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ABSTRACT 

Brake rotors are essential parts of the disc brake systems. 

Brake rotor thickness variation (RTV) and corrosion are 

among top failure modes for brake rotors, which may lead to 

brake judder and pulsation, steering wheel oscillations and 

chassis vibration. To improve customer satisfaction, vehicle 

serviceability and availability, it is necessary to develop an 

onboard fault detection and isolation solution. This study 

presents a methodology to monitor the state-of-health of 

brake rotor system to reduce costs associated with scheduled 

inspection for autonomous fleet or corrective maintenance. 

We converted the vehicle signals from time-domain to 

angle-domain and determined health indicators to estimate 

the RTV level of the rotors. Variance, envelope and order 

analysis of the brake circuit pressure, longitudinal 

acceleration and wheel speed sensor signals in angle-domain 

were promising health indicators to differentiate healthy and 

faulty rotors. A classification model was developed to fuse 

the health indicators and estimate the state-of-health of the 

rotors to report the most degraded rotor with corner 

isolation. Results showed that using this concept we were 

able to detect failure levels of 20 microns and larger and 

meet the customer requirement. Robustness analysis showed 

that the concept is robust to the noise factors of tire type, tire 

pressure and vehicle weight. The sensitivity analysis 

showed that the algorithm is sensitive to two of the 

calibration parameters (i.e., brake pedal position gradient 

(BPPG) threshold and the filter order used to derive BPPG) 

used to determine the brake event and enable the algorithm. 

 

1. INTRODUCTION 

1.1. Background 

Brake rotors are critical components of the disc brake 

system. During braking, the brake hydraulic pressure 

squeezes a pair of pads against the rotor to generate friction. 

The pads retard the rotation of the shaft to reduce the 

rotational speed of the wheel. In this process, the kinetic 

energy is converted into heat, which is dissipated to the 

ambient environment. 

Brake rotors can deteriorate in performance over their useful 

life and degrade for several reasons such as: (i) when brakes 

are applied intensely in quick succession; (ii) disc is worn 

below the minimum thickness; (iii) pads are excessively 

worn; and (iv) debris accumulation between pads and disc. 

These factors normally reduce disc’s capacity to dissipate 

heat and lead to thermal distortion and mechanical 

deflection (Antanaitis & Robere 2017). Degraded rotors are 

the main source of “brake judder”, where a non-uniform 

braking torque is applied to the vehicle resulting in brake 

force fluctuations (de Vries & Wagner 1992, Kao, et al. 

2000, Leslie 2004, Kang & Choi 2007). These fluctuations 

are perceived by driver as vibrations in steering wheel, 

pulsations in brake pedal, or noise and vibrations from 

chassis components (Lee & Dinwiddie 1998). Brake judder 

can further be classified into thermal judder and cold judder. 

Thermal judder is due to uneven thermal expansion of the 

disc and occurs during deceleration from high speeds. Cold 

judder is the most common type of judder and is due to 

uneven wear or mounting and geometrical irregularities of 

the disc and may occur at any speed (Lee & Manzie 2016, 

Bryant, et al. 2008). The frequency of the judder is 

proportional to the wheel speed. Cold judder is mainly at the 

first and the second order of the wheel speed frequency and 

causes lower frequency vibrations in the range of 10Hz to 

100Hz, while hot judder causes higher frequency vibrations 

in the range of 10Hz to 600Hz (Xu & Winner 2015).  
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Common brake rotor failure modes include RTV – also 

known as DTV (Disc Thickness Variation), disc lateral 

runout, and corrosion. RTV refers to an uneven surface of 

the brake rotor (Rodriguez 2006), which is illustrated in 

Figure 1. RTV values greater than ~20 micrometers create 

noticeable brake judder for an experienced driver (de Vries 

& Wagner 1992).  

When RTV fault occurs, a non-uniform braking torque is 

applied to the vehicle during braking. It is perceived by 

drivers as brake pulsation or steering wheel vibration. Such 

a vibration may cause driver’s discomfort, or even anxiety 

about the vehicle safety and quality. Because the variation 

of the rotor surface is generally about 10 um, which must be 

measured carefully at multiple locations, the process is slow 

and costly. Therefore, there is a strong need to develop an 

automatic prognostic solution for RTV. Autonomous 

Vehicle (AV) fleet require periodic manual inspection of 

brake rotors as vehicles are not equipped with 

instrumentation to provide direct health monitoring. By 

automating the brake rotor fault detection, there is an 

opportunity to: (i) reduce the frequency of high-cost 

operation safety inspection check regarding brake rotors; 

and (ii) fault isolation allows fast and accurate diagnostics 

and reduces the time and labor to repair. 

Various chassis mechanical components, such as brake 

rotors, are not equipped with instrumentations to provide 

direct health monitoring and diagnostics. Therefore, when 

brake judder is felt by the driver, the thickness of the brake 

rotor is measured at multiple points to diagnose rotor faults. 

Significant research has been conducted in prognostics and 

health management (PHM) with numerous applications of 

rotary machinery components e.g. bearings and gears 

(Trilla, Dersin and Cabre 2018, Lee, et al. 2014, and Butler, 

et al. 2012). Building on the existing PHM research (see 

Nguyen, et al. 2019 and Benedettini, et al. 2009 for a 

review), this paper demonstrates new early fault detection 

capabilities to detect brake rotors thickness variation. 

Visual inspection is the most common method for the brake 

rotor diagnostics, which can be performed during vehicle 

maintenance. To detect the RTV, the laser measurement 

technique is one of the effective approaches to directly 

measure the rotor surface. A diagnostic tool using 

holographic interferometry is proposed (Beeck & Hentschel, 

2000). Holographic interferometry is a type of 

interferometric approach, which measures the rough surface 

for static and dynamic displacements of an object. For brake 

rotor diagnostics, it can be used to generate the contour of 

the brake rotors surfaces. By observing the images 

generated, the faulty brake rotors with uneven surfaces can 

be detected. 

