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ABSTRACT

Early fault detection and fault prognosis are crucial to ensure
efficient and safe operations of complex engineering systems
such as the Spallation Neutron Source (SNS) and its power
electronics (high voltage converter modulators). Following
an advanced experimental facility setup that mimics SNS
operating conditions, the authors successfully conducted 21
early fault detection experiments, where fault precursors are
introduced in the system to a degree enough to cause degra-
dation in the waveform signals, but not enough to reach a real
fault. Nine different machine learning techniques based on
ensemble trees, convolutional neural networks, support vec-
tor machines, and hierarchical voting ensembles are proposed
to detect the fault precursors. Although all 9 models have
shown a perfect and identical performance during the train-
ing and testing phase, the performance of most models has
decreased in the next test phase once they got exposed to real-
world data from the 21 experiments. The hierarchical voting
ensemble, which features multiple layers of diverse models,
maintains a distinguished performance in early detection of
the fault precursors with 95% success rate (20/21 tests), fol-
lowed by adaboost and extremely randomized trees with 52%
and 48% success rates, respectively. The support vector ma-
chine models were the worst with only 24% success rate (5/21
tests). The study concluded that a successful implementation
of machine learning in the SNS or particle accelerator power
systems would require a major upgrade in the controller and
the data acquisition system to facilitate streaming and han-
dling big data for the machine learning models. In addition,
this study shows that the best performing models were di-
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verse and based on the ensemble concept to reduce the bias
and hyperparameter sensitivity of individual models.

1. INTRODUCTION

Early fault detection and fault prognosis are crucial to ensure
efficient and safe operations of complex engineering systems.
Fault prognosis can detect and predict faults early in time be-
fore the faults cause system damage, which can be done by
examining fault symptoms as early as possible (Vachtsevanos
& Vachtsevanos, 2006). From now on, we use “fault pre-
cursors” to refer to fault symptoms or fault indicator signals.
Advancing prognosis approaches and early fault detection is
vital to the success of predictive maintenance, which unlike
reactive or preventive maintenance, relies on early fault de-
tection (W. Zhang, Yang, & Wang, 2019). Predictive main-
tenance has several advantages over preventive maintenance,
which include (1) improving machine availability, (2) exten-
sion of the machine operation life, (3) prevention of catas-
trophic failures, and (4) optimizing the resources for preven-
tive maintenance (Fernandes, Corchado, & Marreiros, 2022).
All these reasons can lead to improved productivity by the
machine.

Fault detection and predictive maintenance with machine
learning techniques have already illustrated a promising po-
tential. The study by (Arunthavanathan, Khan, Ahmed, &
Imtiaz, 2021) used convolutional neural networks (CNN) and
long short-term memory (LSTM) to forecast the system pa-
rameters and an unsupervised one-class support vector ma-
chine for fault precursor detection. The approach was as-
sessed using the Tennessee Eastman process fault data. Sim-
ilarly, a deep learning approach (a combination of sparse au-
toencoder and fully-connected layers) was proposed by (Luo,
Wang, Liu, Li, & Peng, 2018) for early fault detection by
automatically selecting the impulse responses from vibration
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signals in a time-varying system. In another study (Shao,
Jiang, Wang, & Zhao, 2017), a deep autoencoder was de-
veloped for rotating machinery fault diagnosis, which con-
sists of denoising autoencoder and contractive autoencoder
layers to enhance the feature extraction ability. The authors
of (L. Wang, Zhang, Long, Xu, & Liu, 2016) have devel-
oped a deep neural network framework for monitoring the
health of wind turbine gearboxes based on the lubricant pres-
sure data, which shows that the deep learning model is more
capable than other classical machine learning methods (e.g.
k-nearest neighbors, support vector machine). A predictive
maintenance model based on LSTM and generative adver-
sarial networks (GAN) was proposed by (Liu, Tang, Zhu, &
Nie, 2021) to determine the state of the machine and the fault
in advance. Ensemble or tree-based machine learning meth-
ods also showed promise in fault detection applications such
as Adaboost (Kozjek, Butala, et al., 2017), isolation forests
(Kolokas, Vafeiadis, Ioannidis, & Tzovaras, 2020), random
forests (Syafrudin, Alfian, Fitriyani, & Rhee, 2018), ran-
dom survival forests (Bukkapatnam, Afrin, Dave, & Kumara,
2019), and gradient boosting trees (Y. Zhang, Beudaert, Ar-
gandoña, Ratchev, & Munoa, 2020). Comprehensive surveys
of machine learning methods for fault detection and progno-
sis were conducted by (L. Zhang et al., 2019; Fernandes et
al., 2022).

In fault detection and classification, machine learning and
neural networks have also progressed as described in this
comprehensive survey (Mohd Amiruddin, Zabiri, Taqvi, &
Tufa, 2020). Fault detection applications of neural networks
have been demonstrated in different energy and electronics
fields such as integrated energy systems (P. Wang, Pooven-
dran, & Manokaran, 2021), large-scale power systems with
LSTM (Belagoune, Bali, Bakdi, Baadji, & Atif, 2021), fusion
energy devices (Tokamaks) (Mohapatra, Subudhi, & Daniel,
2020), photovoltaic systems (Hajji et al., 2021), building en-
ergy consumption (Bode, Thul, Baranski, & Müller, 2020),
and similar others. Similar fault detection efforts with non-
neural network methods were demonstrated by (Taqvi, Tufa,
Zabiri, Maulud, & Uddin, 2020) using nonlinear autoregres-
sive with exogenous input and by (Agasthian, Pamula, & Ku-
maraswamidhas, 2019) using support vector machine opti-
mized by the Cuckoo search algorithm.

Particle accelerators, such as the spallation neutron source
(SNS) (Henderson et al., 2014) and CERN, are complex en-
gineering systems that use electromagnetic fields to propel
charged particles to very high speeds and energies to use them
for fundamental research applications. The interest in ma-
chine learning for control applications in particle accelerators
can be seen in these studies (Nguyen, Lee, Sass, & Shoaee,
1991; Edelen et al., 2016). Uncertainty-aware anomaly detec-
tion framework of the errant beam pulses was developed by
(Blokland et al., 2021) using Siamese neural networks with
ResNet blocks. For a beam-based study with real measured

data, the authors of (Rescic, Seviour, & Blokland, 2020) em-
ployed different machine learning binary classifiers (e.g. lo-
gistic regression, gradient boosting, random forests) to pre-
dict system failure. The results demonstrated a promising
performance with failure prediction accuracy up to 92% af-
ter fine tuning the classifier hyperparameters. The fault de-
tection effort was then improved in a subsequent study by
the team for pre-emptive detection of machine trips in the
SNS (Reščič, Seviour, & Blokland, 2022). Lastly, a recent
study by (Felsberger et al., 2020) investigates a deep learning
model based on CNN for fault prognosis in a particle accel-
erator system (CERN). Despite promising performance, the
authors found difficulties in predicting certain failures due to
the lack of data, given the authors have relied on historical
data. A similar effort for using adaptive neural networks for
time-varying beam control was demonstrated in (Scheinker,
2021).

