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ABSTRACT 

Electric Vehicles (EVs) have become a trending topic in 
recent years due to the industry’s race for competitive pricing 
as well as environmental awareness. These concerns have led 
to increased research into the development of both affordable 
and environmentally friendly EV technology. This paper 
aims to review EV-related issues beginning with the 
component level, through the system level, based on 
intelligent maintenance aspects. The paper will also clarify 
the existing gaps in practical applications and highlight the 
potential opportunities related to the current issues in EVs for 
the EV industry moving forward. More specifically, we will 
briefly start with an overview of the fast-growing EV market, 
showing the urgent demand for Prognostics and Health 
Management (PHM) applications in the EV industry. At the 
component level, the issues of the major components such as 
the motor, battery, and charging system in EVs are elaborated, 
and the relevant PHM research of these components is 
surveyed to show the development in the era of EV expansion. 
Moreover, the impact of an increasing number of EVs at the 
system level such as power distribution systems and power 
grid are explored to uncover possible research in the future. 

The combination of existing PHM techniques and robust 
measurement or feature extraction methods can provide 
better solutions to address the motor, battery, or transformer 
issues at the component level. A comprehensive optimization 
and cybersecurity strategy will help to address the issues of 
the whole network at a system level. Four aspects of vision in 
the overall charging network – battery innovation, charging 
optimization, infrastructure evolution, and sustainability –  
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that cover the demands of research in new battery materials, 
innovative charging techniques, new architectures of the 
charging network, and reliable waste treatment mechanisms 
are outlined. A conclusion is reached in this paper by 
summarizing the opportunities for future EV research and 
development.  

1. INTRODUCTION 

The world is facing gradual deterioration from global 
warming due to a great amount of greenhouse gas (GHG) 
emissions by the extensive use of fossil fuels, especially from 
vehicle operation. Besides, the automobile industry suffers a 
setback due to the increasing crude oil price, which boosts the 
demand to develop the alternative to conventional vehicles. 
To address this issue, the implementation of electric vehicles 
(EVs) has attracted huge attention and is trending due to the 
promising characteristics of GHG emission reduction and 
power efficiency in recent years (All-Electric Vehicles, n.d.; 
Alternative Fuels Data Center: Emissions from Hybrid and 
Plug-In Electric Vehicles, n.d.).  Although the EV cost is still 
higher than that of conventional vehicles, it becomes 
relatively competitive with the support from the government 
incentives and the decreasing cost of an EV battery. In fact, 
according to the working survey, the EV initial cost parity is 
coming within 5 to 10 years (Update on Electric Vehicle 
Costs in the United States through 2030 | International 
Council on Clean Transportation, 2021). Owing to the 
abovementioned benefits of EVs, the EV market has 
experienced substantial growth with the increasing demand 
for energy all over the world. Compared with the rapid 
growth of EVs, the PHM of EV and charging systems are 
lagging. Battery PHM has been widely studied. However, 
apart from the battery, the charging-related PHM is still  
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challenging due to the diversity of environment, equipment, 
driving behavior, and other factors. Taking the whole 
charging network into consideration, there are still some 
challenges existing at different levels: 

• At the component level:  

The current PHM technology is more likely to focus on the 
individual important components in the EV and its charging 
networks such as the battery, motor, or transformer in the 
power grid. The PHM technology of the charging system or 
pile is less discussed.   

• At the system level:  

A comprehensive maintenance strategy for a charging 
network that can interact with EVs does not exist. Most 
research of charging networks focuses on several specific 
aspects, including cybersecurity, location optimization of 
charging piles, and power impact on the power grid.  

This paper aims to review the existing practices to address 
the above-mentioned challenges and discuss the PHM 
research and development opportunities in the era of EV 
expansion. This paper outlines the PHM opportunities from 
the following aspects: 
• PHM for EV components like batteries, onboard 

charging devices, and motors 
• EV charging network 

The remainder of this paper is organized as follows: Section 
2 introduces the overall EV charging network and the 
corresponding challenge of crucial components. Section 3 
details the opportunity of EV research and explores the 
application.  Section 4 demonstrates the future vision of EV 
research. The conclusion is given in section 5. 

2. OVERVIEW OF EV CHARGING NETWORK 

The entire EV network can be viewed as the interaction 
between the EV and the charging system. The illustration of 
the charging network is shown in Figure 1. The charging 
network transmits the energy from a power plant through the 
transmission line, connecting the power distribution network 
to the application network. When EV is connected to the 
charging device, the corresponding charging mechanism will 
be activated. The different charging scenarios of EVs can be 
roughly divided into three applications: residential, parking 
lots (commercial areas), and charging stations. All 
applications can be equipped with a smart meter (SM) to 
enable bidirectional communication between EVs and the 
power grid. Hence, EVs can upload information such as state 
of charge (SoC) and state of health (SoH) through the SM, 
which can then allow the operation to be controlled by the 
SM based upon dynamic pricing or electricity loading of the 
power grid. Moreover, the EV user can decide their preferred 
location for charging based on the information given through 
the vehicle's communication system and entire network. 

