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ABSTRACT

In the process industry, condition monitoring systems with
automated fault diagnosis methods assist human experts and
thereby improve maintenance efficiency, process sustainabil-
ity, and workplace safety. Improving the automated fault di-
agnosis methods using data and machine learning-based mod-
els is a central aspect of intelligent fault diagnosis (IFD). A
major challenge in IFD is to develop realistic datasets with ac-
curate labels needed to train and validate models, and to trans-
fer models trained with labeled lab data to heterogeneous pro-
cess industry environments. However, fault descriptions and
work-orders written by domain experts are increasingly digi-
tised in modern condition monitoring systems, for example in
the context of rotating equipment monitoring. Thus, domain-
specific knowledge about fault characteristics and severities
exists as technical language annotations in industrial datasets.
Furthermore, recent advances in natural language processing
enable weakly supervised model optimisation using natural
language annotations, most notably in the form of natural
language supervision (NLS). This creates a timely opportu-
nity to develop technical language supervision (TLS) solu-
tions for IFD systems grounded in industrial data, for exam-
ple as a complement to pre-training with lab data to address
problems like overfitting and inaccurate out-of-sample gen-
eralisation. We surveyed the literature and identify a con-
siderable improvement in the maturity of NLS over the last
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two years, facilitating applications beyond natural language;
a rapid development of weak supervision methods; and trans-
fer learning as a current trend in IFD which can benefit from
these developments. Finally we describe a general framework
for TLS and implement a TLS case study based on Sentence-
BERT and contrastive learning based zero-shot inference on
annotated industry data.

1. INTRODUCTION

Condition-monitoring (CM) based fault diagnosis of rotat-
ing machinery (Carden & Fanning, 2004; A. K. Jardine et
al., 2006) is widely used in industry to optimise equipment
availability, uniformity of product characteristics and safety
in the work environment, and to minimise production losses
and material waste. In process industry, this typically re-
quires human expert analysts with years of training and de-
tailed knowledge about the operational states, functional roles
and contexts of the machines being monitored. Due to grow-
ing demands on production efficiency and the vast amounts
of data consequently generated in modern CM systems, au-
tomated fault diagnosis systems (Kothamasu et al., 2006) are
required to assist human analysis through alarms and policy
recommendation. Important tasks for the automated system
are fault detection and classification to generate alarms and
filter data, and fault severity estimation to predict remain-
ing useful life and recommend policy options. Existing auto-
mated systems are mainly based on expert systems (Nan et al.,
2008), with a knowledge-base derived from physical proper-
ties of analysed components, and a rule-based inference en-
gine with local thresholds set by experts (SKF, 2022). In the
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Table 1. Fault Diagnosis Tasks

Task Question addressed Output Added value Automated?
Detection Is there a fault present? Yes/No Alert human analysis Yes
Classification What type of fault? Class Guide human analysis Partially
Severity How severe is the fault? Magnitude Motivate maintenance No
RUL Time until maintenance is needed? Risk vs Time Maintenance planning No
Root Cause What caused the fault? Description Preventive policies No

case of vibration measurements of rotating machinery, sig-
nal processing and kinematics based condition indicators are
commonly used as knowledge-bases (A. Jardine et al., 2006;
Rai & Upadhyay, 2016; Randall & Antoni, 2011). Intelli-
gent fault diagnosis (IFD) (Lei et al., 2020) has been proposed
to enhance the automated systems by inferring fault charac-
teristics directly from process or lab data through learning
based methods. Improving existing models is vital to meet
the increasing demands on CM systems to improve produc-
tion and equipment life cycle efficiency in process industry
(ProcessIT, 2018; Shin & Jun, 2015), and the machine CM
market is estimated at $2.6 billion with a compound annual
growth rate estimation of 7.1%1. For example, improved IFD
algorithms can contribute to: reducing the number of unnec-
essary interventions; facilitating remanufacturing of compo-
nents (A. SKF & Kommunikation, 2020); optimising mainte-
nance schedules; and enabling analysts to focus on qualified
preventive tasks.

However, it is difficult to develop realistic datasets with ac-
curate labels needed to train and validate IFD models, and
such data are expected to generalise poorly between process-
industry plants due to their heterogeneous nature. Recent in-
novations in natural language processing offer a timely oppor-
tunity to address this challenge with methods used in natural
language supervision (NLS) (F. Chen et al., 2022a) using dig-
italised technical language fault descriptions and work-orders
available in many process industry datasets. Processing tech-
nical language poses unique challenges different from natual
language, promoting the need for Techincal Language Pro-
cessing (TLP) and a technical version of NLS in Techincal
Language Supervision (TLS). Therefore we survey the state
of the art in IFD, NLS and TLP, and discuss how TLS can be
applied to IFD in a process industry context.

1.1. Background

Fault Diagnosis (FD) deals with the mapping of measured
signal features to component conditions. The most basic con-
dition is whether a fault is present or not, but more complex
estimations such as fault class, fault severity, remaining use-
ful life (RUL) and root cause analysis (RCA) can also be re-
quired. Table 1 describes these five major subtasks of FD, or-
dered in rising complexity based on interviews with condition

1https://www.marketsandmarkets.com/Market-Reports/
machine-health-monitoring-market-29627363.html

monitoring experts from process industry. Fault detection
and classification are tasks that are frequently automated in
process industry through signal processing (Kothamasu et al.,
2006; Nan et al., 2008; SKF, 2022), and for example model-
based thresholding. Fault severity estimation, a vital tool in
maintenance decisions, is next in line to be automated, but
is challenging due to nonlinear relationships between signal
features and fault evolution (Cerrada et al., 2018). RUL de-
pends on the evolution of estimated fault severity over time,
and predicts the remaining time until a fault is so severe that
a component is no longer useful (Lei et al., 2018; D. Wang
et al., 2017). RCA is a complex task that may be challeng-
ing to automate, but will indirectly be improved if simpler
tasks are automated and human experts can invest more time
in preventive policies.

The upper part of Figure 1 illustrates an example of a typi-
cal FD system (labeled Pipeline 1) implemented in process
industry, see for instance (SKF, 2022; PdM, 2021; Cahill,
2021). The system requires no fault history data to learn
from, but requires process information and kinematic models
for the extraction of condition indicators (Sharma & Parey,
2016). Faults are detected and classified using signal pro-
cessing (A. K. Jardine et al., 2006), for instance root mean
square, peak-to-peak and time synchronous average in the
time domain (chung Fu, 2011); spectral density, enveloping
and Hilbert transform in the frequency domain; and dictio-
naries, wavelets and the Wigner-Ville distribution in the time-
frequency domain; as well as kinematics based condition in-
dicators, for instance the frequency intensity in the ball pass
frequency of the outer race in ballpoint bearings. The de-
composed signal is then analysed with typically simple rules
based on indicator magnitude defined by experienced ana-
lysts. Once a fault is detected by the model, a human analyst
is alerted for in-depth diagnosis. The analyst decides whether
to further investigate alarms or not, describes eventual faults
in the form of natural-language annotations and makes work
orders. Thus, the automated FD model acts like a filter be-
tween the massive amount of sensor data that is constantly
generated, and the accurate but resource-constrained analysis
of human experts. Based on cases from two industry collab-
orations with major process industry actors in Northern Swe-
den2, analysts monitor around 5000 alarms per analyst per
year, after filtering, where at most 20% of generated alarms

2Smurfit Kappa, 700 000 tonnes of Kraftliner per year, and SCA Munksund,
400 000 tonnes of Kraftliner per year
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Labelled Lab Data with Artificial
or Accelerated Faults

Unlabelled CM Sensor Data + 
Process Data

Data Modelling Decision

Process Industry Fault Diagnosis Pipeline (1)

Transfer Learning Fault Diagnosis Pipeline (2)

Technical Language Supervision Pipeline(3)

Unlabelled CM Sensor Data + 
Process Data + Annotations

Signal Processing + 
Condition Indicators

Human Analyst -> Work Orders 
and Annotations

Alarms, Decision Support 
and Work Orders

Technical Language Processing 
+ Fault Diagnosis mapping

Transfer Learning from 
Lab to Industry Data

Alarms, Decision Support, 
Work Orders and Annotations

Figure 1. An overview of a typical process industry fault diagnosis pipeline (1), possible transfer learning IFD pipeline additions
(2), and our suggested natural language supervision pipeline (3). Both (2) and (3) can provide considerable contributions to (1),
with the strongest contributions coming from both pipelines implemented in symbiosis.

point to component faults and the rest are due to temporary
or constant signal malfunctions.

With improved automated FD, analysts could focus on more
advanced fault diagnosis tasks beyond the current capabilities
of IFD. Considerable research has been invested in automated
FD, and many learning-based methods have shown promising
results on test datasets (R. Liu et al., 2018; Stetco et al., 2019;
Hoang & Kang, 2019). However, the accurate deep learning
models used in many IFD publications require vast amounts
of training data in the form of labelled datasets, sets that typ-
ically do not exist in process industry cases (Khan & Yairi,
2018). Instead, training and test datasets are created in lab
environments with artificial or accelerated fault development,
such as the Case Western Reserve University bearing dataset
(Case Western Reserve University Bearing Data Center Web-
site, n.d.), the Intelligent Maintenance System (IMS) by the
University of Cincinnati dataset (NASA prognostic data repos-
itory, n.d.), and the Machinery Failure Prevention Technology
(MFPT) dataset (Condition Based Maintenance Fault Database

for Testing of Diagnostic and Prognostics Algorithms, n.d.),
but typically generalise poorly to heterogeneous environments
(Smith & Randall, 2015; S. Zhang et al., 2019) such as pro-
cess industries. Thus, despite the maturity of IFD methods in
terms of literature, supervised IFD lacks wide-spread imple-
mentation in industry.

Industry datasets suitable for IFD can in some cases poten-
tially be created, but it is difficult and costly to define high-
quality labels that are accurately connected to relevant data.
Therefore, transfer learning (Schwendemann et al., 2021), il-
lustrated in Pipeline 2 in Figure 1, has become an increasingly
popular approach to develop IFD methods without requiring
a large labelled dataset in the target domain (Lei et al., 2020).
Ideally, a model could be developed/trained with data from a
lab environment, then transferred to similar components in an
industrial environment. However, this remains a challenging
goal due to differences between developing faults, heteroge-
neous environments, varying sensor and signal-to-noise con-
ditions, and complex coupling of signal components. Thus,
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a method for the extraction of labels for industry data would
be valuable and can facilitate implementations of current IFD
models, as well as transfer learning by providing access to
labels in the target domain.

While labels are lacking in realistic CM datasets, technical
language fault descriptions are written by analysts when doc-
umenting and monitoring the development of for example
bearing faults over long periods of time (several months).
Thus, the text-annotations produced as outputs of Pipeline 1
in Figure 1 contain valuable albeit noisy information about
fault development characteristics and severities. This moti-
vates the question, can such domain-specific annotations and
related knowledge be used for training and fine-tuning of IFD
methods as a substitute for regular labels?

Language has been used to train machine learning models for
image recognition and object detection through recent break-
throughs in natural language supervision (Radford et al., 2021a;
Ramesh et al., 2021). Can a similar approach be used to train
IFD models on industry data using annotations and work or-
ders as zero-shot labels?