In this work, we explore machine learning methods for fault
detection in the power systems of the SNS, called high volt-
age converter modulators (HVCM). HVCMs are used in the
SNS to power the klystrons that accelerate the charged parti-
cles to about 90% of the speed of light. HVCMs continue to
be problematic systems for the SNS, that experience a wide
range of failures from mild to catastrophic, causing reliability
issues and lost beam time for the SNS. HVCMs are ranked
among the top sources of downtime in the SNS (Radaideh,
Pappas, Walden, et al., 2022). Compared to our previous
study (Radaideh, Pappas, Walden, et al., 2022), which fo-
cused on instantaneous anomaly detection in HVCM signals
using recurrent neural networks, this work extends the infras-
tructure and the methodology to allow early fault detection
capabilities in the HVCM, which enable operator interven-
tion and predictive maintenance to be performed in most of
the fault scenarios. The previous study (Radaideh, Pappas,
Walden, et al., 2022) was limited to a very short time scale
that allows a graceful shutdown of the facility, due to limi-
tations in the controller and the data acquisition system, all
of which are resolved in this work. The major goal of this
work is to develop and demonstrate a test facility that shows
early fault detection capabilities that warn the HVCM con-
trol room of impending failures or long term degradation of
components. The authors relied on three major components
that highlight the main accomplishments of this work: (1) im-
proved data acquisition system, (2) fast and continuous data
streaming, and (3) machine learning fault detection models.
To accomplish these goals, an advanced experimental setup
that simulates SNS operating conditions and a collection of
fault test scenarios are prepared and used to test our proposed
fault detection methods based on machine learning.

The remaining sections of this work are organized as follows:
Section 2 describes the experimental setup which involves a
radio-frequency test facility established for data streaming,
model development, and model testing. Section 3 highlights
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the methodology implemented in this work, which includes
data preparation, machine learning models, and performance
metrics. The results of this work are presented and discussed
in section 4, followed by the conclusions of this work in sec-
tion 5.

2. EXPERIMENTAL SETUP

The Spallation Neutron Source (SNS) at Oak Ridge Na-
tional Laboratory (ORNL) accelerates protons to high speeds,
which are used to produce neutron beams for neutron scat-
tering and materials research (Henderson et al., 2014). The
beam is accelerated in a linear accelerator consisting of a
Radio Frequency Quadrupole (RFQ) section, a Drift Tube
Linac (DTL) section, a Couple Cavity Linac (CCL) section,
and a Superconducting Linac (SCL) section. The accelerat-
ing cavities in each of these sections are fed by high power
microwave amplifiers or klystrons. The klystrons are pow-
ered by High Voltage Converter Modulators (HVCM). The
HVCMs can drive as many as 10 klystrons, depending on the
klystron type and which section of the linac the klystron is
located. There are a total of 15 HVCMs in the SNS, driv-
ing a total of 92 klystrons, where the HVCM powering the
RFQ section (3 klystrons) was the subject of the analysis in
our previous effort (Radaideh, Pappas, Walden, et al., 2022).
We recently shared the normal and fault data collected from
the 15 HVCMs of the SNS (Radaideh, Pappas, & Cousineau,
2022), collected over 2 years with the data being sparse in
time (recorded signals can be separated by hours and even
days). Given their time sparsity, that data (Radaideh, Pappas,
& Cousineau, 2022) or models can be used for fault classifi-
cation and identification but not for early fault detection (or
prognosis), which is the motivation behind this work.

Given the complexity of the SNS structure, it is very diffi-
cult to apply the proposed methods of this work directly on
the SNS HVCMs since they would cause interruptions to the
daily operation of the facility, especially that our experiments
in this work involve fault induction tests, which can cause se-
rious problems to the SNS. Alternatively, the radio-frequency
test facility (RFTF) at the SNS provides a robust option to test
new methods, components, or materials in an environment
similar to the SNS environment. It is a known practice in the
particle accelerator community to test new concepts in a test
environment before applying it to the main accelerator, given
that changing something in the SNS directly requires many
approvals and careful investigation. Therefore, this section

and the rest of this work focus on the RFTF setup.

2.1. RFTF HVCM Description

The authors have used the RFTF facility at the SNS in this
work to develop and test machine learning models for early
fault detection. Figure 1 shows some of the major compo-
nents of the RFTF facility. Figure 1(a) shows the H-bridge

switch plate of the HVCM while (b) shows the high voltage
enclosure and insulation tank, which houses the HVCM as-
sembly. Figure 1(c) shows the linear-beam vacuum tube or
the klystron, which is being powered by the HVCM. Lastly,
Figure 1(d) demonstrates a section of the beamline at which
the particles can be accelerated (which can be powered by
similar sources as the RFTF). The reader should notice here
that the beamline is not directly utilized in this work and is
only shown for the completeness of the facility description.

Digging deeper into the HVCM structure, the HVCM circuit
is shown in Figure 2, which can be summarised by the fol-
lowing events that occur in the system in a frequency of 60
Hz with a high voltage pulse width of 1.3 ms:

1. An input of 13.8 kVAC three-phase line power is con-
verted to ±1300 VDC by the transformer T1 (see Figure
2) and a six-pulse controlled rectifier circuit. Capacitors
C1 and C2 in Figure 2 filter this voltage and store suffi-
cient charge to produce 1.3 ms pulses without excessive
droop.

2. The DC voltage is supplied to three-phase insulated-gate
bipolar transistor (IGBT) H-bridge circuits, see Figure
1(a), operating at a nominal switching frequency of 20
kHz. The IGBT switches are represented by Qa1-Qa4,
Qb1-Qb4, and Qc1-Qc4 in Figure 2. The pulse trans-
formers are used to step up the high power pulses to high
voltage signals.

3. The leakage inductance of the pulse transformers (XA,
XB, XC) form a resonant circuit with the resonant ca-
pacitors (Ca, Cb, Cc) in Figure 2, giving the circuit a
frequency dependent gain.

4. The high voltage bipolar pulses from the resonant capac-
itors are recombined and rectified by the diodes Da1 to
Dc2.

5. The output pulses from the diodes, which have an appar-
ent switching frequency of 120 kHz, are filtered by C3,
C4 and L1, and applied to the cathode of the klystron in
Figure 1(c).

2.2. Data Streaming

The HVCM in the RFTF uses PXI-based controller to (1)
control the IGBT gating timing, (2) to ensure signal values
of the pulse transformers remain in a safe range, (3) to set
warning and trip levels for a variety of signals, and (4) to
communicate with the control room and other auxiliary sys-
tems (e.g. personnel protection systems). More importantly,
the controller helps digitize and save waveforms, which are
the main source of data in this study.