Table 1. Charging standards and application 
Charge Station 
/ Pile 

Description Equipment Supplier (EV Charging 
Statistics – EVAdoption, n.d.) 

 Level 1 AC Voltage: 120 V (Deb et al., 2017) 
Charging Period: 4 – 13 hours (Brenna et al., 2020; Deb et al., 2017) 
Usage: Residential Area 
Advantages 

• wired (higher charging efficiency) (Sun et al., 2017) 
• charging can occur in off-peak times (overnight) (Sun et al., 2017) 
• bidirectional charging (Ghavami & Singh, 2017) 

Limitations: 
• home appliance malfunction can reduce available charge voltage (Sun et al., 2017) 

Opconnect 
ChargePoint 
Greenlots 
Unaffiliated 

 Level 2 AC Voltage: 240 V (Deb et al., 2017) 
Charging Period: 1 – 4 hours (Brenna et al., 2020; Deb et al., 2017; Sun et al., 2017) 
Usage: Parking Lot 
Advantages 

• wired (higher charging efficiency) (Sun et al., 2017) 
• charging can occur while the car is parked for shorter periods to replenish battery 

capacity (Sun et al., 2017) 
• bidirectional charging (Ghavami & Singh, 2017) 

Limitations 
• limited availability for many users (Sun et al., 2017) 

ChargePoint 
Tesla 
Blink Network 
SemaConnect Network 
EVgo 
Greenlots 
Opconnect 
AeroVironment Network 
EVConnect 
 

 Level 1 DC Voltage: 208 V (Deb et al., 2017) 
Charging Period: 20 minutes for 50% (Sanguesa et al., 2021), 30 minutes for 80% (Brenna et al., 
2020; Sanguesa et al., 2021; Sun et al., 2017), generally 0.5-1.5 hours (Deb et al., 2017) 
Usage: Charging Stations 
Advantages 

• wired (higher charging efficiency) (Sun et al., 2017) 
• quickest charge to extend range/act in place of fueling station for standard vehicles 

(Sun et al., 2017) 
Limitations 

• high stress on power supply system, susceptible to outages (Sun et al., 2017) 

ChargePoint 
Tesla 
Blink Network 
Network 
EVgo 
Greenlots 
Opconnect 
AeroVironment Network 
EVConnect 
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Figure 1. The structure of an EV charging network 

Currently, three major charging standards, SAE-J1772, GB/T 
20234, and IEC-62196 have been developed for different 
regions (Sanguesa et al., 2021). More specifically, SAE- 

 J1772 has been adopted by North America and the Pacific 
zone. However, IEC-62196 is used in Europe while the GB/T  

 20234 standard is developed and used in China. The 
specifications, the corresponding applications, and 
equipment suppliers of these standards are summarized in 
Table 1. Based on the abovementioned applications, the 
charging systems can be divided into three levels. Level 1 AC 
refers to residential usage. The longest charging time and 
lower charging voltage (120V) are suitable for household and 
off-peak period charging. The main limitation of this level is 
that a home appliance malfunction can reduce available 
charge voltage. At level 2 AC, the faster-charging speed and 
higher charging voltage (240V) are used in commercial areas 
such as parking lots. The main limitation is that it is only 
available to a limited number of users. At level 1 DC, the 
fastest charging speed acts in place of a fueling station for 
conventional vehicles. At this level, it allows for charging the 
battery to a certain percentage in a short time. However, the 
simultaneous charging of mass EVs could lead to high stress 
on the load of the power grid. 

In the charging network, the power grid and transformer are 
the major components. The reliability of power delivered to 
the customer has received attention in recent years, especially 
considering the impact on customer satisfaction. The current 
major issues and existing solutions from the transformer and 
power distribution have been summarized in Table 2. The 
power transformer is a passive component used for 
converting the AC voltage or the circuit isolation with 
separate coils. The high amount of energy required from 
charging EVs in bulk can put the transformer at risk of 
overloading. Moreover, the uncoordinated charging 
accelerates the component degradation of the transformer due 
to aging and overheating. On the other hand, the power grid 
also has several issues that need to be addressed, such as a 
mechanical fault or unstable voltage. All these issues 
combine to make the power quality worse and more unstable. 

The battery is one of the most important components in the 
EV. The overall performance of the EV battery has a 
significant impact on both the EV itself and also the 
architecture of the charging networks. The commercial EV 
battery in the market is shown in Table 3. With the different 
combinations of battery chemistry, the characteristics of EV 
batteries have a significant gap between manufacturers. 
Based on Table 3, several observations can be made, 
including: 

1. From a performance point of view, the overall 
performance of C-NCA or Si/Six-C-NCA produced by 
Panasonic and adopted by Tesla significantly 
outperforms other types of commercial batteries. 
However, the increasing demand for Cobalt makes the 
battery cost difficult to reduce. Moreover, the safety 
issues associated with this kind of battery limit the 
application. Due to these safety issues, EV 
manufacturers tend to choose other types of commercial 
batteries (such as LFP), or instead, try to develop new 
types of batteries (such as a semi-solid battery). 