1.2. Contribution

We propose the usage of TLS on technical language fault
descriptions to overcome the lack of labels in industry CM
datasets. TLS is grounded in three fields, IFD, TLP and NLS,
and we briefly survey all three to motivate the purpose and
benefits of TLS. Potential TLS contributions supervision are
improved support for human analysts and automation of sim-
pler tasks by augmenting the label domain for transfer learn-
ing or zero-shot learning.

Pipeline 3 in Figure 1 illustrates the concept of a technical
language supervision framework for process industry data.
Unlabelled CM sensor data and process data are used to ex-
tract features through methods already used in IFD models,
and the features are mapped to annotation embeddings. In
the implementation stage, an unannotated signal is thereby
mapped to the closest language fault queires in the joint em-
bedding space, and with a sufficiently good model and well
chosen queries, the fault class and severity can be estimated
and described. Besides alarms and work orders, a language
based model could also retrieve spectra from queries and gen-
erate new annotations and descriptions of detected faults.We
implement a TLS model based on process industry signals
and annotations, and show an example of spectrum retrieval
from free form queries, as well as zero-shot fault classifica-
tion of spectra.

1.3. Research Trends

We also surveyed the fault diagnosis literature and recent pub-
lications on language-based learning in the context of natu-
ral language supervision and image captioning to identify the

Figure 2. Trends of publications between 1967 and 2020, ob-
tained through Scopus queries looking for publications with
the targeted keywords in the article title, the abstract or the
keywords. For instance, a query for fault diagnosis related
keywords and transfer learning is designed as follows: (”con-
dition monitoring” OR ”fault diagnosis” OR ”fault classifi-
cation” OR ”fault detection” ) AND ”transfer learning” The
annual number of articles about the application of machine
learning (ML) to condition monitoring (CM) and fault di-
agnosis (FD) increases exponentially. That is also the case
for the annual number of natural language processing (NLP)
articles, which now equates the total annual number of FD-
related articles. A total of 15 articles that use NLP on work
orders (WO) were found, but no implementations of natural
language supervision on fault diagnosis problems were iden-
tified. Weak supervision, or weakly supervised learning, is
also not yet commonly used, with 4 articles in 2020 and 5 ar-
ticles so far in 2021.

trends of publications that combine these concepts. Figure 2
shows the number of published articles per year according
to Scopus for search queries containing keywords related to
fault diagnosis and machine learning. We present the publi-
cation trends of natural language processing (NLP), fault di-
agnosis (FD), fault diagnosis with machine learning (FD +
ML), fault diagnosis with transfer learning (FD + Transfer
Learning), image captioning, work orders with natural lan-
guage processing (WO + NLP), and finally fault diagnosis
with weak supervision. For fault diagnosis, a query includ-
ing ”condition monitoring” OR ”fault diagnosis” OR ”fault
detection” OR ”fault classification” was used. For machine
learning, ”machine learning” OR ”data driven” OR ”deep learn-
ing” OR ”artificial intelligence” were used. The queries ”trans-
fer learning”, ”work order”, ”natural language processing”
and ”image captioning” were used explicitly as is. Weak su-
pervision was queried as ”weak supervision” OR ”weakly su-
pervised”.

The trends show that machine learning is increasingly applied
in the FD literature, and that transfer learning has become
increasingly popular, going from 2 publications in 2016 to
178 publications in 2020. NLP is a rapidly evolving field of
research, with significant practical advancements in the last
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Table 2. Fault Diagnosis Model Frameworks

Framework Data requirements Challenges
Unsupervised Learning CM data Applications beyond fault detection
Supervised Learning Labelled CM dataset Lack of labelled industry data
Transfer Learning Labelled lab dataset, CM data Lab features different from industry features
Weak Supervision Weakly Labelled CM dataset Still requires labels
Language Based CM dataset, CM annotations Not yet applied in IFD

decade. This is also reflected in the swift growth of image
captioning publications starting in 2015, increasing from 11
to 322 publications in four years. 15 publications that use nat-
ural language processing with work orders were found, but
NLP was employed for information retrieval, and no publica-
tions combining natural language supervision with IFD were
found. Weak supervision only appeared nine times (with one
valid article scheduled for 2022 not counted) in our queries,
but notably three articles were cited more than ten times;
X. Li, Zhang, et al. (2020) with 64 and 30 (X. Li, Li, & Ma,
2020) citations, and Yu, Fu, et al. (2021) with 12 , showing
that the interest far outweighs the current publication number.
Articles citing weak supervision articles were mainly focused
on transfer learning, but we predict an increase in direct men-
tions of weak supervision methods.

1.4. Outline of article

In Section II, we describe the application of FD in process in-
dustry, which is subject to constraints related to the high cost
of unplanned stops that can affect the whole production pro-
cess. Five principal FD tasks are described, and the related
methods and algorithms used for automated FD are also pre-
sented. In section III we briefly review natural language su-
pervision and related fields such as image captioning, and dis-
cuss how natural language can be integrated in an IFD frame-
work. Section IV describes a case study implementation of a
TLS solution for IFD based on theories from section III, using
process industry data for training and illustrations of model
performance. We focus on rotating machinery in process in-
dustry, but in principle the framework of technical language
supervision is expected to generalise to other fault diagnosis
applications where fault descriptions are also present.

2. DEEP LEARNING IN INTELLIGENT FAULT DIAGNO-
SIS

Table 2 summarises different data-driven methods used for
IFD, besides the kinematic rule-based method already dis-
cussed in the background. The methods are ordered roughly
by maturity and data requirements. Unsupervised learning
applies directly to unlabelled CM data, and it is partially im-
plemented in process industries (SKF, n.d.; Monitron, n.d.;
Simon, n.d.; Emerson, 2021). Supervised learning requires a
labelled dataset in the application environment, and is widely
investigated in the literature (Yin et al., 2014; Khan & Yairi,

2018; R. Liu et al., 2018; Helbing & Ritter, 2018; Stetco et
al., 2019; Zhang et al., 2020), but not in process industry.
Transfer learning requires a labelled dataset for pre-training,
and data from the application environment, ideally labelled,
for fine-tuning. The number of articles on transfer learning
has increased rapidly in the last decade, but although transfer
between lab environments show great results, we find no arti-
cles that apply transfer learning methods directly on process
industry data. Finally, natural language supervision based
learning only requires unlabelled CM data with associated
annotations, but this method remains to be adapted and in-
vestigated for fault diagnosis tasks. The first mentions of nat-
ural language processing for in an IFD context was 2020 in
the name of ”technical language processing”, though natural
language supervision is yet to be introduced to IFD.

2.1. Unsupervised Learning

Unsupervised learning, i.e learning patterns without labels, is
connected to the modelling module of Figure 1 and is pri-
marily used for clustering, encoding, feature extraction and
anomaly detection fault detection (Lei et al., 2016). Models
commonly used for clustering are k-means, Principal Com-
ponent Analysis (PCA) and t-distributed Stochastic Neigh-
bor Embedding (t-SNE). Auto-Encoders and variational auto-
encoders (Jiang et al., 2018; Haidong et al., 2018) and Dic-
tionary Learning (Papyan et al., 2018; H. Liu et al., 2011)
are commonly used for Encodings and Anomaly Detection.
Virtually all models can be used to reduce dimensionality
and extract features depending on the data, with PCA and
t-SNE being more direct dimensionality reductions and auto-
encoders serving as a more complex reconstruction model,
often with encoders/decoders based on convolutions, recur-
rence or transformers.

Clustering, encodings and feature extraction can be valuable
ways of understanding, simplifying or visualising data. A
CM dataset with healthy and unhealthy data can with the right
methods and data be divisible in to two clusters, which can
then be manually labelled healthy and unhealthy, thus detect-
ing faults (Yiakopoulos et al., 2011). Likewise, encodings or
extracted features can serve as values in a simple rule-based
system for fault detection or classification, and extracted fea-
tures in particular can give valuable insight in feature impor-
tance. Regardless, the lack of a supervision signal necessi-
tates a human in the last step to validate or assign meaning
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to clusters, encodings or features, before the model is ready
to automatically detect faults. Anomaly detection can work
more autonomously by learning the healthy state of a signal,
then classifying deviations from this state as detected faults
(del Campo & Sandin, 2017) or into fault classes (C. Lu et
al., 2017).

However, healthy states that lack sufficient presence in the
training set has a risk of being classified as unhealthy at de-
ployment, and unhealthy states that are present during train-
ing might be considered healthy, which is difficult to detect
due to the lack of labels in the dataset. Furthermore, devia-
tions might occur due to healthy states, or in directions rel-
atively orthogonal to previous deviations. Such issues fall
within the scope of zero-shot learning, wherein a model is
required to observe and predict samples from a previously
unseen class or distribution.(T. Zhang et al., 2021). For zero-
shot learning to work, there has to be a distinct characteris-
tic of faults and healthy states that is true for previously un-
seen faults or healthy states, which can be leveraged to assign
these distributions to the correct class. NLS is sometimes dis-
cussed in the scope of zero-shot learning, and zero-shot learn-
ing techniques are often used in NLS. Likewise, zero-shot
learning can be used to augment supervised learning methods
beyond classes present in the supervision signal, but it is best
described under the umbrella term of unsupervised learning
or through the lens of weak supervision, as discussed in Sec-
tion 2.4.

2.2. Supervised Learning

Supervised Learning can be employed for any FD task, as
long as sufficient data and good labels are present. Transfer
Learning, Weak Supervision and Language Supervision are
all arguably subgroups of supervised learning explicitly de-
signed to circumvent the limitation of requiring good labels.
Architectures used in supervised learning are thus also em-
ployed in its derivatives, though with different learning pro-
cedures, just as how for instance auto-encoders from unsu-
pervised learning can be used together with an output layer in
a supervised paradigm.

Supervised learning architectures used in IFD range from shal-
low models such as tree-based models, e.g. random forest
(D. Zhang et al., 2018); support vector machines (Yin et al.,
2014; Qin, 2012); probabilistic models such as Bayesian statis-
tics (Stief et al., 2019; H. Zhang et al., 2018); and deep ar-
chitectures such as fully connected feed forward deep neural
networks (F. Jia et al., 2016); (variational) auto-encoders with
classification layers (Yan et al., 2021; Haidong et al., 2018);
convolutional neural networks (F. Jia et al., 2018; Pan et al.,
2018), commonly used in image analysis; recurrent neural
networks (H. Liu et al., 2018; Qiao et al., 2020; X. Chen et al.,
2021), commonly used in language analysis but applicable on
sequential data in general. Importantly, supervised learning

has been employed for fault severity estimation (Cerrada et
al., 2018) and RUL prediction (Babu et al., 2016; X. Li et al.,
2018; Ben Ali et al., 2015; Guo et al., 2017; Lei et al., 2018;
D. Wang et al., 2017).