We performed multiple changes in the RFTF to be able to
stream and save data continuously for machine learning ef-
forts, compared to the sparse data collected in our previous
study (Radaideh, Pappas, Walden, et al., 2022). First, the
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Figure 1. Components from the RFTF experimental setup: (a) HVCM H-bridge circuit, (b) HVCM insulation tank, (c) klystron
(linear-beam vacuum tube), (d) section of the beam line

Figure 2. Simplified schematic of the HVCM circuit

normal/fault files archived for the SNS main HVCMs require
storage of approximately 30 MB of data when decimated to
2.5 MS/s. However, not all of this data is useful. There-
fore, to reduce the massive amount of disk space required to

store streamed data, the number of streamed waveform chan-
nels was reduced from 32 to 12 in the RFTF. Also, the record
length was reduced from 3.6 ms to 1.5 ms with a sampling
rate of 400 ns. These changes have reduced the size of each
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waveform file from 30 MB to approximately 540 kB, which
facilitate data pre-processing for the machine learning models
and significantly reduce data size. The data are saved to an
external hard drive for the authors to use. The 12 waveforms
recorded by the controller are (by referring to Figure 2):

1. A+IGBT-I: The current passing through the IGBT
switches (Qa1, Qa4) of phase A+ (unit: Ampere).

2. A+*IGBT-I: The current passing through the IGBT
switches (Qa2, Qa3) of phase A+* (unit: Ampere).

3. B+IGBT-I: The current passing through the IGBT
switches (Qb1, Qb4) of phase B+ (unit: Ampere).

4. B+*IGBT-I: The current passing through the IGBT
switches (Qb2, Qb3) of phase B+* (unit: Ampere).

5. C+IGBT-I: The current passing through the IGBT
switches (Qc1, Qc4) of phase C+ (unit: Ampere).

6. C+*IGBT-I: The current passing through the IGBT
switches (Qc2, Qc3) of phase C+* (unit: Ampere).

7. Mod-I: Modulator current (unit: Ampere).
8. A-Flux: Magnetic flux density for phase A transformer

(unit: scaled).
9. B-Flux: Magnetic flux density for phase B transformer

(unit: scaled).
10. C-Flux: Magnetic flux density for phase C transformer

(unit: scaled).
11. Mod-V: Modulator voltage (unit: kV).
12. CB-V: Cap bank voltage (unit: V).

The second improvement includes the ability to track wave-
form files when the HVCM is in the tuning mode. Tuning
the HVCMs is normally done after maintenance on a particu-
lar HVCM. Tuning is done manually by experienced techni-
cians and involves setting start and stop frequencies for IGBT
gating to minimize droop, varying the start timing of the ini-
tial gate signals to minimize the likelihood of saturating the
magnetic transformers. Tuning involves making incremen-
tal changes at reduced power while monitoring multiple sig-
nals such as klystron voltage, IGBT currents, and core mag-
netic flux to ensure they meet pulse requirements and remain
within predetermined safe values. The data acquisition sys-
tem records most of the waveforms during the tuning phase
since the system would experience many changes.

The third improvement involves the file saving rate during
operation, which is no longer fixed by the controller, but de-
termined by the user. For example, the user can record wave-
forms at a rate of a waveform file every 3 seconds when a
large demand for data acquisition is present. The rate can be
decreased to a file every 10 minutes when the streamed data
are not needed.

Figures 3-4 show live screenshots of the controller screen,
which show the setting knobs that are used to tune the HVCM

during startup. Also, plots of different waveforms are shown
in the screen for the operator, which include a timing diagram
of the IGBT gate pulses in Figure 3. In the next section, we
will describe how we utilize this data acquisition system and
the setting knobs to model fault scenarios.

3. METHODOLOGY

The methodology section involves description of data prepa-
ration, performing early fault detection test scenarios, the pro-
posed models, and performance metrics used to evaluate the
models. Our methodology workflow is summarized in Fig-
ure 5. The novelty of this work is that it lies in the inter-
section of robust experimental setup, quality data streaming,
and machine learning applications; each one of these parts is
described next.

3.1. Training Data Preparation

Following data streaming for about 3 days in normal operat-
ing conditions, we collected large amounts of training data at
a rate of a waveform file every 5 seconds. For faulty train-
ing data, these are a bit more challenging to collect in large
amounts. However, we managed to collect about 5000 fault
files that come from two main sources: (1) real faults in the
RFTF and (2) data collected during HVCM tuning (fault-like
data). The second source dominates the faulty training data
given that real faults in the HVCM do not occur very fre-
quently (i.e. weeks to few months). As described in the pre-
vious section, HVCM tuning is done manually by the oper-
ators following a HVCM startup. This process usually in-
volves tweaking the HVCM settings to different values to op-
timize the waveform shapes. Fortunately, our data streaming
is programmed to record pulses at the maximum saving rate
(1 pulse per second) during the tuning process, and these tun-
ing waveforms deviate from normal operating ranges. In nor-
mal conditions, HVCMs operate at full power, while the data
during the tuning phase deviate from these full power condi-
tions, which make them a great source of fault-like data (not
real faults). To remove the class imbalance, we only kept
5000 normal waveform files that sufficiently cover normal
conditions, to be consistent with the number of faulty files.

After data streaming, the raw data are parsed from the CSV
format and saved into a numpy array format with a 3D shape:

shape = (Npulses ⇥Ntimes ⇥Nfeatures) (1)

where Npulses = 10, 000 is the total number of pulses
collected by the RFTF HVCM (both normal and faulty),
Ntimes=3753 is the number of time steps for each pulse, and
Nfeatures = 12 is the number of features or waveform types
recorded for each pulse. Given the sampling rate is 400 ns,
the time length of the pulse is approximately 3753 ⇥ 400 ns
⇡ 1.5 ms. The 12 waveforms (features) were described in
section 2.2.
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Figure 3. Screenshot of the RFTF HVCM live controller showing the settings and a timing diagram of the IGBT gate pulses

Figure 4. Screenshot of the RFTF HVCM live controller showing the settings, Mod-V diagram (left), and magnetic flux
diagrams (A-Flux, B-Flux, C-Flux) on the right

We plot the pulses/samples for the modulator current (Mod-
I) in Figure 6. The reader can easily see that the fault data,
which consist primarily of tuning data, deviate from the nor-

mal Mod-I pulses that look like identical. It is worth mention-
ing again that tuning data are not real faults, but can expose
machine learning models to conditions that deviate from the
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Figure 5. Methodology workflow

normal operating conditions. In both plots of Figure 6, all
5000 normal and faulty pulses are shown, so no legend is
provided. Other waveforms (A-Flux, CB-V, A+IGBT-I, etc.)
exhibit similar behaviour when comparing normal to faulty
data.