The visual inspection cannot be performed onboard, while 

the vehicle is in operation. To address this issue, some 

vibration-based approaches are used for brake rotor 

diagnostics and prognostics. The support vector machine  

 

Figure 1. Illustration of Brake Rotor Thickness Variation 

based approach is employed (Jegadeeshwaran & 

Sugumaran, 2015). Vehicle vibration signals for healthy and 

faulty brake rotors during braking, are collected using 

piezoelectric type accelerometers. Vehicle condition labels 

and the statistical features of the accelerometer 

measurements, such as standard deviation, variance, and 

kurtosis, are classified by SVM. The faulty brake rotors can 

then be diagnosed with the trained SVM. The Clonal 

Selection Classification (CSC) algorithm using the same 

vibration signals is proposed for rotor diagnostics 

(Jegadeehwaran & Sugumaran, 2014). The vehicle vibration 

signals are collected for both good and faulty brake rotors. 

The statistical feature sets of vibration signals, including 

standard error, kurtosis, and skewness, are selected, and 

extracted for classification using an attribute evaluator. The 

selected feature sets for healthy and faulty brake rotors are 

then classified using the CSC algorithm.  

The brake rotor fault can also be detected using the 

numerical model and the system dynamics theory (Joe, et al.  

2008). A linear, lumped, and distributed parameters model 

is set up to perform the stability analysis. The complex 

eigenvalues of the model represent the dynamic stability of 

the brake system. The analysis of eigenvalues can then be 

applied to detect the instability of the brake system caused 

by the faulty brake rotors. 

In another study, the noise-based approach is employed for 

rotor fault diagnostics and prognostics (Ertekin & Özkurt, 

2019). The noise signals from the healthy and faulty brake 

rotors during braking are collected and processed using the 

Wavelet Synchro-squeezed Transform. The noise difference 

between the healthy and faulty brake rotors can be 

visualized in the scalogram and verified by a quantitative 

measure of entropy. As a result, the average entropy value 

of a faulty brake rotor is higher than the value of a healthy 

rotor. Accordingly, the entropy value can be used as a fault 

signature to detect faults. 

Although the performance of aforementioned approaches is 

good for certain test datasets, their robustness under 

different noise factors or other failure modes is still a 

concern. Furthermore, some sensors required in these 

approaches are not available in most vehicles. To address 

these issues, a novel prognostic approach using existing 

vehicle signals for brake RTV fault is proposed in this work. 

Thickness 
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As described in our previous work (Kazemi, et al. 2019), 

three vehicle signals are selected to extract fault signatures 

based on vibration characteristics. 

This research work is preceded by a set of well-defined 

requirements the brake rotor fault detection algorithm must 

meet. To preserve the customer ride comfort and provide 

notifications of a needed service, the brake rotor fault 

detection algorithm shall detect brake rotor failure before a 

level an average driver can notice. This failure level is 25 

microns of thickness variation. The detection of brake rotor 

failure shall be done with a high true positive rate while 

minimizing the false positive rate. Furthermore, the brake 

rotor fault detection algorithm shall be operational in normal 

driving conditions and robust to tire type, tire pressure, road 

conditions and vehicle weight. In addition to the above 

requirements the brake rotor fault detection algorithm shall 

only consume vehicle signals from currently available 

sensors to avoid hardware change or additional cost. 

Considering all requirements described above, we propose a 

novel brake rotor fault detection algorithm. The novelty and 

contribution, compared to the literature, are summarized as 

below:  

1. Leverage available existing vehicle sensors without the 

added cost of dedicated instrumentation 

2. Provide a framework, including preprocessing and 

novel HIs to detect common brake rotor faults 

3. Provide an estimate of RTV for each wheel through 

regression and fusion of various health indicators (HIs) 

4. Detect fault through correlation of independent sensors: 

wheel speed sensor (WSS) and brake circuit pressure 

(BCP)  

5. Use the WSS for phase domain transform, and to enable 

accurate fault isolation to the wheel-level  

6. Use the corner correlation HIs to identify brake 

pressure fluctuations that are associated with rotor 

degradations 

This paper is outlined as follows. Section 2 begins with 

describing the experimental setup, fault injection procedure, 

data collection and then details the fault detection and 

isolation algorithm. It discusses the various building blocks 

of the algorithm as well as the methodology used to rank 

various HIs and perform robustness analysis. It also 

describes our proposed concept to estimate the state of the 

health of brake rotors. Section 3 presents the results of 

various analysis obtained from this concept and the 

performance of this concept is further discussed in section 4. 

The conclusion is drawn in section 5. 

2. MATERIALS AND METHODS 

This section provides information on procedures related to 

fault injection, ground truth definition, measuring the 

degradation level (RTV), experimental setup, data 

acquisition, and the various components of the brake rotor 

fault detection and isolation algorithm used to analyze rotor 

data and make predictions on the health of the brake rotor 

system.  

2.1. Experimental Setup 

2.1.1.  Fault Injection 

The two most common failure modes were considered: RTV 

and corrosion. In total, 25 faulty rotors were created. Details 

of the fault injection procedure can be found in (Kazemi et 

al, 2019). To create faulty rotors, healthy rotors were 

machined down to generate varying levels of thickness 

variation (see Figure 2). A “first order” fault profile was 

injected which involves a uniform thickness variation using 

a feeler gauge. The first-order RTV profile has one 

maximum thickness and one minimum thickness. The 

thickness vs. angle curve approximately resembles a single 

period of a sinusoid. A “second-order” faulty profile was 

also injected which has two maxima and two minima, 

approximately resembling two periods of a sinusoid. When 

various rotor thickness measurements (about 24 points) 

were performed across various circumference points, a 

quasi-sinusoidal profile is produced, and the peak-to-peak 

amplitude of this profile is reported as RTV (see Figure 3).  