Labelling industry datasets for supervised learning can facili-
tate implementations in that industry environment, but the la-
belling process is costly, and requires analyst efforts. Further-
more, some faults have stochastic features, for example due
to the varying nature of the source geometry or signal transfer
function, and are thus difficult to generalise with supervised
classifiers. In general, faults are undesirable and therefore rel-
atively scarce in industrial datasets, but are required in train-
ing datasets for supervised learning. Consequently, produc-
ing a labelled industry dataset for supervised learning would
require considerable resources and potentially occupy ana-
lyst time necessary for condition monitoring. Therefore, fault
classification models described in the literature are typically
trained on labelled data from lab environments, where faults
are generally either artificially induced or provoked through
intense loads, as it might take several years until faults de-
velop naturally. The development of the fault is then ac-
celerated by e.g high loads or starved lubrication, which in-
crease fault development per revolution, and high speeds to
increase revolutions per minute (RPM). High RPM also pro-
duce higher signal-to-noise ratios as some noise is stationary
and fault features increase more in magnitude than noise fea-
tures.

Ideally, a model supervised on a component in a lab environ-
ment would then be deployable in an industry environment,
but there are two issues that makes this difficult. Firstly, arti-
ficial or accelerated fault developments result in fault charac-
teristics that are different compared to faults in industry envi-
ronments. Therefore, the decision boundaries do not neces-
sarily generalise well from lab to industry environments, and
the feature space can differ due to different fault development
processes. Secondly, signals generated in a lab setting differ
greatly from signals in an industry environment where a com-
ponent is connected to several other components in a larger
system, and signal components are combined and masked by
noise. The signal to noise-ratio will consequently be lower in
the industry environment, and the coupling with surrounding
components can shift the true feature space as well. Thus, di-
rect supervised learning works best in the environment where
it has been trained, and generalisation can be difficult unless
labels are preserved in the target space.

2.3. Transfer Learning

Recently, the research focus in IFD has shifted to include
methods to overcome the lack of labels in industry datasets
such as transer learning and weak supervision.

Transfer learning seeks to develop methods for training of a
model in one environment, then fine-tuning the feature space
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and decision boundaries to suit implementation in another en-
vironment (C. Li et al., 2020). In situations with sparse data
optimisation limits, transfer learning can use domains with
rich data, such as lab datasets, to infer necessary knowledge
(Q. Zhang et al., 2021). The research on transfer learning in
fault diagnosis applications has increased rapidly over the last
few years, with many successful transfers between different
lab datasets (Lei et al., 2020). As models improve, transfer
learning can enable broader implementation of these models
in process industry with a lower demand for labeled instances
compared to supervised learning (Cao et al., 2018a), while
solving the same tasks.

Methods used in transfer learning vary; many publications
use transferrable convolutional neural networks (Cao et al.,
2018b; Shao et al., 2019; B. Yang et al., 2019; Guo et al.,
2019; Zhong et al., 2019; Xu et al., 2020; T. Han et al., 2020;
Z. He et al., 2020; Wen et al., 2020; Z. Chen et al., 2020;
Shao et al., 2021), occasionally employed with adversarial
networks (Q. Wang et al., 2019; T. Han et al., 2019; X. Li et
al., 2020); some use recurrent neural networks (A. Zhang et
al., 2018; An et al., 2019; Zhao et al., 2020); auto-encoders
are also used (Wen et al., 2019), and recently weak supervi-
sion (Li et al., 2020) and digital twin-based transfer learning
(Xu et al., 2019) have been successfully implemented.

Transferring knowledge from one environment to another adds
an additional benefit to symbol-feature relation graphs be-
sides illustrating the process of the reasoning module. Hu-
mans learn concepts in a highly transferable manner, and it is
for instance highly feasible that an experienced analyst could
diagnose faults in a previously unseen environment with good
accuracy, while a learning based model would certainly fail at
adapting unless optimised through transfer learning. The un-
derlying concepts of fault developments are likely the same
in both environments, which is what humans use to gener-
alise knowledge. Optimizing not only direct mappings, but
symbol-feature relation graphs as well, can thus create mod-
els with stronger generalisability by mimicking human knowl-
edge (Y. Li et al., 2020).

2.4. Weak Supervision

Weak supervision is an umbrella term for a set of methods
developed to perform supervised tasks on data where labels
are insufficient for regular supervised learning (Z.-H. Zhou,
2017). It can work in conjunction with transfer learning to
enhance fine-tuning on the target dataset, or stand-alone to
facilitate direct optimisation in the target environment. Table
3 illustrates three major ways in which labels can be insuffi-
cient, the cause, and proposed methods to amend the issue.

2.4.1. Incomplete supervision

Incomplete labels are characterised by a dataset where most
data points are unlabelled. In a CM dataset, faults that have

not been discovered yet are a cause for incompleteness, as
this prevents the assumption that all unlabelled data is healthy
data.

The main strategy for dealing with incomplete datasets is called
semi-supervised learning (van Engelen & Hoos, 2020; Zhai
et al., 2019; Jian et al., 2021), which aims to create clusters
of features that correspond to the available labels, and to es-
timate the probability that an unseen feature belongs to one
of the identified clusters. Semi-supervised learning has been
employed in IFD settings on lab datasets with partial (Razavi-
Far et al., 2019) or limited labels (Yu, Lin, et al., 2021). By
implementing semi-supervised learning on a CM dataset with
natural language supervision, it is possible to include all time
series data for a prediction, where particularly noisy samples
would be less likely to affect the model optimisation process,
as they are likely distributed far away from the cluster cen-
tres. The diagnosis of faults in unlabelled samples also be-
long to the domain of semi-supervised learning, albeit with
the additional challenge associated with many unique com-
ponents and features. This challenge can necessitate active
learning (Aghdam et al., 2019; Jian et al., 2021), in which
a model identifies selected unlabelled datapoints and alerts a
human expert to label them. Active learning requires human
intervention, but aims to make use of human efforts as effi-
ciently as possible to improve the model accuracy (Q. Zhang
et al., 2021). Another scheme used to overcome incomplete
labels is few-shot learning (Y. Wang et al., 2020), where a
model is optimised to perform supervision tasks with insuf-
ficient data for normal supervision training (D. Zhou et al.,
2018; A. Zhang et al., 2019; Ren et al., 2020). Few-shot learn-
ing provides an interesting opportunity to learn fault features
with only a few instances in a training datasets, as can be the
case for many rare faults or components. In the case where no
labels exist, supervision algorithms might still be applicable
through zero-shot learning (T. Zhang et al., 2021). In zero-
shot learning, the model seeks to generalise knowledge from
seen classes to unseen classes with similar behaviour, much
like how humans can see images of house-cats and dogs and
then correctly categorise lions to felines and wolves to ca-
nines (Gao et al., 2020; Feng & Zhao, 2021).

2.4.2. Inexact supervision

Inexact labels coarsely describe some aspects of the ground
truth for a set of features, but do not accurately define it. In
general, symbols like labels can not fully represent physical
processes of unknown dimensions. Instead, labels define se-
mantics at a certain level of approximation and scale. Thus,
labels of physical processes are by nature incomplete seman-
tical descriptions of reality. CM annotations do not describe
the properties of each recording in a faulty component, only
that from a large bag of recording a fault has been diagnosed.
The fault features from each recording were likely not equally
important for the diagnosis however, and learning which fea-
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Table 3. Different weak supervision challenges, causes and solutions

Weak supervision group Cause Solution

Incomplete labels Missing labels from datapoints
Active learning

Semi-supervised learning
Few-shot learning
Zero-shot learning

Inexact labels Multiple datapoints per label Multi-instance learning
Contrastive learning

Inaccurate labels Label is wrong Regularisation
Re-labelling

tures imply which diagnoses would be easier if each record-
ing had its own label.

The challenges of inexact labels have been proposed to be
overcome through multi-instance learning (Dietterich et al.,
1997; Hoffmann et al., 2011; Zeng et al., 2015) and con-
trastive learning. In multi-instance learning, the optimisation
algorithms seeks to find the common denominators in the la-
bel ”bags” that are present for learning. By learning from
which components were replaced and which were not, corre-
lations in underlying features such as fault severity or deteri-
oration speed can be associated as parts of the bag and used
for predictions.

2.4.3. Inaccurate supervision

Inaccurate labels occur when analysts make fault diagnosis
mistakes. This is unlikely to occur with fault classification,
but possible with fault severity due to the higher complexity
of that task. An analyst can for example assume that a fault
may be severe and order a replacement of the component to
avoid failure, while the fault actually is minor.

Inaccurate labels are characterised by not conforming to the
ground truth, in other words being wrong. To learn with noisy
or inaccurate labels, a model seeks to identify and potentially
correct incorrect labels (Tanaka et al., 2018). Thus, the model
maintains some trust in its predictions, capable of deeming
the label inaccurate when confidence in prediction is high and
label features deviate from similar labels (J. Li et al., 2019).
This trust can be reinforced with physics induced machine
learning to maintain a baseline estimate of how labels and
signals should correlate, based on physical knowledge of the
problem.

3. TECHNICAL LANGUAGE SUPERVISION

The direction of research in IFD points towards finding ways
to transfer the success on lab datasets to successful applica-
tions on industry datasets (Lei et al., 2020; Fink et al., 2020).
Both transfer learning and weak supervision can create the
opportunity to implement successful algorithms on new data-
sets without requiring an expensive labelling process. In-
spired by recent innovations in TLP and NLS, TLS present a
third, yet unused direction to integrate the annotations present

in CM datasets as labels, learning directly from technical lan-
guage.

The potential effects of TLS can be summarised as

• Opportunities
– Facilitates direct optimisation on heterogeneous in-

dustry data
– Methods are available and developed in other re-

search areas
– Language data is commonly associated with condi-

tion monitoring data-bases
• Challenges

– Language annotations are uncertain, and require tech-
nical language processing and weak supervision tech-
niques to use

– Processing of technical language jointly with indus-
try signals is a novel area of research yet to be de-
veloped

– Rapid progress requires open industry datasets con-
taining potentially sensitive information

In this section, we briefly describe the state of TLP and NLS,
then combine these into an outline of how TLP can be imple-
mented.

3.1. Natural Language Supervision

Natural Language Supervision (F. Chen et al., 2022b) is a re-
cent term introduced to describe machine learning optimisa-
tion based on free-form text descriptions rather than prede-
fined labels, though language has been used in a similar fash-
ion to labels before. Labutov et al. (2019) trained semantic
parsers that interpret questions and feedback from user natu-
ral language responses. Hancock et al. (2018), used natural
language explanations of human labelling decision to create
BabbleLabble, which converts explanations to noisy labels
through a semantic parser. Murty et al. (2020) introduced
ExpBERT, which is a BERT variation that forms representa-
tions using BERT with natural language explanations of the
inputs.

Text-encoding is a crucial part of NLP and has seen rapid
development recent years. Language models (Peters et al.,
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2018) based on the transformer have increased the represen-
tational powers of text encoders drastically (Radford, 2018a;
Devlin et al., 2019; Radford et al., 2019a; Z. Yang et al., 2020;
Microsoft, 2020; Brown et al., 2020a). Early examples of
text-image pairings used simpler encoding methods, such as
Bag of Words(BoW) and TF-IDF, or recursive encodings de-
rived from the word2vec model (Mikolov et al., 2013), the
predecessor of current transformer-based language models.
The choice of text-encoder depends on data size and com-
putational power; a larger model can produce better repre-
sentations, but requires more data and computational power
to train. Pre-trained language models with general natural
language representational capacity, such as BERT (Devlin et
al., 2019), have successfully been fine-tuned on specific tasks
with significantly smaller datasets, based on the assumption
that the target language and source language has similar un-
derlying distributions.

