancy. Finally, through a pseudo-labeling process, we 
used the test dataset information for algorithm learning to 
build a deep-learning model.  

We also proposed to increase the accuracy by applying an 
ensemble-based voting mechanism to the failure mode 
predicted by the deep-learning model. Via the voting 
mechanism, we extracted data that predicted a different fault 
mode from the best model and applied a signal-processing-
based diagnostic model to the data. In the signal-processing-
based diagnostic model, we checked the failure mode by 
comparing it with the aligned dataset through DTW and 
cross-correlation. Further, if there were data that had not been 
clearly classified, the failure mode for those data was 
determined through the SVM algorithm, using statistical 
features. 

The results show that our hybrid algorithm achieves high 
accuracy of 100% in HRD fault diagnosis. In future work, 
hyperparameter optimization will be performed to make the 
hybrid algorithm robust for particular real-world 
circumstances. Moreover, a resampling method will be 
implemented to avoid losing information. 
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