 

Figure 2. Brake Rotor Fault Injection (A) machining tool to 

create the 1st order and 2nd order thickness variation (B) 

accelerated corrosion exposure 

 
(A) 

 

(B) 
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Figure 3. An example of first and second order RTV profile 
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Figure 4. Typical disk brake system illustrating the sensors 

and signals used to monitor the health of brake rotors 

 

This procedure was repeated five times for each rotor and 

the median of the calculated RTVs were reported. An 

accelerated corrosion exposure durability test (salty water 

spray with certain frequency/duration) was followed to 

generate the 5-year and 10-year equivalent corroded rotors. 

A few corroded rotors are shown in Figure 2. 

2.1.2. Ground-Truth Definition 

The target failure mode for brake rotor prognostics is RTV. 

This is defined to be the difference between the maximum 

and minimum thickness of the rotor, typically expressed in 

microns.  

Healthy rotors usually have RTV tolerances less than 5 

microns, but up to 10 microns is not uncommon. Note that 

these values may vary for different vehicles. Between 20 

and 50 microns is considered a mild fault where minor 

acceleration pulses can be noticed and experienced drivers 

may notice the brake judder at this level, but it will not be 

overly disruptive. As the RTV levels increase, the steering 

wheel begins to shake. Above 80 microns is a severe fault, 

in which the braking experience is uncomfortable and brake 

judder will be obvious to most passengers. 

The RTV profile of a faulty rotor is likely a combination of 

multiple orders, mostly concentrated on 1st and 2nd order 

variations. Note that many different rotor profiles may yield 

the same RTV measurements. That is, the ground truth 

definition that is used to report the failure level does not 

distinguish between the profile that is used to generate the 

fault.  

2.1.3. Measurement Setup and Signals 

2359 vehicle level road tests were conducted, and data were 

collected using multiple GM production vehicles. In total, 

2359 data sets were generated. 165 test cases were 

conducted with healthy rotors (i.e. RTV = 5-15 µm) and the 

remainder of the tests were performed with faulty rotors 

with varying levels of RTV ranging from 21 to 180 µm. 

Data were collected under the following 8 noise factors: 

• Tire type, tire pressure, tire condition, vehicle mass 

(passenger weight) 

• Deceleration rate, brake type, steering maneuver, 

and driver 

Figure 4 shows a simplified diagram of the brake system 

depicting brake pedal, a hydraulic master cylinder, disc 

brake assembly, brake lines and hoses. The WSS is also 

displayed. The master cylinder contains a piston assembly 

and brake fluid that transfers the hydraulic pressure. The 

master cylinder is activated by the force applied to the brake 

pedal by the driver or actuated by a device for the case of an 

autonomous vehicle. The disk brake assembly includes 

rotor, caliper, and brake pads. The brake lines and hoses 

carry the brake fluid to each corner (front left, front right, 

rear left, rear right), the caliper assembly moves to clamp 

the spinning disk, and the generated friction force is used to 

slow or stop the vehicle. Any typical brake system contains 

sensors to measure the BCP, brake pedal position or boost 

plunger position. We can also measure the longitudinal 

acceleration (AX) signal from IMUs as well as wheel speed 

signal form the WSS available on each wheel. For a faulty 

brake rotor, we expect that uneven brake rotor surfaces 

move the caliper piston in and out during 
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braking, which results in fluid movement in the brake 

hydraulic system. It is felt all the way in the master cylinder 

and causes vibration of the BCP. As a result of brake 

pulsation, we expect to observe vibration in the AX and 

MCP signals. 

The main signals of interest include BCP, AX, Vehicle 

Speed (VS), WSS, and Brake Pedal Position or its surrogate 

Boost Plunger Position (BPP). CANalyzer was used to 

record CAN signals at the rate of 100 Hz. Data were 

analyzed using MATLAB 2017b. 

2.2. Brake Rotor Health Monitoring Algorithm  

This section provides details on various components of the 

brake rotor fault detection and isolation algorithm. First, 

various function modules of the algorithm are discussed, 

and then three different concepts are presented on the 

decision-making logic how various HIs are fused together to 

make a decision about the health of the algorithm. 

The purpose of the brake rotor health monitoring algorithm 

is to provide early degradation detection of brake rotors that 

are developing RTV or corrosion. Both identification and 

isolation of RTV faults are accomplished by performing 

time and frequency analysis on the brake BCP, AX, and 

wheel speed signals. More details about the correlation 

between these signals and rotor fault severity can be found 

in our previous works (Kazemi, Du, Dixon, & Sadjadi, 

2019). Once a fault is detected, this system triggers 

notifications to make the customer aware of any needed 

service. 

Data are collected both during braking actions as well as 

during normal driving (non-brake) events. This allows 

removing background noises during the calculation of HIs 

and excluding any vibration symptoms caused by other 

factors (e.g. wheel imbalance, rough road). The brake rotor 

faults are determined if the vibration appears during the 

braking period but not during the normal driving period.  

The block diagram in  

Figure 5 shows the core functions and signal flow of the 

Brake Rotor Health Monitoring function. The algorithm 

consumes the following vehicle signals:  

• Power Mode 

• Vehicle Speed 

• ABS Control Status 

• Stability Control Status 

• Traction Control Status 

• Boost Pedal Position 

• Brake Circuit Pressure 

• Longitudinal Acceleration 

• Wheel Angular Velocity for each wheel 

• Wheel Distance Edge Counter for each wheel 

 

The Brake Rotor Health Monitoring algorithm is divided 

into sub-functions as summarized below:  

2.2.1. Brake Rotor Data Provisioning (DP) 

The purpose of this sub-function is to enable and pre-

process the vehicle input signals. The Brake Rotor Health 

Monitoring is enabled when the input signals are valid and 

meet a set of enabling conditions. The enabled signals are 

then pre-processed before HI calculation. The Brake Rotor 

Data Provisioning is divided into three sub-functions as 

described below: 

Brake Rotor
Health 

Indicators (HI)

Brake Rotor 
Data 

Provisioning 
(DP) 

Brake Rotor 
State-of-Health

(SOH)

Brake Rotor Health Stage

Brake Circuit Pressure Brake Buffer
Longitudinal Acceleration Non-Brake Buffer

Longitudinal Acceleration Brake Buffer
Wheel Angular Velocity  Brake Buffer

Wheel Angular Velocity Non-Brake Buffer

 

Figure 5. Brake rotor prognostics algorithm has three core 

function modules: data provisioning, HIs generation and 

state-of-health generation 
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Figure 6. Brake rotor data provisioning (DP) module 

preprocesses the vehicle signals and manages the brake and 

non-brake buffers 

2.2.1.1 Preprocessing 

This sub-function calculates the wheel angular velocity of 

each wheel from the raw WSS outputs that include the time 

stamp and the tooth counter. It also computes the gradient of 

the Boost Pedal Position using a moving average filter.  