Optimizing mappings between natural language and images
has been done before natural language supervision was intro-
duced; for example, image captioning (Zakir Hossain et al.,
2019; X. Lu et al., 2018; S. He et al., 2020) and visual ques-
tion answering (Antol et al., 2015) have both trained map-
pings between images and text through top-down or bottom-
up mappings (Anderson et al., 2018) and semantic attention
(Zhang et al., 2019; Ding et al., 2020). Knowledge and con-
cepts can also be integrated using language as a supervision
tool through neuro-symbolic concept learning (Mao et al.,
2019), where visual concepts, word representations, and se-
mantic parsing of sentences are jointly learned.

Image recognition generally uses image-text pairs available
from online data crawling to train mappings between text and
images. Learning directly from the text can also facilitate
zero-shot classifiers from language descriptions. Elhoseiny et
al. (2013) used text-based descriptions to create a zero-shot
image classifier, with text features extracted through Term
frequency–Inverse document frequency (Tf-Idf) followed by
Clustered Latent Semantic Indexing. J. Lu et al. (2019) intro-
duced ViLBERT, a Vision-and-Language version of BERT,
that learns image recognition and language understanding in
a two-stream model with interactions between image and text
to improve performance compared to single-stream models.
Y. Zhang et al. (2020) classified medical images by utiliz-
ing text-image pairs through contrastive visual representa-
tion learning (ConVIRT) to learn pairings between images
and texts. Desai & Johnson (2020) introduced Virtex, which
uses captions to enhance pre-training of an image recognition
CNN. Sariyildiz et al. (2020) mask words in image-annotation
pairs to create image-conditioned masked language modelling
(ICMLM) for image classification.

In a recent publication, Radford et al. (2021a) at OpenAI
presented CLIP, Contrastive Language–Image Pre-training,
which popularised the term natural language supervision and

showed its efficacy for zero-shot classification. They used
transformers (Vaswani et al., 2017) for both text and image
encodings (Dosovitskiy et al., 2020), and a contrastive (Tian
et al., 2020) BoW prediction objective to connect text la-
bel to image features in a vector quantised encoding space
(van den Oord et al., 2018; Razavi et al., 2019). FILIP by
Yao et al. (2021) uses a fine-grained word-patch image align-
ment to detect and classify objects based on text descriptions,
obtaining finer level-alignment in image-text comprehension
through unsupervised natural language supervision. C. Jia
et al. (2021) scaled natural language supervision further by
training directly on un-filtered images and annotaions with
over one billion image-text pairs. Z. Wang, Yu, Firat, & Cao
(2021) introduced unsupervised data generation to synthesise
labels for downstream tasks and thus achieve SOTA results
on SuperGLUE (A. Wang et al., 2020).

In earlier models, Ramanathan et al. (2013) used natural lan-
guage supervision to train a video event understanding model
in 2013 through a rule-based BoW-like model, and Williams
et al. (2018) used language as reward functions for training
robots.

3.2. Technical Language Processing

The term Technical language processing was introduced in
Dec 2020 by Brundage, Sexton, et al. (2021) in collabora-
tion with the American National Institute of Standards and
Technology, and concerns the application of NLP techniques
and pipelines on technical language. The processing of tech-
nical language requires natural language processing methods
with additional considerations related to the characteristics of
technical language, which is characterised by a higher fre-
quency of information-rich key-words, more abbreviations,
and considerably less data than natural language. TLP can be
used as a basis for TLS, but can also directly enhance CM
practices by offering insights into key performance indicators
from work order features (Sharp et al., 2021).

The challenges inherent in using free form text data from in-
dustrial contexts - namely data scarcity, a high density of im-
portant but (to the model) undefined abbreviations, and tech-
nical terms and concepts critical for maintenance context but
not inherently defined by their context - are different enough
from current NLP research to warrant its own key word in
TLP. An ideal TLP model which performs as well as mod-
ern language models do on natural language would be able to
answer free-form questions on the text dataset, understand-
ing what parts of MWOs and annotations indicate fault class,
severity or maintenance actions, and similar tasks currently
only possible with human analysis. However, the aforemen-
tioned challenges make direct implementation of pre-trained
language models difficult; Dima et al. (2021) describe the
challenges in adapting natural language processing for tech-
nical text in detail. and warn against possible shortcomings
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Table 4. Annotations associated with data from Figure 3.

Case Months after fault detection Annotation (translated from Swedish)
BPFO indication 4 BPFO Env low

BPFO 10
BPFO visible in mm/s as overtones

high up in the spectrum between
1000 and 2000 Hz. WO written on BPFO

Feedback 12 Bearing replaced YYYYMMDD
levels of BPFO low again

gE
 P

tP

a)

gE
 P

tP

Frequency [order]

c)

gE
 P

tP

b)

Figure 3. Order analysis results for a vibration signal at a) 4
months; b) 10 months; and c) 12 months after the first in-
dication of a fault in a drying cylinder bearing of a paper
machine. Included are also the corresponding text annota-
tions written by experienced condition monitoring analysts
employed at the factory. The annotations have been translated
from Swedish to English to improve clarity. BPFO peaks are
clearly visible in panel a) four months after the first indica-
tion of the bearing fault. After ten months, the amplitude of
the BPFO peaks in panel b) have increased and a work order
(WO) has been written by the analysts. Two months later the
bearing has been replaced and no BPFO signature can be seen
in panel c).

of implementing SOTA NLP models without considering the
specific needs of the process or the people involved. A large
black box model can lead to issues with model justifiability,
scrutiny and bias, undermining confidence in the system.

3.2.1. Technical Language Processing Implementations

Implementations of word embedding models, among those
language models, have seen some testing.

Nandyala et al. (2021), implemented five models for vector
representation of technical text using an open source dataset
describing 5,485 work orders for 5 excavators Hodkiewicz et
al. (2017). To evaluate their results they relied on qualitative
human evaluation in word and sentence similarities, as well
as word cluster projections, as no obvious extrinsic evaluation
tasks are available in the model. The authors also survey the
literature on fields with challenges similar to those faces in
technical language, and discovered similar problem formula-
tions in finance, law, medicine and bio-medicine. In particu-
lar, the bio-medical community has developed public datasets
for training and benchmarking of domain-specific NLP mod-
els.

Cadavid et al. (2020) used a French version of RoBERTa
(Y. Liu et al., 2019) called CamemBERT to estimate language
features such as duration and criticality of maintenance prob-
lems based on operator descriptions. They used equipment
descriptions, importance and symptoms as input, and type of
disturbance as criticality output (dominant or recessive) and
maintenance workload (hours) as outputs for duration. Such
input-output pairs allow for extrinsic evaluation, but also fine-
tuning of model parameters. The results indicate that Tf-IDf
considerably outperforms the base CamemBERT and almost
as well as fine-tuned CamemBERT, which implies that the
task, data or evaluation are insufficient to fully benefit from
the representational capacities of large language models.

Brundage, Sharp, & Pavel (2021) show an association be-
tween signal values and expert annotations by generating a
technical language dataset with the help of two technicians.
One technician generated and monitored faults, followed by
another technician writing annotations. The authors find a
clear correlation between annotation contents and expert con-
dition monitoring, which presents a strong case for language
supervision. Lowenmark et al. (2022) investigate the effect
of out-of-vocabulary technical terms on BERT and Sentence-
BERT performance annotation representations by substitut-
ing key terms with in-vocabulary natural language terms. The
challenges of evaluation without labels or benchmark datasets
were also discussed, and two methods to simulate extrinsic
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metrics were suggested. The authors found that the cluster-
ability as measured by k-means score, and the predictability
of automatically assigned fault class labels, both improved
with only a few key words substituted.

3.2.2. Technical Language Processing Embeddings

Language-based models require a mathematical representa-
tion of language. This is achieved through pre-processing
and an embedding algorithm. The pre-processing step in-
volves tokenisation, cleaning and spell-checking, stop-words
removal, stemming/lemmatisation, and fundamental language
analysis such as part of speech tagging and named entity recog-
nition. The embedding algorithm can be as simple as one-hot
encoding or a complex massive transformers based architec-
ture.

Figure 3 and Table 4 illustrate an example of technical lan-
guage annotations and condition monitoring signals from a
craft liner production plant in northern Sweden. The Fig-
ure shows three different envelope-filtered measurements as-
sociated with the annotations shown in the Table. The first
annotation indicates that there is a fault of class Ball-Pass
Frequency Outer ring (BPFO) with a low severity, which is
related to the low-intensity peaks at characteristic kinemati-
cally based order frequencies in the spectrum. The second
annotation describes that the corresponding overtones have
increased in magnitude and that a work order has been writ-
ten. At that point the fault is estimated to be more severe and
at the end of its RUL, so the component (bearing) has to be
replaced. Finally, the third annotation informs that a bearing
has been replaced and that the vibration levels are low, indi-
cating a healthy component.

3.2.3. Challenges and Solutions

Pre-processing of technical language faces several difficul-
ties, as use of technical language can vary even in the same
field, and there is no uniformly defined list of stems/lemmas,
stop-words or correct spellings. For instance, if a CM dataset
contains faults of class ”Ball-Pass Frequency Outer” (BPFO)
and ”Ball-Pass Frequency Inner” (BPFI), but one is consider-
ably more common than the other, an automated spell-checker
might assume that one is a spelling error. Likewise, there is
no defined dictionary for stemming of technical words such
as BPFO or BPFI, and reducing both words to ”BPF” nat-
urally loses critical information. Therefore it is necessary
with a ”human-in-the-loop” system until a level of language
processing maturity which accurately covers the heteroge-
neous field of technical language is achieved. One dictionary
of technical stop words has been produced (Sarica & Luo,
2021), though it is not necessarily the case that this list is ac-
curate for industries besides those covered in the article.

Encoding technical language to vectors faces a major chal-
lenge in that many technical words specific to industries are

not in the vocabulary of NLP models trained on natural lan-
guage. Addressing this directly with NLP methods is thus
related to handling out of vocabulary (OOV) words. A com-
mon method to deal with OOV words, used in for instance
BERT (Devlin et al., 2019) and GPT (Radford, 2018b; Rad-
ford et al., 2019b; Brown et al., 2020b), is to input subword
encodings such as byte-pair encodings (BPE) (Gage, 1994;
Sennrich et al., 2015) or WordPieces (Schuster & Nakajima,
2012; Y. Wu et al., 2016), rather than the words themselves
as inputs to the model. Both models work by learning to
maximise the coverage of words in the corpus using a typi-
cally fixed amount of subwords. Thus, common words are
assigned one whole token, while uncommon words or word
endings, such as the ”ing”-suffix in for instance ”running”,
might be assigned multiple tokens. The difference between
BPE and WordPiece comes mainly from how the subwords
are assigned, where BPE chooses the most frequent byte pair
and WordPiece chooses the the pair which maximises the
likelihood of the training data. Other models try to learn to
predict the meaning of an unknown word based on surround-
ing words, individual characters, or a combination of both
(Lochter et al., 2020). Implementing an OOV solution which
allows transfer learning of a pre-trained deep learning NLP
encoder could potentiate more semantically accurate repre-
sentations of technical language word embeddings, which in
turn would improve the potential for TLS.

