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ABSTRACT 

Data-driven fault diagnosis is an essential technology for the 
safety and maintenance of rock drills. However, since the 
signals acquired from a rock drill have different distributions, 
which arise due to their variable operating conditions, the 
classification performance of any data-driven method is 
diminished; this is called the domain-shift issue. This paper 
proposes a new domain-adaptation-based fault diagnosis 
scheme to solve the domain-shift problem. The proposed 
method introduces a data-cropping technique to mitigate the 
difference in the length of the data measured from a rock drill 
for each impact cycle. To extract invariant features for all 
operating conditions, the proposed method combines two 
methods: a domain adversarial neural network and 
minimization of the maximum mean discrepancy (MMD) 
between the features from different domains. In addition, a 
soft voting ensemble is used to reduce the model uncertainty. 
The proposed method shows superior performance when 
validated with a rock drill dataset; the proposed approach was 
ranked in 2nd place in the 2022 PHM Conference Data 
Challenge. 

1. INTRODUCTION 

A rock drill operates under harsh environmental conditions 
that include vibration and moisture (Erik, Erik, Mattias, & 
Robert, 2021). Operating a rock drill under these harsh 
conditions makes it vulnerable to various uncertainties that 
might be detrimental to the health state of the machinery. 
Therefore, diagnosing the health condition of a rock drill is 
very important for safety and maintenance. Recent advances 

in sensor technology have made it possible to obtain vast 
amounts of data. Deep-learning-based fault diagnosis using 
the large amount of data available for various mechanical 
systems is widely investigated. Li, Chow, Tipsuwan, and 
Hung (2006) proposed a neural network that uses frequency 
characteristic features to diagnose bearings in a motor. In 
other work, Guo, Chen, and Shen (2016) proposed a 
hierarchical adaptive deep convolutional neural network 
(ADCNN) to classify bearing faults. ADCNN achieved high 
accuracy through automatic feature extraction. 

Although deep-learning-based fault-diagnosis approaches 
show excellent performance, the previously proposed 
algorithms assume that the training data and the test data 
share the same distribution. However, mechanical systems 
that operate in real industrial fields do not satisfy this 
assumption. When the operating conditions change, the data 
distributions also change considerably; this is called the 
domain-shift issue. In an effort to minimize the large domain 
shift observed in real-world settings, adversarial learning has 
been adopted; this approach was initially developed in the 
computer vision field (Ganin, Ustinova, Ajakan, Germain, 
Larochelle, Laviolette, Marchand, & Lempitsky, 2016). Fault 
diagnosis through adversarial learning has been widely 
studied as a way to handle the large domain-shift problem. 
Jiao, Zhao, and Lin (2019) proposed an adversarial 
adaptation network based on classifier discrepancy (AACD) 
to diagnose planetary gearboxes. Guo, Lei, Xing, Tan, and Li 
(2018) developed a deep convolutional transfer learning 
network (DCTLN). DCTLN allows learning of domain-
invariant features using a domain adversarial neural network 
and maximum mean discrepancy (MMD). 

In this paper, we propose a new fault-diagnosis algorithm to 
solve the domain-shift problem of a rock drill that operates 
under variable operating conditions. The proposed method 
introduces a data-cropping technique to mitigate the issue 
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that arises because the length of each dataset is different. In 
addition, the proposed algorithm uses an adversarial learning 
approach to extract domain-invariant features and metric 
learning to reduce the distribution discrepancy. 

The main contributions of the proposed method are as 
follows: 

1. The proposed method developed a data-cropping 
preprocessing technique using physical knowledge of a 
hydraulic rock drill. 

2. The proposed method performs multi-source domain 
adaptation by combining the existing MMD loss and 
adversarial loss. 

3. The proposed model can reduce the uncertainty in the 
classification by using the soft voting ensemble technique. 

The rest of this paper is organized as follows. In Section 2, 
we introduce the problem to be solved. The proposed method 
is explained in detail in Section 3; the verification results are 
presented in Section 4. Finally, the conclusion is summarized 
in Section 5. 