2.2.1.2 Brake and Non-Brake Buffer Manager 

These two sub-functions check the enabling conditions to 

populate buffers of brake and non-brake signals. All brake 

and non-brake events are populated in the “phase-domain”, 

with one sample per pulse on the WSS. Therefore, these 

events all occur over the same number of pulses on the 

WSS, or the same distance travelled on the ground. 

Non-Brake Buffer Enabling Conditions  

The enabling conditions to populate non-brake buffers with 

AX and WS samples include the new value of Wheel 

Identifier (WID) Wheel Distance Edge Counter is different 

from the previous value, VS is greater than 10 km/h, Boost 

Plunger Position Feedback is less than or equal to 5 mm, 

BCP is less than or equal to 0.02 kPa, and the ABS Control, 

stability and traction control statuses are inactive. WID 

refers to the wheel identifier (Left Front (LF), Left Rear 

(LR), Right Front (RF), Right Rear (RR)). Note that for the 

vehicle that was tested, the resolution of the wheel speed 

sensor, brake circuit pressure and longitudinal acceleration 

were 0.004 rev/s, 0.02 kPa and 0.0625 𝑚/𝑠2 respectively.  

 

Figure 7. Comparison of a sample healthy and faulty vehicle 

testing, showing the intuition behind fault signatures. 

Brake Buffer Enabling Conditions 

The enabling conditions to populate brake buffers with AX, 

WS, BCP, Boost Pedal Position and Boost Plunger Position 

are as follows: the new value of WID Wheel Distance Edge 

Counter is different from the previous value, VS is greater 

than 10 km/h, VS is less than 256 km/h, Boost Plunger 

Position Feedback is greater than 6 mm, the absolute value 

of the Boost Pedal Position Gradient (the derivative of the 

BPP) is less than 0.005 delta mm, the absolute value of 

steering wheel angle is less than 5 degree, BCP is greater 

than 1 kPa, AX is less than 0 m/s2 and the ABS Control, 

stability and traction control statuses are inactive. 

2.2.2. Brake Rotor Health Indicators 

Analyses were performed in both time domain and 

frequency domain to calculate signatures that are used to 

detect degradation. These signatures are called HI, which 

can assess the health of the system and differentiate between 

a healthy and faulty rotor. Features were selected based on 

domain expert knowledge, which suggested that the 

vibration analysis of the MCP, AX signals in time domain 

(variance) and frequency domain (average order spectrum) 

can be used to detect abnormalities (Du, et al. 2018). These 

signals were analyzed during brake and non-brake events. 

Figure 7 shows a comparison of a vehicle with all healthy 

rotors and a vehicle with a faulty front right rotor 

undergoing similar maneuvers, in which the vehicle 

accelerates to 70 kph and then brakes to 0 kph with 

approximately constant deceleration at -2 𝑚/𝑠2.  This plot 

shows some visual information that guided the exploration 

of possible HIs to yield good results. It can be seen that the 

faulty vehicle has much higher “judder” or variance in the 

BCP, AX, and front right wheel speed signal, while the 

vehicle is braking. Therefore, the objective is to develop a 

signal processing method that yields in the best possible 

indicator for quantifying this judder. 
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The overall function structure of the brake rotor HIs is 

presented in Figure 8 in which the HIs are calculated from 

the pre-processed input signals. The calculated HIs are used 

to speculate the brake rotor State-of-Health (SoH). The data 

processing for brake rotor HIs is divided into sub-functions 

as described below: 

2.2.2.1 Detrend  

The purpose of the detrend sub-function is to remove the 

linear trend from an input signal. As can be seen in Figure 7, 

rotor faults result in higher variance in the wheel speed 

signal from the corner with the degraded rotor. Simply 

taking the variance of this signal is not a good HI, as the 

linear trend dominates the variance in this segment of the 

signal. Applying detrending is quite simple in this case 

where the brake event is first segmented from the data. A 

linear line of best fit is first applied to the data, and then 

simply subtracted as described by Eq. (1) below: 

�̂�(𝑥) = 𝑦(𝑥) − (𝑚(𝑥) + 𝑏)                           (1) 

where 𝑚 and 𝑏 are the slope and intercept terms of a linear 

regression fit to 𝑦 vs. 𝑥.  In this case, 𝑦 represents the signal 

being detrended (one of BCP, AX, or WS), and 𝑥 represents 

the phase domain that the brake buffer signal is mapped to. 

More details of segmentation and detrending can be found 

from our previous work (Du et al, 2020).   

2.2.2.2 Synchronous Averaging  

This sub-function calculates the time-synchronous average 

(TSA) of the main fault detection signals. TSA is a common 

technique in fault diagnosis of rotating machinery (Lebold, 

et al. 2000). The purpose of TSA is to attenuate components 

of a signal with a suspected periodic component.  

Consider the example of BCP. Given a brake torque 

command (𝑢), either from the brake pedal or an actuated 

brake plunger in the AV case, the brake  

Envelope

Detrend Variance

TSA

Order 
Analysis

Corner 
Correlation

Enhance
 HI

Brake Rotor
Maturation

Brake 
Buffer 
Signal

Non-Brake 
Buffer 
Signals

Brake 
Rotor

 Health 
Stage

Figure 8. Brake rotor health indicators described the 

conditions used to define the brake and non-brake events. 