3.2. Early Fault Detection Tests

As described before, HVCMs continue to have failures which
can range from mild faults that can be resolved by a system
restart to catastrophic failures that can lead to IGBT explo-
sion. Figure 7(a)-(b) show a normal IGBT plate in the B
phase along with its normal B-Flux waveform. In Figure 7(c)-
(d), the IGBT is exploded and the B-Flux waveform imme-
diately before the event was recorded in Figure 7(d), which
shows a clear degradation and drooping in the flux signal.
This fault event occurred during HVCM operation and was
not planned by the authors.

In this study, the authors have performed 21 independent ex-
periments trying to simulate the common faults facing the
HVCM like the one in Figure 7 by gradually inducing anoma-
lous changes in the HVCM settings. These setting adjust-
ments are sufficient to cause abnormality in the waveforms
but not serious to cause a real fault. The idea is to create a

continuous test in time where the machine starts in a normal
condition and gradually moves to a fault condition, where the
proposed models are assessed in their capabilities in detect-
ing those changes as soon as possible. Each test involves the
following steps:

1. The data streaming system in section 2.2 is setup to save
a waveform file every 7 seconds to allow the authors to
make swift changes.

2. The team starts every test by waiting about 3 minutes
to collect normal waveforms using the normal settings.
This period collects about 26 waveform files.

3. The team then gradually induces changes in the RFTF
settings and waits about a minute to collect waveform
data under that change.

4. The settings are changed by adjusting 9 knobs in Figures
3-4 to pre-established values determined by the team.
These knobs fall under the categories of “start pulse set-
tings” and “flux compensation settings”. The changes
can be in the form of increasing/decreasing start pulse
width or increasing/decreasing flux compensation in the
three phases. The adjustments can be in a single or mul-
tiple forms. Table 1 provides description of the plan and
changes involved in each test.
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Figure 6. (a) 5000 normal modulator current (Mod-I) pulses, (b) 5000 faulty modulator current (Mod-I) pulses

Figure 7. (a)-(b) Normal IGBT plate and its associated normal B-flux waveform. (c)-(d) Exploded IGBT plate and its associated
faulty B-flux waveform (the pulse preceding the event)

5. Each test finishes when the allowed (max, min) setting
value is reached or when the system is in a serious condi-
tion that could lead to immediate failure. Therefore, the
reader can expect the tests to have different time lengths
as in Table 1.

We provide sample plots of four selected waveforms from
Test 1 and Test 11 in Figure 8, which involve increasing the
A+ start pulse width and decreasing flux compensation in the
B phase, respectively. In each subplot, the first pulse of the
test (before any setting adjustment) and the last pulse (after
all setting adjustments) are illustrated. These two tests along
with the other 19 tests show interesting combinations of fault
conditions that could be observed in single or multiple wave-
forms. For example, the creeping of the fault precursors in

Test 1 can be seen to cause an effect in the IGBT current and
the fluxes of all phases (A, B, C). However, Test 11 reveals
that decreasing the B-Flux compensation only affects the B-
Flux waveform, while the fault precursors in other waveforms
cannot be detected, which make these fault scenarios a bit
tricky to detect.

For completeness, it is interesting mentioning that our
original experiment list was planned to include 22 tests.
The very last test which involved sudden changes in all 9
knobs/settings together indeed caused a real fault that hap-
pened in a fraction of a second after the 3 minutes normal
run. Fortunately, the fault was a minor C+ driver fault, which
was fixed by a system restart without causing any damage.
The authors decided not to repeat that experiment to avoid
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Table 1. List of fault detection experiments conducted in the RFTF

Test ID Description* Time (s)
1 A+ start pulse width increases by 5%/min 868
2 B+ start pulse width increases by 5%/min 707
3 C+* start pulse width increases by 5%/min 616
4 A+ start pulse width decreases by 5%/min 469
5 B+ start pulse width decreases by 5%/min 581
6 C+* start pulse width decreases by 5%/min 637
7 A-Flux compensation increases by 25ns/min 770
8 B-Flux compensation increases by 25ns/min 924
9 C-Flux compensation increases by 25ns/min 868
10 A-Flux compensation decreases by 25ns/min 812
11 B-Flux compensation decreases by 25ns/min 588
12 C-Flux compensation decreases by 25ns/min 693
13 A+ start pulse width is set to 20%, A-Flux compensation increases by 25ns/min 924
14 A-*/B-*/C- start pulse widths all decrease by 5%/min 763
15 B+ start pulse width is set to 100%, B-Flux compensation decreases by 25ns/min 707
16 A-Flux compensation increases, B-Flux decreases, C-Flux increases by 25ns/min 581
17 A-Flux compensation decreases, B-Flux increases, C-Flux decreases by 25ns/min 630
18 C+* start pulse width is set to 90%, C-Flux compensation increases by 25ns/min 700
19 B-* start pulse width is set to 50%, B+ start pulse width increases by 5%/min 518
20 A+/A-* start pulse widths are set to 20%, A-Flux compensation decreases by 25ns/min 749
21 A-*/B-*/C- start pulse widths are set to 40%, A+/B+/C+* start pulse widths increase by 5%/min 532

causing major trouble to the system, and we were satisfied by
having 21/22 tests successful. The question to be answered
next is: Can we develop a robust model that can detect fault
precursors as soon as possible in most of the 21 tests?

As the authors believe the current dataset can be useful for
reproducibility of this study and for other researchers work-
ing in machine learning and fault detection areas, we shared
all the data collected in this study. See the Data Availability
section for more information.

3.3. Machine Learning Modeling

3.3.1. Standalone Models

The methods we select in this work belong to different cate-
gories including neural networks, ensemble of decision trees,
and other classical methods. The convolutional neural net-
work (CNN) classifier consists of Conv1D, max pooling, and
fully-connected layers. The output is a binary prediction of
the probability of a sample being normal or faulty pulse. The
architecture of the CNN classifier is as follows:

1. Reshape layer to convert 2D data shape compatible with
other methods (random forests, bagging classifier, etc.)
to 3D shape compatible with Conv1D layers.

2. Conv1D layer with 32 filters, 6x6 kernel, ReLU activa-
tion, followed by max pooling of size 2x2.

3. Conv1D layer with 32 filters, 4x4 kernel, ReLU activa-
tion, followed by max pooling of size 2x2.

4. Conv1D layer with 16 filters, 3x3 kernel, ReLU activa-
tion, followed by max pooling of size 2x2.

5. Conv1D layer with 8 filters, 2x2 kernel, ReLU activation,
followed by max pooling of size 2x2.

6. Flatten layer.

7. Dense layer with 32 nodes and ReLU activation.

8. Dense layer with 16 nodes and ReLU activation.

9. Dense layer with 2 nodes and Softmax activation.

The first reshaping layer is important to allow CNN to be
trained as part of a large-scale ensemble that consists of other
methods that support 2D data shape.

