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ABSTRACT

In this paper, we present and evaluate a novel methodol-
ogy to estimate the usable capacity and state-of-health (SOH)
of lithium-ion batteries in battery-electric buses (BEV). This
methodology is designed to be applicable to any BEV in nor-
mal operation, independently of battery chemistry, and with-
out requiring complex electrochemical models or large data
sets. We have tested the proposed methodology on two vehi-
cle fleets with a total of 105 vehicles, for which we have been
acquiring data for up to three years. Additionally, we have
analysed the operation of the fleets in terms of daily distance
driven and the charging strategies chosen by the operators.

The monitored vehicles are part of fleets currently in nor-
mal operation in Europe. The data collection is done with
a third-party data logger that is connected to the vehicles’
Communication Area Network (CAN) buses, and no addi-
tional changes were made to the vehicle’s hardware or soft-
ware. The results show that the proposed methodology shows
significantly lower variance in SOH estimation than the alter-
native methodologies. It also shows similar accuracy in the
long-term and smaller short-term deviations from the typical
capacity fade model.

1. INTRODUCTION

Most urban bus fleet operators are planning the replacement
of their older Internal Combustion Engine (ICE) buses to zero
local emission (ZE) vehicles. At the moment, the most cost-
effective ZE vehicle is the battery-electric vehicle (BEV),
mainly due to the low operational costs. However, BEVs
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have a high cost of acquisition and their batteries have a rel-
atively limited lifespan, which means there is a regular re-
placement cost. The transition from an ICE to a BEV fleet
is only profitable if the operational costs are kept low. This
requires minimizing downtime and maximizing battery life.
Accurate knowledge of the state-of-health (SOH) of the bat-
teries during their life is essential to ensure the vehicle can
successfully perform the required routes with minimal down-
time. The SOH can also be used to make a projection of when
it will reach a threshold at which its operation is no longer re-
liable, so that a replacement can be planned ahead of time.
The ideal solution is minimally intrusive so that any fleet op-
erator can quickly and cheaply deploy it, while also being
accurate and reliable enough to ensure usability.

There are several ways of determining the SOH of a battery in
the literature. A thorough review is presented in Berecibar et
al. (2016). A common way is by direct measurement, where
an experimental setup with controlled conditions is used to
measure and estimate parameters such as the SOH. Coulomb
Counting (CC) is a method that is often used to estimate cell
capacity (Ng, Moo, Chen, & Hsieh, 2009; Lipu et al., 2018).
In Gismero, Schaltz, and Stroe (2020), the authors proposed
a recursive least squares filter to reduce uncertainty in CC-
based SOH estimates. More refined approaches include elec-
trochemical impedance spectroscopy (EIS) and incremental
capacity analysis (Andre et al., 2011; Pastor-Fernández, Ud-
din, Chouchelamane, Widanage, & Marco, 2017). Other pa-
rameters, such as internal resistance are often estimated with
equivalent circuit models (ECM). However, the conditions
necessary to implement these methods make them unfeasi-
ble for BEV in operation (W. Li et al., 2021; Vichard et al.,
2021).

Data-driven approaches are also explored in the literature
(Y. Li et al., 2019; W. Li et al., 2021). These approaches
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model the SOH using machine learning methods on previ-
ously collected data. The limitation of these approaches is
that it is very difficult to train a model that will generalize
well for most operational conditions. This is especially con-
cerning if a new battery architecture or chemistry that is not
in the training data set is found in operation after the model is
deployed. Since we do not have a representative data set, nor
can we build one at this time, we have not pursued data-driven
approaches.

In light of the challenges presented in the state-of-the-art
methodologies, we designed a methodology based on CC.
This methodology may be less accurate than more refined
methodologies found in the literature, but it is faster to imple-
ment and should work reliably for any BEV battery in most
operational conditions. We introduce some filters and binning
on the input data in order to reduce the variance of the SOH
estimation. In this paper, we describe the chosen methodol-
ogy and present results for a fleet of 105 BEV with up to three
years of data.

2. METHODOLOGY

2.1. State-of-Health

The SOH is an indicator of the state of the battery with re-
spect to its lifespan. There are several possible definitions;
some involving battery parameters such as the internal resis-
tance or parameters extracted from incremental capacity anal-
ysis (ICA). We opted to use the definition in Eq. (1), i.e., the
fraction between the actual usable capacity and the original
capacity. We believe this is the most useful definition for a
vehicle operator, as it sets an expectation for the maximum
energy (and thus vehicle range) that can be extracted from a
battery when it is fully charged.

S(t) =
Q(t)

Q(0)
(1)

where Q(t) is the capacity of the battery in Ah at time
t. However, it is generally known that the actual capacity
also depends on other factors, such as operating temperature
and (dis)charge current. These factors will be important to
take into account when designing a diagnosis and prognosis
model.

Ideally, we would fully charge or discharge a cell under con-
trolled conditions, measure the current over time and then in-
tegrate it to estimate the total capacity, as seen in Eq. (2).
However, in operation, we cannot assume to have a controlled
set of conditions for this estimation. The operation tempera-
ture can vary significantly and the discharge current is highly
dependent on the usage profile. Furthermore, as a third-party
who can only inspect the data available in the Communica-
tion Area Network (CAN) bus, we also have limitations in
signal resolution and acquisition rate. We are also unable to

control the charge/discharge rates and the depth-of-discharge
(DOD) for each cycle. In order to ensure that our estimate is
precise, with conditions that do not change significantly over
the analysis period, we have chosen to estimate the SOH us-
ing data from charging sessions only, which should present
similar conditions over time. This should work well for op-
eration modes with slow charging at a depot at the end of the
day, but not so well when operation only includes opportunity
fast charging throughout the day.

