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ABSTRACT

This paper presents an air-path health management strategy
with the ability to estimate the mass flows and mitigate (adapt
to) the air-path faults in a heavy-duty diesel combustion en-
gine, equipped with a twin-scroll turbine. Based on the en-
gine component models applied in the quasi-steady-state mass-
balancing approach, two main engine mass-flow quantities
are estimated: the Air mass flow (AMF) and the Exhaust gas
recirculation (EGR) mass flow. The health management sys-
tem is monitoring for three kinds of air-path faults that can oc-
cur through the engine operation. These are related to either
the after-treatment system, EGR valve, or to the turbine bal-
ance valve hardware. For each fault, a fault-mitigation strat-
egy is proposed. This is based on in-observer-reconfigurable
mass-balance equations with an excluded faulty component
model utilizing an exhaust pressure sensor. The observer uses
the iterated Kalman filter (IKF) as the core fault mitigating
solver for the quasi-steady-state mass-balancing problem. It
is further demonstrated how the individual faults are robustly
isolated using the Sequential Probability Ratio Test (SPRT).
The strategy and results are validated using the test cycle driv-
ing data.

1. INTRODUCTION

Sustainable mobility requires a diverse portfolio of propul-
sion systems to ensure the right technologies for the right ap-
plications, which besides other emerging technologies (fuel
cells, battery-electric, and hybrid-driven) spans over the inter-
nal combustion (IC) engine innovations (Reitz et al., 2020).
IC engines have developed into complex systems with an in-
creasing number of components, design alternatives, and im-
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proved control, monitoring and troubleshooting functional-
ities (Isermann, 2017). An engine operation with fault di-
agnosis, including fault detection and isolation (FDI) algo-
rithms (Chen & Patton, 1999), has become an important part
of the engine control software. The engine mass-flow ob-
server technology enhances accurate emission controls and
power demands (Dahl et al., 2018; Wassén et al., 2019), typi-
cally accounting for the sensor faults and model uncertainties
(Polóni et al., 2014; Gutiérrez León et al., 2018). The fault
isolation methods of air and fuel paths, due to the aging of
engine components, have been studied in Nyberg & Stutte
(2004) and Schilling et al. (2008). Nonlinear controllers at-
tenuating air-path faults are proposed by Ahmed Ali et al.
(2015) and Zhang et al. (2021), where the information redun-
dancy approach for fault-tolerant air-fuel ratio controller is
proposed by Amin & ul Hasan (2019). The above mass-flow
estimation-related publications are focusing either on mass-
flow estimation under nominal system conditions or fault iso-
lation methods. The mass-flow observer publications focus-
ing on mitigation of the air-path faults are practically missing
in the literature.

The main motivation for this paper is to demonstrate a novel
systematic method that isolates and at the same time miti-
gates and accounts for aftertreatment, EGR, or turbine bal-
ance valve faults inside the mass-flow observer, in a self-
adaptive and self-restructuring fashion. The observer concep-
tion is based on a new quasi-steady-state formulation that in
combination with a stochastic solver, the iterated Kalman fil-
ter (IKF), brings sufficient robustness and performance for
the mass-flow estimation, even for the faulty air-path system.
The performance metric and performance evaluation of the
proposed method is given.
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2. MODEL SCOPE AND MODELLING APPROACH

The heavy-duty diesel engine with a twin-scroll turbine used
in this study is schematically shown in Figure 1 where the
rounded edge rectangle denotes its model scope. The produc-
tion sensors required for the observer are shown in green: am-
bient pressure, p0, ambient temperature T0, intake manifold
pressure, p2, intake manifold temperature T2, engine speed
Ne, fuel mass flow mF , exhaust lambda, l , and the EGR and
balance valve positions, uEGR, and uT RB, respectively. The
charge mass flow, mCh comprises the fresh air flow, mA, and
EGR flow, mEGR. The flow leaving the engine is assumed to
be equal to both exhaust branches; EGR is routed from the
high pressure branch which feeds the smaller turbine scroll,
with a mass flow mT 1. The second exhaust branch directly
feeds scroll 2, with a mass flow mT 2, the two exhaust branches
are connected with a balancing valve which controls the mass
flow between the two exhaust branches, mBAL. The post tur-
bine flow is denoted mAFT . The variables shown in red repre-
sent the unmeasured states: exhaust temperatures in branches
1 and 2 are T3a and T3b respectively, the pressure in the scroll
2 inlet volume is p3b, the post turbine pressure and tempera-
ture are p4 and T4 respectively. There are 4 control volumes
used to compute the mass balances: the intake manifold, i,
the exhaust branch which feeds the EGR path, the balance
valve and scroll 1, k1, the second exhaust branch which feeds
the larger turbine scroll 2, k2 and the post-turbine volume, k3,
which is the entry to the aftertreatment system. The inter-
nal pressures and temperatures have to be estimated using the
engine component models with a later introduced iterative al-
gorithm solving the mass-balancing problem. Following are
listed the engine component models that are involved in the
model scope: Charge flow model, EGR valve flow model,
Turbine scroll 1 flow model, Turbine scroll 2 flow model,
Turbine balancing flow model, Aftertreatment flow model,
Exhaust manifold temperature model, Turbine outlet temper-
ature model, Burned fraction model, and Phi model.

The models used by observers and estimators are commonly
physics-based using the mean value engine model principles
that may become difficult to simulate due to model stiffness
(Dahl et al., 2018). In the following modeling approach, the
nonlinear functions in the air-path model are defined as mul-
tivariate rational functions, see Dahl et al. (2018) and refer-
ences therein. Many physics-based component models are
native to this form (ideal gas equations, stoichiometric equa-
tions), whereas others can be approximated by rational func-
tions to a user-defined degree of accuracy. A general form
of a system flow component in this framework can be repre-
sented as

m⇤ =
mN
⇤ (x1,x2, . . . ,xn,u1, . . . ,um)

mD
⇤ (x1,x2, . . . ,xn,u1, . . . ,um)

(1)

where mN
⇤ is the numerator, mD

⇤ is the denominator with state
x and input u variables (* stands for a particular component

subscript); functions mN
⇤ and mD

⇤ are multivariate polynomi-
als. The summary of mass-flow models and their multivariate
polynomial approximations can be found in Appendix A.