Another method to encode technical language is through hu-
man designed expert systems - essentially a set of rules de-
scribing the keywords for faults, actions, severities etc (Sex-
ton et al., 2018). The annotation

”High BPFO in env3. WO on bearing replacement”

would thus be decomposed into

class�BPFO; severity � high; detected in� env3;

action�WO replacement; action target� bearing.

These keywords can then serve as targets for annotation pre-
diction or language based supervision, acting as less noisy
labels than learned embeddings for language representations.
However, such a system is difficult to scale and vulnerable to
new keywords being introduced, essentially requiring tailored
engineering and maintenance for each unique industry. It is
also vulnerable to oversights from the engineers of the expert
system, for instance missing negations in statements, unfore-
seen keyword usage or a lack of context due to the removal
of semantics.

3.3. Outline of Technical Language Supervision concepts
and model

In the infant stage of TLP, classical NLP methods such as
stop-word removal, lemmatisation, stemming and BoW anal-
ysis have been used. A potential improvement is to apply
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Figure 4. Example illustrating the pre-training step of a
natural language supervision model. Annotations and time-
frequency domain signal features are encoded, and the model
is optimised to connect the correct text-feature pair in the
batch of training examples, here marked with dark green
colour, through contrastive learning.

more recent innovations in pre-processing and analysis, such
as word embedding algorithms coupled with manual tagging
of industry-specific technical language.
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Figure 5. Example illustrating how inference can be gener-
ated with the natural-language supervised model outlined in
Figure 4. Signal and language inputs are compared in the pro-
jection space learned during pre-training, and pairs with the
highest feature similarity are used as outputs in either spec-
trum retrieval or zero-shot classification.

Figures 4 and 5 show a TLS model inspired by the CLIP
model Radford et al. (2021a) describing natural language su-
pervision. In the pre-training step, a technical language en-
coder and a fault diagnosis encoder are used to produce fault
and text features. A mapping between fault and text encod-
ings is learned through contrastive learning (Tian et al., 2020;
Y. Zhang et al., 2020). In the inference phase, the same en-
coders are used, but additionally there exists a label query
mechanism that maps an input signal to the annotation-based
label that is closest to the query in the joint data and language
embedding space.

In the case of IFD of rotating machinery, the input is typically
sensor data in time-, frequency- and time-frequency-domains.
IFD data encoding methods are described in section II, and
typically consist of variations of CNNs. Recently, the Trans-
former (Vaswani et al., 2017), an architecture introduced to

model long-range dependencies and training inefficiencies in
NLP, has been successfully used for image recognition with-
out any convolutions in the model (Dosovitskiy et al., 2020;
B. Wu et al., 2020; K. Han et al., 2021).

In order to train classification or regression models using lan-
guage, and not just an annotation generator, a language based
labelling method is required. Based on current state-of-the-
art methods, some human intervention is required in this step
to pre-define the label-space, so that annotations can be mat-
ched to the closest label semantically. In (Radford et al.,
2021a), a BoW method is implemented to complete pre-defined
sentence structures by inserting the correct term chosen from
the bag. A similar model could be used in IFD, with more
than one degree of freedom in the query to label both fault
class and severity Potentially, further degrees of freedom also
enables labelling time-aspects of fault evolution. With a large
text dataset and access to well defined labels in parallel with
the annotations, a mapping between a more feature-rich en-
coding and the label space can be learned and implemented
to produce labels in a weakly supervised manner for data-
annotation pairs where labelled data are not available.

In the case of CM data, the volume and density of text data is
low compared to web-crawl results for captioned images on
the Internet, or extensively annotated datasets such as COCO
(Lin et al., 2015). The language is also domain specific, and
annotations are connected to time-frequency data recordings
in the dataset, while the semantics of an annotation can be
based on analysis of trends over many measurement record-
ings. This motivates the use of pre-trained models, in combi-
nation with feature-engineering and fine-tuning to adapt the
model to the domain-specific terms used in process industry.
Weak supervision will also be required to deal with unanno-
tated faults, time-delays, a lack of annotations in healthy data,
and noise in the annotations resulting from domain-specific
language, spelling errors, and grounding noise due to subjec-
tive interpretations.

4. CASE STUDY

We implement a version of the architecture presented in Fig-
ures 4 and 5 using data from a craft paper production plant in
northern Sweden, with spectrum and annotation embedding
projection heads as trainable parameters through contrastive
learning.

4.1. Data

The data used comes from six months of recorded data in
two large paper mills producing Kraftliner in northern Swe-
den, and consists of annotated condition monitoring signals
from assets, such as dryers, rollers and gearboxes etc. Figure
6 shows a schema of the data structure for each paper mill.
Each paper mill forms a database. The database consists of
multiple machine parts called assets, which occasionally have
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associated annotations when faults have been detected and di-
agnosed. Each asset has multiple subassets consisting of dif-
ferent types of signals, from one or more sensors. Subassets
can be two sensors mounted on the same asset but at opposite
ends, or signals from the same sensor that have been trans-
formed using filters such as enveloping. Subassets consist
of multiple recordings in the form of time series and spectra
measurements, which are the data used in this case study. A
recording is one series of data, typically 6400 vibration mea-
surement samples taken over 6.4 seconds, from which spectra
with 3200 samples up to 500Hz are computed. Thus, for each
annotation there is one associated asset, with multiple subas-
sets, with multiple recordings.

In our dataset, we have 109 annotations with a total of 21090
associated recordings present in a span of ten days before
and after the annotation date. Many annotations are identical,
and of the 109 annotations there are 43 unique fault descrip-
tions. As data scales up, the number of unique annotations
will also increase, which is why a pre-trained language model
is needed to ensure system scalability.

4.2. Text Encoder

The text encoder part of out case study TLS model is seen in
Figure 4, shown in orange at the top of the figure.

The annotations are embedded using a pretrained and frozen
SentenceBERT (Reimers & Gurevych, 2019) model trained
on Swedish corpora (Rekathati, 2021), which transforms ev-
ery annotation to a 768-dimensional embedding vector. as
shown in the first two boxes. SentenceBERT is based on
BERT and RoBERTa, but is trained to specifically produce
good sentence embeddings through siamese and triplet net-
works (Schroff et al., 2015). In the normal BERT model,
each word is projected to a 768-dimensional embedding vec-
tor. For example, an annotation with ten words is embed-
ded with dimensions 10x768. To use these embeddings for
downstream tasks, it is common to pool them to 1x768 then
use a feed-forward neural network (FFN). Pooling can be ac-
complished by averaging each embedding, taking weighted
max values, or by using the classification (CLS)-token, which
is a final token added to the BERT model that effectively

Condition
Monitoring
Database

Assets Subassets
(sensors)

Recordings
(measurements)Recordings

(measurements)Recording 
(measurement)

Subassets
(sensors)Subasset

(sensors, filters)
AssetsAsset (machine

component)

Anno-
tation

Figure 6. Schema of data structure in a condition monitoring
database. The database consists of multiple machine parts
called assets, which sometimes have associated annotations.
Each asset has multiple subassets consisting of different types
of signals, from one or more sensors. Each subasset consists
of multiple recordings in the form of time series and spectra
measurements.

becomes a learned pooling of the self-attention. Sentence-
BERT is a BERT-based model fine-tuned on the task of pool-
ing word embeddings to sentence-embeddings, using corpora
with similar and dissimlar sentences, and an objective func-
tion defined to minimise some distance measure, either soft-
max, cosine or euclidean between triplets, between similar
sentence embeddings. Thus, annotations, which typically con-
sist of one sentence, can be transformed directly to 1x768
with a model specifically optimised for this task.

An FFN is then used to reduce the dimensions down to 64
to introduce trainable parameters and reduce the complexity
of the dot-product in the contrastive learning step. The FFN
is a simple two-layer network with one skip-connection go-
ing from 768 to 64 to 64, with a Gaussian error linear unit
(GELU) activation function, a 10% dropout, and layer norm.
The output of the FFN is then used as input for the contrastive
learning step, seen in the rightmost two boxes of the figure

4.3. Signal Encoder

As there are only 109 annotations it is challenging to opti-
mise a network at the asset or subasset level. Therefore we
propagate the labels down to the recordings level, where we
have 21090 spectrum-annotation-pairs with 43 unique anno-
tations. Thus, the same annotation at an asset will describe
every spectra related to that asset, even if some spectra are
void of fault features. However, as shown by C. Jia et al.
(2021) and Z. Wang, Yu, Yu, et al. (2021), noisy text-image
pairs can still converge to a general understanding through the
weak supervision that is still present, and it is likely that the
same will hold true when replacing images with sensor data.

We directly use the spectra as the fault features, which can be
interpreted as the pre-trained model being a FFT and envelope
filter of the raw time series. The spectra are projected from
3200 to 64 dimensions with the same reasoning and the same
model setup as the annotation embeddings. This is shown in
Figure 4 as the spectra encoder being empty, going from 3200
to 3200. As with the annotation embeddings, the resulting 64-
dimensional vectors are then sent to the contrastive learning
step, seen in the next blue box.

4.4. Contrastive Learning

We train the data using contrastive loss to project positive
pairs of signals close and negative pairs further away in a
projection space, inspired by the methodology presented in
(Radford et al., 2021b). Logits are computed through the dot
product of the text and spectrum embeddings in a batch. The
self-similarities of spectrum and text embeddings are then
computed through the dot product with themselves. The tar-
gets, the ”labels” for the constrastive loss, are then computed
as the softmax of the averages of the self-similarities. The
loss for the text-encoder and the spectrum-encoder are then
computed separately through cross entropy loss of the logits
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Figure 7. Training and validation contrastive loss for case
study model.

and the targets. Finally, the model batch loss is defined as the
mean of the spectrum and text losses. We trained the model
for only three epochs, as the loss on the validation set quickly
started deviating from the train loss, as seen in Figure 7.

4.5. Zero-shot analysis

Finally, the pre-trained model is used to show which spectra
in the dataset best correspond to fault queries through spec-
trum retrieval, and to predict fault classes based on an unla-
belled spectra with a label query through zero-shot classifi-
cation. More specifically, unlabelled spectra chosen from the
dataset, and manually chosen label queries, are both used as
inputs, while the highest dot product of the embeddings gen-
erates a prediction output.

Figure 8 shows spectrum retrieval using queries, described in
Table 5, as inputs and receiving matching spectra as outputs.
The queries are embedded using the pre-trained technical lan-
guage supervision model, alongside all spectra in the training
and validation set. The output spectra are those with the high-
est embedding dot product.

Figure 9 illustrates a zero-shot classification implementation
of the technical language supervision framework, with queries
also described in Table 5. Four examples of spectrum in-
puts are shown in overlapping pairs in the upper two parts of
the figure. The corresponding annotations and axes for these
spectra are colour coded and marked as S1-S4. The lower
part of the figure illustrates zero-shot classification with five
queries, where the inner product between the queries and the

Table 5. Query inputs for spectrum retrieval and zero-shot
classification

Query ID Query
Q1 ”BPFO low levels”
Q2 ”WO cable replacement”
Q3 ”Replace sensor”
Q4 ”DC FS”
Q5 ”Breakdown”

Figure 8. Spectrum retrieval using text queries to sample the
top three spectra with the highest embedding dot products

spectra was computed. The inner product between a spec-
tra and a query is represented directly over the query, with
colours indicating which spectra the bar is related to.