Table 2. Major Component of Power Distribution System 

 Major Issues Existing Solutions 

Power Distribution 
Equipment 
(Transformers) 

• Limited transformer capacity; EVs can more than double peak 
residential demand (Shuvo & Yilmaz, 2020; Wei et al., 2021) 
Aging and overheating, commonly due to the breakdown of insulating 
oil (Shuvo & Yilmaz, 2020), especially for uncoordinated charging 
(Deb et al., 2017) 

• As transformers are replaced for 
regular aging, they will be more 
equipped in the future to handle the 
loads (Shuvo & Yilmaz, 2020) 

• Predictive maintenance methods 
proposed to mitigate losses due to 
incapable transformers (Shuvo & 
Yilmaz, 2020) 

• Supplement the power grid with the 
EVs (Deb et al., 2017) 

Power Grid Stability • Mechanical faults; thermal runaway (insulated soil), wear and tear – 
underground cables (Labrador Rivas & Abrão, 2020)  

• Natural causes (thunderstorms, icing) and accidents – overhead lines 
(Labrador Rivas & Abrão, 2020) 

• The limited voltage or voltage surge (Wei et al., 2021) 
• Power outage (Wei et al., 2021) 

• Protective devices isolate fault from 
the rest of the system (Labrador Rivas 
& Abrão, 2020) 

• Supplement the power grid with the 
EVs (Deb et al., 2017) 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

4 

2. Most selected chemistry material in the anode is 
synthetic or artificial graphite, except lithium titanate 
oxide (LTO) and Si-based material. Due to the low 
voltage and high-power capacity, the LTO-based cell is 
more suitable for electric buses. A Si-based cell is a 
carbon anode mixed with a small amount of silicon that 
can improve the cell energy. 

3. As the capacity of the battery increases, the charging 
time of the battery will become longer. It may have a bad 
influence on user’s purchase intention. Also, the 
corresponding fast-charging standard should be 
developed.  

4. The variety of EV batteries shows that there is still no 
optimal solution for the current market.  

3. PHM OPPORTUNITY 

3.1. EV’s Major Components 

 
Figure 2. The major components of an EV system 

To give a better idea of the crucial components in the EV 
system, a typical electric vehicle (EV) system is shown in  
Figure 2. There are two major subsystems: Energy Source 
Subsystem (ESS) and Electric Propulsion Subsystem (EPS). 
The critical components of the ESS include a charge 
controller, battery bank, and battery management system. 
The major components of EPS are comprised of a vehicle 
controller, power converter, and motor. A charging system is 
also considered because the operational activity of a PEV is 
impacted by the reliability of a charge station. 

However, the importance of these components is not clear or 
not identified. From the reliability aspect, these components 
are different. A comprehensive study of the reliability, 
availability, and maintainability (RAM) of the vehicle 
framework has been conducted to assist in distinguishing the 
failure-prone components in the design (Talukdar & Deka, 
2021). The RAM of a PEV system mainly fits Markov 
mathematical model to incorporate the characteristics of all 
components to estimate the UP (Operable) and DOWN 
(Failed) states. This case study (Talukdar & Deka, 2021), 
provides the reliability data for PEV that shows the failure 
rate of different components per year. On the other hand, 
technical reports (Fries et al., n.d.; Update on Electric Vehicle 
Costs in the United States through 2030 | International 
Council on Clean Transportation, 2021) use the Chevy Bolt 
EV as an example to predict the costs of common EV 
components in 2025, as shown in Table 4. Moreover, the cost 
of the charging system in Table 4 comes from the average 
cost both in California and outside of California based on one 
charger per site for the specification of a Level 2 public and 
workplace charger, which can be found in the literature 
(Nicholas, n.d.). Combining the abovementioned research,  

Table 3. Overview of Lithium-ion Batteries for EVs 
Type  

(Chemistry 
Combination) 

Cell Characteristics Battery size  
and range 

Application 

Anode Cathode Capacity 
 (Ah) 

Voltage 
 (V) 

Specific 
Energy 
(Wh/kg) 

Energy  
Density  
(Wh/l)  

Energy 
(kWh) 

Range 
(km) 

Manufacture Model 

C LMO- 
NMC 

16~ 
63 

3.65~ 
3.7 

109~172 218~ 
312 

16~ 
35.5 

140 • Li-Energy Japan 
• Samsung SDI 
• LG Chem 

• Mitsubishi i-MIEV (2008) 
• Fiat 500e (2013) 
• Ford Focus EV (2012) 
• Renault Zoe (2012) 

LTO NMC 20 2.3 89 200 20 130 • Toshiba • Honda Fit EV (2013) 
C LMO- 

NCA- 
NMC 

37- 
94 

3.7 122~ 
189 

228~ 
357 

22~ 
36 

130~ 
300 

• Samsung SDI • BMW i3 (2014, 2017) 
• VW eGolf (2016) 

