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ABSTRACT 

Rotating machinery generally consist of a driver machine 

such as a motor and a driven machine or load such as a 

compressor or pump. Several condition monitoring (CM) 

techniques have been developed over the years for the 

predictive maintenance of rotating machinery. An 

appropriate selection of these techniques needs to be 

established for maximizing the ROI (Return on investment) 

of such systems. This paper proposes a methodology for the 

proper selection of CM techniques based on factors such as 

fault detectability, fault severity, cost, ease of data 

collection, noise, and system criticality. Effective techniques 

are recommended based on applicability in the industrial 

scenario and research done till now. A careful scoring 

system was adopted and weightage was given to each factor 

by expert opinion depending on its importance in the 

industrial environment. Multi-criteria decision-making 

(MCDM) was used to obtain comparable technique 

combination scores. The effectiveness of a single technique 

was found limited in rotating machinery, effective 

combinations were made and scored according to important 

factors. Final scores were obtained and top combinations 

were chosen for non-critical, sub-critical, and critical 

systems. A possible way of implementation is also shown 

for remote monitoring through literature. 

Keywords: industrial asset CM, fault diagnosis, Induction 

motors (IM), CM techniques, industrial downtime, remote 

monitoring, industrial loads. 

1. INTRODUCTION 

A motor connected to a load is the most common form of 

industrial asset. Especially Induction motors (IM) consume 

nearly 30-40% of the total world’s energy, and 20% of total  

 

energy is used in systems for moving fluids in which pumps 

especially centrifugal pumps are mostly used in many 

industries as a load (Resa et al., 2019), (Stopa et al., 2014). 

The majority of the AC motors are IM and 90% of motors 

used in industries are IM. The 3-phase IM is more common 

in the industry, being more efficient than a single-phase 

motor (Kuphaldt & Haughery, 2000).  

IM is so commonly used in industries, as it has so many 

advantages such as less frequent maintenance requirements, 

IM has a few things going towards them like robustness, 

low cost, low maintenance, load handling, and speed control 

(A. Singh et al., 2016). 

Pumping systems are utilized in a variety of industries and 

are capable of performing a wide range of tasks, making 

them highly sought after. Industrial pumps, which are one of 

the different types of pumping systems, are in high demand 

in industries including oil and gas, power, and food and 

beverage. 

This paper addresses the real-time application and common 

faults for the most commonly used rotating machinery 

having IM and a common load such as pumps, compressors, 

fans, and conveyors. Many factors which are like hurdles to 

implementing the solution were considered. Researchers 

have focused on fault detection by suggesting methods and 

tools for IM and pumps separately (Djeddi et al., 2007; 

Kanovic et al., 2013; Gugaliya et al., 2018; Mehala & 

Dahiya, 2007; Ye & Wu, 2000; Jin et al., 2016; Glowacz & 

Glowacz, 2017; Glowacz, 2018; Vitek et al., 2011; Goktas 

et al., 2017; Dutta et al., 2018; Stopa et al., 2014; Henriquez 

et al., 2014; Goman et al., 2019), but this paper will suggest 

an algorithm to determine the latest technique and sensors to 

cover both motor and load side. Also suggesting how to 

implement it with the latest technologies like the Internet of 

Things (IoT), wireless monitoring, online CM, networking 

multiple setups for remote monitoring.  

The estimates say that 23.9% of total manufacturing cost 

goes towards downtime cost and 13.3% goes towards 
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planned production time with added hourly downtime cost, 

planned or unplanned is high enough to be unseen (Tabikh, 

n.d.). 

As per statistics of many industrial settings, the unplanned 

downtime is much higher than the cost of scheduled 

downtime, typically the average hourly cost of unplanned 

downtime is 40K USD. The total estimated cost for 

industrial manufacturers tops 50 billion USD per year. 

Some examples of downtime costs for industries are shown 

in Table 1 (https://Behrtech.Com/Blog/Infographic-20-Mind 

Boggling-Stats-on-Cost-of-Industrial-Downtime/, n.d.). 

Fortune 1000, 82% of companies having unplanned 

downtime in 3 years had an average of 4-hour downtime per 

failure, costing an average of 2 million USD. Unplanned 

downtime does not only cost money but also customer trust 

and productivity (Elliot, 2015).  

Downtime costs incurred across some industries 

Automobile 22000 USD lost every minute of 

downtime 

Mining 5 million USD for losing an 

excavator for a day 

Oil & Gas 38 million USD of financial loss 

due to unplanned downtime 

annually 

Process Industries 5% of total output value loss due 

to unplanned downtime 

Table 1. Downtime cost across some industries 

(https://Behrtech.Com/Blog/Infographic-20-Mind-Boggling-

Stats-on-Cost-of-Industrial-Downtime/, n.d.) 

Usually, the failure of IM is not sudden but gradual 

degradation or faulty parts. The efficiency of the motor 

keeps decreasing due to the occurrence of faults and if 

remains unchecked it eventually fails. Fault can occur from 

many reasons such as natural wear, incorrect installation, 

broken parts, overheating, stress, and much more. Looking 

at the part failure percentage of IM it is clear that which 

parts fail the most and how to monitor the motor precisely 

by planning and scheduling maintenance becomes important 

(Parekh, 2003). Figure 1 shows the part failure probability 

data and common loads connected to IM. Common faults 

from the most used loads with a motor will be the priority in 

this paper as shown in Figure 2. The other loads connected 

with the IM have faults that are either non-diagnosable with 

CM techniques or non-significant to be a concern to the 

industry. Cavitation in pumps will be considered in our 

methods with other common faults on the load side (Terron-

Santiago et al., 2021; Goman et al., 2019). 

We have to effectively plan the maintenance for when there 

is a change in the efficiency of IM. To catch the fault at the 

incipient level, CM tools and techniques help to ensure the 

detection of the fault. We can schedule the maintenance or 

order spare parts beforehand to avoid any downtime costs. 

With the correct CM techniques in place incipient faults can 

be detected and according to the priority of fault spare parts 

can be arranged beforehand to help with the maintenance 

and extra costs. (S. Kumar et al., 2019; Loiselle et al., 2018; 

Muthanandan & Nor, 2019) 

 

Figure 1. Failure distribution in IM 

 

Figure 2. Failure distribution in common loads connected to 

IM (Terron-Santiago et al., 2021), (Goman et al., 2019) 

There are additional operational costs (e.g., electricity bill) 

due to reduced efficiency based on the Duty Cycle, common 

electric motor duty cycles are given in Table 2 (Hamid A. 

Toliyat, 2004). CM is unorganized and industries do not 

have a clear way of using it to reduce their downtime. A 

huge amount of cost goes towards unplanned maintenance. 

Many approaches for the selection of techniques according 

to cost benefits are found in the literature. But only a few 

consider all the variables from data collection to 

implementation which is a major challenge as every 

industry has its own goals and expectations from an asset. 
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There is a need for a common methodology that 

incorporates cost as well as other factors while selecting CM 

techniques. (Buckley, 1987; Carnero, 2009; Liu et al., 2016; 

Mechefske & Wang, 2001; Moore & Baker, 1969; Parsaei 

& Wilhelm, 1989; Petkov et al., 2020; Utne et al., 2012; 

Wang & Wang, 2013)  

 

Common Motor Duty Cycle as per Importer Exporter 

Code (IEC) Standards 

S1 Continuous 

Running 

Constant load operation of 

sufficient duration to reach 

thermal equilibrium 

S2 Short-time duty Constant load for a specific 

time but less than that to reach 

thermal equilibrium followed 

by rest to reach coolant temp. 