 

control module increases BCP. In the case where the vehicle 

has a rotor with perfectly uniform thickness (RTV = 0), the 

BCP signal can be expressed as a function of the control 

input 𝑢 and some random disturbance 𝛿: 

𝐵𝐶𝑃(𝑡) = 𝐷(𝑢(𝑡)) + 𝛿                         (2) 

If we assume the rotor is perfectly uniform, we expect this 

signal to be invariant to rotations of the rotor. However, 

consider the case where the rotor has a non-zero thickness 

variation. Given the same control input 𝑢, we expect BCP to 

increase as a thicker portion of the rotor enters the brake 

pads, forcing the brake pads apart and momentarily 

increasing the pressure in the hydraulic line. Similarly, we 

expect BCP to decrease when a thinner portion of the rotor 

passes between the brake pads, allowing the distance 

between the pads to contract with no additional force. 

Therefore, we can model the BCP signal under a faulty rotor 

as having a periodic component 𝑆(𝜃)  associated with the 

rotation of each of the vehicle’s four wheels, where 𝜃 is the 

rotational phase of the wheel. If we consider each wheel 

separately, we get the following model of BCP: 

𝐵𝐶𝑃(𝑡) = 𝐷(𝑢(𝑡)) + 𝑆𝐹𝐿(𝜃𝐹𝐿(𝑡)) + 𝑆𝐹𝑅(𝜃𝐹𝑅(𝑡)) +

 𝑆𝑅𝐿(𝜃𝑅𝐿(𝑡)) + 𝑆𝑅𝑅(𝜃𝑅𝑅(𝑡)) + 𝛿           (3) 

However, if we assume that the wheel diameters are 

equivalent and the vehicle is travelling in a straight line, 

then the rotational phases of the four wheels are all in synch. 

We can therefore reduce the above Eq. (3) to Eq. (4) 

𝐵𝐶𝑃(𝑡) =  𝐷(𝑢(𝑡)) + 𝑆(𝜃(𝑡)) + 𝛿               (4) 

Now, our goal is to estimate 𝑆, as we expect this periodic 

signal to have low amplitude in vehicles with all healthy 

rotors, and higher amplitudes in vehicles with a faulty rotor. 

First, we assume that 𝐷(𝑢(𝑡)) is a linear function, so we can 

apply linear detrending described in 2.2.2.1 to remove this 

portion of the signal. This yields the Eq. (5): 

𝑆(𝜃(𝑡)) + 𝛿 = 𝐵𝐶𝑃(𝑡) − (𝑚 ∗ 𝐵𝐶𝑃(𝑡) + 𝑏)         (5) 

The final stage in estimating 𝑆(𝜃), 𝜃 ∈ [−𝜋, 𝑝𝑖] is to apply 

synchronous averaging about the rotational period of the 

wheel. The synchronous average of a periodic signal 𝑆 with 

period 𝑇 is a signal 𝑇𝑆𝐴(𝑆, 𝜃) with domain 𝜃 ∈  [0, 𝑇] given 

by Eq. (6):  

𝑇𝑆𝐴(𝑆, 𝜃) = ∑ 𝑆(𝑁−1
𝑖=0 𝜃 + 𝑖𝑇), 𝜃 ∈ [0, 𝑇]            (6) 

This has the effect of removing high-frequency noise, and 

only preserving components of the signal that are periodic 

with period 𝑇. In the frequency domain, TSA applies a sort 
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of “comb” filter that maintains harmonics of the underlying 

frequency 1/𝑇. Therefore, we get that 

𝑆(𝜃) = 𝑇𝑆𝐴(𝑆 + 𝛿, 𝜃) = 𝑇𝑆𝐴(𝐵𝐶𝑃(𝑡) − (𝑚 ∗ 𝐵𝐶𝑃(𝑡) +

𝑏), 𝜃(𝑡))     (7) 

A similar approach is applied to both the AX and WSS 

signals, in order to estimate any periodic behavior 

associated with the rotation of the rotors. This calculation 

can be made simple by first transforming the signal to the 

phase domain, where each sample is interpolated to be 

equally spaced by rotational phase of the wheel (and not 

equally spaced by sampling time, as it is recorded). 

2.2.2.3 Envelope 

The envelope sub-function is used to quantify a metric of 

signal “width”, under the observation that rotor faults result 

in more variance and therefore “wider” signals. The 

envelope of a signal is a smooth curve outlining the upper 

and lower bounds of the signal. The median envelope 

difference of the following signals was used as an HI to 

characterize the degradation level of the rotors:  

• Brake Circuit Pressure TSA 

• Longitudinal Acceleration TSA 

• WID Wheel Angular Velocity Brake Buffer 

• WID Wheel Angular Velocity Non-Brake Buffer 

as per the logic below: 

• Apply a moving-RMS filter that calculates the RMS of 

each window of size 24 in the signal. This is an estimate 

of the half-envelope size at each point on the signal. 

• Return the median of 2x the moving-RMS filter. 

The moving RMS filter is doubled to estimate the difference 

between the upper and lower envelope. 

2.2.2.4 Variance 

This sub-function computes the variance of its inputs. The 

computed variance is used as HI. 

2.2.2.5 Order Analysis 

The HI sub-functions described so far have all been time-

domain indicators. There is also interest in exploring 

frequency domain indicators, especially since we know that 

the influence of RTV is periodic with respect to rotation of 

the wheel. In other words, we are interested in a frequency-

domain decomposition of our main fault detection signals, 

however we want to decompose the signal to sinusoids with 

units of “samples per revolution”, not “samples per second” 

(as a typical Fourier transform of a uniformly sampled 

signal would yield). This can be done by order analysis, 

which is a common approach to quantify vibrations in 

variable-speed machinery (Brandt 2011). An “order” is a 

frequency expressed as a multiple of a reference frequency. 

In the case of brake rotor fault detection, the reference 

frequency will be the frequency of rotation of the wheel hub 

assembly. 