C NMC 25- 
59 

3.65~ 
3.7 

152~ 
241 

215~ 
466 

17~ 
60 

145~ 
400 

• Panasonic/Sanyo 
• Li-Tec 
• SK Innovation 
• LG Chem 

• VW e-Golf (2015) 
• Smart Fortwo (2013) 
• Kia Soul EV (2014) 
• Chevrolet Bolt (2016) 
• Renault Zoe (2017) 

C LMO- 
NCA 

33- 
40 

3.75 155~ 
167 

309~ 
375 

24~ 
30 

135~ 
172 

• AESC • Nissan Leaf (2010, 2015) 

C LFP 20 3.3 131 247 21 130 • A123 • Chevrolet Spark EV (2012) 
C NCA 3.2 3.6 236 673 60~ 

100 
330~ 
500 

• Panasonic • Tesla S (2012) 

Si/ 
SiOx-C 

NCA 3.4~ 
4.75 

3.6 236~ 
260 

673- 
683 

60~ 
100 

330~ 
630 

• Panasonic • Tesla 3 (2017) 
• Tesla X (2015) 
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Figure 3 shows a four-quadrant chart of the number of 
failures per vehicle per year and costs for major EV 
components based on the values of Table 4. The dotted lines 
used to cut the entire space into four different quadrants are 
set at USD1000 to mirror the anticipated annual EV 
maintenance costs listed in (Dodds, 2020) and 10 failures per 
vehicle per year. Both the charging system in the first 
quadrant and the motor and battery bank in the fourth 
quadrant will be discussed in the following sections.  

 
Figure 3. Four-quadrant chart of major components in EV 

3.1.1. Motor 

EV motors are mainly divided into five types: DC motors 
(DC), Permanent Magnet Brushless DC motors (PM 
BLDCs), Induction motors (IM), Permanent Magnet motors 
(PM), and Switched Reluctance motors (SRM). As an 
example in commercial EVs, conventional IMs are adopted 
by the Tesla Model S and Model X. The Tesla Model 3 adopts 
an SRM with internal permanent magnets (IPM-SRM). The 
Tesla Model 3 also developed dual-motor versions–an IM in 
the front and an IPM-SRM in the back. Permanent magnet 
synchronous motors (PMSM) are used by GM Chevrolet 
Bolt, Toyota Prius, Nissan Leaf, and BMW i3. Researchers  
survey that IMs are most commonly used, especially in 
India’s EV market (Gundewar & Kane, 2022). The IM is 
easily exposed to various kinds of faults due to its continuous 

operation and variable load. Thus, condition monitoring of an 
IM becomes important for avoiding severe failure. There are 
two types of faults in the IM: mechanical faults and electrical 
faults. Mechanical faults include bearing, eccentric rotor, and 
unbalanced rotor that can be measured with vibration 
monitoring, while electrical faults include rotor bar and stator 
winding that can be measured with motor current signature 
analysis. The vibration and current sensors all extract the 
signals in the time domain. However, the signals are more 
sensitive to noise interference that may affect the 
effectiveness, so condition monitoring will be adopted for on-
board diagnosis using the EV’s startup or idle condition 
which can measure useful statistical features such as mean, 
root mean square, standard deviation, kurtosis, skewness, and 
higher statistical moments…etc. These statistical features can 
be effectively compared with the normal features to 
distinguish faults. Moreover, these features can be utilized in 
the artificial intelligence algorithms to diagnose the IM faults, 
as shown in Table 5.  

3.1.2. Battery Pack 

 
Figure 4. The architecture of the monitoring system in EV 

 
As battery packs account for the most cost, effectively 
evaluating their reliability is an extremely important topic.  

Table 4. Chevy Bolt EV’s major components  
Component Number of failures   

(per vehicle per year) 
Cost Prediction 

for 2025  
Function 

Charge controller 2.70 $205 Charges the battery pack to convert AC to DC 
Battery bank 2.72 $8000  Entire battery pack 
Battery management system 5.93 $200 Keeps the battery’s operating temperature within an optimal range 
Power converter 4.58 $523 Converts DC to 3-phase AC for the e-motor  
Motor 6.66 $1080                       150kW permanent-magnet e-motor 
Vehicle controller 5.57 $46 Communicates between the vehicle and charger 
Charging system 21.9 $1174 Level 2 on one charger for public and workplace 

Table 5. Condition monitoring for the Induction Motor  
Faults  Types Monitoring technique Fault diagnosis 

Mechanical faults 

Bearing 

Vibration monitoring 

Maximum correlated kurtosis deconvolution and improved empirical 
wavelet transform (Z. Li et al., 2019) 

Eccentric rotor Artificial neural networks by statistical features (Gupta & Singh, 2019) 

Unbalanced rotor Support vector machines (Pinheiro et al., 2019) 

Electrical faults 
Rotor bar 

Motor current signature 
analysis 

Modulation signal bispectrum analysis (Gu et al., 2015) 

Stator winding 
Spectral analysis of instantaneous square stator current (Pires et al., 
2015) 
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An effective Battery Management System (BMS) in EVs 
plays an important role. Not only does the BMS measure the 
voltage, current, and temperature signals of the battery pack 
to ensure vehicle safety, but it also estimates the state of 
battery health by using modeling methods designed to give 
feedback on fault diagnosis and the evaluation of battery life.  