3. MODE-BASED ADAPTIVE OBSERVER

The architecture of mode-based adaptive observer for the air
mass-flow, EGR mass-flow, and burn fractions, also known
in its 1st generation as the VEGRO - Virtual EGR Observer
(Dahl et al., 2018) is updated with the informational as well as
the structural redundancy (Baramov et al., 2021). The infor-
mational redundancy in the following observer is provided by
an exhaust pressure sensor, that is under the nominal condi-
tions (no faults present at the engine), not used for estimation
purposes but is used for the monitoring of estimation accu-
racy. The structural redundancy is in the observer used to
switch the observer equations based on the system mode de-
fined either by the nominal no-fault mode or by the three dif-
ferent faults expected to occur on the air path of the engine,
resulting in four possible operational modes.

The mode of operation is determined by the Monitor which
is an algorithm responsible for the fault isolation where to
each fault one mode is assigned. Whenever the Monitor re-
ports a change of operation from the nominal mode to one of
the faulty modes, the observer is reconfigured/switched. The
nominal mode observer is shown in Figure 2 The nominal
model observer consists of five main computational blocks:
(1) Balance flow equations solver, (2) Charge flow model, (3)
Air-flow model, (4) l -based air-flow filter, and (5) Air-flow
fusion block. The ECU data are fed to the iterative Balance
flow equation solver solving simultaneously for the unknown
pressures p3a, p3b, and p4. These pressures are used for com-
puting the air-flow estimate based on either the EGR valve
model (and the charge flow model), turbine or aftertreatment
flow models. This flow is denoted as mT,EGR,A f t

A . The charge
flow is computed using the well-known speed density equa-
tion. It is based on determining the gas density at the intake
manifold using the intake manifold pressure and temperature
and using an empirical polynomial model of volumetric ef-
ficiency. This empirical model of volumetric efficiency is
based on engine speed, intake manifold pressure, and injected
fuel mass. The alternative air mass-flow estimate is computed
based on the injected fuel quantity and lambda measured by
the exhaust sensor. Instead of using l which is unbounded
for a lean-burn engine, its inverse value is used, also known
as the equivalence ratio f = 1/l . For the lean operation of
the Diesel engine, this limits the value between 0 and 1. The
air flow based on the f information is given by

ml
A =

AFRstoicmF

(1�Sh)fF
(2)

where Sh denotes the specific humidity (vapor mass fraction
in the air) and fF is the filtered equivalence ratio. The specific
humidity is not measured in the vehicle and hence its value is
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Figure 1. Schematic of a twin-scroll Diesel engine with the exhaust air-path faults.
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Figure 2. Mode-based adaptive mass-flow observer structure.

replaced by a constant value of 0.02. The lambda sensor has
some processing delay and dynamics and it is not accurate
during transients. The role of the fF filter is compensating for
this delay where fmdl , the equivalence ratio computed from
mT,EGR,A f t

A model is the preferred output of the fF filter during
transients. During the steady-state regimes measured f from
the lambda sensor, fsnsr is the preferred output of the fF filter
as it is more accurate during the steady-state operation.

3.1. Flow and pressure balancing

To compute EGR/turbine flows we need to compute the un-
known pressures p3a, p3b and p4. For this, we shall formulate
flow balances for the volumes denoted as k1, k2 and k3 shown
in Figure 1. It can be assumed that these volumes are suf-
ficiently small that mass accumulation can be neglected and
that the flows in are equal to the flows out1. For the volume k3
between the turbine and aftertreatment system, we write the
1See further discussion on applied assumptions at the end of Section 3.2

balance flows as

0 = mT 1(p3a, p4,T3a)+mT 2(p3b, p4,T3b)�mAFT (p4, p0,T4)
(3)

The equation implies that the flow through the aftertreatment
system is equal to the total turbine flow. The temperature T4
is estimated using an empirical model and depends on the un-
known pressures p3a, p3b and p4. The next equation describes
the balance at the second scroll inlet of volume k2 as

0 = mT 2(p3b, p4,T3b)�mBAL(p3a, p3b,T3a,uT RB)

� 1
2
(mCH(p2,mF ,T2,Ne)+mF) (4)

The last balance equation describes the flow to and from the
k1 volume before the first turbine scroll inlet and is given as

0 = mT 1(p3a, p4,T3a)+mEGR(p2, p3a,T3a,uEGR)

+mBAL(p3a, p3b,T3a,uT RB)

� 1
2
(mCH(p2,mF ,T2,Ne)+mF) (5)

Additional pressure measurement equation is introduced for
fault mitigation using the exhaust branch 1 pressure informa-
tion, given as

0 = p3a � p3a,snsr (6)

where p3a,snsr is the measured pressure sensor value. The
above expressions form a set of four nonlinear equations with
three unknowns. As shown later, the over-determined system
of equations is the nature of fault mitigation strategy where
one equation can always be omitted and the system is still
solvable.

Each flow model used in the balance flow equations is ex-
pressed in a rational polynomial (multivariate function) form
as defined by Eq. (1). The residuals of balance flows can be
expressed via the above relation with added pressure residual
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of exhaust branch 1 as

R̄1(mN
T 1,m

D
T 1,m

N
T 2,m

D
T 2,m

N
AFT ,m

D
AFT ) =

= mN
T 1mD

T 2mD
AFT +mD

T 1mN
T 2mD

AFT �mD
T 1mD

T 2mN
AFT = 0 (7)

R̄2(mN
T 2,m

D
T 2,m

N
BAL,m

D
BAL,m

N
Ex,m

D
Ex) =

= mN
T 2mD

BALmD
Ex +mD

T 2mN
BALmD

Ex �mEx
T 2mD

BALmN
Ex = 0 (8)

R̄3(mN
T 1,m

D
T 1,m

N
BAL,m

D
BAL,m

N
EGR,m

D
EGR,m

N
Ex,m

D
Ex) =

= mN
T 1mD

BALmD
EGRmD

Ex +mD
T 1mN

BALmD
EGRmD

Ex+

+mD
T 1mD

BALmN
EGRmD

Ex �mD
T 1mD

BALmD
EGRmN

Ex = 0 (9)

R̄4 = p3a � p3a,snsr = 0 (10)

where for the sake of shorter notation, the following expres-
sion is used

mEx(p2,mF ,NE ,T2) =
1
2
(mCH(p2,mF ,T2,Ne)+mF) (11)

Following vector variables are defined for the next explana-
tions and discussions, x= [p3a, p3b, p4]T , R̄= [R̄1, R̄2, R̄3, R̄4]T ,
and S(x) = [mN

T 1,m
D
T 1, . . . ,m

N
Ex,m

D
Ex]

T .