Traditionally, order-analysis uses two signals recorded from 

the machine of interest: a target signal 𝑥  that will be 

decomposed, and a reference signal 𝑟  that gives the 

reference rotational speed for order tracking (typically in 

RPM). The target signal can be interpolated to the “phase 

domain,” in which samples are equally spaced by rotational 

phase of the reference shaft and not by time. Taking the 

discrete Fourier transform of this interpolated signal yields a 

spectrum in the order domain.  

Suppose we apply order analysis to the BCP signal. The 

average order spectrum indicates that there is a peak at first 

harmonic (order one). The RMS amplitude at order one is 

used as a feature or an HI to differentiate between a healthy 

and faulty rotor. The hypothesis put forward is that for 

faulty rotors the peak amplitude at order one is larger than 

healthy rotors. Similar analysis was performed on AX signal 

and wheel speed.   

2.2.2.6 Enhanced Health Indicator 

This sub-function applies linear regression to enhance the 

calculated HIs. A regression to map the HI to health stage is 

performed using a trained regression model and an 

additional vehicle signal. The idea is to use mean and 

variance of vehicle signals (e.g., BPP) for normalization to 

improve the regression model and reduce the error in 

estimated RTV value. For example, applying brake pedal at 

higher rates may result in higher deceleration rate and larger 

MCP amplitudes which in turn result in observing larger 

vibration amplitudes. Therefore, there was a need to 

normalize the HIs (for example, peak to peak amplitude of 

the vibration) with respect to the BPP. Analysis were 

performed to determine which vehicle signals are valuable 

to model. Correlation study presented in Figure 9 revealed 

that Mean of MCP, AX and BPP are highly correlated 

(correlation coefficients > 0.95), and therefore only one of 

the brake-normalizing signals was chosen for any regression 

model. 

2.2.2.7 Brake Rotor Maturation 

This sub-function matures the calculated HIs by combining 

calculations from multiple braking events to remove short-

term noises. There are many possible methods of 

maturation, the most obvious of which are the classic 

measures of central tendency: median and mean (omitting 

mode, due to continuity of calculation space). Determining 

the best performing maturation strategy requires analysis 

using experimental data. Note, however, that mean 

maturation has significant advantages, when it comes to 

memory requirements in an on-board implementation.  



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

9 

 

Figure 9. Correlation between vehicle signals during 

braking events 

 

2.2.3. Rank HIs 

A full-factorial set of features from AX, MCP, and 4-corner 

WS signals and processing techniques (derivative, 

detrended, variance, kurtosis, skewness, envelope, order 

analysis, correlation) in both time domain and phase 

domains were explored. That is, over 2000 HIs were 

explored and therefore, there is a need to rank these HIs and 

only select the top performing HIs to differentiate between 

healthy and faulty rotors. The following criteria were used 

to rank various HIs: (i) Identifiability: Correlation of the HI 

with the Ground Truth (GT). An HI with higher correlation 

to the GT is desired; (ii) Linearity: Deviation from the ideal 

linear HI. Features with more linear trend rank better than 

the others; (iii) Compactness: Mean of the standard 

deviation of the estimated SOHs. HIs that show less 

variability and dispersion are more appropriate; (iv) 

Robustness to Noise Factors: An HI is considered robust, 

when it meets all functional and customer requirements 

under all operating conditions and its performance is not 

affected by the variations in the environment, operating 

conditions or other factors impacting the performance in an 

undesired way (noise factors). More robust HIs are desired; 

(v) Monotonicity: To quantify the monotonic trend in HIs as 

the fault level increases from healthy baseline to the most 

severe faults. Monotone HIs are preferred as they will likely 

generalize better to data not used in development; and (vi) 

Estimation Error: The average relative error between the GT 

and the prediction obtained from the regression analysis. 

The lower estimation error indicates more suitable HIs.  

 

 

 

 

HI Description 

Brake Rotor Health 

Stage 

The brake rotor health stage is the best 

estimate of the maximum RTV of the 

Four rotors on the vehicle. It is an 

indicator of the magnitude of fault 

present. 

Brake Circuit Pressure 

Envelope 

The median difference between the 

upper and lower envelope of detrended 

BCP data in TSA domain, matured over 

15 brake events. 

Brake Circuit Pressure 

Order Analysis (1-4)  

Local peak of the order amplitude 

spectrum of the detrended BCP at orders 

1, 1.5, 2, 2.5, 3, 3.5 and 4, matured over 

15 brake events. 

Brake Circuit Pressure 

Variance 

Variance of the BCP during brake 

events, matured over 15 brake events. 

Boost Pedal Position 

Mean in Brake Events  

Mean of the BPP during brake events, 

matured over 15 brake events.  

Longitudinal 

Acceleration Envelope 

Median of the difference between the 

upper and lower envelope of detrended 

AX, matured over 15 brake events. 

Longitudinal 

Acceleration Order 

Analysis (1-4) in 

Brake Events 

The local peak of the order amplitude 

spectrum of the detrended AX brake 

signal at orders 1, 1.5, 2, 2.5, 3, 3.5 and 

4, matured over 15 brake events. 

Longitudinal 

Acceleration Order 

Analysis (1-4) in Non-

Brake Events 

The local peak of the order amplitude 

spectrum of the detrended AX non-brake 

signal at orders 1, 1.5, 2, 2.5, 3, 3.5 and 

4, matured over 15 brake events. 

WID Wheel Speed 

Envelope in Brake 

Events 

Envelope of the WID Wheel Angular 

Velocity during brake events, matured 

over 15 brake events. WID refers to the 

wheel identifier (LF, LR, RF, RR). 

WID Wheel Speed 

Envelope in Non-

Brake Events 

Envelope of the Wheel Angular Velocity 

during non-brake events, matured over 

15 brake events. WID refers to the wheel 

identifier (LF, LR, RF, RR). 