Ensemble methods combine several models (e.g. decision
trees) to produce better predictive performance than utilizing
a single model. Ensemble methods can be broadly classified
into bagging and boosting. Bagging builds a stronger model
by reducing model “variance” through combining predictions
of different models after using bootstrapping to create random
subsets of the dataset with replacement, where these subsets
are used to train their corresponding models. On the other
hand, boosting builds a stronger model by reducing model
“bias”. In boosting, models are built sequentially where each
subsequent model attempts to correct the errors of the previ-
ous model. Early models tend to be weak, and as boosting
iteration continues, the weights of the models are adjusted
to make correct predictions of the difficult samples that prior
models failed to predict. In this study, we select four variants
of ensemble methods based on bagging and boosting, all are
based on randomized decision trees:

1. Bagging Classifiers (BC) (Breiman, 1996): are ensemble
estimators that fit base classifiers (e.g. randomized trees),
each on random subsets of the original dataset, and then
aggregate their predictions. The aggregation can be ei-
ther by voting or by averaging their probabilistic predic-
tion. Bagging methods are typically used to reduce the
variance of the base estimators by introducing random-
ization into the procedure. In this work, we use BC with
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Figure 8. Test 1 (left) and Test 11 (right) results for four selected waveforms. The first pulse (before any change in settings)
and the last pulse (after all changes are induced) are plotted

randomized trees and bootstrapping, where the subsets
are drawn with replacement.

2. Random forests (RF) (Breiman, 2001): are a special case
of BC where the estimators are decision trees, while BC
is a framework that can be used with other base estima-
tors (e.g. support vectors, k-nearest neighbours). Never-
theless, RF still have more improvements in how the en-
semble trees are built. For RF, when splitting each node
during the construction of a tree, the best split is found
either from all features or a random subset of the maxi-
mum number of features. RF achieve a reduced variance
by combining diverse trees and use bootstrapping at the
cost of a small increase in bias. We also use Gini impu-
rity metric to measure the quality of a split.

3. Extremely randomized trees (ET) (Geurts, Ernst, & We-
henkel, 2006): are a modification of RF with two fun-
damental differences: (1) no bootstrapping (meaning ET
samples without replacement) and (2) the nodes in ET
are split on “random” splits rather than RF that use “best”
splits, which could improve the performance.

4. Adaboost (AB) (Freund & Schapire, 1997): The idea of
AB is trying to fit a sequence of initial weak trees (i.e.
random guessing) on modified versions of the dataset.
The predictions from all trees are then combined using
a weighted majority vote to produce the final prediction.
The data modifications at each boosting iteration consist
of applying weights to each of the training samples (start-
ing by equal weights). Then the sample weights are mod-
ified and the algorithm is reapplied to the new weights in
the next boosting iteration. After a certain number of it-
erations, the weights continue to adjust, where the algo-
rithm focuses on the harder samples to predict to improve
the overall performance.

5. Gradient Boosting (GB) (Friedman, 2001): GB is a gen-
eralization of AB to arbitrary differentiable loss func-
tions compared to AB that uses the exponential loss func-
tion. For GB, binomial and multinomial deviance used in
logistic regression is used as the loss function. GB also
uses gradient descent to optimize the loss function.

In all previous methods, the number of trees/estimators is the
main tunable parameter.

Support vector machines (SVM) (Noble, 2006; Cervantes,
Garcia-Lamont, Rodrı́guez-Mazahua, & Lopez, 2020) are
well-known supervised learning methods used for classifi-
cation and regression problems. Training is performed by
defining separation hyperplanes, such as a line on a 2D sur-
face or a plane in a 3D surface, between training samples to
separate the data samples into distinct classes on the sides of
the hyperplane. SVM can solve both linear and non-linear
dataset problems by employing the kernel trick to transform
the data to higher dimensions where the classes can be separa-
ble. Therefore, in this work, we use two variants of SVM: (1)
linear SVM (LSVM) where the linear kernel is used and (2)
non-linear SVM (RBF-SVM) where the radial basis function
(RBF) kernel is used.

3.3.2. Hierarchical Voting Ensemble (VE)

Voting ensemble is the expression of “democracy” in the ma-
chine learning community and we adopt this approach here
to minimize bias. The decision making process in deciding
whether the signal is normal or faulty is made by taking the
votes of all standalone models in the ensemble, and the deci-
sion is made by majority voting. The structure of the voting
ensemble is shown in Figure 9, which can be described in the
following steps:
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1. The training dataset is split into 12 subsets, each one
highlights a single waveform data.

2. An ensemble model is trained by training 5 standalone
models of RF, ET, GB, AB, and BC (i.e. these standalone
models have shown the best performance when included
in the ensemble).

3. Each standalone model in the ensemble will vote for the
signal type if it is faulty or normal, and the final decision
is taken by majority voting.

4. After all 12 waveform models make their vote, the final
decision whether the current condition is normal or faulty
is decided when at least one of the waveform models
votes for a fault condition. Otherwise, the decision is
normal.

If the final decision is a fault, the operators will see the wave-
forms that have anomalies to help them diagnosing the fault
source.

3.4. Performance Metrics

We use standard metrics to evaluate the performance of our
models in this study. Table 2 lists the classification metrics
definition and their best and worst values. The four metrics
are precision, recall, F1, and area under the curve (AUC),
which is the area under the ROC curve (Receiver Operating
Characteristic). The ROC curve is a standard diagram that il-
lustrates the diagnostic ability of a binary classifier system as
its discrimination threshold is varied. An AUC=0.5 indicates
a random classifier without any classification capability.

In addition, we report the values for some prognosis metrics
according to (Saxena et al., 2008). First, we report the time
of detection of fault by the model (tF ), which we compare
to the true fault time (t⇤F ) in the experiment. The fault time
tF is determined when the model predicts a fault event. If
tF > t⇤F , the delay in fault detection is determined by �tF =
tF � t⇤F > 0. Lastly, we report the fraction of the delay from
the true total fault time as

⇢ =
�tF
t� t⇤F

%, (2)

where t is the total experiment time from Table 1. The best
value for ⇢ is 0 (no delay) while the worst is 100% (the fault
is missed). If tF < t⇤F , which is the case when the model
makes a fault prediction earlier than the true time, both �tF
and ⇢ can have negative values. Given that the fault detection
tests have different time lengths, the delay fraction provides a
more accurate representation of the fault delay.