S3 Intermittent 

Periodic duty 

Identical duty cycles 

sequentially with constant 

load and rest without a 

connection 

Table 2. Motor duty cycle as per IEC standards (Hamid A. 

Toliyat, 2004) 

This paper proposes a methodology for more effective 

implementation of CM techniques for industrial 

applications. A complete solution considering motor as well 

as load side fault situations is suggested. The article will 

cover Fault Diagnosis as well as Fault severity monitoring 

with the proper selection of sensors or their combination. 

New possibilities of how the techniques can be used will 

also be discussed in this paper so to help the engineers 

collect data easily and safely. Figure 3 shows the complete 

asset schematic system. 

 

Figure 3. An industrial asset with motor and load 

There are two types of modes in which we apply CM, 

Online- Applied when the machine is in working condition 

(e.g., vibration analysis, current analysis, thermography), 

Offline- Applied when the machine is not working (e.g., 

checking misalignment) 

Data collection is done on a continuous and periodic basis, 

generally, the critical machines need to be monitored 

continuously due to the high-cost risk and safety hazards 

involved. For general-purpose machine's periodic data 

collection method will be well suited where preventing a 

failure will lead to profit on investment (Laws & 

Muszynska, 1987). Machine-mounted sensors with the 

integrated system will give real-time data in case of 

continuous monitoring and periodic analyses of signals 

collected in data loggers are essential. 

The rest of the paper is organized as follows: Section 2 

explains common CM techniques like vibration, current, 

thermal, acoustic, and flux. Flux sensors are relatively new 

in the field of CM, with very less research done in this area. 

Different types of faults that can be detected by these 

techniques and their effectiveness in fault detection are also 

shown. Section 3 proposes a methodology for proper 

technique selection, considering important factors essential 

for real-time industrial applications, and also proposing a 

wireless setup for multi-sensor industrial asset applications. 

Section 4 concluded the results and findings of the paper. 

CM techniques will be discussed in Section 2 with their 

capabilities to detect different types of faults. 

2. CM TECHNIQUES 

In this section various CM techniques, their effectiveness in 

detecting different types of faults, and severity levels of 

diagnosis have been presented. 

2.1 Vibration Monitoring 

Vibration analysis works on the directional measurement of 

vibration signals which are collected by data acquisition 

systems through sensors (accelerometer). This technique is 

used to detect faults like misalignment, imbalance, bearing 

failure, cavitation, gear faults, and eccentricity (Han & 

Song, 2003). The possibility of detecting stator winding 

faults, uneven air gaps, unbalances in drive load, and 

asymmetrical power supply when the sensor is placed on the 

stator is an advantage (Thorsen & Dalva, 1998). Vibration 

in any machine is not desirable. It can be used to detect 

faults in the early stages, careful understanding and correct 

application are essential for a maintenance engineer 

(Soother & Daudpoto, 2019). Figure 4 shows the vibration 

severity levels for determining a machine's health 

ISO:10816-6 1995. It is widely used to determine if the 

machine requires maintenance. 

Vibration measurements can be done in either radial or axial 

directions (Yu, 2020). If there is a change in the flux 

distribution of the motor it will cause a change in the 

spectrum of vibration, this change can be measured to get 

results regarding the type of fault and severity level of fault. 

The faulty signal can be compared to a reference point 

(healthy spectrum) (Gundewar & Kane, 2021). Changing 

the placement of the sensor can be used to identify different 

type of faults. 

Vibration signal analysis is very useful tool especially in the 

case of mechanical systems in rotating machines. 

Unplanned downtime, maintenance costs can be reduced 

significantly with proper CM using vibration signals. 
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Figure 4. Vibration severity chart of machine's health as per 

ISO:10816 (International Organization for Standardization 

(ISO) 10816-6:1995, Mechanical Vibration - Evaluation of 

Machine Vibration by Measurements on Non-Rotating Parts 

- Part 6: Reciprocating Machines with Power Ratings above 

100 KW., n.d.) 

Bearing faults can happen by a defective race, cage, or ball 

with single or multiple fault locations. A vibration sensor is 

attached to the bearing to collect vibration data that is sent 

to the data acquisition system and analyzed in the signal 

processing software. The healthy or newly commissioned 

machine vibration spectrum is compared with the faulty 

spectrum to find changes in the machine's health. Cross-

referencing the difference in vibration spectrum with the 

characteristic fault frequency, we can get an idea of what 

part of the bearing is defective. Depending on the amplitude 

of fault frequency, the severity of the fault can be deduced 

by the International Organization for Standardization (ISO) 

severity chart Figure 5. 

 

Figure 5. Typical bearing faults in a machine 

Vibrations are produced at every rotation of the rolling 

elements. Localized faults on every impact cause a series of 

vibrations, the position, and amplitude of vibrations for 

every speed can be calculated by knowing bearing 

dimensions and rotational speed. These are called 

characteristic fault frequencies (CFC) and are different for 

every part of the bearing. By cross-referencing each CFC 

with impulses generated by faulty bearings we can detect 

which part of the bearing is faulty using mechanical 

vibration analysis techniques (Djeddi et al., 2007). 

Cage Characteristic Fault frequency,  

 𝑓𝑐𝑓 =
1

2
𝑓𝑟 (1 −

𝑑𝑐𝑜𝑠(𝜃)

𝑝
) (1) 

Outer Race Characteristic Fault frequency, 

𝑓𝑜𝑟𝑓 =
𝑛

2
𝑓𝑟 (1 −

𝑑𝑐𝑜𝑠(𝜃)

𝑝
) (2) 

Inner Race Characteristic Fault frequency, 

𝑓𝑖𝑟𝑓 =
𝑛

2
𝑓𝑟 (1 +

𝑑𝑐𝑜𝑠(𝜃)

𝑝
)  (3) 

Ball Characteristic Fault frequency, 

     𝑓𝑐𝑓 =
𝑝

2𝑑
𝑓𝑟 (1 + (

𝑑𝑐𝑜𝑠(𝜃)

𝑝
)

2

)  (4) 

Where 𝒇𝒓 is rotational frequency, 𝒅 is ball diameter, 𝜽 is 

ball contact angle, 𝒑 is ball pitch diameter, 𝒏 is the number 

of balls.  

The CFC that should be observed for detecting bearing 

faults can be calculated by equations (1-4) (Gugaliya et al., 

2018) also some typical bearing faults can be seen in Figure 

5. 

Rotor bar Faults (breakage) are the main fault of the rotor 

in the IM as shown in Figure 6. Breakage of one bar 

increases the stress on other nearby bars which deteriorates 

their health as well. Generally, vibration monitoring is used 

to detect mechanical faults but in the rotor case, this 

technique can be used successfully because the broken rotor 

bar will excite the electromagnetic field disturbance which 

increases the torque modulations and hence lead to vibration 

which is easily measured by accelerometers (Kanovic et al., 

2013). 

The current will not flow in a broken rotor bar and the 

surrounding field will not exist. Because of that, the forces 

will be different from both sides of the rotor, unbalanced 

magnetic which rotates at rotational speed and modulates 

several poles times slip frequency will be created. So, the 

spectrum will have an increase in amplitude with sidebands 

at the rotational frequency (Kanovic et al., 2013). 