3.2. Balance flow equations solver - The Iterated Kalman
Filter

Solving the residual equations R̄ for the unknown vector x is
the core task of the applied solver, the iterated Kalman fil-
ter (IKF) (Simon, 2006, p. 410). The discrete-time models
embedded in the IKF are in a general form written as

xk = fk�1(xk�1,uk�1,wk�1), (12)

yk = hk(xk,uk,vk), (13)

where fk(·) represents the model of nonlinear dynamics be-
ing a function of the state vector x, input vector u, and process
noise w. The function hk(·) represents a nonlinear reference
measurement model with the state x, input u, and measure-
ment noise v variables. In the following section, the observer-
specific system equations and measurement equations are given.

The system equations fk�1(xk�1,uk�1,wk�1) consist of the
unknown pressures, each defined as a constant between two
sampling intervals augmented with the process noise term w

x1,k = x1,k�1 +w1,k�1 (14)

x2,k = x2,k�1 +w2,k�1 (15)

x3,k = x3,k�1 +w3,k�1 (16)

where x1,k = p3a,k, x2,k = p3b,k and x3,k = p4,k. The mea-
surement equations hk(xk,vk) consist of the residual equations
R̄, where each equation is augmented with the measurement

equation noise term v

y1,k = R̄1,k(mN
T 1,m

D
T 1,m

N
T 2,m

D
T 2,m

N
AFT ,m

D
AFT )+ v1,k (17)

y2,k = R̄2,k(mN
T 2,m

D
T 2,m

N
BAL,m

D
BAL,m

N
Ex,m

D
Ex)+ v2,k (18)

y3,k = R̄3,k(mN
T 1,m

D
T 1,m

N
BAL,m

D
BAL,m

N
EGR,m

D
EGR,m

N
Ex,m

D
Ex)+v3,k

(19)
y4,k = R̄4,k(p3a, p3a,snsr)+ v4,k (20)

The actual measurements of yk represent known values of the
balance flow errors (the residuals) that are forced to be zeros.

The system sensitivity for the estimated vector is given as

Fk�1 =
∂ fk�1

∂x

����
x̂+k�1

=

2

4
1 0 0
0 1 0
0 0 1

3

5 (21)

The system sensitivity concerning the process noise vector is
given as

Lk�1 =
∂ fk�1

∂w

����
x̂+k�1

=

2

4
1 0 0
0 1 0
0 0 1

3

5 (22)

The measurement sensitivity for the measurement noise vec-
tor is given as

Mk,i =
∂h
∂v

����
x̂+k,i

=

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3

775 (23)

The measurement sensitivity is given by the chain rule due to
the temperature T4 model dependency on the state vector

Hk,i =
∂h
∂x

����
x̂+k,i

=


∂ R̄
∂S

∂S
∂x

+
∂ R̄
∂S

∂S
∂T4

∂T4

∂x

�

x̂+k,i

(24)

Note on applied assumptions: The assumptions applied
are the designer’s choice to simplify a certain system model
behavior. Whether the assumptions are sufficiently valid is
ultimately verified by the estimation performance - the as-
sumptions are justified by the results. The choice to neglect
the manifold filling dynamics is not motivated by the fact of
whether the intake (exhaust) volumes are big or small but by
the impact on estimation accuracy of computed mass flows if
we do so. That also means that the pressure transients are not
neglected (the other measured inputs are transient) and are
given as a solution to the quasi-steady-state problem given by
Eqs. 3 to 6 - the neglected volume size affects the overall
inaccuracy/error of each estimated pressure during transients.
These equations must hold even during transient operation if
the assumption about the steady state nature is combined with
another assumption that the steady-state flow residual equa-
tions do not need to be equal to zero exactly, hence the residu-
als formulation via Eqs. 17 to 20. It is one of the assumptions

4



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

𝜙𝑚𝑑𝑙

𝜙𝑠𝑛𝑠𝑟

𝜙𝑡𝑟𝑢𝑒

𝑦1

𝑦2

KF
෠𝜙𝑢,𝑘

𝐻(𝑠)

Figure 3. Equivalence ratio filtering scheme.

that the residual error is bounded and can be represented by
the measurement noise v standard deviation parameter sv. It
is also assumed that the inaccuracy of the pressures during
transients is (small and) bounded and within the magnitude
of defined process noise w standard deviation parameter sw.

3.3. Phi filter

The role of this filter is to compensate for the time lag of the
lambda sensor that provides the measured engine out lambda
information and fuses it with the virtual sensor. The sig-
nal that the lambda sensor provides is not the true lambda -
it is time delayed and filtered by the sensor dynamics. To
get the estimate of "true lambda", we use the steady-state
Kalman filter for unknown input estimation with the refer-
ence measurements of the virtual (model-based) lambda and
the sensor measured lambda. The filter is a dynamic fusion
algorithm when at the beginning the model-based lambda is
more trusted, but towards the steady state, the influence of
the sensor signal grows - at the steady state the sensor and
filter output co-inside. Instead of lambda, its inverse value
called the equivalence ratio is used for numerical reasons,
where for the normal operating range of the Diesel engine,
this value is bounded in the (0,1) interval. In Figure 3, we
use the measured equivalence ratio fsnsr and model estimated
fmdl to estimate the true equivalence ratio ftrue. The estimate
of the ftrue represents the unknown input fu into the sensor
dynamic model. The virtual sensor fmdl is providing the in-
formation about the equivalence ratio where its measurement
model consists of the summation of the estimate of ftrue and
unknown bias bmdl . The model of continuous lambda sensor
dynamics is H(s)= 1/ts+1 where its zero-order hold (ZOH)
discrete model is given as

fy(k+1) = (1�a)fu(k)+afy(k) (25)

In this equation, the parameter a = e�T s/t , where T s is the
sampling interval and t is the sensor’s time constant. From
the filtering point of view, the following system and measure-
ment variables are defined: x1 = fu sensor model input (state
variable), x2 = fy sensor model output (state variable), x3 =
bmdl virtual sensor bias (state/parameter variable), y1 = fsnsr

measurement variable, y2 = fmdl measurement variable. The
state space model is defined as
2

4
x1(k+1)
x2(k+1)
x3(k+1)

3

5=

2

4
1 0 0

1�a a 0
0 0 1

3

5

2

4
x1(k)
x2(k)
x3(k)

3

5+

2

4
w1(k)
w2(k)
w3(k)