2. PROBLEM DESCRIPTION 

The proposed algorithm in this paper was developed for the 
2022 PHM Conference Data Challenge. The problems and 
datasets described in Section 2 are the same as those 
introduced in the description of the data challenge. 

2.1. Data Description 

The data used in the algorithm were obtained through a 
testbed experiment in a laboratory environment. Data was 
measured by attaching a total of three sensors (pin, pdin, po); 
the sampling frequency of the sensors was 50 [kHz]. A 
description of each sensor is shown in Table 1. There are 
eleven conditions, including one normal condition and ten 
fault conditions. The definition of each health condition is 
shown in Table 2. The locations of the sensors and the faults 
are described in Figure 1. All data are divided into impact 
cycle units and are normalized for each impact cycle. 

 

Sensor Sampling Description 
pin 50kHz Percussion pressure at inlet fitting 
pdin 50kHz Damper pressure inside the outer chamber 
po 50kHz Pressure in the volume behind the piston 

Table 1. Pressure sensor names and descriptions. 
 

Label Letter Description 
1 NF No-fault 
2 T Thicker drill steel 

3 A A-seal missing. Leakage from high pressure 
channel to control channel. 

4 B B-seal missing. Leakage from control channel to 
return channel. 

5 R Return accumulator, damaged 
6 S Longer drill steel 
7 D Damper orifice is larger than usual 
8 Q Low flow to the damper circuit 

9 V Valve damage. A small wear-flat on one of the 
valve lands. 

10 O Orifice on control line outlet larger than usual 
11 C Charge level in high-pressure accumulator is low 

Table 2. Fault class of the rock drill dataset. 
 

2.2. Problem Definition 

 

The total dataset incudes data measured under eight different 
operating conditions; these data are expressed as individual 
datasets. The number of samples in each individual dataset is 
shown in Figure 2. Each individual dataset has a different 
number of data, and the number of conditions for each 
individual dataset is similar but slightly different. Datasets 1, 
2, 4, 5, and 6 are used as the training dataset, and sets 3, 7, 
and 8 are unlabeled data; they are utilized for the validation 
and test data. We define the training dataset as source data 
𝒟𝑠 = {𝜒𝑠, 𝑦𝑠} and the validation/test dataset as target data 
𝒟𝑡 = {𝜒𝑡}. Each dataset has a different impact cycle; the data 
contains a total of eleven conditions, including one normal 
and ten fault conditions. 

 
Figure 1. Locations of the sensors and faults. 

 
Figure 2. The number of samples in each individual 

dataset. 
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Accuracy is used as the evaluation metric. The mathematical 
definition of accuracy is as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 
 

(1) 

𝑇𝑃: 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝑇𝑁: 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

𝐹𝑃: 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝐹𝑁: 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

3. PROPOSED METHOD 

 The proposed method is described in this section. 
Considering that a rock drill operates under various operating 
conditions, a new fault-diagnosis approach is proposed in this 
work to decrease the domain discrepancy that arises in 
varying conditions. Figure 3 shows the overall configuration 
of the proposed method. First, a data cropping technique is 
employed to mitigate the issue of the different lengths of the 
impact cycle of the rock drill. The proposed algorithm uses 
an adversarial learning scheme to extract domain-invariant 
features and MMD to reduce the distribution discrepancy. 
The loss function of the proposed method consists of three 
loss terms: task classification loss (ℒ𝑦), domain classification 
loss ( ℒ𝐷 ), and MMD loss ( ℒ𝑀𝑀𝐷 ). The proposed loss 
function is defined as follows: 

ℒ = ℒ𝑦 +  𝛼ℒ𝐷 + 𝛽ℒ𝑀𝑀𝐷 (2) 

where 𝛼  is the penalty parameters for the domain 
classification loss function, and 𝛽 is the penalty parameters 
for the MMD loss function. 