Figure 4 shows the schematic diagram of a BMS. Battery 
prognosis is normally performed in a controlled environment 
under optimal settings. However, lithium-ion batteries in EVs 
are highly sensitive to changes in operating conditions, 
especially the temperature, terminal voltage, and charge-
discharge rates among others. Varying operation conditions  

will affect the performance and life of batteries and lead to 
potential failures. The estimation of  SoC and SoH of 
batteries can be an indicator of battery health and how to keep 
the battery pack safe and reliable (Hannan et al., 2017; 
Sarmah et al., 2019). Determining the health of the battery 
pack can be decided by monitoring two key performance 
characteristics: the battery’s impedance parameters and 
capacity parameters. Since these characteristics are a function 
of the internal reactions of a battery, they become difficult to  

monitor. Therefore, there are three common methods of 
monitoring modes: physics-based, data-driven, and adaptive 
modeling, as shown in Table 6.  

Among the models, electrochemical and equivalent circuit 
methods fulfill performance well but cannot be 
straightforwardly applied to different batteries. At the same 
time, although data-driven models are effectively adjustable 
to the different types of batteries, obtaining the compelling 
and precise technique to estimate SoC and SoH is still a 
difficult task. To address this practical issue, the 
nondestructive test (NDT) methods, such as those used by X-
ray, ultrasound, or infrared, to investigate SoC and SoH can 
be regarded as a solution. For example, reversible and 

irreversible thickness changes of lithium-ion pouch cells can 
be measured by laser scanning to estimate the aging 
degradation (Sturm et al., 2017). Therefore, the combination 
of NDT methods with supervised learning algorithms can 
construct a model that becomes a reliable battery 
management system. Apart from the research topic on the 
combination of NDT methods and current PHM techniques, 
the SoC and SoH prediction on a battery due to real driving 
cycles is another research direction (Cui et al., 2022; Hong et 
al., 2021). There are some new public EV battery datasets 
related to the practical driving pattern that are promising for 
future studies (Pozzato et al., 2022; Steinstraeter, 2020).  

3.1.3. Charging System 

With the rapid promotion of the electric vehicle market, the 
maintenance of the charging system is also a critical issue. 
One of the main issues is that most charging systems are 
installed outdoors and are therefore sensitive to 
environmental factors (e.g., rain and dew) that reduce the 
reliability of the charging components. Another central 
problem involved with charging an electric vehicle is the 
connector. The J1772 standard (Sanguesa et al., 2021) of the 
connectors was proposed by the Japanese and American 
markets, while European EVs utilize connectors based on the 
IEC-62196. Although these business markets are separate, it 
can still cause inconvenience for users who need to purchase 
adapters, subsequently expanding the expense and safety 
risks. Another important issue is to develop feasible fault 
diagnosis methods for the charging system. Since the 
charging system is connected by a high-power electric 
infrastructure that also needs to give stable electric power 
output to the vehicle, fault diagnosis methods become 
critically important. For example, researchers investigated 8 
kinds of fault states: communication problems between 
vehicles and charging systems, insulation problems, output 

Table 6. Battery prognostics technologies 
Methods Models Algorithms 

Physics-based 
models 

Thevenin model Combine a series of RC circuits to provide the availability of predicting response at different timespan (He 
et al., 2012) 

Runtime-based 
electrical model 

Design sophisticated circuits to model battery runtime and DC voltage response with a constant discharge 
current (Using PSpice to Simulate the Discharge Behavior of Common Batteries | PSpice, n.d.) 

Combined electric 
model 

Acquire the dynamic characteristics of a battery to predict runtime and I-V performance (Chen & Rincon-
Mora, 2006)  
Use non-linear squares methods to achieve online prediction of RUL (Downey et al., 2019) 

Data-driven models 

Machine learning 
model 

Support vector machines algorithm considers temperature change, SoC, and C-rate to estimate battery SoH 
(Nuhic et al., 2013)  
Use SVM to estimate the SoC of a LiFePO4 battery cell (Álvarez Antón et al., 2013)  

Deep learning 
model 

 A deep neural network algorithm predicts the SoH and RUL (Khumprom & Yodo, 2019) 

Investigate FNN, CNN, and LSTM algorithms to explain the battery characteristics (Kaur et al., 2021)  

Adaptive models 

Sliding mode 
observer 

The fast-paced and the slow-paced time-varying observers estimate parameters of SoC, SoH, terminal 
voltage, and polarization effects (I.-S. Kim, 2010) 
Propose a super-twisting sliding mode observer to estimate SoC (Huangfu et al., 2018) 

Kalman filter 
A neural network combines Kalman filter for short and long-term SoC estimation (Bai et al., 2014) 

Estimate the battery model error: open circuit voltage drift and voltage sensor drift (Wang & Mu, 2019) 
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overvoltage of charging module, over-temperature, input 
phase loss, over-current, over-voltage of DC bus output, and 
contractor of DC bus output (Gao & Lin, 2021). Operating 
data can be collected during the operation of the charging 
system, and data-driven methods (e.g., Deep Learning 
algorithms) can effectively perform fault diagnosis of the 
charging system by analyzing operating data and extracting 
salient features. 