WID Wheel Speed 

Order Analysis (1-4)  

The local peak of the order amplitude 

spectrum of the WID wheel speed brake 

signal at orders 1, 1.5, 2, 2.5, 3, 3.5 and 

4, matured over 15 brake events.  

WID Wheel Speed 

Variance  

This is the variance of the Wheel 

Angular Velocity, matured over 15 brake 

events. This interface is used to localize 

the brake rotor fault.  

WID Wheel Speed 

Enhanced Detection 

Health Indicator 

Enhanced brake rotor HI to estimate the 

RTV of the four rotors on the vehicle. 

Wheel Speed Matured 

Isolation 

This is the matured brake rotor isolation 

based on Wheel Speed. 

Table 1. List of Selected HIs for algorithm development 
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2.2.4. Selected HIs 

Table 1 introduces the top performing HIs that were 

calculated to differentiate between a healthy and faulty rotor 

and predict the failure level (RTV).  

2.2.5. Brake Rotor State-of-Health Concepts 

The goal of the brake rotor SoH function is to collect the 

system’s HIs to provide an estimate of the system’s SoH. 

We investigated various concepts to fuse the HIs that are 

summarized in. More details are provided below for the 

most degraded rotor detection and isolation Concept. Other 

concepts are not explained in this paper. 

• Most Degraded Rotor Detection and Isolation 

The goal of this concept is to detect and isolate the most 

degraded brake rotor across four wheels. This concept 

consists of two classifiers as depicted in Figure 10 and 

described below: 

– Brake Rotor Fault Detection 

This function performs the healthy vs. faulty classification 

to determine whether there is a faulty brake rotor present in 

the vehicle. If the matured enhanced BCP envelope HI or 

the matured enhanced WID envelope HI is greater than the 

specified threshold, the brake system is labeled as faulty. 

– Brake Rotor Fault Isolation 

The brake rotor fault isolation identifies which wheel is the 

most likely source of the fault as per the following logic: 1) 

For each wheel LF, RF, LR, RR, determine the number of 

instances in the past 11 brake events in which the wheel had 

the maximum value of WID Wheel Speed Variance out of 

the four wheels. 2) Select the wheel with the highest count 

of the maximum value instances. 3) If the highest count is at 

least 4, then identify this wheel as the isolated source of the 

fault. Otherwise, issue “no decision” and do not isolate the 

wheel. 

 

Concept Performance Complexity 

Most Degraded 

Rotor Detection 

and Isolation 

Detects the most 

degraded rotor with 

corner isolation 

Average – uses two 

classifiers 

Wheel-level 

RTV Estimation 

Reports estimated 

RTV of all four 

corners 

Highest – uses 

regression models 

for each wheel 

Axle-level RTV 

Estimation and 

Axle-Isolation 

Detects the most 

degraded rotor with 

axle isolation 

High – uses a mix of 

classification and 

regression model 

Table 2. Concepts explored to determine the brake rotor 

state-of-health 

 

2.2.6. Robustness Analysis 

Robustness of the algorithm to three noise factors of tire 

type, tire pressure and passenger weight (gross vehicle 

mass) were investigated. For each noise factor, two levels 

were considered for comparison. That is, summer tires vs. 

winter tires, tire pressure at 30 psi vs. 47 psi and passenger 

weight of 145 kg vs 290 kg. SOH estimates across two 

levels of each noise factor were compared using paired t-test 

and significance levels were considered at p < 0.05. Note 

that a subset of data from each noise factor was chosen that 

included similar number of brake events and same failure 

modes. Wilcoxon signed rank test was used instead of the 

paired-t test if the normal distribution assumption is 

violated. Robustness analysis for the binary decisions 

derived from the Most Degraded Detection concept was 

performed using Binomial tests to test the hypothesis that 

the two datasets have the same underlying probability of 

correct classification. 

3. RESULTS 

3.1. Representative Signals During Brake and Non-

Brake Events 

Figure 11 shows an example of MCP, AX, BPP and WS 

signals for a vehicle with all four healthy rotors (rotor IDs # 

& 12) (see B) and a vehicle with 1st order faulty (rotor ID 

#26) RTVs (see C) during braking events. BPP signal shows 

that there were multiple braking actions in which vehicle 

decelerated form 60km/h to <10 km/h. Visual inspection  

 

Brake Rotor
Fault Isolation 

Brake Rotor
 Fault Detection

No Decision

Healthy

Detection HIs:
Brake Circuit 

Pressure Envelope
WID Wheel 

Speed Envelope

HI < Threshold?

Isolation
 His:

WID Wheel 
Speed Variance

Faulty, With Corner Isolation

Correct Corner Correct Axle Wrong Axle

N

Y

 
Figure 10. Summary of health indicators used and decision-

making logic 
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Figure 11. Representative Raw Signals for a vehicle with 

healthy rotors (A), 2nd order faulty RTV (B) and 1st order 

faulty rotors (C) 

reveals that the variation in both MCP and AX signals are 

larger for the faulty rotors compared to the healthy one. This 

was a consistent behavior across all RTV levels and for both 

1st order and 2nd order profiles. As RTV increased, the 

vibration and variance of both MCP and AX signals were 

also increased during braking actions. 

3.2. Representative HIs 

Figure 12-A shows an example of an average order 

spectrum of MCP for 5 Y.E corroded rotor with RTVs of 45 

µm at front left, 23 µm rear left, 45 µm front right and 26 

µm at rear left corner. Significant difference in the peaks 

and also the area under the order spectrum can be seen 

compared to the healthy rotors shown in Figure 12-B. 

Figure 13 shows an example of average order spectrum of 

MCP signal and Ax signal for the first and second order 

RTV fault.  

3.3. Ranking HIs 

Figure 14 shows the overall results of applying ranking HI 

framework to the 264 sample of HIs. The top performing HI 

was determined to be the total peak value of the average 

order spectrum of the detrended MCP. Results showed that 

the peak of the average order spectrum of detrended MCP 

signal outperformed other HIs by having a higher 

correlation to the GT, less variability, with higher 

monotonic trend and lower estimation error. The normalized 

performance metrics for identifiability, linearity, 

monotonicity, variability, and relative estimation error is 

shown for all the HIs. It is sorted to display the features in 

the order of importance based on the average of the metrics 

used to rank HIs. 