3.1. Data Preprocessing 

Figure 4 presents one impact cycle for the normal condition. 
The impact cycle shows different patterns in the first, middle, 
and last three parts. In a hydraulic rock drill, three processes 
of rearward acceleration, retardation, and forward 
acceleration occur sequentially during one impulse. Forward 
acceleration occurs at the beginning of the data, retardation 
occurs at the middle, and forward acceleration occurs at the 
end (Erik, Erik, Mattias, & Robert, 2021). Thus, the proposed 
method cropped the three parts to include the physical 
knowledge of the hydraulic rock drill. The maximum length 
is 900 and we set the size of each part as 300 to use all data 
points. Since it has three sensors, preprocessing is performed 
for each sensor. Therefore, as described in Figure 5, the 
dimension of the data becomes [3,3,300] for one impact 
cycle. The proposed method employs a convolutional neural 
network (CNN) as a feature extractor (FE) and the channel is 
determined according to the number of sensors. In addition, 

 
Figure 3. Configuration of the proposed method. 
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the number of extractors is determined by the number of 
preprocessed crops. Since the proposed method consists of 
the first, center, and last parts, three extractors are used. 
Therefore, each extractor selects an important feature, 
according to the location of the data point. 

 

 
Figure 4. Data preprocessing of the proposed method. 

 

 
Figure 5. The input data of the proposed method. 

3.2. Domain Adversarial Neural Network 

An adversarial learning scheme is proposed for a generative 
adversarial network (GANs). It is graphically described in 
Figure 6. In the figure, green denotes backpropagation with a 
negative value, and red indicates backpropagation with a 
positive value. The scheme makes the generator and the 
discriminator compete with each other. Inspired by this, a 
domain adversarial neural network (DAAN) is used, in which 
the adversarial learning method confuses source data (𝒟𝑠) 
and target data (𝒟𝑡 ) for the extractor to extract domain-
invariant features. The loss function of DANN is defined as: 

ℒ𝐷𝐴𝑁𝑁  = ℒ𝑦 +  𝛼ℒ𝐷 (3) 

ℒ𝑦 = −
1

𝑚𝑆 ∑ 𝑦𝑖  𝑙𝑜𝑔 �̂�
𝑚𝑆

𝑖=1
 (4) 

ℒ𝐷 = −
1

𝑚𝑆 + 𝑚𝑇 ∑ 𝑑𝑖 𝑙𝑜𝑔 �̂�
𝑚𝑆+𝑚𝑇

𝑖=1
 (5) 

where 𝑚𝑆  is the number of the source domains, 𝑚𝑇  is the 
number of the target domain, 𝑦  is the class label, �̂�  is the 
predicted class label, 𝑑  is the domain label, and �̂�  is the 
predicted domain label. In Eq. (4), a task classification loss is 
used to classify the classes well; The domain classification 
loss is used to discriminate the domains in Eq. (5). The loss 

is backpropagated for the predictor and domain discriminator 
to distinguish the class and domain well. In the extractor, the 
task classification loss is backpropagated as it is; however, 
the domain classification loss is backpropagated through the 
gradient reversal layer (GRL) because the extractor has to 
learn to make it difficult to distinguish domains. The equation 
for backpropagation is as follows: 

𝜃𝑓 ← 𝜃𝑓 − 𝜇 (
𝜕ℒ𝑦

𝑖

𝜕𝜃𝑓
− 𝜆𝑝

𝜕ℒ𝐷
𝑖

𝜕𝜃𝑓
) (6) 

𝜃𝑦 ← 𝜃𝑦 − 𝜇
𝜕ℒ𝑦

𝑖

𝜕𝜃𝑓
 (7) 

𝜃𝑑 ← 𝜃𝑑 − 𝜇𝜆𝑝
𝜕ℒ𝐷

𝑖

𝜕𝜃𝑓
 (8) 

where 𝜃𝑓 is the parameters of the feature extractor, 𝜃𝑦 is the 
parameters of the predictor, 𝜃𝑑  is the parameters of the 
discriminator, 𝜇 is the learning rate, and 𝜆𝑝 is the scheduling 
parameter. 

If the domain classification loss is backpropagated with a 
large value before the algorithm classifies the class well, the 
extractor prevents clustering of the same class. To avoid this 
situation, the extractor slowly backpropagates the domain 
classification loss through the following hyper-parameter: 

𝜆𝑝 =
2

1 + 𝑒𝑥𝑝 (−𝛾 ∙ 𝑝) − 1 (9) 

where 𝛾 is the hyper-parameter of the domain adaptation, and 
𝑝 is the training progress. 