3.2. Charging Networks 

3.2.1. Cybersecurity 

For the EV charging network, cybersecurity is one of the 
most important factors (Acharya et al., 2020; Sanghvi & 
Markel, 2021). Cybersecurity concerns with the charging 
network include data acquisition and transfer, control of 
devices, and network security challenges like attacks, 
intrusion, and so on. The cyberattack is the most direct 
method to examine the vulnerability of the charging network 
and can be categorized via the Spoofing, Tampering, 
Repudiation, Information Disclosure, DoS, and Elevation of 
Privilege (STRIDE) threat model (Acharya et al., 2020; 
kexugit, n.d.). Efficient detection and diagnosis techniques in 
the existing PHM technology would help to fix these issues 
in the charging network (Aiyanyo et al., 2020; Evans et al., 
2013). Besides, a co-simulation platform is developed for 
analyzing the cybersecurity vulnerability of charging 
networks (Sanghvi & Markel, 2021). With the aid of this 
platform, more maintenance and defensive strategies can be 
studied in the future. 

3.2.2. Transformer fault and degradation 

The power distribution system is a subsystem of the entire 
charging network and is composed of basic power 
components such as transformers, transmission lines, and 
loads. Among these components, the transformer is a 
relatively sophisticated piece of equipment needed to 
guarantee the power quality of usage. The common 
transformer fault can be mainly categorized into several 
factors including insulation, winding, bushing, and tap 
changer. These factors account for more than 85% of the 
failure rate (Murugan & Ramasamy, 2019). These faults and 
the corresponding solutions can be found in the literature (de 
Faria et al., 2015). Moreover, at a system level, the fault 
location and cause are also important. Consequently, efficient 
PHM methods are crucial for the safety and secure operation 
of the system.  

3.2.3. EV impact on power distribution systems 

Although current EV charging research mainly focuses on 
smart charging methods used to optimize the start time and 
charging rate, the demand for the simultaneous and higher 
power output is expected to increase as the deployment of 
EVs continues to grow and adds more stress on various 

distribution systems due to uncoordinated charging 
(Akhavan-Rezai et al., 2012; Gilleran et al., 2021). The main 
impacts are overload on transformers, unstable voltage 
profile, and unbalanced load. Some optimization strategies 
have been covered by considering uncoordinated charging 
and coordinated charging (Akhavan-Rezai et al., 2012). 

3.2.4. Fault location detection and diagnosis of power 
distribution systems 

There are two types of faults encountered in the distribution 
systems: series and shunt faults (Gururajapathy et al., 2017). 
Series faults refer to the situation of unbalanced impedance 
existing on a line. Such faults can be judged by the frequency, 
rising voltage, and reduced current. On the other hand, a 
shunt fault is the general issue in the power distribution 
system, which can be found by an increase in current and a 
drop in voltage and frequency. In conventional fault location 
techniques, three fault detection techniques, traveling wave, 
impedance-based methods, and synchronized voltage and 
current measurement methods (Ajenikoko & Sangotola, 
2016; Analysis of Faulted Power Systems | IEEE EBooks | 
IEEE Xplore, n.d.; Brahma, 2011; Lopes et al., 2015), are 
found in the literature. Due to the complexity of power 
systems and various uncertainty factors not considered in the 
conventional methods, data-driven methods are proposed by 
considering more information from feeder measurement, 
substations, and switch status. Some AI-based methods like 
artificial neural network, support vector machine, fuzzy logic, 
genetic algorithms, and pattern match approaches can be 
found in the literature (Aslan, 2012; Awalin et al., 2012; Y. 
Li et al., 2012; Salat & Osowski, 2004; Swetapadma & 
Yadav, 2015). 