4. RESULTS AND DISCUSSIONS

4.1. Analysis Settings

We performed a grid search to determine the optimal set of
hyperparameters for each machine learning method in the
study. Notice that the search was not very extensive and fo-
cused on the major parameters to avoid overfitting the mod-
els to the data, which may impact their ability to generalize.
Based on that search, the following hyperparameters are uti-
lized during the training process of all models:

1. AB: Number of estimators is 40 and learning rate is 1.0.

2. BC, RF, ET: Number of estimators is 40.

3. GB: Number of estimators is 40, max depth is 5, and
learning rate is 0.1.

4. CNN: Batch size of 64, 5 epochs, and Adam optimizer
with 5 ⇥ 10�4 learning rate. The loss function is the
sparse categorical crossentropy.

5. SVM: Regularization parameter has a value of 0.5 for
LSVM and 1.0 for RBF-SVM

6. VE: Inherits same hyperparameters of its members: BC,
RF, ET, GB, and AB.

Min-max scaling is applied to all waveforms to facilitate
training. Given most methods support 2D data shape (ex-
cept CNN), the second and third axes in Eq.(1) are flattened
into a single axis, so the real number of features becomes
Ntimes ⇥Nfeatures = 3753⇥ 12 = 45036.

We have used Tensorflow/Keras with GPU support using
CUDA and CuDNN libraries for the implementation of the
CNN model. We also used Scikit-learn for the implemen-
tation of other machine learning models including our vot-
ing ensemble (VE). All training and analysis were conducted
on a GPU cluster with 8 NVIDIA A100 SXM4 40GB GPUs
available at the Spallation Neutron Source of the Oak Ridge
National Laboratory.

4.2. Training and Testing Results

In the training and testing phase, all models are trained with
8000 pulses/samples and tested with 2000 (i.e. 0.2 test split)
using the data in Figure 6. All 12 waveforms are included in
the training process. The fault detection tests in Table 1 are
not included in any sort during the training and testing phase.
The results based on the test set indicate nothing but a supe-
rior and perfect performance by all 9 models, see Figure 10
which shows the confusion matrix for CNN. The confusion
matrix shows that the CNN model did not make a single mis-
take in predicting the status of the 2000 test samples by hav-
ing zero in the false positive and false negative entries. Other
models (VE, AB, BC, GB, RF, ET, LSVM, RBF-SVM) show
identical confusion matrix, but are not shown for brevity. Ac-
cordingly, all 9 models have a perfect 1.0 for precision, recall,
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Figure 9. Hierarchical structure of the voting ensemble (VE) built in this work for early fault detection

Table 2. Classification performance metrics used to evaluate the proposed models

Metric Formula* Notes

Precision Precision = TP/(TP + FP ) Best=1.0, Worst=0.0
Recall Recall = TP/(TP + FN) Best=1.0, Worst=0.0
F1 F1 = 2TP/(2TP + FP + FN) Best=1.0, Worst=0.0
AUC AUC =

R 1

0
TPR (FPR) dFPR Best=1.0, Worst=0.5

⇤TP: True Positive, FP: False Positive, FN: False Negative, FPR: False Pos-
itive Rate, TPR: True Positive Rate.

F1, and AUC, given the testing results. This perfect perfor-
mance by all models reveals two interesting conclusions:

1. The amount of training data (see Figure 6) provided to
all models is more than enough which makes all mod-
els perform very well at this stage, thanks to our facility
setup and excellent data acquisition.

2. The values of the hyperparameters selected in section 4.1
for each model have no impact on the performance and
are not causing any bias toward a certain model.

However, despite this amazing performance, the goal of this
study is to predict the fault well ahead of time. Therefore, the
question is, are all these perfect models going to generalize
well for the 21 early fault detection scenarios?

4.3. Early fault Detection Analysis

To keep the paper concise, in this section, we focus the anal-
ysis on the VE model by presenting its corresponding results.
The comparison with other models is provided in the second
subsection.

4.3.1. Early Fault Detection Results of VE

The trained VE model is used to predict the fault timing of
the 21 test scenarios using the hierarchy voting concept intro-
duced in section 3.3.2. First, the classification metrics (preci-
sion, recall, F1, AUC) in distinguishing the normal from the

Figure 10. Confusion matrix based on the test set (2000 sam-
ples) for CNN. Other models (VE, LSVM, AB, BC, GB, RF,
ET, RBF-SVM) show identical confusion matrix

faulty pulses in each test are listed in Table 3. The results
show that the VE model still performs at a very high level
by generalizing to the fault detection scenarios, obtaining al-
most perfect metrics for most of the test scenarios. For exam-
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ple, Tests 1-9, 13-14, 17-18, 20-21 show that the VE model is
able to perfectly separate the pulses of the normal period (first
3 min) from the faulty pulses. Other tests (10, 12, 15, 16, 19)
also have excellent metrics. Test 11 is the only test with poor
results as it seems VE is not able to classify the pulses of this
test properly.

Similarly, the fault detection metrics for the VE model are
listed in Table 4, which shows the detection time of the fault
precursors (tF ), the true time of the fault precursors (t⇤F ), time
delay of the detection (�tF ), and the fraction of the time de-
lay from the true total fault precursor time (⇢). For better
visualisation, the delay and delay fraction are plotted in Fig-
ure 11 for all 21 tests. In agreement with the results of Table
3, Figure 11 illustrates that VE is generalizing very well by
detecting the fault precursors as soon as they actually appear
in the system by achieving zero delay and delay fraction for
Tests 1-9, 13-14, 17-18, 20-21. In addition, Tests 15, 16 show
a very small delay fraction of 1%, while Tests 10 and 12 show
a larger but yet acceptable delay fractions of 10% and 23%,
respectively. In Figure 11, Tests 11 and 19 illustrate some
distinct differences compared to the rest of the group. Test
11 is completely missed by the VE model as its delay frac-
tion is the maximum 100%, implying that the VE model was
not predicting any fault signal after the first 3 min run. Test
11 is one of those tricky tests (see Figure 8), where all but a
single waveform remain identical to the normal period. For
Test 11, all waveforms except the B-Flux remain almost iden-
tical the whole test time. And although the changes in the B-
Flux waveform are visible, these were not enough for the VE
model to detect them. Two main points should be discussed
for Test 11:

Table 3. Classification metrics when using the voting ensem-
ble (VE) for the fault detection tests

Test ID Precision Recall F1 AUC
1 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00
3 1.00 1.00 1.00 1.00
4 1.00 1.00 1.00 1.00
5 1.00 1.00 1.00 1.00
6 1.00 1.00 1.00 1.00
7 1.00 1.00 1.00 1.00
8 1.00 1.00 1.00 1.00
9 1.00 1.00 1.00 1.00
10 0.94 0.92 0.93 0.95
11 0.09 0.31 0.14 0.50
12 0.89 0.81 0.82 0.87
13 1.00 1.00 1.00 1.00
14 1.00 1.00 1.00 1.00
15 0.99 0.99 0.99 0.99
16 0.99 0.99 0.99 0.99
17 1.00 1.00 1.00 1.00
18 1.00 1.00 1.00 1.00
19 0.91 0.89 0.89 0.85
20 1.00 1.00 1.00 1.00
21 1.00 1.00 1.00 1.00

1. The total time of the test is about 588s (see Table 1),

which is on the shorter side of the time scale compared
to the other tests. Also, the nature of the precursor being
introduced (only the B-Flux compensation is adjusted)
could imply that running Test 11 for longer times with
more adjustments may improve the performance.