 
Figure 6. Schematic illustration of the domain adversarial 

neural network. 
 

3.3. Maximum Mean Discrepancy (MMD) 

MMD is also used to better solve the domain-shift problem 
between the source and target data (Borgwardt, Gretton, 
Rasch, Kriegel, Schölkopf, Karsten & Smola, 2006). It is 
graphically described in Figure 7. The latent space from the 
feature extractor is a high-dimensional vector. If the 
distribution of the same class in a high-dimensional space is 
similar, it means that the features are extracted well, 
regardless of the domain. MMD is used to reduce the 
distribution discrepancy. The distribution difference between 
the source and the target domains is calculated by mapping 
the high-dimensional features into Reproducing Kernel 
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Hilbert Space (RKHS). The loss function to minimize the 
MMD between the domains is defined as follows: 

 ℒ𝑀𝑀𝐷 = ‖ 1
𝑚𝑠 ∑ 𝜙 (𝐹 (𝜒𝑆

(𝑖)))𝑚𝑆
𝑖=1 − 1

𝑚𝑇 ∑ 𝜙 (𝐹(𝜒𝑇
(𝑖)))𝑚𝑇

𝑖=1 ‖
ℋ

2
 (10) 

where 𝜒𝑆 is input data of the source domains, 𝜒𝑇 is the input 
data of the target domain, 𝐹 is the feature extractor, and 𝜙 is 
a mapping function. This paper uses the gaussian kernel, from 
among the kernels that satisfy the RKHS, as the mapping 
function. The proposed method uses five source domains and 
one target domain. To adapt the target domain to the multi-
source domain, the sample of the target domain is increased 
by five times during the training process. By slightly 
modifying the existing MMD method, the proposed method 
calculated the MMD value between five source domains and 
the target domain with samples copied five times. 

 
Figure 7. Concept of maximum mean discrepancy. 

 

3.4. Ensemble Learning 

The performance of a deep-learning model changes across 
various situations, including the initialization distribution, 
even for the same model. For this reason, the proposed model 
uses an ensemble method that uses soft voting to reduce 
uncertainty. 𝑁  models are trained with different random 
seeds to consider the uncertainty due to the parameter 
initialization; 𝑁 is set as five in this work. First, the sum of 
the output values of the predictor based on 𝑁  models is 
obtained. Then, the label with the maximum value is selected. 
It is graphically described in Figure 8. The equation for the 
ensemble is as follows: 

𝑦 = argmax
𝑦

(∑ 𝑃(𝐹(𝜒𝑖))
𝑁

𝑖=0

) (11) 

where 𝑃 is the predictor, and 𝑁 is the number of models. 

 
Figure 8. Soft-voting-based ensemble method. 

 

4. EXPERIMENTAL VALIDATION 

 

 
Figure 9. The model architecture of the proposed method. 

 
The model architecture of the proposed method is described 
in Figure 9. The length of input data (𝜒) is 300, and the 

number of channels is 3. A convolutional neural network 
(CNN) was used to construct the three feature extractors as 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 
 

6 

each input for the three preprocessed crops. The extractor is 
composed of five convolutional blocks, two max-pool layers, 
and one dense layer. The convolutional block consists of a 
one-dimensional convolutional layer, a batch normalization 
layer, and a rectified linear unit (ReLU). Then, the extractor 
has a 512-dimensional latent vector as an output. The fully 
connected (FC) block consists of a dense layer, a batch 
normalization layer, and a ReLU. The predictor and the 
domain discriminator consist of two FC blocks and one dense 
layer. In determining the optimal parameters for the proposed 
method, various methods were employed. The kernel size of 
the extractor was selected through a grid search, evaluating a 
range of sizes, including 3, 5, 7, 15, and 25. On the other 
hand, the configuration of the predictor and domain 
discriminator - specifically, the number of layers and neurons 
- was established manually. The number of channels was set 
to double with each successive layer. Moreover, the number 
of layers was tuned manually, employing a strategy that 
involved incrementally adding or subtracting a single layer at 
a time. The epoch was set as 100 and the batch size was 