4.6. Results

4.6.1. Spectrum retrieval

The results of the case study indicate that even with a lim-
ited amount of data and a relatively simple model with few
hyperparameters, there are aspects of fault diagnosis learned
without any labels. For instance, the top four spectra cho-
sen in the spectrum retrieval task shown in Figure 8 are all
examples of signals that correspond to their respective query;
queries 1 and 4 retrieve spectra indicating bearing faults, with
high frequency peaks likely corresponding to characteristic
frequencies of bearings, while queries 2 and 3 both indicate
cable or sensor faults, seen in the unnaturally high intensity
close to zero, indicating a bias in the time series. Query 4 il-
lustrates one interesting property of the correlations between
language and signals, where ”DC FS” means ”drying group
free side”, which is a phrase commonly seen in conjunction
with bearing fault detection or bearing replacement work or-
ders. Query 5 was chosen to test the model where no clear
correlations were to be expected, as there were very few oc-
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Figure 9. Zero-shot implementation on the case study data.
Input spectra are shown in the upper two graphs, and input
queries with matching inner products are shown in the lower
graph.

currences of ”breakdown” in the dataset and ”breakdown”
does not have one clear signal representation. However, upon
consultation with an expert analyst, we learned that the model
had picked up a correlation between spectra indicating loose-
ness or play in a bearing, which apparently was the reason
behind this breakdown. Thus, the analyst found this spec-
trum retrieval valuable and successful, indicating the need for
close collaboration with experts even when developing self-
supervised data-driven models.

4.6.2. Zero-shot predictions

The zero-shot predictions shown in Figure 9 produce good
results, where Q1 and Q4 correctly have a higher values for
spectra 1 and 2 than for spectra 3 and 4, while Q2 and Q3
correctly correlate more with spectra 3 and 4. In particu-
lar, Q1, ”BPFO low levels”, correctly correlates significantly
more with the spectra whose annotation reads ”BPFO in env
low levels keep watch”, and Q4 likewise correctly correlates

much more with S2. Furthermore, both queries correlate more
with S1 and S2 which are spectra that indicate bearing faults,
despite the individual characteristics of each spectra being
different. Q2 and Q3 both correlate strongly to the similar
spectra S3 and S4, with Q3 correlating stronger with both
spectra, and S3 stronger with each query. However, since ca-
ble and sensor faults in general show similar feature spaces,
both queries are accurately mapped to similar spectra. Q5,
”breakdown”, correlates poorly with all chosen spectra, which
is an accurate classification as none of the input spectra should
indicate a breakdown.

In both the spectrum retrieval and the zero-shot prediction we
used normalised text embedding and unnormalised spectrum
embeddings before normalising the dot product, as opposed
to the normalised spectrum embeddings used during training.
Normalising the text embeddings had little impact on either
task, but the spectrum retrieval was affected considerably by
normalisiation of the spectrum embeddings, producing better
retrievals with higher values for BPFO-related annotations,
but lower values and worse retrievals for cable and sensor
faults, while zero-shot predictions were relatively unaffected.

4.7. Discussion

The technical language supervision model outlined and im-
plemented in this case study is a basic adaptation of the model
used in Radford et al. (2021b). It faces several challenges re-
lated to the application to technical language and condition
monitoring signals, which are discussed in the following sub-
sections. Table 6 summarises the tasks, challenges and pro-
posed approaches for text encodings, signal encodings, con-
trastive learning and zero-shot classification.

4.7.1. Text encoder

The main challenge for the text encoder is to create good
embeddings of technical language, as they are the basis for
the potential of the contrastive learning step. As discussed
in Section 3.2, this challenge is due to technical language
being different from the natural language normally used to
train language models, and technical language data scarcity.
In this case study, we opted to use a pre-trained natural lan-
guage model without any fine-tuning. Three approaches for
improvements of technical language encodings are shown in
the table, which can be summarised as using small-data in-
dustry specific solutions through technical language process-
ing, discussed in Section 3.2; large data self-supervised pre-
training solutions; and supervised fine-tuning, both discussed
in Section 3.1.

4.7.2. Signal encoder

For the signal encoder, the main task is to produce good fault
feature representations prior to the projection head, compara-
ble to the language model step of the language encoder. The

15



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Table 6. Different TLS tasks, challenges and approaches

Task Challenges Approaches
Encoding
technical
language.

Technical language different
from natural language.

Limited data availability.

Technical language processing, see 3.2.
Self-supervised pre-training, see 3.1.

Supervised fine-tuning, see 3.1.
Encoding

fault
features

Labelled industry data scarce.
Lab features difficult to transfer.

Non-linear evolution of fault severity.
Fault severity levels industry specific.

Transfer Learning, see 2.3.
Weak Supervision, see 2.4.

Contrastive learning for fine-tuning,
see 2.4.2 and 3.1.

Contrastive learning
optimisation.

Faults appear and evolve over
multiple recordings and signal types.

Sequential model projection
heads, see 4.7.3.

Data augmentation, see 4.7.3.
Evaluating zero-shot.

performance and implementation.
Novel task.

No benchmark test set.
Industry expert analysis &
Industry test deployment,

see 4.7.4.

lack of labelled industry data sets, the difficulty of feature
transfer and the non-linear and industry-specific properties of
fault severity, are all challenges for this task. Approaches
to overcome these challenges are discussed in Section two,
but more specifically transfer learning, weak supervision and
contrastive learning are viable approaches, with specific sec-
tions shown in Table 6

4.7.3. Contrastive learning

The task of the contrastive learning part of the model is to
force positive pairs to a similar projection space, while nega-
tive pairs are pushed away. The main challenge in this step is
related to data properties, where annotations are too scarce
to fully leverage the utility of scale that is shown in NLS
(F. Chen et al., 2022a), and fault evolution too nonlinear for
annotation propagation to accurately work as data augmenta-
tion. Furthermore, unlike in NLS prediction of image classes,
TLS individual recordings are insufficient information to fully
assess fault characteristics, akin to describing a movie from
just one frame. Thus, multiple recordings must be consid-
ered to mimic human analysis in the contrastive learning step,
which requires methods able to attend to sequential data such
as recurrent neural networks or transformers, either as projec-
tion heads or integrated in the text and signal encoders.

Propagating annotation embeddings to each corresponding
recording increases the size of the dataset, but also leads to in-
accurate supervision from annotations on the recordings level,
arising due to the inexactness between recordings level and
asset level. For example, if a sensor is faulty at half of its
measurements, but works for the other half, the model should
ideally be trained only on the faulty signals. Likewise, BPFO
is typically detected first in envelope spectra, thus resulting
in BPFO annotations being associated with normal spectra
where BPFO features have likely not appeared yet. The va-
riety of input types in the spectra inputs is in itself an issue
for optimisation, as the network will have to learn to project
two very different signals to the same projection in the joint
embedding space. However, knowledge of expected fault

behaviour with regards to annotation types could be lever-
aged to perform improved data augmentation and more accu-
rately propagate annotations in time with annotation contents
changing depending on fault type and time distance from true
annotation.

4.7.4. Zero-shot predictions

The main challenges with zero-shot classification in an indus-
try environment is that it is a novel field and hard to evaluate
without labelled test sets. The contrastive loss or accuracy
during optimisation is relative to the model, and offers little
insight into model performance at implementation. There-
fore we use Figures 8 and 9 to illustrate model performance
for two test scenarios. This evaluation requires prior fault di-
agnosis knowledge however, compared to the much simpler
task of evaluating natural language supervision classification
for image captioning. However, the efficacy of the model
can also be evaluated by test deployment in industry, where
feedback from industry experts evaluates whether the model
works to improve current fault diagnosis practices or not.

Investigating the zero-shot predictions in Figure 9 showed
that a spectrum containing BPFO features gave high inner
products also for cable and sensor queries, and we specu-
lated that this might be due to latent BPFO features occasion-
ally seen in the cable and sensor-associated spectrum training
data. This is an issue of incomplete supervision, which is
further exacerbated if unannotated data is used during train-
ing, as the absence of fault annotations does not necessar-
ily guarantee the absence of fault features, given that early
faults might go undetected by current analysis. The issues of
weak supervision can be addressed by adding data-specific
solutions, by for instance limiting extraction dates to after
the annotation, or adding pre-processing of annotations to
manually handle ”replaced”-like annotations as a different
class. This issue might also be solveable by simply scaling
up data, which has worked in natural language supervision as
discussed in Section 4.3.

16



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

5. CONCLUSION

The fault descriptions and maintenance records commonly
stored in modern process industry CM systems are unexploited
sources of information for training IFD systems. Language
present in CM datasets can be used for technical language
based supervision of IFD models to facilitate automation of
routine FD tasks and develop more accurate decision sup-
port for complex tasks (Ekström & Sandin, 2020). Since
language-based labels are intrinsically uncertain, weakly su-
pervised learning methods need to be developed, which can
also support transfer learning of pretrained IFD models with
labels extracted from language in industry datasets. Our ex-
periments show that even with a basic TLS implementation,
without custom signal processing or pre-trained fault diag-
nosis encoders, a joint embedding space for annotations and
fault features can be learned and used for zero-shot classifi-
cation.

Improvements in TLS can occur both through an enhance-
ment of the TLP pipeline for technical language representa-
tions, or through augmented integration of IFD-based signal
encoders.However, a major challenge for TLP and TLS re-
search is the lack of realistic and open annotated industry
data, which can be used for comparative studies and bench-
marks. Furthermore, the assistance of industry experts was
sometimes required to understand the annotation language
and how annotations were motivated by signal features and
the context. Thus, in this work the collaboration between in-
dustry and academia was key. Open access annotated datasets
with clearly described features and valid benchmark tasks
are needed to make this important direction of research more
readily accessible.
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& Ré, C. (2018). Training classifiers with natural language
explanations.

18



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

He, S., Liao, W., Tavakoli, H. R., Yang, M., Rosenhahn, B.,
& Pugeault, N. (2020). Image captioning through image
transformer.

He, Z., Shao, H., Zhong, X., & Zhao, X. (2020). Ensem-
ble transfer cnns driven by multi-channel signals for fault
diagnosis of rotating machinery cross working conditions.
Knowledge-Based Systems, 207.

Helbing, G., & Ritter, M. (2018). Deep learning for fault de-
tection in wind turbines. Renewable and Sustainable En-
ergy Reviews, 98, 189 - 198.

Hoang, D.-T., & Kang, H.-J. (2019). A survey on deep learn-
ing based bearing fault diagnosis. Neurocomputing, 335,
327-335.

Hodkiewicz, M. R., Batsioudis, Z., Radomiljac, T., & Ho,
M. T. (2017). Why autonomous assets are good for relia-
bility – the impact of ‘operator-related component’ failures
on heavy mobile equipment reliability..

Hoffmann, R., Zhang, C., Ling, X., Zettlemoyer, L., & Weld,
D. S. (2011, June). Knowledge-based weak supervision
for information extraction of overlapping relations. In Pro-
ceedings of the 49th annual meeting of the association for
computational linguistics: Human language technologies
(pp. 541–550). Portland, Oregon, USA: Association for
Computational Linguistics.

Jardine, A., Lin, D., & Banjevic, D. (2006). A review
on machinery diagnostics and prognostics implementing
condition-based maintenance. Mechanical Systems and
Signal Processing, 20(7), 1483-1510.