3.4. Most Degraded Rotor Detection and Isolation 

Concept Performance 

Figure 15 shows the performance of the most degraded rotor 

detection with corner isolation concept. The horizontal bars 

in Figure 15 (A & B) indicate the correct classification rate 

for each rotor. The y-axis legend corresponds to each rotor 

and the RTV values in brackets correspond to the four 

corners of the vehicle (Front Left, Rear Left, Rear Right, 

Front Right) respectively. The confusion matrix for the 

corner isolation is also presented in Figure 15 (C). As 

mentioned, data were collected with several noise factors 

and in this study, we investigated the robustness of the 

developed algorithm to the following noise factors: Tire 

type, tire pressure, and vehicle mass (passenger weight). 

This concept passed the robustness tests using Binomial 

tests. 

 

 

 

 

Figure 12. An example of average order spectrum for a 

faulty rotor (left) vs. healthy rotor (right) 
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Figure 13. An example of average order spectrum of MCP 

signal (A) and AX signal (B) for a blended 1st and 2nd 

order fault (Rotor IDs 23 and 24) 

 

 

Figure 14. Applying rank HI framework to the developed 

HIs 

3.5. Time to Detection 

To find out how often the enabling conditions will be met in 

normal daily use conditions, a separate analysis was 

performed by stitched together 5 hours (250 km) of city 

driving data from 29 different test cases, four different 

vehicles, by naturally driving around Oshawa/Durham 

region in Ontario, Canada. By applying the enabling 

conditions to the distribution of Braking Events in natural 

driving we observed around 570 braking events in 5 hours 

of city driving data. That is, on average every 30 seconds we 

had a braking event. Our algorithm uses 11 braking events 

to make a decision, and the results show that the mean and 

median of the time to decision are 4.35 and 6.8 min 

respectively.  

3.6. Sensitivity Analysis 

The enabling condition parameters set for the maximum 

boost plunger position gradient (BPPG) and the filter order 

applied to the BPPG calculation are the two most significant 

parameters that require more attention to tune. The brake 

rotor algorithm is only enabled whenever the moving 

average filtered boost plunger position (BBP) gradient is 

less than MaxBPP_Grad. If the boost plunger position is 

changing, then MCP changes as well. Any pressure changes 

caused by rotor faults are dominated by pressure changes 

from changing plunger position. Therefore, small values for 

MaxBPP_Grad typically yield better results. Example of 

how brake buffers are being filled when small value is used 

for Boost Plunger Position Gradient is shown in Figure 16. 

Also, FilterDerivativeOrder controls the filter applied to the 

gradient calculation. Larger values yield smoother enabling 

but introduce a delay when if BPP changes rapidly. 

In addition, the number of brake events to combine to 

mature each HI affects the performance. Longer maturation 

window size usually leads to improved performance at the 

cost of increasing time to detection. Default value is 11.  If 

maturation window size is set to a small value, the 

performance will be significantly impacted. Minimum 

number of instances of a wheel having the maximum 

isolation HI to return a matured isolation of the wheel. 

Default value is 4. Smaller values lead to increased incorrect 

decisions and higher values increase the number of no 

decisions outputted.  

4. CONCLUSIONS 

The purpose of this research is to develop a comprehensive 

fault detection, isolation and prognosis methodology for 

brake rotors based on our preliminary work (Du et al, 2020).  

This study presented a methodology to monitor the state-of-

health of brake rotor system to reduce costs associated with 

scheduled inspection or corrective maintenance. Time and 

phase domain signal processing were performed to generate 

several features to estimate the vibration levels caused by a 

degraded rotor and a ranking framework was introduced to 

select the top performing HIs. Variance, Envelope and 

Order Analysis of the MCP, AX and WSS signals were 

promising HIs to differentiate between healthy and faulty 

rotors. Three concepts were developed to fuse the HIs and 

estimate the state-of-health of the rotors by: (i) reporting the  
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(A) 

 

 
(B) 

 

 
(C) 

Figure 15. Most degraded rotor detection and isolation 

concept performance - test data, (A) & (B) Breakdown of 

the performance for front and rear rotors, (C) Overall 

confusion matrix 
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Figure 16. Example of how brake buffers are being filled 

when small value is used for Boost Plunger Position 

Gradient. Blue lines show where the algorithm is enabled. 

When BPPG threshold is small, the large jumps in MCP are 

removed from the enabled segments. This greatly improves 

fault detection performance, at the cost of time to detection. 

most degraded rotor with corner isolation; (ii) estimate the 

RTV of each wheel; and (iii) report the RTV of the axle 

with most degraded rotor. Results showed that using the 

most degraded rotor detection with corner isolation concept 

we were able to detect failure levels of 20 microns and 

larger and meet the customer requirement. Even though the 

performance of our proposed algorithms is great for the 

existing test datasets, the performance for the large-scale 

fleet of vehicles is not obtained yet. Considering the variety 

of driving environment or maneuvers, and the potential long 

tail of corner cases, in the next step, we will leverage our 

telematics platform to collect the vehicle signals, algorithm 

performance data, and warranty data. The self-evolving or 

adaptive algorithms will be developed in the future to 

automatically improve/calibrate the algorithms. The 

remaining useful life estimation of the brake rotors is also 

our next focus. 
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NOMENCLATURE 

RTV rotor thickness variation 

DTV disk thickness variation 

HI health indicator 

SOH state of health 

WS wheel speed 

WSS wheel speed sensor 

BCP brake circuit pressure 

AX longitudinal acceleration 

DP data provisioning 

WID wheel identifier 

TSA time-synchronous average 

MCP master cylinder pressure 

BPP brake pedal position 

BPPG brake pedal position gradient 

GT ground truth 
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