3

5 (26)

x(k+1) = Ff x(k)+w(k) (27)

The measurement model is given as


y1(k)
y2(k)

�
=


0 1 0
1 0 1

�2

4
x1(k)
x2(k)
x3(k)

3

5+


v1(k)
v2(k)

�
(28)

y(k) = Hf x(k)+ v(k) (29)

The state equations are augmented with process noise vector
w ⇠ (0,Qf ) and the measurement equations are augmented
with the measurement noise vector v ⇠ (0,Rf ), where Qf is
the process noise error covariance matrix and Rf is the mea-
surement noise error covariance matrix. The noises w1, w2,
w3, v1, v2 are zero-mean, white Gaussian, and their standard
deviations represent Kalman’s filter tuning parameters. The
noise matrices are given as

Qf =

2

4
s2

w1 0 0
0 s2

w2 0
0 0 s2

w3

3

5 (30)

Rf =


s2

v1 0
0 s2

v2

�
(31)

where sw is the standard deviation of process noise error and
sv is the standard deviation of measurement noise error.

The steady-state Kalman filter solution, (Simon, 2006, p. 193-
194), is defined as

x̂+k = AF x̂+k�1 +BF yk (32)

where AF = (I�K•Hf )Ff , I is the identity matrix, and BF =
K• is the steady-state Kalman gain2. The estimate of the true
equivalence ration f̂u is represented by the first element of x̂+k
vector as

f̂u,k =Cex̂+k (33)

where Ce = [1,0,0] is the state observation matrix. The fol-
lowing parameter values are set to compute the steady-state
Kalman filer: Ts = 0.02(s) - sampling interval; t = 0.8(s) -
the time constant of lambda sensor; sw1 = 500; sw2 = 0.01;
sw3 = 0.005; sv1 = 0.25; sv2 = 0.1. The influence of tun-
ing can be interpreted as weights posed on the measurement
and model that are regime dependent. The filter is tuned
such that during the transient regime the measurement weight
is less dominant while the model weight is more dominant.

2The steady-state Kalman gain is given by solving the Discrete Alge-
braic Riccati Equation (DARE) with MATLAB command [⇠,⇠,K] =

dare(F’,H’,Q,R), where F = Ff , H = Hf , Q = Qf , R = Rf , and K• = K’.

5
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The dominance of measurement and model weights inverses
as the steady-state regime is present. The filter response is
shown in Figure 4.

3.4. Model fusion

The model fusion block performs the least-squares best com-
promise between two sources of air mass-flow estimates:

• lambda sensor-based estimate (delay compensated in the
phi filter)

• turbine model, EGR valve or aftertreatment model-based
estimate mT,EGR,A f t

A from the solver.

The fusion block automatically discounts the source which is
less reliable at the moment. This is done using the weighted
least squares formulated as follows

min
mA

����
w1(ml

A �mA)

w2(m
T,EGR,A f t
A �mA)

����
2

2
(34)

The baseline weight w1 is determined by a lookup table based
on the magnitude of the exhaust O2 concentration. When
the concentration is greater than 10%, on a volume basis, the
weight is set to 1; the weight linearly increases to 2 when the
concentration is 0%. This relationship can be calibrated but
was selected based on the physical working principle of the
sensor –the sensor has the highest accuracy when measuring
stoichiometric compositions. Furthermore, if the sensor sta-
tus is troublesome, this weight is switched to 0. The second
weight is w2 = w20m1m2. The baseline weight w20 is set to
0.5. The multiplier m1 equals 0.85 if the balancing valve po-
sition exceeds a threshold of 10%, otherwise equals 1. The
second multiplier m2 equals to 0.25 if p3a � p3b is less than
threshold 5 kPa and is 1 otherwise. The weights are used to
represent the confidence in the fusion output for various sce-
narios.

Mode sv1 sv2 sv3 sv4
1/ No fault 10�2 10�2 10�2 102

2/ Fault A 6⇤102 10�3 10�3 10�2

3/ Fault B 10�2 10�2 6⇤102 10�3

4/ Fault C 10�2 10�2 10�2 102

Table 1. Fault mitigation tuning - R matrix; Fault A - Af-
tertreatment fault, Fault B - EGR valve fault, Fault C - Bal-
ance valve fault

4. MONITOR

The main task of the monitor is to evaluate if the prime state-
observer algorithm is performing with models reflecting the
nominal health status of hardware components. In a case
of model mismatch, biased estimates of air mass-flow, EGR
mass-flow (and burned fractions) may result, leading to in-
accurately controlled air path. The model mismatch can be
induced by sudden faults (e.g. stuck valves) or by slowly de-
grading hardware components.

4.1. Fault mitigation strategy

The Fault mitigation strategy (FMS) is based on the adap-
tation of VEGRO solver settings, specifically, it is the mode
dependent update of the measurement error covariance matrix
R (see the solver algorithm details in Appendix B) (Baramov
et al., 2021). Through the R matrix we define which equation
of residuals is irrelevant for the mass-flow estimation due to
hardware component/model mismatch.

The mode dependant tuning is realized through the IKF tun-
ing matrices Q and R that have the following structure

Q =

2

4
s2

w1 0 0
0 s2

w2 0
0 0 s2

w3

3

5 (35)

R =

2

664

s2
v1 0 0 0
0 s2

v2 0 0
0 0 s2

v3 0
0 0 0 s2

v4

3

775 (36)

where sw1 (bar) is the standard deviation of p3a process noise,
sw2 (bar) is the standard deviation of p3b process noise, sw3
(bar) is the standard deviation of p4 process noise, sv1 (kg/s)
is the standard deviation of first residual equation y1 error, sv2
(kg/s) is the standard deviation of second residual equation
y2 error, sv3 (kg/s) is the standard deviation of third residual
equation y3 error, and sv4 (bar) is the standard deviation of
fourth residual equation y4 error.