 

Figure 6. Broken rotor bar fault in IM (Gangsar & Tiwari, 

2020) 

Eccentricity Faults occur due to an uneven air gap between 

the stator and rotor in the motor. The eccentricity faults are 

divided into 3 parts: Static, Dynamic, and Mixed 
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eccentricity as shown in Figure 7. Considering the literature, 

eccentricity faults can be detected by vibration monitoring 

by observing sidebands concerning rotor slot frequency or 

by supply frequency (Ch et al., 2015). 

 

Figure 7. Eccentricity faults (a) normal (b) static (c) 

dynamic eccentricity (Gangsar & Tiwari, 2020) 

For analysis purposes, the motor will be in two states 

coupled and decoupled. Coupled motor will be seen as a 

whole system (motor + load) assembly and the decoupled 

motor will only consist of the motor side. From the 

literature (Ch et al., 2015), we can reliably say that current 

monitoring methods are more successful in monitoring 

eccentricity faults in decoupled motors on the motor side. 

But when we see it as a whole system, vibration monitoring 

is more successful because the fault can be on the load side 

and the current monitoring would not be able to detect the 

fault at an early stage. 

For studying eccentricity, the sidebands can be observed 

concerning either rotor slot frequency (5) (Barbour & 

Thomson, 1997) or supply frequency (6)  (Benbouzid, 2000) 

𝑓𝑒𝑐𝑐 = 𝑓𝑠 [(𝑅 ± 𝑛𝑑) (
1−𝑠

𝑝
) ± 𝑛𝑤𝑠] , (5) 

or 

𝑓𝑒𝑐𝑐 = 𝑓𝑠 [1 ± 𝑚 (
1−𝑠

𝑝
)]  (6) 

𝒇𝒆𝒄𝒄 is the eccentricity frequency, 𝒇𝒔 is the supply 

frequency, 𝑹 is the no. of rotor slots, 𝒏𝒅: 0 for static and 1 

for dynamic, 𝒔 is slip, 𝒑 is no. of poles, m is 1,2,3…., 𝒏𝒘𝒔 is 

1,3,5,7. 

Unbalancing Faults, in general, occur in rotating parts of a 

machine, e.g., rotor unbalance in an IM which happens 

when the center of mass does not coincide with the 

geometric center of the motor. The main causes are 

manufacturing defects, unwanted chipping or addition of 

mass on the rotor, thermal expansion, or bending of the 

shaft. Classified into 3 categories Static, Couple, and 

Dynamic unbalance. A centrifugal force is produced by the 

unbalancing due to which there are vibrations at a frequency 

equivalent to relative shaft speed and due to mutual 

inductances becoming unsymmetrical between stator and 

rotor the stator current harmonics occur at frequencies 

(Rahman & Uddin, 2017) calculated by (7) (Gugaliya et al., 

2018). 

𝑓𝑢𝑛𝑏 = 𝑓 [ 1 ±
𝑘(1 − 𝑠)

𝑝
] (7) 

 

𝒇𝒖𝒏𝒃 is the unbalanced rotor frequency, 𝒇 is the electrical 

supply frequency, 𝒌 is per unit slip, 𝒑 is the number of 

poles.  

Misalignment Faults are common faults like unbalance and 

occur when the coupled shaft center is not coinciding with 

each other as shown in Figure 8. In short term, it reduces the 

efficiency of the machine and in long term, it can also cause 

the failure of the machine. Flexible couplings are usually 

used to eliminate this fault. These are classified into parallel 

and angular misalignment. Vibration analysis and current 

analysis are used to detect the misalignment fault by 

observing harmonics, 3x will be highly excited as compared 

to 2x, 4x, and 5x harmonics of vibration and current (Kumar 

Verma et al., 2013). 

 

Figure 8. Misalignment faults (a) Parallel (b) Angular 

misalignment (Gangsar & Tiwari, 2020) 

Cavitation is a general issue when it comes to pumps, the 

phenomenon happens when the water pressure drops below 

the threshold value which causes vaporization and formation 

of tiny bubbles, the bubbles create a shockwave while 

imploding and hence excessive vibration on the pump 

casing which is detectable. It causes low performance, 

damage to the impeller and volute, bearing failure, and seal 

failures so it is very important to detect and eliminate the 

fault at the incipient level Figure 9. Shows cavitation in 

centrifugal pumps (Dutta et al., 2018)(Stopa et al., 2014). 

 

Figure 9. Pitting due to cavitation in centrifugal pumps 

2.2 Current Monitoring  

Winding faults can happen due to heating, electrical, 

environmental, and mechanical stresses which affect the 

stator, the insulation breaks and causes a short circuit in the 

motor due to which the motor can heat excessively, high 
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current flow, high voltage flow, physical damage, etc. The 

Park vector approach is a good method to determine 

winding failures. Equations shown below (8-12) (Ye & Wu, 

2000) represent a circular locus centered at the origin of the 

coordinates. The Equations (11-12) will not be valid for any 

abnormalities in the motor. 

𝑖𝑑 = (
√2

√3
) 𝑖𝑎 − (

1

√6
) 𝑖𝑏 − (

1

√6
) 𝑖𝑐                                  (9) 

𝑖𝑞 = (
1

√2
) 𝑖𝑏 − (

1

√2
) 𝑖𝑐                                  (10) 

Under ideal conditions, 3-phase current corresponds to 

Parks vector with these components 

 𝑖𝑑 = (
√6

2
) 𝑖𝑚sin (𝜔𝑡) (11) 

 𝑖𝑞 = (
√6

2
) 𝑖𝑚sin (𝜔𝑡 −

𝜋

2
)  (12) 

𝒊𝒂, 𝒊𝒃, 𝒊𝒄 are main phase variables, 𝒊𝒅, 𝒊𝒒 are Park vectors 

current components, ‘𝑖𝑚’is the maximum value of supply 

phase current (A), 𝝎 is angular supply frequency (rad/sec), 𝒕 

is the time variable. The diagnosis is based on the elliptical 

pattern which corresponds to the motor current parks vector 

form. Ellipticity changes and major axis orientation will tell 

fault and severity in the diagram(Ye & Wu, 2000). 

 

Rotor bar faults will produce a rotor asymmetry which will 

lead to the resultant backward rotating field at the slip 

frequency respective to the forward rotating rotor, due to 

this backward rotating field concerning the rotor induces 

electromagnetic force and current in stator winding (Mehala 

& Dahiya, 2007). The sidebands can be detected at twice 

slip frequency (12) (Mehala & Dahiya, 2007) 

𝑓𝑠𝑏 = 𝑓(1 ± 2𝑠)  (13) 

𝒇𝒔𝒃 is sideband frequency, 𝒇 is supply frequency, 𝒔 is slip 

Current monitoring techniques like Motor Current Signature 

Analysis (MCSA) are equipped with tools to detect rotor bar 

faults. 

Eccentricity faults cause special patterns unique to the fault 

and can be detected by current spectrum analysis. The 

rotating wave approach method is used by which the 

magnetic flux waves in the air gap are calculated by 

magnetomotive force waves multiplied by permeance.  