Jardine, A. K., Lin, D., & Banjevic, D. (2006). A review
on machinery diagnostics and prognostics implementing
condition-based maintenance. Mechanical Systems and
Signal Processing, 20(7), 1483 - 1510.

Jia, C., Yang, Y., Xia, Y., Chen, Y.-T., Parekh, Z., Pham,
H., . . . Duerig, T. (2021). Scaling up visual and vision-
language representation learning with noisy text supervi-
sion.

Jia, F., Lei, Y., Lin, J., Zhou, X., & Lu, N. (2016). Deep
neural networks: A promising tool for fault characteristic
mining and intelligent diagnosis of rotating machinery with
massive data. Mechanical Systems and Signal Processing,
72-73, 303-315.

Jia, F., Lei, Y., Lu, N., & Xing, S. (2018). Deep normalized
convolutional neural network for imbalanced fault classi-
fication of machinery and its understanding via visualiza-
tion. Mechanical Systems and Signal Processing, 110, 349-
367.

Jian, C., Yang, K., & Ao, Y. (2021). Industrial fault diagno-
sis based on active learning and semi-supervised learning
using small training set. Engineering Applications of Arti-
ficial Intelligence, 104, 104365.

Jiang, G., Xie, P., He, H., & Yan, J. (2018). Wind turbine
fault detection using a denoising autoencoder with tempo-
ral information. IEEE/ASME Transactions on Mechatron-
ics, 23(1), 89-100.

Khan, S., & Yairi, T. (2018). A review on the application of
deep learning in system health management. Mechanical
Systems and Signal Processing, 107, 241-265.

Kothamasu, R., Huang, S. H., & VerDuin, W. H. (2006,
Jul 01). System health monitoring and prognostics —
a review of current paradigms and practices. The Inter-
national Journal of Advanced Manufacturing Technology,
28(9), 1012-1024.

Labutov, I., Yang, B., & Mitchell, T. (2019). Learning to
learn semantic parsers from natural language supervision.

Lei, Y., Jia, F., Lin, J., Xing, S., & Ding, S. (2016). An in-
telligent fault diagnosis method using unsupervised feature
learning towards mechanical big data. IEEE Transactions
on Industrial Electronics, 63(5), 3137-3147.

Lei, Y., Li, N., Guo, L., Li, N., Yan, T., & Lin, J. (2018).
Machinery health prognostics: A systematic review from
data acquisition to rul prediction. Mechanical Systems and
Signal Processing, 104, 799-834.

Lei, Y., Yang, B., Jiang, X., Jia, F., Li, N., & Nandi, A. K.
(2020). Applications of machine learning to machine fault
diagnosis: A review and roadmap. Mechanical Systems
and Signal Processing, 138, 106587.

Li, C., Zhang, S., Qin, Y., & Estupinan, E. (2020). A system-
atic review of deep transfer learning for machinery fault
diagnosis. Neurocomputing, 407, 121 - 135.

Li, J., Wong, Y., Zhao, Q., & Kankanhalli, M. (2019). Learn-
ing to learn from noisy labeled data. In (Vol. 2019-June,
p. 5046-5054).

Li, X., Ding, Q., & Sun, J.-Q. (2018). Remaining useful
life estimation in prognostics using deep convolution neu-
ral networks. Reliability Engineering and System Safety,
172, 1-11.

Li, X., Li, X., & Ma, H. (2020). Deep representation
clustering-based fault diagnosis method with unsupervised
data applied to rotating machinery. Mechanical Systems
and Signal Processing, 143, 106825.

Li, X., Zhang, W., Ding, Q., & Li, X. (2020). Diagnosing
rotating machines with weakly supervised data using deep
transfer learning. IEEE Transactions on Industrial Infor-
matics, 16(3), 1688-1697.

Li, X., Zhang, W., Ding, Q., & Li, X. (2020). Diagnosing
rotating machines with weakly supervised data using deep
transfer learning. IEEE Transactions on Industrial Infor-
matics, 16(3), 1688-1697.

Li, X., Zhang, W., Xu, N.-X., & Ding, Q. (2020). Deep
learning-based machinery fault diagnostics with domain
adaptation across sensors at different places. IEEE Trans-
actions on Industrial Electronics, 67(8), 6785-6794.

19



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Li, Y., Lin, T., Yi, K., Bear, D. M., Yamins, D. L. K., Wu,
J., . . . Torralba, A. (2020). Visual grounding of learned
physical models.

Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R.,
Hays, J., . . . Dollár, P. (2015). Microsoft coco: Common
objects in context.

Liu, H., Liu, C., & Huang, Y. (2011). Adaptive feature ex-
traction using sparse coding for machinery fault diagnosis.
Mechanical Systems and Signal Processing, 25(2), 558 -
574.

Liu, H., Zhou, J., Zheng, Y., Jiang, W., & Zhang, Y. (2018).
Fault diagnosis of rolling bearings with recurrent neural
network-based autoencoders. ISA Transactions, 77, 167-
178.

Liu, R., Yang, B., Zio, E., & Chen, X. (2018). Artificial
intelligence for fault diagnosis of rotating machinery: A
review. Mechanical Systems and Signal Processing, 108,
33-47.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., . . .
Stoyanov, V. (2019). Roberta: A robustly optimized bert
pretraining approach.

Lochter, J. V., Silva, R. M., & Almeida, T. A. (2020). Deep
learning models for representing out-of-vocabulary words.

Lowenmark, K., Taal, C., Nivre, J., Liwicki, M., & Sandin,
F. (2022). Processing of condition monitoring annotations
with bert and technical language substitution: A case study.
Proceedings of the 7th European Conference of the Prog-
nostics and Health Management Society 2022, 306-314.

Lu, C., Wang, Z.-Y., Qin, W.-L., & Ma, J. (2017). Fault diag-
nosis of rotary machinery components using a stacked de-
noising autoencoder-based health state identification. Sig-
nal Processing, 130, 377-388.

Lu, J., Batra, D., Parikh, D., & Lee, S. (2019). Vilbert: Pre-
training task-agnostic visiolinguistic representations for
vision-and-language tasks.

Lu, X., Wang, B., Zheng, X., & Li, X. (2018). Exploring
models and data for remote sensing image caption genera-
tion. IEEE Transactions on Geoscience and Remote Sens-
ing, 56(4), 2183-2195.

Mao, J., Gan, C., Kohli, P., Tenenbaum, J. B., & Wu, J.
(2019). The neuro-symbolic concept learner: Interpreting
scenes, words, and sentences from natural supervision.

Microsoft. (2020). Turing-nlg: A 17-biliion paramater lan-
guage model by microsoft.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J.
(2013). Distributed representations of words and phrases
and their compositionality.

Monitron, A. (n.d.). Detect abnormal machine behavior and
enable predictive maintenance.

Murty, S., Koh, P. W., & Liang, P. (2020). Expbert: Repre-
sentation engineering with natural language explanations.

Nan, C., Khan, F., & Iqbal, M. T. (2008). Real-time fault
diagnosis using knowledge-based expert system. Process
Safety and Environmental Protection, 86(1), 55-71.

Nandyala, A., Lukens, S., Rathod, S., & Agarwal. (2021,
Jun). Evaluating word representations in a technical lan-
guage processing pipeline. PHM Society European Con-
ference. 6.

Nasa prognostic data repository. (n.d.). https://
ti.arc.nasa.gov/tech/dash/groups/pcoe/
prognostic-data-repository/.

Pan, J., Zi, Y., Chen, J., Zhou, Z., & Wang, B. (2018). Lift-
ingnet: A novel deep learning network with layerwise fea-
ture learning from noisy mechanical data for fault classifi-
cation. IEEE Transactions on Industrial Electronics, 65(6),
4973-4982.

Papyan, V., Romano, Y., Sulam, J., & Elad, M. (2018). The-
oretical foundations of deep learning via sparse represen-
tations: A multilayer sparse model and its connection to
convolutional neural networks. IEEE Signal Processing
Magazine, 35(4), 72-89.

PdM. (2021). Pdm services vibration analysis monitoring.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark,
C., Lee, K., & Zettlemoyer, L. (2018). Deep contextualized
word representations.

ProcessIT. (2018). Processit.eu european roadmap for pro-
cess industrial automation. second version. , 3(3).

Qiao, M., Yan, S., Tang, X., & Xu, C. (2020). Deep convolu-
tional and lstm recurrent neural networks for rolling bear-
ing fault diagnosis under strong noises and variable loads.
IEEE Access, 8, 66257-66269.

Qin, S. (2012). Survey on data-driven industrial process mon-
itoring and diagnosis. Annual Reviews in Control, 36(2),
220-234.

Radford, A. (2018a). Improving language understanding by
generative pre-training..

Radford, A. (2018b). Improving language understanding by
generative pre-training..

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., . . . Sutskever, I. (2021a). Learning transfer-
able visual models from natural language supervision.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., . . . Sutskever, I. (2021b). Learning transfer-
able visual models from natural language supervision.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., &
Sutskever, I. (2019a). Language models are unsupervised
multitask learners..

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., &
Sutskever, I. (2019b). Language models are unsupervised
multitask learners..

20



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Rai, A., & Upadhyay, S. (2016). A review on signal pro-
cessing techniques utilized in the fault diagnosis of rolling
element bearings. Tribology International, 96, 289-306.

Ramanathan, V., Liang, P., & Fei-Fei, L. (2013). Video event
understanding using natural language descriptions. In 2013
ieee international conference on computer vision (p. 905-
912).

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Rad-
ford, A., . . . Sutskever, I. (2021). Zero-shot text-to-image
generation.

Randall, R. B., & Antoni, J. (2011). Rolling element bearing
diagnostics—a tutorial. Mechanical Systems and Signal
Processing, 25(2), 485 - 520.

Razavi, A., van den Oord, A., & Vinyals, O. (2019). Gener-
ating diverse high-fidelity images with vq-vae-2.

Razavi-Far, R., Hallaji, E., Farajzadeh-Zanjani, M., & Saif,
M. (2019). A semi-supervised diagnostic framework based
on the surface estimation of faulty distributions. IEEE
Transactions on Industrial Informatics, 15(3), 1277-1286.

Reimers, N., & Gurevych, I. (2019, November). Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In EMNLP-IJCNLP 2019 (pp. 3982–3992).
Hong Kong, China: Association for Computational Lin-
guistics.

Rekathati, F. (2021). The KBLab blog: Introducing a
Swedish sentence transformer.

Ren, Z., Zhu, Y., Yan, K., Chen, K., Kang, W., Yue, Y., &
Gao, D. (2020). A novel model with the ability of few-shot
learning and quick updating for intelligent fault diagnosis.
Mechanical Systems and Signal Processing, 138.

Sarica, S., & Luo, J. (2021, Aug). Stopwords in technical
language processing. PLOS ONE, 16(8), e0254937.

Sariyildiz, M. B., Perez, J., & Larlus, D. (2020). Learning
visual representations with caption annotations.

Schroff, F., Kalenichenko, D., & Philbin, J. (2015, Jun).
Facenet: A unified embedding for face recognition and
clustering. CVPR 2015.

Schuster, M., & Nakajima, K. (2012). Japanese and korean
voice search. In ICASSP 2012 (p. 5149-5152).