The accepted tuning of the R matrix for each mode is dis-
played in Table 1. The Q matrix is a constant matrix that
is invariant to the isolated mode where its value is set to
Q = diag[(10�1)2,(10�2)2,(10�3)2]. The R matrix changes
diagonal gains in dependence of isolated mode. The highest
gains represent immense uncertainty of the unwanted residual

6
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nominal mitigated
Mode mA(%) mEGR(%) mA(%) mEGR(%)
1/ No fault 98 75 n/a n/a
2/ Fault A 98 62 98 69
3/ Fault B 98 30 99 62
4/ Fault C 96 62 98 72

Table 2. Summary of performance - the percentage of esti-
mated air flow and EGR flow meeting the accuracy bounds;
Fault A - Aftertreatment fault, Fault B - EGR valve fault,
Fault C - Balance valve fault

equation. The effect of tuning shown in Table 1 is demon-
strated in the following figures. The nominal tuning (no fault
induced) is displayed in Figure 5 and in Figure 6. Note that
only EGR flows greater than 0.03 kg/s, corresponding to 30%
of the maximum EGR flow, are used in the computation of the
accuracy metric since we are evaluating the relative error.

The impact of an aftertreatment fault with nominal solver set-
tings is shown in Figure 7 and Figure 8. The mitigated solver
settings (Mode 2, Table 1) are plotted in Figure 9 and in Fig-
ure 10. An aftertreatment fault has the main impact on the
estimated EGR mass-flow displayed in Figure 8 where the
applied mitigation strategy can improve the estimation accu-
racy by 7%, shown in Figure 10.

The EGR fault result under the nominal (Mode 1, Table 1)
solver setting is shown in Figure 11 and in Figure 12. Figure
12 shows a severe impact on EGR mass-flow accuracy. Omit-
ting the EGR model by using Mode 3, Table 5 setting, leads
to an improved air mass-flow estimate shown in Figure 13
and a much improved EGR mass-flow estimate documented
in Figure 14.

The impact of a turbine balance valve fault can be seen in
Figure 15 and Figure 16. The mitigation strategy consists of
bypassing the prime VEGRO algorithm and estimating the air
mass-flow as a difference between the charge flow model and
the EGR mass-flow computed via the EGR valve model, see
Figure 17 and Figure 18. The summary of performance indi-
cators under nominal and fault mitigated observer conditions
is shown in Table 2.

From the results discussed above, it can be concluded that the
mitigation strategy is suitable for all the faults. The sensitivity
to simulated faulty components (note below) however differs.
The EGR flow rate has the highest correction ratio after the
mitigation, it jumps from 30% to 62% showing the highest
mitigation efficiency.

Note and assumption on simulation scenario of applied
faults: All faults in this study are simulated by altering a
model with the greater mass flow against the nominal data.
This represents an equivalent way of fault present in the sys-
tem. The blocking issue is in simulation represented by mod-

eled mass-flow (of a given faulty component) being doubled
compared to the nominal component mass-flow. This way the
reference data shows a smaller flow than the expected faulty
component mass flow.

4.2. Fault isolation strategy

The VEGRO fault isolation strategy can be summarized in
Table 3, where three faults A., B., and C. are expected (Polóni
et al., 2021). Each fault has its unique logic related to sev-
eral indication signals and each fault has an assigned action.
Each indicative logical relation from Table 3, e.g. for fault
A. mA,EGRv = mA,l , p3a = p3a,snsr and p4 > p4,nom can be
transformed into inequality logical condition. The tested in-
equality logical conditions are provided as the outcome of
the fault detection subsystem based on the means of statisti-
cal hypothesis testing, see section 4.3 for more details. The
variables in Table 3 have the following meaning: mA,EGRv is
the airflow computed as the charge flow minus the EGR flow
given by the EGR valve equation, mA,l is the airflow given
by the lambda model, p3a,snsr is the measured exhaust pres-
sure by the pressure sensor, p3a is the solved exhaust pres-
sure from the balance flow, p4,nom is the virtual sensor value
for the downstream turbine pressure, p4 is the solved down-
stream turbine pressure from the balance flow.

The summary of inequality logic conditions with expected
outputs for each isolated mode is given by the reasoning table
shown in Table 4.

4.3. Fault detection and calibration of the SPRT algorithm

The logical conditions from Table 4 are tested using the prin-
ciples of Sequential Probability Ratio Test (SPRT) (Basseville
& Nikiforov, 1998, p. 37-38). The idea behind the SPRT is
the usage of repeated testing of two simple hypotheses about
the parameter q

H0 : q = q0 (37)

H1 : q = q1 (38)

If the decision is taken in favor of H0, the sampling and test
continue. The test may be stopped after the first sample of ob-
servations for which the decision is taken in favor of H1. We
introduce the following notation. The decision rule is written
in a recursive manner as

d =

⇢
0 i f Sk+1 � 0
1 i f Sk+1 = e (39)

where the recursive term Sk+1 is defined as

Sk+1 =

⇢
min(e,Sk + sk) i f Sk + sk > 0
max(0,Sk + sk) i f Sk + sk  0 (40)

3To isolate the EGR fault uniquely, the mA,EGRv 6= mA,l condition test needs
to return logical one as the first and the p3a 6= p3a,snsr condition test needs to
return logical one as the second. Otherwise mode 3 can be falsely identified
as mode 4 during a period when p3a 6= p3a,snsr condition test returns logical
one but mA,EGRv 6= mA,l condition test has not finished yet.
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Figure 5. Nominal solver setting - air mass-flow

Fault Indication Action

A. Aftertreatment blocked

mA,EGRv = mA,l
p3a = p3a,snsr
p4 > p4,nom Section 3.1, use Eq.: (4), (5), (6)

B. EGR blocked

mA,EGRv < mA,l
p3a < p3a,snsr
p4 = p4,nom Section 3.1, use Eq.: (3), (4), (6)

C. Balance valve blocked

mA,EGRv = mA,l
p3a < p3a,snsr
p4 = p4,nom

Use the charge flow model minus the EGR
valve model flow (both fed by direct
measurement of p2 and p3a)

Table 3. Fault isolation strategy

mA,EGRv 6= mA,l
SPRT I

p3a 6= p3a,snsr
SPRT II

p4 6= p4,nom
SPRT III

Isolated
mode

0 0 0 No fault, mode 1
0 0 1 Aftertreatment fault, mode 2
1(1st) 1(2nd) 0 EGR fault3, mode 3
0 1 0 Balance valve fault, mode 4