Frequency component 𝑓𝑒can be calculated by Equation (14) 

(Ye & Wu, 2000) 

𝑓𝑒 = [
(𝑘𝑅±𝑛𝑑)(1−𝑠)

𝑝±𝑣
] 𝑓  (14) 

𝒇 is supply frequency, 𝒏𝒅 is eccentricity order: 0 for static: 

1,2,3 for dynamic, 𝑹 is the number of rotor slots, 𝒗 is stator 

MMF harmonics present in the supply, 𝑲 = 1,2,3. ..  

Bearing faults associated with components like cage, balls, 

inner race, an outer race are detected by their respective 

CFC which could be done by vibration or current spectrum, 

𝒇𝒃𝒓𝒈 is used to diagnose bearing faults in the current 

spectrum (15) (Gugaliya et al., 2018) 

𝑓𝑏𝑟𝑔 = |𝑓𝑠 ± 𝑘𝑓𝑏|                                                           

  
(15) 

𝒇𝒃𝒓𝒈 is the relative frequency between 𝑓𝑠 and 𝑓𝑏, 𝒇𝒔 is 

supply frequency, 𝒇𝒃 is characteristic fault frequency, k=1, 

2, 3... 

Gearbox faults lead to failure of machines, malfunctions, 

and financial losses so it's essential to conduct CM and 

diagnosis of faults. The gears can have gear cracks or 

broken teeth that have to be detected. Vibration signals 

show modulations by output shaft rotating frequency, 

current signals are highly modulated by input shaft rotating 

frequency in case of gear cracks and two broken teeth. The 

current-based approach is more sensitive to low-frequency 

ranges and vibration is more sensitive to higher ranges, 

compared to vibration current monitoring is non-intrusive 

and less sensitive, so it has a high potential to be used in the 

commercial sector (Jin et al., 2016). 

2.3 Thermography Monitoring  

Infrared thermal imaging for motors and machines is a non-

invasive method to detect faults that produce localized heat. 

Thermal image cameras like FLIR can be used efficiently to 

take a thermal image of a running motor or load and 

determine if there is an unusual or comparative difference in 

temperatures from the healthy motor thermal image 

temperatures. 

Comparisons are done on the relative temperatures ∆𝑡 by 

(16) (Reljić et al., 2016) 

∆𝑡 =  𝑡𝑥 − 𝑡𝑎                                                  (16) 

𝒕𝒙 is the local temperature (interest point) 𝒕𝒂 is ambient 

temperature 

By ∆𝑡 we can determine the temperature rise in our point of 

interest on the machine. If the rise is severe, it is a sign that 

a fault is present at that location of temperature rise Figure 

10. (Reljić et al., 2016). Shows the broken rotor bar fault 

with its effect on its neighboring bars and it is very clear 

what type of fault is visible Figure 11. (Choudhary et al., 

2019). shows different types of bearing faults (a) lack of 

lubrication (b) inner race defect (c) outer race defect (d) 

healthy motor. The images can also be processed for better 

color resolution, as we can see in the images that all the 

𝑖𝑑 = (
√2

√3
) 𝑖𝑎 − (

1

√6
) 𝑖𝑏 − (

1

√6
) 𝑖𝑐                                  (8) 
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faults have a different thermal image which can be used to 

detect and identify faults. 

 

 

Figure 10. Broken bar fault (Reljić et al., 2016) 

 

Figure 11. Bearings faults (Choudhary et al., 2019) 

Latest motors now come with inbuilt thermocouples 

(Positive Temperature Coefficient (PTC) / Resistance 

Temperature Detector (RTD)) sensors which are connected 

to stator winding for measuring temperature rise in the 

motor, so these are a cheap alternative to thermal cameras 

which are pretty costly. The installed sensors can help us 

identify if there is any abnormality inside the IM and we can 

take preventive measures on maintenance Figure 12. Shows 

the inbuild thermocouple already installed with the motor 

while purchased. (Glowacz & Glowacz, 2017) 

 

Figure 12. Inbuilt thermocouple in latest IM 

 

 

2.4 Acoustic based Monitoring 

Acoustic is sound-based monitoring and fault diagnosis 

technique that can be done by low-cost capacity 

microphone-computer setup or digital voice recorder. For 

CM frequencies below 100Hz are essential so the sound 

recorder should be able to capture to work in low-frequency 

ranges. Data collection is very cheap in this method, the 

process is noninvasive, and instant collection of data can be 

done. A basic layout of the acoustic-based CM system is 

shown in Figure 13. Many faults like multiple broken rotor 

bars, the broken ring of squirrel cage, differentiating healthy 

with faulty IM, and more, with good accuracy, can be 

achieved by this type of system in addition to signal 

processing techniques (Glowacz, 2018). 

 

Figure 13. Acoustic monitoring setup 

The acoustic emission technique is also a good technique for 

detecting electrical and mechanical faults, it works better for 

electrical faults. The technique uses a load or stress which is 

generated at the machine and is detected by the sensor, the 

wave is then sent to the analyzing instrument to detect 

faults. A schematic diagram is shown in Figure 14. 

 

Figure 14. AE based monitoring setup 

2.5 Flux Monitoring 

Flux monitoring works on the external magnetic field or 

leakage flux or stray flux, the magnetic flux density is used 

with stator current and compared in the frequency domain to 

detect different types of faults. Error! Reference source not 

found.Figure 15 and Error! Reference source not found. 

(Negrea, 2006) show the flux leakage and set up with the 

sensor (Soother & Daudpoto, 2019)(Negrea, 2006). 

 

Figure 15. Leakage flux (Negrea, 2006) 

Load/Stress Machine AE Sensor AE wave AE analyzer
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Flux monitoring is a good technique to find rotor cage faults 

with good accuracy proportional to motor loading. The short 

circuit in the stator winding is also detectable easily. 

Dynamic eccentricity can also be detected with circulating 

currents with ease. Rotor bar faults are seen but can be 

difficult to differentiate the signature with winding inter-

turn fault (Goktas et al., 2017). Bearing fault and static 

eccentricity were not detectable by this method (Vitek et al., 

2011; Negrea, 2006).  

 

 

Figure 16. Leakage flux and flux sensor 

Fault diagnosis capability, in terms of type and severity 

level of faults, of several CM techniques has been discussed 

in this section. The next section proposes a methodology to 

rationally select the most appropriate (combination of) CM 

technique (s) for a given industrial application. 

3. SELECTION OF CM TECHNIQUES 

For complete asset CM, it is important to consider both 

motors as well as the load-side faults. Every technique has 

its uniqueness to detect faults at an incipient or severe level. 

In this paper, a method is proposed to find which technique 

is the best for complete asset monitoring by considering 

many factors associated with real-time applications for 

every technique which is a major concern for industries and 

generally not considered by researchers. 