Schwendemann, S., Amjad, Z., & Sikora, A. (2021). Bear-
ing fault diagnosis with intermediate domain based layered
maximum mean discrepancy: A new transfer learning ap-
proach. Engineering Applications of Artificial Intelligence,
105, 104415.

Sennrich, R., Haddow, B., & Birch, A. (2015). Neural ma-
chine translation of rare words with subword units. arXiv
preprint arXiv:1508.07909.

Sexton, T., Brundage, M., Hodkiewicz, M., & Smoker, T.
(2018, 2018-09-24). Benchmarking for keyword extraction
methodologies in maintenance work orders. 2018 Annual

Conference of the Prognostics and Health Management So-
ciety, Philadelphia, PA.

Shao, H., Xia, M., Han, G., Zhang, Y., & Wan, J. (2021).
Intelligent fault diagnosis of rotor-bearing system under
varying working conditions with modified transfer convo-
lutional neural network and thermal images. IEEE Trans-
actions on Industrial Informatics, 17(5), 3488-3496.

Shao, S., McAleer, S., Yan, R., & Baldi, P. (2019). Highly
accurate machine fault diagnosis using deep transfer learn-
ing. IEEE Transactions on Industrial Informatics, 15(4),
2446-2455.

Sharma, V., & Parey, A. (2016). A review of gear fault di-
agnosis using various condition indicators. In (Vol. 144,
p. 253-263).

Sharp, M., Brundage, M., Sexton, T., & Madhusudanan, F.
(2021, 2021-04-22 04:04:00). Discovering critical KPI fac-
tors from natural language in maintenance work orders. ,
3(3).

Shin, J.-H., & Jun, H.-B. (2015). On condition based main-
tenance policy. Journal of Computational Design and En-
gineering, 2(2), 119 - 127.

Simon, J. (n.d.). Amazon monitron, a simple and cost-
effective service enabling predictive maintenance.

SKF. (n.d.). Skf enlight ai.

SKF. (2022). Skf @ptitude observer user manual.

SKF, A., & Kommunikation, S. (2020, March). Skf annual
report 2020. https://investors.skf.com/
sites/default/files/pr/202103032688-1
.pdf.

Smith, W., & Randall, R. (2015). Rolling element bearing
diagnostics using the case western reserve university data:
A benchmark study. Mechanical Systems and Signal Pro-
cessing, 64-65, 100-131.

Stetco, A., Dinmohammadi, F., Zhao, X., Robu, V., Flynn,
D., Barnes, M., . . . Nenadic, G. (2019). Machine learning
methods for wind turbine condition monitoring: A review.
Renewable Energy, 133, 620-635.

Stief, A., Ottewill, J., Baranowski, J., & Orkisz, M. (2019). A
pca and two-stage bayesian sensor fusion approach for di-
agnosing electrical and mechanical faults in induction mo-
tors. IEEE Transactions on Industrial Electronics, 66(12),
9510-9520.

Tanaka, D., Ikami, D., Yamasaki, T., & Aizawa, K. (2018).
Joint optimization framework for learning with noisy la-
bels. In (p. 5552-5560).

Tian, Y., Krishnan, D., & Isola, P. (2020). Contrastive multi-
view coding.

van den Oord, A., Vinyals, O., & Kavukcuoglu, K. (2018).
Neural discrete representation learning.

21



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

van Engelen, J. E., & Hoos, H. H. (2020, Feb 01). A survey
on semi-supervised learning. Machine Learning, 109(2),
373-440.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., . . . Polosukhin, I. (2017). Attention is all
you need.

Wang, A., Pruksachatkun, Y., Nangia, N., Singh, A., Michael,
J., Hill, F., . . . Bowman, S. R. (2020). Superglue: A stick-
ier benchmark for general-purpose language understand-
ing systems.

Wang, D., Tsui, K.-L., & Miao, Q. (2017). Prognostics and
health management: A review of vibration based bearing
and gear health indicators. IEEE Access, 6, 665-676.

Wang, Q., Michau, G., & Fink, O. (2019). Domain adaptive
transfer learning for fault diagnosis. In (p. 279-285).

Wang, Y., Yao, Q., Kwok, J., & Ni, L. M. (2020). Generaliz-
ing from a few examples: A survey on few-shot learning.

Wang, Z., Yu, A. W., Firat, O., & Cao, Y. (2021). Towards
zero-label language learning.

Wang, Z., Yu, J., Yu, A. W., Dai, Z., Tsvetkov, Y., & Cao, Y.
(2021). Simvlm: Simple visual language model pretraining
with weak supervision. arXiv.

Wen, L., Gao, L., & Li, X. (2019). A new deep transfer learn-
ing based on sparse auto-encoder for fault diagnosis. IEEE
Transactions on Systems, Man, and Cybernetics: Systems,
49(1), 136-144.

Wen, L., Li, X., & Gao, L. (2020). A transfer convolutional
neural network for fault diagnosis based on resnet-50. Neu-
ral Computing and Applications, 32(10), 6111-6124.

Williams, E. C., Gopalan, N., Rhee, M., & Tellex, S. (2018).
Learning to parse natural language to grounded reward
functions with weak supervision. In 2018 ieee inter-
national conference on robotics and automation (icra)
(p. 4430-4436).

Wu, B., Xu, C., Dai, X., Wan, A., Zhang, P., Yan, Z., . . .
Vajda, P. (2020). Visual transformers: Token-based image
representation and processing for computer vision.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M.,
Macherey, W., . . . Dean, J. (2016). Google’s neural ma-
chine translation system: Bridging the gap between human
and machine translation. ArXiv, abs/1609.08144.

Xu, G., Liu, M., Jiang, Z., Shen, W., & Huang, C. (2020).
Online fault diagnosis method based on transfer convolu-
tional neural networks. IEEE Transactions on Instrumen-
tation and Measurement, 69(2), 509-520.

Xu, Y., Sun, Y., Liu, X., & Zheng, Y. (2019). A digital-twin-
assisted fault diagnosis using deep transfer learning. IEEE
Access, 7, 19990-19999.

Yan, X., She, D., Xu, Y., & Jia, M. (2021). Deep regu-
larized variational autoencoder for intelligent fault diagno-

sis of rotor bearing system within entire life-cycle process.
Knowledge-Based Systems, 226, 107142.

Yang, B., Lei, Y., Jia, F., & Xing, S. (2019). An intelligent
fault diagnosis approach based on transfer learning from
laboratory bearings to locomotive bearings. Mechanical
Systems and Signal Processing, 122, 692 - 706.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.,
& Le, Q. V. (2020). Xlnet: Generalized autoregressive
pretraining for language understanding.

Yao, L., Huang, R., Hou, L., Lu, G., Niu, M., Xu, H., . . . Xu,
C. (2021). Filip: Fine-grained interactive language-image
pre-training.

Yiakopoulos, C., Gryllias, K., & Antoniadis, I. (2011).
Rolling element bearing fault detection in industrial envi-
ronments based on a k-means clustering approach. Expert
Systems with Applications, 38(3), 2888 - 2911.

Yin, S., Ding, S., Xie, X., & Luo, H. (2014). A review on ba-
sic data-driven approaches for industrial process monitor-
ing. IEEE Transactions on Industrial Electronics, 61(11),
6418-6428.

Yu, K., Fu, Q., Ma, H., Lin, T., & Li, X. (2021, 07). Sim-
ulation data driven weakly supervised adversarial domain
adaptation approach for intelligent cross-machine fault di-
agnosis. Structural Health Monitoring, 20.

Yu, K., Lin, T. R., Ma, H., Li, X., & Li, X. (2021). A
multi-stage semi-supervised learning approach for intelli-
gent fault diagnosis of rolling bearing using data augmen-
tation and metric learning. Mechanical Systems and Signal
Processing, 146, 107043.

Zakir Hossain, M., Sohel, F., Shiratuddin, M., & Laga, H.
(2019). A comprehensive survey of deep learning for im-
age captioning. ACM Computing Surveys, 51(6).

Zeng, D., Liu, K., Chen, Y., & Zhao, J. (2015, September).
Distant supervision for relation extraction via piecewise
convolutional neural networks. In Proceedings of the 2015
conference on empirical methods in natural language pro-
cessing (pp. 1753–1762). Lisbon, Portugal: Association
for Computational Linguistics.

Zhai, X., Oliver, A., Kolesnikov, A., & Beyer, L. (2019). S4l:
Self-supervised semi-supervised learning.

Zhang, A., Li, S., Cui, Y., Yang, W., Dong, R., & Hu, J.
(2019). Limited data rolling bearing fault diagnosis with
few-shot learning. IEEE Access, 7, 110895-110904.

Zhang, A., Wang, H., Li, S., Cui, Y., Liu, Z., Yang, G., &
Hu, J. (2018). Transfer learning with deep recurrent neu-
ral networks for remaining useful life estimation. Applied
Sciences (Switzerland), 8(12).

Zhang, D., Qian, L., Mao, B., Huang, C., Huang, B., & Si,
Y. (2018). A data-driven design for fault detection of wind
turbines using random forests and xgboost. IEEE Access,
6, 21020-21031.

22



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Zhang, H., Zhang, Q., Liu, J., & Guo, H. (2018). Fault
detection and repairing for intelligent connected vehicles
based on dynamic bayesian network model. IEEE Internet
of Things Journal, 5(4), 2431-2440.

Zhang, Q., Lu, J., & Jin, Y. (2021, Feb 01). Artificial intel-
ligence in recommender systems. Complex & Intelligent
Systems, 7(1), 439-457.

Zhang, S., Ye, F., Wang, B., & Habetler, T. G. (2019). Semi-
supervised learning of bearing anomaly detection via deep
variational autoencoders.

Zhang, S., Zhang, S., Wang, B., & Habetler, T. G. (2020).
Deep learning algorithms for bearing fault diagnostics—a
comprehensive review. IEEE Access, 8, 29857-29881.

Zhang, T., Chen, J., Li, F., Zhang, K., Lv, H., He, S., & Xu, E.
(2021). Intelligent fault diagnosis of machines with small
& imbalanced data: A state-of-the-art review and possible
extensions. ISA Transactions.

Zhang, Y., Jiang, H., Miura, Y., Manning, C. D., & Langlotz,
C. P. (2020). Contrastive learning of medical visual repre-
sentations from paired images and text.

Zhang, Z., Wu, Q., Wang, Y., & Chen, F. (2019). High-
quality image captioning with fine-grained and semantic-
guided visual attention. IEEE Transactions on Multimedia,
21(7), 1681-1693.

Zhao, K., Jiang, H., Wu, Z., & Lu, T. (2020). A novel transfer
learning fault diagnosis method based on manifold embed-
ded distribution alignment with a little labeled data. Jour-
nal of Intelligent Manufacturing.

Zhong, S.-S., Fu, S., & Lin, L. (2019). A novel gas turbine
fault diagnosis method based on transfer learning with cnn.
Measurement: Journal of the International Measurement
Confederation, 137, 435-453.

Zhou, D., He, J., Yang, H., & Fan, W. (2018). Sparc: Self-
paced network representation for few-shot rare category
characterization. In (p. 2807-2816).

Zhou, Z.-H. (2017, 08). A brief introduction to weakly su-
pervised learning. National Science Review, 5(1), 44-53.

23