Table 4. Reasoning table
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Figure 6. Nominal solver setting - EGR mass-flow
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Figure 7. Aftertreatment fault on with nominal solver setting
- air mass-flow
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Figure 8. Aftertreatment fault on with nominal solver setting
- EGR mass-flow
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Figure 9. Aftertreatment fault on with mitigated solver setting
- air mass-flow
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Figure 10. Aftertreatment fault on with mitigated solver set-
ting - EGR mass-flow
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Figure 11. EGR fault on with nominal solver setting - air
mass-flow
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Figure 12. EGR fault on with nominal solver setting - EGR
mass-flow
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Figure 13. EGR fault on with mitigated solver setting - air
mass-flow
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Figure 14. EGR fault on with mitigated solver setting - EGR
mass-flow
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Figure 15. Balance valve fault on with nominal solver setting
- air mass-flow
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Figure 16. Balance valve fault on with nominal solver setting
- EGR mass-flow
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Figure 17. Balance valve fault on with bypassed solver miti-
gation strategy - air mass-flow
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Figure 18. Balance valve fault on with bypassed solver miti-
gation strategy - EGR mass-flow

In the above expression, sk is the log-likelihood ratio, and e is
the threshold alarm value. The log-likelihood ratio is defined
as

sk = ln
p(g|q1)

p(g|q0)
(41)

where p(·) is the probability density function (PDF). It is
common for the PDFs to be parametrized where one of the
most common models for a real-valued random variable is the
normal distribution. The normal distribution is parametrized
in terms of the mean µ and standard deviation s that form pa-
rameter vector q0 = [µ,s ] for the null hypothesis H0. The al-
ternative hypothesis H1 is parametrized as q1 = [µa,sa]. The
H0 PDF when normalized has the parameters µ̄ = 0, s̄ = 1
and is given as

p(g|µ,s) =
1p
2p

exp

�1

2
x2
�

(42)

where x is the vector of realizations. The expression above is
also referred to as the standard normal distribution. The H1
PDF when normalized has parameters µa, sa and is given as

p(g|µa,sa) =
1

sa
p

2p
exp

"
�1

2

✓
x�µa

sa

◆2
#

(43)

Before any testing takes place, the SPRT algorithm for each
expected fault needs to be calibrated. The calibration pro-
cedure is as follows (example given for the SPRT I; other
tunings for SPRT II and SPRT III are similar):

1. Generate H0 nominal error signal x0 that meets the SPRT
I entering conditions (see section 4.4)

x0 = mA,EGRv|Fault o f f �mA,l |Fault o f f (44)

2. Generate H1 error signal x1 in sequence for faults (A.,
B., C., see Table 3) that meet SPRT I entering conditions
(see section 4.4)

x1,{A} = mA,EGRv|{A}Fault on �mA,l |{A}Fault on (45)

x1,{B} = mA,EGRv|{B}Fault on �mA,l |{B}Fault on (46)

x1,{C} = mA,EGRv|{C}Fault on �mA,l |{C}Fault on (47)

3. Compute mean µ and standard deviation s of x0 and nor-
malize x0 such that x̄0 =

x0�µ
s

4. Normalize x1,{A}, x1,{B}, x1,{C} such that x̄1,{A}=
x1,{A}�µ

s ,
x̄1,{B} =

x1,{B}�µ
s , and x̄1,{C} =

x1,{C}�µ
s

5. Compute mean µa and standard deviation sa for each
faulty normalized realization x̄1,{A}, x̄1,{B}, x̄1,{C}: D =
{µa{A},µa{B},µa{C}} and S = {sa{A},sa{B},sa{C}}

6. Compute the PDFs p0(g|0,1) and p1(g|µa,sa) for the
nominal realization x̄0 and recursively compute Sk+1

7. Compute the PDFs p0(g|0,1) and p1(g|µa,sa) for the
faulty realizations x̄1,{A}, x̄1,{B}, x̄1,{C} and recursively

12
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Figure 19. SPRT I: Probability density functions of the null
and alternative hypothesis under EGR fault conditions (ac-
cepted tuning).

SPRT µ s µa sa e
SPRT I 0.0513 0.083 �0.375 1.066 1000
SPRT II 0.256 5.086 0.400 0.908 7000
SPRT III �0.231 0.355 1.968 1.949 4000

Table 5. SPRT calibration

compute Sk+1 for each

8. Choose the threshold alarm value e such that the logical
states for SPRT I from Table 4 are achieved

9. Choose one global tuning A, B, or C of pair parameters
from sets D, S for the alternative hypothesis H1 for which
the alarm value is achieved with cumulated sum Sk+1

10. Evaluate a chosen tuning for other faults, e.g. if the tun-
ing under fault B is chosen µa = µa{B} and sa = sa{B},
evaluate the tuning for A and C faults such that the logi-
cal states for the SPRT I from Table 4 are confirmed.

The tuning of SPRT I is shown in Figure 19 where according
to the above calibration procedure in Step 9., tuning B is ac-
cepted for the alternative hypothesis H1. Similarly, the tuning
of SPRT II accepts tuning C and SPRT III accepts tuning A
for the alternative hypothesis H1. The logical state from Ta-
ble 4 is the decision variable d, given by Eq. 39. A summary
of tuning parameters for the SPRT I, SPRT II, and SPRT III
is displayed in Table 5.

4.4. Entering conditions

The entering conditions serve as an enabler for individual
SPRTs to run. If the conditions are met the SPRT subsystem
will process its inputs and output the result of the detection.
Each SPRT subsystem has its own entering condition logic
block that outputs logical zero or logical one. The summary
of all entering conditions for individual SPRT subsystems is
shown Table 6. As can be seen in Table 6, the SPRT I is
defined by a threshold on the estimated EGR flow variable
while the SPRT II and SPRT III have the entering logic de-
fined by the pressure error bound of the exhaust pressure and

SPRT Entering conditions
SPRT I mA,EGRv 6= mA,l

1. mEGR � 0.03 (kg/s)
2. Lambda sensor is on

SPRT II p3a 6= p3a,snsr |p3a � p3a,snsr| 20 (kPa)
SPRT III p4 6= p4,nom |p4,nom � p4| 2.5 (kPa)

Table 6. Entering conditions
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Figure 20. Cumulative sums during the nominal run (no fault
induced).

the turbine outflow pressure respectively.