2. As mentioned before, the authors avoided hyper-tuning
of the proposed models to fit certain scenario(s), so the
model can generalize well in the real world when it mat-
ters. Therefore, missing a single fault scenario and de-
tecting the other 20 with a flexible model parameter set
is already a major accomplishment.

The second test with interesting results is Test 19, which
shows negative time delay and delay fraction, implying that
the model started to detect the fault precursors before they
appear in the system. In this case, 56 seconds earlier, which
corresponds to -16.7% delay fraction. This is an interesting
observation, and after we explored the raw data of Test 19, we
found that indeed the system was having a certain amount of
noise in the waveform signals during the normal period, and
that noise was significant enough for the VE model to detect
them.

Table 4. Fault detection metrics when using the voting en-
semble (VE) for the fault detection tests

Test ID t⇤F (s) tF (s) �tF (s) ⇢(%)

1 182 182 0 0
2 182 182 0 0
3 182 182 0 0
4 182 182 0 0
5 182 182 0 0
6 182 182 0 0
7 182 182 0 0
8 182 182 0 0
9 182 182 0 0
10 182 245 63 10
11 182 588 406 100
12 182 301 119 23.3
13 182 182 0 0
14 182 182 0 0
15 182 189 7 1.3
16 182 189 7 1.8
17 182 182 0 0
18 182 182 0 0
19 182 126 -56 -16.7
20 182 182 0 0
21 182 182 0 0

To clarify more, Figure 12 shows a plot of the B-Flux and
Mod-I waveform pulses of Test 19. Only the pulses during
the second and third minutes of the test are shown, which
belong to the normal period when the VE model indicated
fault precursors despite no precursors being introduced yet.
The reader can clearly see in Figure 12 that these normal
pulses are not identical as desired, and some of them show
clear deviation which can be seen more clearly in B-Flux and
Mod-I waveforms. For example, the yellow and grey pulses
obviously deviate from the rest of the group as indicated in
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Figure 11. Fault detection performance of the voting ensemble (VE) with fault delay time (left) and delay fraction (right). Test
11 is the only test missed by the model

the zoomed version of Figure 12. This observation reveals
excellent proof that this model actually works and was able
to detect those abnormal signals earlier in time even though
they are not caused by a real fault precursor, but coming from
system noise. While the authors are not certainly sure of the
reason why those abnormal signals show up in Test 19 in par-
ticular, the reason may be attributed to how these tests have
been conducted. The authors have conducted these tests in
a scheduled time frame where we usually leave 3-5 minutes
before starting the next test. One possible reason could be
that the machine was not able to restore its normal status fol-
lowing the several changes of Test 18, so small abnormalities
remained and were exacerbated after we started Test 19. As
the reader can tell, these abnormalities are very difficult to
detect by humans unless a clear benchmark to normal signals
is provided as in Figure 12. Test 19 results indeed show how
these machine learning models can be really valuable in de-
tecting such a subtle change in waveforms. Now, after the
normal period ends and real fault precursors start to appear,
the VE model continues the excellent performance as can be
easily told from the excellent classification metrics for Test
19 in Table 3.

4.3.2. Performance Comparison

All 9 trained models are now applied to the 21 tests to evalu-
ate their performance compared to the VE model, and the re-
sults are plotted in a bar chart in Figure 13. We only provided
the delay fraction (⇢) and F1 score as representative metrics.
Due to the voluminous size of the results for all models and to
maintain a concise article, we only reported these two metrics
in this paper.

By looking at the results, it is clear that the perfect models in
the training/testing phase (of section 4.2) are no longer that
good coming into the early fault detection phase. The models
do not seem to provide a satisfactory performance compared
to VE in most of the tests. For example, in Tests 5-7, the
models other than VE have missed the fault precursors with
a large delay (sometimes 100%) and have provided a poor F1
score, while VE shows the opposite. And this is the same

story for most of the other tests, however, with some tests
showing variability in performance between the models. For
example, Test 1 shows ET as the best method after VE, Test 2
shows that BC, RF, GB are as good as VE, Test 3 shows AB
and VE to be the best, and so on. The major observations to
be discussed from Figure 13:

• All models including VE failed to detect Test 11, obtain-
ing comparable metrics. This could imply that the pre-
cursors of Test 11 are hard to detect.

• All models except AB show a negative delay fraction
for Test 19, implying that the noise precursors were
detectable by most models. This agreement reinforces
our observations for VE. AB demonstrated poor perfor-
mance, missing the whole Test 19.

• Test 15 shows that all models have comparable delay
fractions, but by looking at their F1 score, it implies
something else. Although all models were able to de-
tect the precursors early enough, some models started
to make wrong predictions afterwards, tagging faulty
pulses as normal. For example, VE and AB have very
good F1 and ⇢ scores, but ET has a good ⇢ but a mediocre
F1 score of less than 0.6. This shows the value of looking
at different metrics to fully assess model performance.

To provide a comprehensive and concise comparison between
all models based on these metrics, we counted the number of
tests being passed by each model. The passing condition is
to achieve a delay fraction ⇢ < 25% and F1 > 0.8. While
these thresholds are arbitrary for evaluation, a 25% delay still
provides the operator with enough time to take an action. The
summary is provided in Table 5, which shows how these mod-
els are ranked. Obviously, the voting classifier (VE) excels
by far passing 20 out of 21 tests, yielding an impressive suc-
cess rate of 95%. The rest of the models are ranked next with
comparable performances, with AB and ET coming next with
52% and 48% success rates, respectively. The CNN, BC, RF,
GB have similar overall performance, while the two SVM
models (LSVM and RBF-SVM) show the worst performance
without any advantage of adding the RFB kernel over the lin-
ear kernel.
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Figure 12. Plot of the B-Flux and Mod-I waveform pulses during the second and third minutes of Test 19 along with zoomed
version

Table 5. Comprehensive summary of the methods passing the
early fault detection tests with: ⇢ < 25% and F1 > 0.8 and
their fraction of the total (success rate)

Method Passed Tests Success Rate (%)*
VE 20 95.2
CNN 9 42.9
BC 9 42.9
RF 9 42.9
ET 10 47.6
GB 9 42.9
AB 11 52.4
LSVM 5 23.8
RBF-SVM 5 23.8

⇤ Success rate is the fraction of the passed tests from
the total number of tests (21).