chosen as 128. The penalty parameters (𝛼, 𝛽)  were 
empirically selected as (1, 1). Five models were used for the 
soft-voting-based ensemble. The training was conducted on a 
computer with a CPU with an Intel(R) Xeon(R) Gold 5218R 
CPU@2.10GHz and a GPU with an NVIDIA RTX A6000. 
The software environment used was Python 3.7 and PyTorch 
1.12.0. The pseudo code of the training process is shown in 
Algorithm 1. 

4.1. Results from the Validation Dataset 

The accuracy of the proposed method, when applied to 
individual dataset 3 was 100.00%. Figure 10 shows the latent 
vector of one model for the validation dataset through t-SNE 
(t-distributed Stochastic Neighbor Embedding) (Van der 
Maaten & Hinton. 2008). Circles indicate source data and 
triangles indicate target data. Also, color is used to 
distinguish each class, and the class for the target data is 
shown as the label predicted by the predictor. As can be seen 
from the figure, the source and target features overlap with 
each other. This means that the extractor of the proposed 
method extracts domain-invariant features.  

 

 

 
Figure 10. t-SNE visualization of the validation dataset 

(individual dataset 3). 
 

4.2. Test Dataset Result 

The accuracy of the proposed method, when applied to 
individual datasets 7 and 8, was 99.77%; this result allowed 
the proposed approach to rank in 2nd place in the 2022 PHM 
Conference Data Challenge. Figure 11 presents the t-SNE 
visualization of the features extracted by the proposed 
method; the graphical description of the figure is the same as 
that in Figure 10. Although the source data and the target data 
overlap, it can be seen that the domain shift still exists, when 

Input: Labeled pressure signal samples from source 
dataset 𝒟𝑆 = {𝐗𝑠, 𝑦𝑠}, unlabeled pressure signal samples 
from target dataset 𝒟𝑇 = {𝐗𝑇}, batch size 𝑏, training epoch 
epochs, learning rate 𝜇 
Output: Configuration of the proposed method 
I) Randomly initialize the parameters 
II) Train the model 
 for epoch = 1 to epochs do 

for batch = 1 to number of batches do 
1)  Sample mini-batch {𝜒𝑠

(𝑖), 𝑦𝑠
(𝑖)}𝑖=1

𝑏  and {𝜒𝑇}𝑖=1
𝑏  

2)  Forward propagation 
Calculate the output of the three feature extractor 
𝐹1(𝜒𝑆

(𝑖)) , 𝐹1(𝜒𝑇
(𝑖)) , 𝐹2(𝜒𝑆

(𝑖)) , 𝐹2(𝜒𝑇
(𝑖)) , 𝐹3(𝜒𝑆

(𝑖)) , 

𝐹3(𝜒𝑇
(𝑖)) and combine each features 

Calculate the output of predictor �̂�(𝑖) 
Calculate the output of discriminator �̂�(𝑖) 
Calculate the objective function ℒ = ℒ𝑦 + 𝛼ℒ𝐷 +
𝛽ℒ𝑀𝑀𝐷 

3)  Backpropagation by Adam optimization 

𝜃𝑓 ← 𝜃𝑓 − 𝜇 (𝜕ℒ𝑦𝑖

𝜕𝜃𝑓
− 𝜆𝑝

𝜕ℒ𝐷
𝑖

𝜕𝜃𝑓
)  

𝜃𝑦 ← 𝜃𝑦 − 𝜇 𝜕ℒ𝑦𝑖

𝜕𝜃𝑓
  

𝜃𝑑 ← 𝜃𝑑 − 𝜇𝜆 𝜕ℒ𝐷
𝑖

𝜕𝜃𝑓
  

end for 
 end for 
III) Predict the label on the target dataset 𝒟𝑇 = {𝜒𝑇}𝑖=1

𝑏  
Algorithm 1. Training procedure 
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compared to the validation dataset. This is because the 
difference between the training dataset and the test dataset is 
large. 