The industries are moving closer to industry 4.0 by adopting 

new and better methods like remote monitoring, industrial 

IoT, and wireless data transfer to make data collection 

easier. Conventionally the engineer will go to the site and 

collect data from the data acquisition system (DAQ) system 

near the machine, by adopting new concepts and making 

things smarter and automated the sensors can send the data 

to the IoT gateway using serial communication or using 

Arduino chips as DAQ to collect data and then transfer to 

the cloud. From the cloud, we can get the data into our 

system by analyzing software that can diagnose the data 

continuously. If there is a fault it can be repaired before it 

has a significant impact on the working of the whole system 

(Prasanna et al., 2017; Shyamala et al., 2017; Yaseen et al., 

2017) 

Only a few papers have discussed the proper selection of 

CM techniques for rotating machinery, most of them only 

consider the cost aspect. Some researchers also focused on 

sewers and water mains applications. On a general basis 

selection of the most suitable technique is a challenging task 

with a lot of variables. MCDM techniques are widely used 

for the selection process with multiple criteria, which can be 

used in the selection of CM techniques. Emphasis should be 

on the chosen factors and their applications. (Chatterjee & 

Chakraborty, 2013; Davis et al., 2013; Emovon & 

Oghenenyerovwho, 2020; Kabir et al., 2014; A. Kumar et 

al., 2017a, 2017b; Maniya & Bhatt, 2010; Mechefske & 

Wang, 2001; Sabaei et al., 2015; Sayadi et al., 2009; 

Velasquez & Hester, 2013) 

Demerits of some techniques are shown in Table 3 

compared to the proposed methodology. As the process 

involves extensive knowledge of machines, strategies, net 

present value, internal rate of return, faults, economic 

analysis, and many other important factors. Expert opinion 

for making a wise decision becomes a must. Hypothetical 

examples are given by researchers to deal with multiple 

variables and some case studies are presented to combine 

factors into an informed decision but still, the process lacks 

in the signal processing aspects related to sensor data, data 

collection, fault category combinations, and criticality of the 

asset. These factors are very critical to the industry and it 

needs to be addressed. The proposed methodology addresses 

these problems and overcomes the disadvantages of other 

methods as well. 

Methods Demerits Inventor 

AHP 
Complexity increases 

with variables 

Thomas Saaty: 

1970 

TOPSIS 
Correlation between 

factors not considered 

Hwang and 

Yoon:1981 

PROMETHEE High complexity 
J. P. Brans and 

P. Vicke: 1982 

ELECTRE 
Computationally 

difficult 

Benayoun Roy: 

1968 

VIKOR 
Challenging in 

conflicting scenario 

S. Opricovic: 

1990 

ASHBY Only 3 criteria allowed 
Ashby, 

M.F:1992 

COPRAS Quite unstable 
Zavadskas and 

Kaklauskas:1996 

PSI 
High computational 

time 

Maniya and 

Bhatt: 2010 

MAUA 
Decision attribute 

outcome is uncertain 

P.C. Fishburn: 

1965, R.L. 

Keeney: 

Table 3. Demerits of popular methods compared to the 

proposed methodology 

The proposed methodology uses the weighted sum model 

(WSM) of MCDM with an addition of a justification factor 

for fault categories. It is simple, easy, non-computational, 

less complex, includes many criteria, and has a certain 
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outcome. This ensures that every industry can adopt and 

implement a maintenance strategy. 

The validity of the proposed methodology is generalized for 

rotating machinery having a load driven by a motor. As 

discussed in Section 1, the most common motor and loads 

have been considered from the literature for which data is 

presented in  Figure 1 and Figure 2. The methodology can 

be generalized for other types of assets taking help from an 

expert. Most common faults are considered for both motor 

and load sides as discussed in Section 1 and Section 2. 

The proposed methodology for finding the technique 

ranking per industrial factor is shown in Figure 17. 

 

 
 

Figure 17. Proposed methodology for ranking techniques as 

per industrial needs 

The proposed methodology for the best technique 

combination including industrial implementation factors and 

different system requirements is shown in Figure 18.  

 

Figure 18. Proposed methodology for choosing technique 

combination for various industrial applications 

For assessing different criteria in the implementation of the 

techniques MCDM technique was used with the weights 

taken as per the experts in the field and on the criticality of 

the system consideration. For determining the ranking of the 

techniques, Technique Asset Score (TAS) is obtained which 

contains the final scores when the techniques are applied 

independently. Technique Combination Asset Score 

(TCAS) contains the scores for the combination of 

techniques.  Technique Combination Justification Score 

(TCJS) is used as the final parameter, it justifies the 

technique combinations which have the best techniques for 

fault detection in mechanical as well as electrical faults. 

These techniques are given priority to other techniques 

working on the same type of fault categories or having a 

lower score in any fault category. 

For determining the correct technique, matrices are 

developed by carefully considering important factors shown 

in each matrix, Matrix A is developed for common and 

critical motor faults detectability by famous CM methods 

and the scores are given by the knowledge provided from 

past research papers and real-time industrial experience. 

Matrix B is developed by considering common load side 

faults from machines such as pumps, compressors, and fans 

which are the most commonly used loads with IM. Only the 

faults which can be diagnosed and are important from the 

CM point of view are considered. (Djeddi et al., 2007; 

Kanovic et al., 2013; Gugaliya et al., 2018; Mehala & 

Dahiya, 2007; Ye & Wu, 2000; Jin et al., 2016; Glowacz & 

Glowacz, 2017; Glowacz, 2018; Vitek et al., 2011; Goktas 

et al., 2017). 

 

Fault Level Incipient Severe 

Bearing faults Single crack Pitting, roughness 

Winding 

faults 
1-3 turn short 

High turn short/coil 

short 

Broken rotor 

bar 

Single broken 

rotor 
Multiple broken rotor 

Cavitation 
Light popping 

noise 
Steady rumbling noise 

Gear faults 
Surface 

pitting 
High wear 

Eccentricity 
<3mm 

eccentricity 
>5mm eccentricity 

Misalignment 5-6mm offset 6-7mm offset 

Table 4. Fault severity description 

Rating Scale: 

A general rating scale of 3 criteria (0,1,2) is chosen. High 

scores are desirable and 0 is the worst. Details for each 

factor are given separately in their respective score 

distribution descriptions. 
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Score distribution description for matrices A and B 

Scores are proposed as per the capability of the techniques 

to detect a fault at different severity levels. Table 4 shows 

the fault severity descriptions of all discussed faults. Table 5 

and Table 6 show the distributed scores according to the 

level of fault detectability of a technique. The scores given 

are described below. 

BRG: Bearing fault 

WND: Winding fault 

RB: Rotor bar fault 

CVT: Cavitation 

GD: Gear defects 

ECC: Eccentricity 

MIS: Misalignment 

0: Technique is not able to detect the fault 

1: Technique can detect fault at the severe level 

2: Technique can detect fault at incipient level 

 

Techniques 
Motor faults 

BRG WND RB 

Vibration 2 1 1 

Current 1 2 2 

Thermography 1 1 1 

Acoustic 1 0 1 

Flux 0 2 2 

Table 5. Fault detectability score matrix A (motor side) 

Techniques 
Load faults 

BRG CVT GD ECC MIS 

Vibration 2 2 2 2 2 

Current 0 1 0 0 1 

Thermography 1 0 0 0 0 

Acoustic 1 1 1 0 1 

Flux 0 0 0 0 0 

Table 6. Fault detectability score matrix B (load side) 

Technique scores for each fault category Mechanical and 

Electrical are shown in Table 7. The best techniques with 

their next best alternative are chosen from Table 7 and 

presented in Table 8. 