The proposed models in this work encompass a wide range
of machine learning methods from ensembles to neural net-
works to classical methods like SVM. The VE model, the
main hierarchical ensemble based on the voting concept, il-
lustrated to be the best. The VE model is an ensemble of mul-
tiple layers, each consists of an ensemble as shown in Figure
9. The first layer features different models, each voting on the
status of its corresponding waveform. The second layer in-
volves using five different sub-models within each waveform
model to vote on the status of that waveform. In this context,
we used models based on random forests, extremely random-
ized trees, bagging classifiers, adaboost, and gradient boost-
ing. The third layer occurs within each sub-model (RF, BC,
etc.), where each sub-model consists of number of estimators
(i.e. 40) voting for each sub-model. This advanced hierar-
chy provides a strong diversity in the decision making pro-

cess which is the main reason for the excellent performance
of VE. The second advantage of this approach is that it signif-
icantly reduces the sensitivity of the hyperparameters of each
model/estimator given the decision is made by more than 100
models rather than a single model.

The remaining models show that standalone ensembles (GB,
BC, etc.) can be as good as neural network models (CNN)
for early fault detection, while classical models such as SVM
seem to be less powerful. For completeness, we also tested k-
nearest neighbors (KNN) and feedforward neural networks,
with both showing a poor performance that is not worth to
be reported here. This is aside from the fact that KNN was
very slow to train and make predictions. Also, we explored
including the CNN, LSVM, and RSVM into the VE ensemble
without noticing major improvements, albeit that the SVM
models made VE even weaker.

Aside from the machine learning part, we should reiterate on
the significant value of the experimental setup used in this
study, which we believe is as important as the machine learn-
ing part. The experimental part involves significant efforts by
electronics and control engineers to facilitate data streaming
and testing, which were vital to obtain quality and adequate
quantity of data to empower machine learning. The RFTF fa-
cility can be used in future computational and machine learn-
ing studies to explore these techniques in other parts of the
accelerator.

The results of this study also reveal that the classical machine
learning approach of splitting data into training and test sets is
not always guaranteed to confirm the model performance. In
this work, 9 models show identical and perfect performance
on the test set, but once they are introduced to new scenarios,
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Figure 13. Comparison of the delay fraction (⇢) and F1 score for all methods and all tests
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the performance of 8 out of 9 decreased at least by half. This
practice reveals the value of implementing the trained mod-
els and exposing them to new data to confirm their ability to
generalize.

In terms of computing time, the training expenses are quite
comparable for most models except for VE, which is more
expensive than others as it involves many more models to
train. However, given that training is done offline, and the
trained model is what is being used on the system, the model
prediction time is more important. Similarly, we expect the
VE model to be also slower as it counts votes from many sub-
models to make a prediction. The tests reveal that RBF-SVM
is the slowest model among all, taking a prediction time of 28
ms/sample, most likely due to the non-linear transformation.
Next is the VE model taking 6 ms/sample, then LSVM with
3 ms/sample, CNN with 2 ms/sample, while the rest of the
models (GB, BC, GB, RF, ET) take in average between 1.5-
1.8 ms/sample. Given we are streaming waveforms at a rate
of 3-5 s, the prediction time of all models is much lower.

In this work, we accomplished two main goals that were lim-
itations of our previous effort (Radaideh, Pappas, Walden, et
al., 2022): (1) resolving data limitations by upgrading the
controller and the data acquisition system of the HVCM, (2)
demonstrating that under near-continuous data streams, ma-
chine learning can be effectively used for early fault detection
to detect the fault precursors well ahead of time. In the pre-
vious paper, (Radaideh, Pappas, Walden, et al., 2022), which
highlights the HVCM powering the RFQ section, the paper
demonstrates a promising potential for fault detection, but
with a very limited time scale (about 1.5 ms before the fault
happens), which is a time that only allows for a quick system
shutdown. This approach may prevent the fault from hap-
pening and reduce the damage to the HVCM (i.e. through
preventive maintenance), but does not resolve the downtime
issue of the SNS. The results of this work, which are based
on the RFTF facility simulating the SNS conditions, extend
these methods to allow for early fault detection, prognosis,
and predictive maintenance, giving the operators sufficient
time to either re-tune the modulator, skipping the warning if
it is only a noisy signal, or shutting down the system if the
issue is serious.

Broadly speaking, our proposed techniques can be used for
other particle accelerators only if their data structure is con-
sistent with our research. To illustrate, our input data is com-
prised of time series signals, with known labels, hence we
anticipate that the data structure of other accelerators would
be similar. Furthermore, the size of the data, the number of
unique waveforms, and the level of noise in the signals (i.e.,
signal quality) would all impact the effectiveness of the mod-
els and the degree of hyperparameter tuning required.

5. CONCLUSIONS

In this work, a variety of machine learning methods is tested
in performing early fault detection in particle accelerator
power electronics to reduce their catastrophic failures and im-
prove particle accelerator reliability. The study highlights the
spallation neutron source (SNS) and the high voltage con-
verter modulators (HVCM) that power the klystrons and ac-
celerating cavities. An advanced experimental setup featur-
ing a radio-frequency test facility with operating conditions
similar to the SNS is used to stream waveform data in much
higher rates than what was achieved before. The authors have
conducted 21 test experiments mimicking the fault conditions
that occurred in the HVCM in the past without causing a real
fault, where machine learning models are tested in discover-
ing these fault precursors as soon as they are introduced in
the system. A variety of techniques including ensemble trees,
convolutional neural networks, support vector machines, and
hierarchical voting ensembles are trained and tested in this
study. Although all models have shown a perfect and iden-
tical performance during the training and testing phase, the
performance of most models has decreased in the early fault
detection scenarios once they got exposed to real-world data
that feature the 21 experiments. Nevertheless, the hierarchi-
cal voting ensemble maintains a distinguished performance
in early detection of the fault precursors in 20 out of 21 tests,
followed by adaboost and extremely randomized trees that
detected 11 tests and 10 tests, respectively. The support vec-
tor machine models provided the worst performance detect-
ing only 5 tests. The performance of the other models was in
between.

Overall, the results of this study lead to several conclusions
that for a successful implementation of machine learning in
the SNS or particle accelerator power systems (e.g. HVCM),
the data acquisition system should be improved to be more
advanced and capable for continuous streaming and handling
of big data to feed to the machine learning models. The ma-
chine learning models are better to be diverse and based on
ensemble concepts to reduce bias and hyperparameter sensi-
tivity. Given the authors have shared all experimental data
used in this work, future work ideas would focus on improv-
ing the models architecture and their generalizing abilities to
allow for accurate fault detection, prognosis, and predictive
maintenance.
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