4.5. Detection results

The goal of fault detection and fault isolation strategy is to
robustly estimate a fault signature given by the Reasoning ta-
ble, see Table 4. It is demonstrated in the following figures
how the individual faults, when triggered at the beginning of
a driving cycle are detected and isolated. The output of in-
dividual cumulative sums of individual SPRT blocks for the
nominal (no-fault) state is shown in Figure 20. In this case,
none of the cumulative sums reaches its threshold value e , see
Table 5, meaning no fault - Mode 1 is detected. The detection
of the aftertreatment fault is given through the fast-integrated
cumulative sum of SPRT III displayed in Figure 21. As ex-
pected from Table 4, only the SPRT III detects a change that
results in the isolation of Mode 2. As given in Table 4, the
triggered EGR fault is successfully isolated when the SPRT I
and the SPRT II both detect a change in the given order, see
Footnote 3. This is shown by two cumulative sums reach-
ing their alarm thresholds. The SPRT I reaches its threshold
(1000) first followed by the SPRT II reaching the threshold
(7000). The SPRT III stays silent. The balance valve fault
is isolated when the SPRT II detects a change and the other
SPRTs stay silent as shown in Figure 23. The overall per-
formance of fault detection and fault isolation is working as
designed/intended on presented simulated faults.
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Figure 21. Cumulative sums during the Aftertreatment fault.
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Figure 22. Cumulative sums during the EGR fault.
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Figure 23. Cumulative sums during the Balance valve fault.

5. CONCLUSION

The engine flow observer discussed, is based on solving three
polynomial balance flow equations, consisting of six compo-
nent models, for three unknown pressures: pressures at two
turbine inlets and the turbine outlet. A further pressure er-
ror equation provides redundancy for solving the flows in the
case of a system fault, such as a blockage or stuck valve. The
solver, based on the iterated Kalman filter method, is imple-
mented in Simulink, using only elementary Simulink library
blocks. The equation solver is a model fusion of the EGR
valve, twin-scroll turbine, aftertreatment, balance valve, and
charge flow model. The solution is robust, providing accu-
rate estimate of p3a, p3b, p4. Over- (under-) estimation of p3a
pressure would result in over- (under-) estimating both EGR
and turbine flows. The sum of the flows must equal the charge
flow (relatively insensitive to the p3a pressure) plus fuel flow
to satisfy the flow balance equation. The EGR flow estimate
obtained may be, at some points, better than the one based on
the valve model only with measured p3a – this concerns cases
when p3a is close to p2. On the other hand, the estimate of the
backpressure p4 is affected by uncertainties in the aftertreat-
ment flow resistance model. As delta pressure on the DPF
may be available, it can be used for improving the estimate
of the turbine backpressure. Fortunately, turbine flows are
not so much sensitive to the back-pressure, if the expansion
ratio is not close to 1. Fusing the lambda sensor-based air-
flow estimate with the balanced flow estimated airflow adds
some robustness to the VEGRO output but not a significant
improvement in accuracy, since it is difficult to compensate
for the significant time constant of the sensor. The VEGRO
observer is being monitored by an independent algorithm –
the VEGRO monitor that checks if the VEGRO models re-
flect the flows of real hardware components. The air path
is considering three faults: an aftertreatment blockage, EGR
valve blockage, and turbine balance valve blockage that can
prevent the VEGRO observer from accurately estimating its
outputs. In the case of detected and isolated faults, the fault
mitigation strategy can be triggered in a form of rescheduling
the IKF’s measurement error covariance matrix. It has been
demonstrated that the presented fault mitigation strategy is
robust to simulated faults, efficient, and simple to implement.
Calibration for real-world usage, including thresholds and en-
abling conditions would need to be done with OBD tolerance
parts.
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APPENDIX A - MASS-FLOW MODELS

The mass-flow models of the balance valve, EGR valve, and
aftertreatment system rely on a valve flow model that is typ-
ically described by the orifice equation (isentropic expansion
model) parametrized with different inputs for each compo-
nent. It also depends on the flow function Y that is defined
as

Y(P) =

8
>>>><

>>>>:

r
g
⇣

2
g+1

⌘ g+1
g�1

, P < 2

(g+1)
g

1�g

P
1
g

s
2g

g�1

✓
1�P

g�1
g

◆
, otherwise

(48)

where P is the pressure ratio: upstream pressure over down-
stream pressure and g is the specific heat ratio. When the
pressure ratio exceeds the critical value for which the flow
velocity equals the speed of sound, the flow becomes choked.

Balance flow

The balance flow is the flow between two banks, schemati-
cally displayed in Figure 24. This flow is assumed to consist
of two components

• Flow through the balance valve
• Flow in the turbine inlet housing before turbine wheel

The balancing flow model is based on the orifice flow equa-
tion which comprises turbulent cross flows in the turbine hous-
ing and flow through the balance valve

mBAL = Ae f f (uT RB, p3a, p3b)Y
✓

p3a

p3b

◆
p3a

R
p

T3a
(49)

where the constant R is the specific gas constant of air. The
effective area Ae f f is a function of valve position and the pres-
sures of the two banks where it captures the communication
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Figure 24. Turbine flow balance. Green arrows indicate the
combined "balancing flow".

of flows occurring between the volutes and it is fitted to ex-
perimental data. The flow function is approximated by a low
complexity rational function as well as 1/

p
T3a term.

EGR flow

The EGR flow model uses an orifice model where the effec-
tive area is parameterized from data based on the input posi-
tion. The EGR valve flow model is thus given by

mEGR = A.Cd,EGR(uEGR)Y
✓

p3a

p2

◆
p3a

R
p

T3a
(50)

The term A.Cd,EGR(uEGR) is computed using a rational 1D
curve with two constrained points.

Aftertreatment flow

The aftertreatment flow model can be considered as an isother-
mal restriction with a fixed effective area

mAFT = A.Cd,AFT Y
✓

p4

p0

◆
p4

R
p

T4
(51)

This restriction model operates on relatively low-pressure ra-
tios.

Charge flow

The engine charge flow is given as

mCH =
VD p2

RT2

Ne

120
hvol(Ne, p2,mF) (52)

where VD is the displacement volume, T2 is the intake mani-
fold temperature, p2 is the intake manifold pressure, Ne is the
engine speed, hvol(·) is the volumetric efficiency, and mF is
the amount of injected fuel. The parameterization of the vol-
umetric efficiency map additionally with the fuel quantity is

due to the engine’s fuel shot-off events.

Turbine flow

The turbine flow model makes use of the manufacturer’s cor-
rected turbine map FT 1(P1), being a function of the pressure
expansion ratio where the expansion ratio is P1 = p3a/p4.
The turbine flow model is the scaled corrected turbine map
given as

mT 1 =
FT 1(P1)q

T3a
Tre f

pre f
p3a

(53)

where pre f = 101325 Pa and Tre f = 288 K. The property
of FT 1(1) = 0 holds where the function is non-decreasing
with a growing expansion ratio. Using these structural as-
sumptions, we approximate the corrected turbine flow and theq

T3a
Tre f

function by rational functions on a dense grid of points.
More details on fitting the turbine map to rational polynomial
models can be found in Pachner et al. (2015).