Techniques 

Mechanical faults (BRG 

+ CVT + GD + ECC + 

MIS) 

Electrical faults 

(WND + RB) 

Vibration 12 2 

Current 3 4 

Thermography 2 2 

Acoustic 5 1 

Flux 0 4 

Table 7. Technique scores for mechanical & electrical faults 

Fault category Best technique Best Alternative 

Mechanical Vibration Acoustic 

Electrical Current Flux 

Table 8.  Best techniques for each fault category 

Matrix C Table 9 is the motor fault detection priority 

distribution matrix, the score is distributed according to the 

criticality of the fault at the incipient level. Bearing and 

winding faults are the major issues that occur in motors, in 

which winding fault is considered more severe. It increases 

the stresses and causes temperature rise which according to 

a rule 10° rise in temperature reduces the life of insulation 

by half. If a winding fault happens it takes a considerable 

amount of time to repair and downtime is high increasing 

industrial losses (G. Singh et al., 2016). Matrix D Table 10 

contains the priority for load-side faults, in which pumps are 

mostly used. Cavitation causes erosion, implosion, 

misalignment, decrease flow, and greatly reduce efficiency, 

so it is very important to detect cavitation faults at the 

incipient level (Dutta et al., 2018; Stopa et al., 2014). 

Score distribution description for matrices C and D: 

The score is proposed according to the criticality of faults, 

fault priority is given high if it can have a preposterous 

effect if not detected at the incipient level. 

 

1: Incipient level of fault detection is not necessary  

2: Incipient level of fault detection is necessary  

 

Techniques 
Motor Fault Priority 

Bearing Winding Rotor Bar 

Priority 1 2 1 

Table 9. Fault priority score matrix C (motor side) 

Technique 

Load Fault Priority 

Bearing Cavitation 
Gear 

defects 
Eccentricity 

Misalign

ment 

Priority 1 2 1 1 1 

Table 10. Fault priority score matrix D (load side) 

Matrices E, F, G: Table 11 is based on important factors 

which have to be considered while implementing the 

technique. Matrix E is the cost factor score, cost is 

considered a major concern for many industries when it 

comes to implementing and adopting a new system, because 

of the cost many industries don’t even consider 

implementing CM. But for critical systems, it is a necessity, 

or it can have major implications like shutdown or 

production loss. Matrix F is how easily the data collection 

process is done by a technique that is necessary for saving 

the time of engineers. Matrix G is the noise factor, 
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industries have a lot of machines running round the clock, 

and a lot of external noise affects the monitoring system, 

especially the acoustic sensors are very sensitive to external 

sound and so a less score is given to the technique. 

Score distribution description for matrix E, F, G: 

The scores are proposed according to the importance of 

factors considered by industries when selecting a CM 

technique. The higher the importance of the factor the 

higher the score is given. 

Cost: 

1: Equipment cost is relatively higher  

2: Equipment cost is relatively lower 

Ease of data collection (EDC): 

1: Data collection will require personnel to visit the machine 

2: Data collection can be done from a control center 

Noise factor (NF): 

1: Technique is very sensitive to background noise 

2: The technique is not sensitive to background noise 

Techniques 
Cost 

(Mat E) 

EDC      

(Mat F) 

NF    

(Mat G) 

Vibration 1 1 2 

Current 2 2 2 

Thermography 2 1 2 

Acoustic 2 1 1 

Flux 2 1 2 

Table 11. Ease of application score matrix E, F, G (motor + 

load side) 

Matrix operations: 

The basic methodology adopted here is to get a scoring 

matrix dependent on faults themselves which is the basis of 

a technique selection. Then to get a single score for each 

technique, all the values in a row are added technique-wise. 

Now the weights of each factor can be multiplied by 

individual matrices for getting a final score of individual 

techniques.  

[A]: Motor side fault detectability score matrix for common 

techniques. 

[B]: Load side fault detectability score matrix for common 

techniques. 

[C]: Motor side faults priority score matrix 

[D]: Load side faults priority score matrix 

[E]: Cost score matrix for common techniques. 

[F]: Ease of data collection score matrix for common 

techniques. 

[G]: Noise factor score matrix for common techniques. 

 

Step 1: 

All rows of [A] are multiplied by [C], and all rows of [B] 

are multiplied by [D], let’s call these [A1] and [B1].   

[A1] = {[Fault detection] x [Fault priority]} score matrix on 

motor side for common motor faults. 

[A1] = 

[
 
 
 
 
 
𝐴1,1 ∗ 𝐶1,1 𝐴1,2 ∗ 𝐶1,2 𝐴1,3 ∗ 𝐶1,3

𝐴2,1 ∗ 𝐶2,1 𝐴2,2 ∗ 𝐶2,2 𝐴2,3 ∗ 𝐶2,3

𝐴3,1 ∗ 𝐶3,1 𝐴3,2 ∗ 𝐶3,2 𝐴3,3 ∗ 𝐶3,3

𝐴4,1 ∗ 𝐶4,1 𝐴4,2 ∗ 𝐶4,2 𝐴4,3 ∗ 𝐶4,3

𝐴5,1 ∗ 𝐶5,1 𝐴5,2 ∗ 𝐶5,2 𝐴5,3 ∗ 𝐶5,3]
 
 
 
 
 

 

 

[A1] = 

[
 
 
 
 
2 2 1
1 4 2
1 2 1
1 0 1
0 4 2]

 
 
 
 

           

 

[B1] = {[Fault detection] x [Fault priority]} score matrix on 

load side for common load machine faults. 

 

[B1] = 

[
 
 
 
 
𝐵1,1 ∗ 𝐷1,1 𝐵1,2 ∗ 𝐷1,2 𝐵1,3 ∗ 𝐷1,3

𝐵2,1 ∗ 𝐷2,1 𝐵2,2 ∗ 𝐷2,2 𝐵2,3 ∗ 𝐷2,3

𝐵3,1 ∗ 𝐷3,1 𝐵3,2 ∗ 𝐷3,2 𝐵3,3 ∗ 𝐷3,3

𝐵4,1 ∗ 𝐷4,1 𝐵4,2 ∗ 𝐷4,2 𝐵4,3 ∗ 𝐷4,3

𝐵5,1 ∗ 𝐷5,1 𝐵5,2 ∗ 𝐷5,2 𝐵5,3 ∗ 𝐷5,3]
 
 
 
 

 

            

[B1] =  

[
 
 
 
 
2 4 2 2 2
0 2 0 0 1
1 0 0 0 0
1 2 1 0 1
0 0 0 0 0]

 
 
 
 

       

 

Step 2: 

Calculate row summation of [A1] and [B1] separately 

MFDFP: Motor fault detection and fault priority. 

LFDFP: Load fault detection and fault priority. 

[MFDFP] = Combination score for each technique on the 

motor side. 

 

[MFDFP] =   

[
 
 
 
 
2 2 1
1 4 2
1 2 1
1 0 1
0 4 2]

 
 
 
 

  =  

[
 
 
 
 
5
7
4
2
6]
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[LFDFP] = Combination score for each technique on the 

load side. 

                                                     

 [LFDFP] =   

[
 
 
 
 
2 4 2 2 2
0 2 0 0 1
1 0 0 0 0
1 2 1 0 1
0 0 0 0 0]

 
 
 
 

  =  

[
 
 
 
 
12
3
1
5
0 ]

 
 
 
 

    

 

Step 3: 

Weightage is assigned to each factor: 

WM: Fault detection and priority on the motor side. 

WL: Fault detection and priority on the load side. 

WC: Cost to implement the technique on the asset. 

WD: Ease of data collection. 

WN: Noise factor associated with a technique. 

MCDM matrix is made using techniques, criteria, and 

weights assigned to all the criteria and is presented in Table 

12. As all the values have a different range they are 

normalized as shown in Table 13. 