 

 

4.3. Discussion for Result 

Two additional studies were performed to verify the proposed 
method with a validation dataset; A penalty parameter study 
was performed in Section 4.3.1, and an ablation study was 
conducted in Section 4.3.2. 

4.3.1. Penalty parameter study 

In Eq. (2), the proposed method has three loss functions: task 
classification loss (ℒ𝑦), domain classification loss (ℒ𝐷), and 
MMD loss ( ℒ𝑀𝑀𝐷 ). The penalty parameters a and b are 

weighted according to the importance of the loss function. 
We performed a penalty parameter study on the validation 
dataset without applying the ensemble method. Table 4 
shows the results, showing 100% accuracy for a total of 5 
combinations. When 𝛼 or 𝛽 equals 10, low performance is 
shown, and high performance is shown when 𝛼 and 𝛽 have 
the same value. In addition, it can be seen that the proposed 
method does not significantly affect the performance when 𝛼 
and 𝛽 are less than 1. 
 

4.3.2. Ablation study 

An ablation study was performed to verify the proposed 
method. We performed three comparative models without 
applying the ensemble method, and the description of the 
models is as follows: 

1. w/o data cropping technique: A model that does not use 
the data cropping technique described in Section 3.1; Only 
the center part with a length of 300 was used. 

2. w/o adversarial learning: A model that does not use 
adversarial learning of the domain adversarial neural network 
described in Section 3.2 

3. w/o MMD: A model that does not use the loss function 
that minimizes the maximum mean discrepancy for multi-
source described in Section 3.3 

The accuracy decreased slightly when adversarial learning or 
MMD was not used, but the accuracy decreased by 2.73% 
when the data cropping technique was not used. This shows 
that the data crop preprocessing technique using physical 
knowledge in the proposed method has the most important 
effect on performance. 

 

 
(a) 

 
(b) 

Figure 11. t-SNE visualization of the test datasets: (a) 
individual dataset 7, and (b) individual dataset 8. 

Accuracy 
(%) 

𝛼
= 0.001 

𝛼
= 0.01 

𝛼
= 0.1 

𝛼 
= 1 

𝛼
= 10 

𝛽 
= 0.001 99.81 97.27 100 98.34 96.61 

𝛽 
= 0.01 99.91 100 100 96.14 95.67 

𝛽 
= 0.1 99.12 99.97 99.84 99.75 93.88 

𝛽 
= 1 99.78 100 98.84 100 96.58 

𝛽 
= 10 93.81 94.03 95.10 98.49 94.25 

Table 4. Penalty parameter study for the validation 
dataset 

Method Accuracy (%) 
w/o data crop technique 97.27 
w/o adversarial learning 99.47 
w/o MMD 99.5 
Proposed method 100 

Table 3. Ablation study for the validation dataset 
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5. CONCLUSION 

In this paper, we proposed a new domain-adaptation-based 
fault-diagnosis approach to solve the domain-shift issue that 
arises due to the variable operating conditions of a rock drill. 
A data cropping technique was employed to mitigate the 
different impact cycles of a rock drill. The proposed method 
combines a domain adversarial neural network and maximum 
mean discrepancy to solve the domain-shift issue. In addition, 
a soft-voting-based ensemble was introduced to reduce the 
model uncertainty. The proposed method achieves 
outstanding performance on the validation and test datasets 
and was ranked in 2nd place in the 2022 PHM Conference 
Data Challenge. 
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NOMENCLATURE 

m Batch size 
𝜇 Learning rate 
𝜒 Preprocessed signal 
y Label of the health condition 
�̂� Predicted label of the class 
d Label of the domain 
�̂� Predicted label of the domain 
𝜃𝑓 Parameter of the feature extractor 
𝜃𝑦 Parameter of the classifier 
𝜃𝑑 Parameter of the domain discriminator 
𝜆𝑝 Scheduling parameter 
𝛾 Hyper-parameter of the domain adaptation 
𝑝 Training progress 
𝜙 Mapping function 
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