3.3. Conceptual Application  

With all mentioned research topics in the previous sections, 
we propose a conceptual application based on the federated 
learning architecture shown in Figure 5. According to 
federated learning (McMahan et al., 2016), global models can 
be regarded as the server side, and electric vehicles and 
charging stations belong to the node side. On the node side, 
the charging station can collect the data, such as charging 
price, battery specification, charging status, charging location, 
and charging frequency, and upload it to global models for 
model training. However, if the electric vehicle itself wants 
to directly transmit data, such as users’ driving patterns and 
battery estimation, to the server side, it will involve the issue 
of personal data privacy. The feasible way to circumvent this 
is to transmit the data of the electric vehicle to the driver’s 
own mobile platform, which can train the model with the data. 
After the training model is completed, only the parameters of 
the model transmit to the global models on the server side 
(Melis et al., 2018). Global models adjust the model and pass 
updated parameters back to the mobile platform for model 
optimization. At the same time, there is an action of 
encrypting data in the process of data transmission of both 
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mobile platforms and charging stations. This mechanism 
prevents anonymous attacks (Shafahi et al., 2018) from 
intercepting the data. When global models train a usable 
model, there will be many practical applications. For example, 
the charging price and the current idle status of the charging 
station are updated in real-time, so that users will get instant 
feedback. Users can also adjust driving behavior and know 
the health status of the EV battery according to the feedback 
from the global models. Moreover, the driver’s route and the 
current battery status are also very important indicators. The 
local models can provide the driver with options to optimally 
reach the destination based on the remaining useful life of the 
battery. On the other side, when a new battery needs to be 
evaluated for consumption, it can be verified based on the 
previous training model of the same brand.  

 
Figure 5. The architecture of conceptual application 

4. FUTURE VISION 

Although we have seen significant advancement and 
evolution of EV technology in the last decades, some aspects 
of the current technology still require further exploration and 
research to identify new solutions. Here we propose four 
aspects toward the different critical components in the EV 
charging network as shown in Figure 6. 

4.1. Battery Innovation 

The battery is considered the most important component of 
EVs and also accounts for at least one-third of the total cost 
(Deng et al., 2020) associated with EVs. The battery has a 
direct impact on the overall autonomy of EVs. Due to its 
importance, the evolution of new batteries can further 
accelerate the deployment of EVs throughout the world. 

Below are several new battery evolutions that are currently 
being researched: 
a. Magnesium-ion: This kind of battery replaces lithium 

with magnesium. It is expected that the magnesium-ion 
battery has a theoretical 3.2 kWh/L energy density and 
1.7 kWh/kg specific energy (Zhirong & Maximilian, 
2017). 

b. Lithium-metal: In lithium-metal batteries, graphite in the 
anode is replaced by a fine lithium-metal. This type of 
battery enables it to store double the power and 
withstand more than 6000 charging cycles compared to 
the current battery (Qian et al., 2015).  

c. Metal-air: This battery relies on the reaction between 
oxygen and metal like lithium-air, aluminum-air, and 
sodium-air. Lithium-air is firstly proposed in the 1970s 
and has received more attention after recent 
improvements. The outstanding theoretical specific 
energy can reach 12 kWh/kg and the practical specific 
energy is 1.7 kWh/kg (Girishkumar et al., 2010). The 
advantages of aluminum-air batteries are higher energy 
densities of 6.2 kWh/L, and the recycling technology of 
related materials is more mature (Gelman et al., 2014; 
Mori, 2020). Sodium-air battery uses sodium, which is 
an abundant resource, as the cathode of the battery. The 
energy density of sodium-air reaches 4.5 kWh/L 
(Adelhelm et al., 2015).  

d. Graphene: Offering high thermal conductivity and an 
ultra-light design, graphene-based options are seen as 
one of the potential EV batteries of the future. They 
enable fast or ultra-fast charging without significant 
power loss. While this type of battery is still at the early 
stage of development, an existing prototype can reach 1 
kWh/kg (H. Kim et al., 2015). 

e. Semi-solid lithium: Due to the inherently poor utilization 
of active material in traditional lithium batteries, a new 
electrode design is proposed (Deruta et al., 2011). A new 
method called semi-solid flow cell (SSFC) accounts for 
10 times the charge storage density of the conventional 
flow-battery solution.  

Such new technologies can increase the autonomy of EVs as 
well as reduce the charging time and range anxiety, further 
attracting new customers and heightening the popularity of 
EVs. However, these technologies still lack comprehensive 
validation and approval for commercialization. Furthermore, 
the maintenance strategy for these innovative batteries 
requires more investigation. Although the distinct chemical 
properties and performances of these proposed kinds of 
batteries may enhance the function of the EV, it is unknown 

Figure 6. Four aspects of future vision 
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whether the existing PHM technologies are applicable or if 
entirely new methods will need to be developed.   

4.2. Charging Optimization 

The charging process is a crucial factor for customers 
selecting EVs. The existing connector type is not universal 
due to the different charging standards and markets as we 
discussed in the previous sections. Even though adapters can 
be used, inconvenience, cost, and safety issues are expected. 
Also, due to the limitation of wired charging in the 
application area, wireless power transfer (WPT) has gained 
more attention in recent years (Bi et al., 2016; Panchal et al., 
2018). WPT is mainly divided into two categories: capacitive 
power transfer (CPT) and inductive power transfer (IPT). 
Noteworthily, IPT is the most common application since it is 
suitable for different gap distances and charging standards 
while CPT is only applicable for relatively small gap 
distances. These wireless methods provide more flexible 
options for charging. However, they also present new issues 
like electromagnetic safety or magnetic field emission due to 
misalignment. The combination of WPT and existing 
charging technology to optimize the charging process as well 
as prevent reducing battery capacity from fast charging 
would be a key research topic in the future.  