Multivariate rational polynomial models

mN
AFT = 19.82663p2

4 �19.82663p4 p0 +3.03216T4 p2
4

�3.03216T4 p4 p0 (54)

mD
AFT = 0.6928695p4 �0.6019256p0 +T4 p4

�0.8687431T4 p0 (55)

mN
EGR = 1.315198p2

3auEGR �1.315198p3a p2uEGR

+0.2011381T3a p2
3auEGR �0.2011381T3a p3a p2uEGR

+15.28352p2
3au2

EGR �15.28352p3a p2u2
EGR

+2.337366T3a p2
3au2

EGR �2.337366T3a p3a p2u2
EGR (56)

mD
EGR = 0.7164297p3a �0.6579359p2

+1.034004T3a p3a �0.9495812T3a p2

�0.2924857p3auEGR +0.2686053p2uEGR

�0.4221368T3a p3auEGR +0.3876709T3a p2uEGR

+4.254647p3au2
EGR �3.907271p2u2

EGR

+6.140619T3a p3au2
EGR �5.63926T3a p2u2

EGR (57)
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mN
BAL = 0.2664645p2

3a �0.2664645p3a p3b

+0.0407514T3a p2
3a �0.0407514T3a p3a p3b

�0.2670565p3
3a +0.936663p2

3a p3b

+0.06086311p2
3auT RB �0.6696065p3a p2

3b

�0.06086311p3a p3buT RB �0.04084195T3a p3
3a

+0.1432473T3a p2
3a p3b +0.009308022T3a p2

3auT RB

�0.1024054T3a p3a p2
3b �0.009308022T3a p3a p3buT RB

+0.1879963p4
3a �0.68958p3

3a p3b

+0.108605p3
3auT RB +0.7892367p2

3a p2
3b

�0.3396391p2
3a p3buT RB +0.881318p2

3au2
T RB

�0.287653p3a p3
3b +0.2310342p3a p2

3buT RB

�0.881318p3a p3bu2
T RB +0.02875097T3a p4

3a

�0.10546T3a p3
3a p3b +0.01660936T3a p3

3auT RB

+0.1207009T3a p2
3a p2

3b �0.05194227T3a p2
3a p3buT RB

+0.1347832T3a p2
3au2

T RB �0.04399184T3a p3a p3
3b

+0.03533291T3a p3a p2
3buT RB �0.1347832T3a p3a p3bu2

T RB
(58)

mD
BAL = 0.6928695p3a �0.6362993p3b +T3a p3a

�0.9183537T3a p3b (59)

mN
CH = 0.8177518Ne p2 �0.1037118N2

e p2

+1.458435NemF p2 +0.363473Ne p2
2

+0.1823196N3
e p2 �2.574592N2

e mF p2

�0.09281738N2
e p2

2 +77.27074Nem2
F p2

�6.740158NemF p2
2 +0.02263237Ne p3

2

�0.005316643N4
e p2 +1.616709N3

e mF p2

�0.1391244N3
e p2

2 �23.11955N2
e m2

F p2

+0.60167N2
e mF p2

2 +0.1204946N2
e p3

2

�208.4496Nem3
F p2 +16.7372Nem2

F p2
2

+0.3330827NemF p3
2 �0.03489976Ne p4

2 (60)

mD
CH = 0.3319612T2 (61)

mN
T 1 = 1.546778p2

4 p3a �1.577428p4 p2
3a

+0.03064934p3
3a +0.09704072T3a p2

4 p3a

�0.09896357T3a p4 p2
3a +0.001922857T3a p3

3a (62)

mD
T 1 = 0.7854754p2

4 � p4 p3a

+0.4707823T3a p2
4 �0.5993596T3a p4 p3a (63)

mN
T 2 = 4.825973p2

4 p3b �4.848827p4 p2
3b

+0.02285446p3
3b +0.3027686T3b p2

4 p3b

�0.3042024T3b p4 p2
3b +0.001433827T3b p3

3b (64)

mD
T 2 = 0.8010185p2

4 � p4 p3b

+0.4800981T3b p2
4 �0.5993596T3b p4 p3b (65)

APPENDIX B - THE ITERATED KALMAN FILTER

The iterated Kalman filter (IKF), (Simon, 2006, p. 410) is
summarized in the following steps:

1. The nonlinear system and measurement equations are given
as follows

xk = fk�1(xk�1,uk�1,wk�1) (66)

yk = hk(xk,vk) (67)

wk s (0,Qk) (68)

vk s (0,Rk) (69)

2. Initialize the filter as follows

x̂+0 = E(x0) (70)

P+
0 = E[(x0 � x̂0)(x0 � x̂0)

T ] (71)

3. For k = 1,2, ... execute steps a, b and c.
(a) Perform the following time-update equations

P�
k = Fk�1P+

k�1FT
k�1 +Lk�1Qk�1LT

k�1 (72)

x̂�k = fk�1(x̂+k�1,uk�1,0) (73)

where the partial derivative matrices Fk�1 and Lk�1
are defined as follows

Fk�1 =
∂ fk�1

∂x

����
x̂+k�1

(74)

Lk�1 =
∂ fk�1

∂w

����
x̂+k�1

(75)

Until here the iterated Kalman filter is the same as
the standard discrete-time extended Kalman filter
(EKF).

(b) Perform the measurement update by initializing the
iterated EKF estimate to the standard EKF estimate

x̂+k,0 = x̂�k (76)

P+
k,0 = P�

k (77)
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For i = 0,1, . . . ,N, evaluate the following equations
(where N is the desired number of measurement-
update iterations)

Hk,i =
∂h
∂x

����
x̂+k,i

(78)

Mk,i =
∂h
∂v

����
x̂+k,i

(79)

Kk,i = P�
k HT

k,i(Hk,iP�
k HT

k,i +Mk,iRkMT
k,i)

�1 (80)

P+
k,i+1 = (I �Kk,iHk,i)P�

k (81)

x̂+k,i+1 = x̂�k +Kk,i

h
yk �h(x̂+k,i)�Hk,i(x̂�k � x̂+k,i)

i

(82)

(c) The final a posteriori state estimate and estimation-
error covariance are given as follows

x̂+k = x̂+k,N+1 (83)

P+
k = P+

k,N+1 (84)
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