 

Weights WM WL WC WD WN 

Techniques/ 

Criteria 
MFDFP LFDFP Cost EDC NF 

Vibration 5 12 1 1 2 

Current 7 3 2 2 2 

Thermography 4 1 2 1 2 

Acoustic 2 5 2 1 1 

Flux 6 0 2 1 2 

Table 12.  MCDM matrix 

Weights WM WL WC WD WN 

Techniques/ 

Criteria 
MFDFP LFDFP Cost EDC NF 

Vibration 0.714 1 0.5 0.5 1 

Current 1 0.25 1 1 1 

Thermography 0.571 0.083 1 0.5 1 

Acoustic 0.285 0.416 1 0.5 0.5 

Flux 0.857 0 1 0.5 1 

Table 13. Normalized MCDM matrix 

TAS scores are calculated by multiplying weights with their 

respective criteria values in the normalized MCDM matrix, 

shown in Table 14. Both mechanical, as well as electrical 

faults, can happen in an industrial asset. As evident from 

Section 2, motors side electrical faults are prioritized. Load-

side mechanical faults are significant. TCJS Technique 

combination justification score concerning combinations 

consisting of best techniques in detecting mechanical as 

well as electrical faults together. TCJS scores are presented 

in Table 15 with their normalized values. 

Techniques  TAS by MCDM 

Vibration 
WM x 0.714 + WL x 1 + WC x 0.5 + 

WD x 0.5 + WN x 1 

Current 
WM x 1 + WL x 0.25 + WC x 1 + WD 

x 1 + WN x 1 

Thermography 
WM x 0.571 + WL x 0.0833 + WC x 1 

+ WD x 0.5 + WN x 1 

Acoustic 
WM x 0.285 + WL x 0.416 + WC x 1 + 

WD x 0.5 + WN x 0.5 

Flux 
WM x 0.857 + WL x 0 + WC x 1 + 

WD x 0.5 + WN x 1 

Table 14. TAS scores for each technique 

Technique combinations TCJS 
Normalized 

(NTCJS) 

Vibration + Current 2 1 

Vibration + Flux 2 1 

Vibration + Thermal 1 0.5 

Current + Acoustic 2 1 

Acoustic + Flux 2 1 

Thermal + Acoustic 1 0.5 

Thermal + Flux 1 0.5 

Current + Flux 1 0.5 

Current + Thermal 1 0.5 

Table 15. TCJS values for technique combinations 

Step 4: 

The obtained TAS scores are added corresponding to 

technique combinations and then multiplied by their 

respective normalized values of TCJS to calculate the final 

TCAS values as shown in Table 16. 

Score description for TCJS: 

1: Technique combinations not consisting of best techniques 

from both mechanical and electrical faults category. 

2: Technique combinations containing best or alternative 

best techniques one from mechanical and the other from the 

electrical category of faults. Refer to Table 8. 
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Technique 

Combination 

Technique Combination Asset Score 

TCAS = [TAS1+TAS2] x NTCJS 

Vibration + 

Current 
[TAS (Vibration) + TAS (Current)] x 1 

Vibration + 

Flux 

[TAS (Vibration) + TAS (Flux)] x 1 

Vibration + 

Thermal 

[TAS (Vibration) + TAS (Thermal)] x 0.5 

Current + 

Acoustic 

[TAS (Current) + TAS (Acoustic)] x 1 

Acoustic + 

Flux 

[TAS (Acoustic) + TAS (Flux)] x 1 

Thermal + 

Acoustic 

[TAS (Thermal) + TAS (Acoustic)] x 0.5 

Thermal + 

Flux 

[TAS (Thermal) + TAS (Flux)] x 0.5 

Current + 

Flux 

[TAS (Current) + TAS (Flux)] x 0.5 

Current + 

Thermal 

[TAS (Current) + TAS (Thermal)] x 0.5 

Table 16. TCAS scores for technique combinations 

TCAS Score is based application of technique combination 

package for the complete system (motor + load) considering 

critical faults detection, ease of application, cost, ease of 

data collection, and noise sensitivity with taking into 

account the main focus of the implementing CM technique 

is to detect both mechanical as well as electrical faults. The 

location of sensors and how easily the data can be collected 

are taken into consideration. Sensors are combined in a 

solution like smart sensors packages for online monitoring 

of critical systems. It is easy to collect data from one 

location and better if the engineer does not have to visit the 

site for that purpose. All these factors are taken into 

consideration for making the final rankings. The expert team 

can be consulted to carefully choose the weights and find 

the best technique combinations for their asset. Each asset 

has its criticality and needs fault monitoring systems which 

can be best understood by the experts in that field. 

There are different kinds of assets with different needs like 

equipment cost, space, and downtime cost, therefore 

generally a single technique is not sufficient to fulfill the 

needs of CM. To eliminate such shortcomings, a 

combination of sensors has to be used. Also evident from 

MCDM score values shown in Figure 20 to Figure 24, when 

independent techniques are compared to technique 

combinations. Assets can be classified into 3 different 

categories such as critical, sub-critical, and non-critical. All 

these systems have different factors which are considered by 

industries like cost, downtime, effectiveness, ease of 

implementation, complexity, external factors, shutdown 

cost, and maintenance strategy. (Bellini et al., 2008; Guoji et 

al., 2014; Henriquez et al., 2014; Schütze et al., 2018; Shin 

& Lee, 2015; Trajin et al., 2010; Uddin et al., 2014; Zhang 

et al., 2012). 

 

 
Figure 19. Example of system criticalities on an assembly 

line (Critical, Sub-critical, non-critical) 

Figure 19. Example of system criticalities on an assembly 

line (Critical, Sub-critical, non-critical) shows an example 

of different system criticalities. System 1 is referred to as a 

critical system because if it fails the whole system shuts 

down, so low downtime is essential and the best techniques 

have to be adopted. System 2 is sub-critical because it has a 

redundancy that can be used while the system is in 

maintenance but not for a long time. System 4 is non-critical 

because even if it fails the production is still smooth but can 

reduce efficiency, so cost-effective techniques have to be 

chosen. 

According to literature and expert opinion the weights for 

critical, sub-critical, and non-critical assets in some 

industrial sectors like oil refinery, chemical plants, power 

generation, water applications, material handling, 

agriculture, manufacturing and packaging are mentioned in 

Table 17. In critical systems, the main focus is to protect the 

system and prevent any fatal failures which are responsible 

for shutdowns. 70 % of weightage is given to motor and 

load fault detection and fault priority criteria, other criteria 

are of lower priority in this type of system. Sub-critical 

systems are given 50 % weightage to fault detection and 

priority and 40 % to cost as these systems usually have 

redundancies that can operate for some time if these systems 

are under maintenance. A balance between cost and quality 

of CM is usually maintained. Non-critical systems can 

usually be shut down or can be replaced if failed, their 

failure has a very low effect on the whole system. Cost 

criteria have the highest weightage in these systems at 70%. 