4.3. Infrastructure Evolution 

Communication between EVs and charging infrastructures is 
also important. Currently, the number of charging points is 
still scarce in comparison to the traditional gas station (How 
Much Charging Infrastructure Do Electric Vehicles Need?, 
n.d.), which makes customers hesitant to buy EVs. Taking the 
charging price and charging demand into consideration, 
artificial intelligence algorithms can be applied to optimize 
the deployment location of the charging point and set up a 
dynamic charge price based on the loading of the power grid 
and period (Vazifeh et al., 2019; Zhang et al., 2015). The 
utilization of WPT makes real-time communication with 
charging infrastructure possible. The conventional wireless 
network and bidirectional WPT (BD-WPT) (Tang et al., 
2018) can help users form the network between vehicles and 
power grids (V2G), finally leading to a complete vehicle-to-
everything (V2X) service. The data from the vehicle and 
node on the power grid allows the realization of AI-based 
algorithms to be used to determine the optimization route of 
charging points that consider the autonomy of vehicles, price, 
power demand, charging facility, and completion time.  

4.4. Sustainability  

EV has been viewed as the representation of sustainable and 
eco-friendly transportation because of the zero-emission of 
greenhouse gas during the operation. However, the idea of 
sustainability of EVs is still questionable if we consider the 
manufacturing process, usage during the lifetime, and the 
waste after usage (Beaudet et al., 2020; Romare & Dahllöf, 

n.d.). Considering the manufacturing process, twice the 
energy can be required to produce an EV compared to a 
traditional vehicle, especially during the battery fabrication 
process (Romare & Dahllöf, n.d.). While EVs do not emit 
greenhouse gas during operation, the required electricity 
needed to operate the vehicle mostly comes from traditional 
fossil-fuel power plants which reduce the expected benefit to 
the environment. Therefore, off-grid charging from a 
renewable power plant or power storage station might be an 
alternative strategy (Falk et al., 2020). Finally, regarding the 
end life of used batteries, the increasing amount of EV battery 
waste will become a hazard to the environment without 
appropriate treatment (Beaudet et al., 2020; Harper et al., 
2019). To address this recycling issue, three main methods of 
pyrometallurgy, hydrometallurgy, and direct recycling 
respectively are summarized in Figure 7. 
Pyrometallurgy is a high-temperature method to reduce the 
component metal oxides to an alloy of Co, Cu, Fe, and Ni, 
leading to the production of alloy fraction, slag, and gases 
while hydrometallurgy uses aqueous solutions to extract the 
desired metals. Direct recycling can remove the cathode or 
anode from the electrode to recondition and re-use the battery. 
Apart from the recycling method of battery waste, PHM 
technology can also help improve the sustainability of the 
battery. With the accurate estimation of SoC and SoH in the 
battery, the user can prevent the full discharge, further 
extending the battery lifecycle and allowing appropriate 
actions like battery maintenance scheduling or component 
replacement to occur.  
 

 
Figure 7. Main recycling methods of used battery 

5. CONCLUSION 

The various aspects of critical components found in the EV 
charging network and the challenges and opportunities in 
these networks are discussed in this paper. The overview of 
the charging network is illustrated to describe the energy flow 
from the power plant to the end-user and to explain the 
suitable application based on the different charging standards. 
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This paper briefly reviews the existing challenges from 
critical components such as the motor and battery to the 
whole service network. The corresponding proposed 
solutions and opportunities are also investigated: 

At the component level: 

Motor:  

• Combination of robust feature extraction methods during 
idle or startup conditions and the PHM techniques 

Battery:  

• Combination of NDT methods and machine learning 
techniques to improve the accuracy of the battery model 
(applicable for different kinds of EV batteries) 

• Research of SoC and SoH models based on public 
datasets with practical driving patterns and informative 
environmental conditions 

Charging system: 

• Accurate PHM model of the charging system during 
operation 

At the system level: 

• Cybersecurity and operation safety of charging network 

• Research of optimization of high-impact elements on the 
whole charging network 

From these surveys, four aspects of the future vision in EV 
charging networks are proposed based on the intelligent 
maintenance perspective: 

Battery innovation:  

• The comprehensive PHM research of new EV batteries 

Charging optimization: 

• Optimization strategy in the charging process with WPT 
and existing technologies 

Infrastructure evolution: 

• Realization of bidirectional communication between 
EVs and charging network 

Sustainability: 

• Combination of existing PHM technology and 
innovative battery waste recycling mechanisms for 
battery maintenance scheduling or component 
replacement  

Thus, it is concluded that these suggestions could contribute 
to the innovation and development of EV networks and 
accelerate the deployment of EVs throughout the world. 
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