(Al-Najjar, 1999, 2000, 2007, 2012; Al-Najjar & Alsyouf, 

2003; Maletič et al., 2015) 

With the given weights from expert opinion, TCAS scores 

of all the possible technique combinations were obtained for 

critical, sub-critical, and non-critical assets as shown in 

Table 18 to Table 20. The best combinations suitable to an 

industry can be chosen according to the ranking of the 

technique based on the criticality of the asset.  
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Criticality/ 

Weights 
Critical 

Sub-

Critical 
Non-Critical 

WM 35 % (0.35) 25 % (0.25) 10 % (0.10) 

WL 35 % (0.35) 25 % (0.25) 10 % (0.10) 

WC 10 % (0.10) 40 % (0.40) 70 % (0.7) 

WD 10 % (0.10) 5 % (0.05) 5 % (0.05) 

WN 10 % (0.10) 5 % (0.05) 5 % (0.05) 

Table 17. Weightages of each factor for different system 

criticalities by expert opinion 

Technique 

combinations 
TCAS Rank 

Vibration + Current 1.5375 1 

Vibration + Flux 1.35 2 

Current + Acoustic 1.183333333 3 

Acoustic + Flux 0.995833333 4 

Current + Flux 0.64375 5 

Vibration + Thermal 0.639583333 6 

Current + Thermal 0.608333333 7 

Thermal + Flux 0.514583333 8 

Thermal + Acoustic 0.4625 9 

Table 18. Technique combination ranking for Critical 

systems 

Technique 

combinations 
TCAS Rank 

Vibration + Current 1.516071429 1 

Current + Acoustic 1.438095238 2 

Vibration + Flux 1.392857143 3 

Acoustic + Flux 1.314880952 4 

Current + Flux 0.750892857 5 

Current + Thermal 0.725595238 6 

Vibration + Thermal 0.671130952 7 

Thermal + Flux 0.663988095 8 

Thermal + Acoustic 0.632142857 9 

Table 19. Technique combination ranking for Sub-critical 

systems 

Technique 

combinations 
TCAS Rank 

Current + Acoustic 1.745238095 1 

Acoustic + Flux 1.680952381 2 

Vibration + Current 1.521428571 3 

Vibration + Flux 1.457142857 4 

Current + Flux 0.892857143 5 

Current + Thermal 0.882738095 6 

Thermal + Flux 0.850595238 7 

Thermal + Acoustic 0.830357143 8 

Vibration + Thermal 0.718452381 9 

Table 20. Technique combination ranking for Non-critical 

systems 

From the obtained TCAS scores for different asset 

criticalities, the top 3 techniques were chosen as shown in 

Table 21. Only the best technique is recommended for 

critical assets. It is well evident from Section 2 that 

vibration and current are the best techniques for mechanical 

and electrical faults. Acoustic which is the best alternative 

for vibration made a pretty good combination with current 

and flux which was the best alternative for current made an 

appreciable combination with vibration to obtain the top 3 

positions in sub-critical and non-critical assets.  

Criticality Ranking Technique Combination 

Critical 1 Vibration + Current 

Sub-Critical 

1 Vibration + Current 

2 Acoustic + Current 

3 Vibration + Flux 

Non-Critical 

1 Acoustic + Current 

2 Acoustic + Flux 

3 Vibration + Current 

Table 21. Recommended technique combinations for 

different criticalities 

Technique comparison charts when each technique is used 

independently and when it is used with other techniques are 

shown in Figure 20 to Figure 24. To compare the 

combinations with independent techniques, TAS values 

(MCDM values) of both techniques are added and a 

percentage increase in the score is evaluated with respect to 

the base technique. For comparison, the case of critical 

assets is considered as having the most weightage towards 

the quality of fault detection.  

As evident from the given chart technique combinations are 

more effective concerning rotating machinery where both 

mechanical, as well as electrical faults, are present with 

other criteria and difficulties.  

 

Figure 20. Percentage improvement when vibration is 

combined with other techniques in critical assets 
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When a single technique is used for both motor and load 

sides only a single category of faults can be detected as 

evident from Table 5 and Table 6. For example, if vibration 

monitoring is used on both sides and the winding fault in the 

motor the whole system will be shut down without any fault 

indicator. 

 

Figure 21. Percentage improvement when current is 

combined with other techniques in critical assets 

 

Figure 22. Percentage improvement when thermal is 

combined with other techniques in critical assets 

 

Figure 23. Percentage improvement when acoustic is 

combined with other techniques in critical assets 

 

Figure 24. Percentage improvement when the flux is 

combined with other techniques in critical assets 

The best combinations can be effectively used in industries 

for health monitoring of complete assets (motor + load). The 

combination of Vibration-acoustic was eliminated by 

careful observation that both detect similar faults. Industries 

that do not want to spend much on CM for non-critical 

assets, can adopt the recommended technique for specified 

industries or in similar applications as per expert opinion. 

Industries willing to spend some money on sub-critical 

assets can adopt recommended combinations for cost-

effective monitoring. For critical applications, the main 

objective is to reduce downtime, vibration-current 

combination which got the best TCAS score is 

recommended. Implementation of recommended techniques 

will surely help in the maintenance of rotating machinery 

while also saving a lot of time that goes towards unplanned 

maintenance. Costs associated with shutdowns and 

machinery costs can be saved with the recommended 

technique combinations for specific needs.  

Figure 25 shows a typical implementation system for CM of 

rotating machinery. A multi-sensor package will transfer the 

machine data to DAQ which then will be converted from an 

analog signal to digital, and directly send by serial 

communication. Binary signals can be stored in a large 

quantity in small databases and then can be sent using 

Industrial Internet of Things (IIOT) technology which will 

be uploaded to the cloud. Information will be downloaded 

and decrypted to its original form by DAQ software. 

Original information like vibration data, temperature, sound, 

flux, and current which is recorded from MCC Panel 

(Machine Control Centre) will be analyzed by the Fault 

Detection Model. If there is any unusual behavior or fault it 

will be immediately reported to the maintenance engineer, 

and steps will be taken to correct the problem. 
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Figure 25. Typical wireless CM setup for continuous 

monitoring using IIOT for rotating machinery 

Figure 26 shows typical multiple DAQ systems connected 

to a chassis controller if there is a need for a large amount of 

sensor data to be collected in an industry, a realization of 

industry 4.0 (Duan et al., 2018; Goman et al., 2019; Ichwana 

et al., 2020; Peng et al., 2018). 

 

Figure 26. Typical multi-rotating machinery with multiple 

DAQ setup 

Concluding thoughts are given in section (IV). 

4. CONCLUSION 

It is evident from the techniques and scores that the best 

techniques of CM are vibration for mechanical faults 

diagnosis and current for electrical faults diagnosis. But it is 

not practical to implement these in every scenario. 

Industries consider cost and other factors into account for 

diagnostic setup and if the diagnostic system will cost more 

than the asset cost, the industry will not even implement 

CM in the first place. This paper tries to solve that problem 

by giving them the flexibility to choose a suitable 

combination of techniques for different levels of 

sophistication. As per industrial needs expert opinion could 

be taken for deciding the weights for given criteria and final 

scores can be obtained from the mentioned methodology. A 

set of weights were obtained from industrial experts for 

critical, sub-critical, and non-critical assets in some 

industries. Recommended combinations can be used by 

industries and in similar applications. Factors like cost, 

noise, criticality, multiple fault category justification, and 

ease of data collection are already considered in the 

methodology so that the results can be directly applied to 

real-time rotating machinery. A comparison is also shown 

when a technique is implemented independently and when it 

is combined with other techniques to help understand the 

advantages of combining techniques. Also, a suitable 

wireless setup is suggested, considering the latest 

advancements in technology for remote monitoring of 

rotating machinery. 
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