Q =

Z t1

t0

I(t)dt (2)

2.1.1. Calculation Method

The estimation of battery capacity is derived from the CC
method commonly used to determine the battery state-of-
charge (SOC). Independently, we have reached a method sim-
ilar to the one presented in Vichard et al. (2021), but we have
some additional features in order to improve estimation pre-
cision.

In Vichard et al. (2021), the proposed battery capacity esti-
mation is given by:

Qmax =

R t1
t0

I(t)dt

SOC(t1)� SOC(t0)
(3)

where I(t) is the battery current, t0 and t1 are the start and
end times for the estimation period. The authors note that
this method yields low precision when small SOC variations
are used, a limitation that we also experienced. We propose a
solution to solve this issue without discarding data from these
instances.

We start by extracting charging session segments from the
data, i.e., segments where the vehicle is plugged-in and charg-
ing. For those segments, we collect the current and SOC sig-
nals given by the battery management system (BMS). The
charging segments are then cut further into bins of 10% of
SOC, e.g., [0, 10[, [10, 20[, ..., [90, 100] %. Generally speak-
ing, the maximum admissible SOC range [0, 100]% is dis-
cretized into N equally sized bins. In terms of notation, we
will identify each bin with an indexed variable bi(t), where
the index will be the 0-based position of the bin in the set of
bins and t the timestamp of the charging session that origi-
nated the data point. For example, b1(t) corresponds to bin
[10, 20[ when N = 10. Figure 1 shows a few representa-
tive examples of how partial charging sessions are discretized.
For instance, session 0 represents a charge from 15 to 90%.
In that case, bin b0 represents the [0, 10[% SOC interval and
originates a missing value, as the session does not cover that
interval. Bin b1 ([10, 20[%) is partly covered, as the session
starts with the SOC at 15%. Partially covered bins are treated
as missing values. Bins b2 through b8 are intervals fully-
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Figure 1. Representation of SOC discretization of partial
charging sessions, assuming 10 bins. The filled boxes, e.g.
bi�1(t), represent bins that fully cover their SOC interval.
White boxes at the beginning or end of a session, e.g. bi(t),
represent a partially covered interval. An example of a bin
with a missing charge value is shown as bi+1(t).

covered in this session, so they originate known/non-missing
values and are used for direct estimation of capacity in each
SOC bin.

We calculate the charge qi of each bin and each charging ses-
sion using Eq. (2). The charge of bin bi(t) is represented as
qi(t). The signals qi(t) are then filtered with an exponen-
tially weighted moving average over time. In the case qi(t)
is missing for session t due to partial charging sessions, the
values have to be imputed. There are several methods for
imputation. In this work, we opted to only experiment with
forward-filling, i.e., the missing value is imputed by value of
the previous known value qi(t � k). In practice, we use the
value extracted from the last charging session that covered the
missing value’s bin. This process will not impute missing val-
ues for bins that have never been covered with a session. This
happens frequently at the beginning of data acquisition for a
battery. In this case, since we do not want to use data from
the future, we opted by imputing with q(t), i.e., the mean
value of the non-missing values of qi within the same charg-
ing session t. In order to distinguish non-missing and missing
charge values qi(t), we introduce a symbol �i that takes the
value of zero or one depending on whether qi is missing or
non-missing, respectively.

The final estimated maximum capacity Q(t) as a function of
the bin charges qi is:

Q(t) =
N�1X

i=0

�iqi + (1� �i)q (4)

where q is the mean value of the non-missing bin charges for
charging session t. The maximum capacity estimated at the
time t for a partial charging session is the sum of the latest
charge values of each bin qi, with i 2 {0, 2, ..., 9}. The first
term of this equation is related to the direct measurement of
capacity qi, that occurs when a partial charging session orig-
inates bins with valid values (�i = 1) bin. The second term

defines the extrapolation done when a specific SOC bin does
not have any valid values in time, on which case imputation
with the value q is used.

An algorithm based on the direct application of Eq. (3) has
an implied assumption of linearity between the charge added
during the charging session and the SOC increment. With our
approach, the charge qi of each bin bi is estimated indepen-
dently from that of all other bins, as each SOC bin uses in-
dependent data. The discretization of the proposed approach
can approximate the maximum charge of batteries even with
non-linear SOC-charge relationships. As a drawback, this
method can only use the bins with data that spans the whole
range of the bin. For example, a charging session that starts at
13% and ends at 92% SOC will not use the data in the ranges
[13, 20[% nor [90, 92]%, as they do not cover the whole bin
range. We could reduce the impact of this issue by increas-
ing the number of bins. In practice, reducing the bin size
increases the estimation variance mainly due to inaccuracies
in SOC estimation.

The definition of Q(t) allows us to estimate the SOH using
Eq. (1). We will not describe in this paper the best method-
ology to estimate Q(0) – the maximum capacity at the begin-
ning of life (BOL) –, so we will assume the a value linearly
extrapolated from the acquired data.

2.1.2. Evaluation

Normally, we would evaluate the proposed method by com-
paring the SOH estimations to the actual SOH. However, for
a fleet in normal operation, we are not able to perform the
charge/discharge capacity tests in coherence with those per-
formed by the battery manufacturer. Additionally, the begin-
ning of acquisition (BOA) is not always equal to the battery
BOL, which means that the SOH true value will naturally be
below 100%. Since we are also not able to measure the true
SOH, we cannot quantitatively measure the accuracy of our
methodology.

We will focus the evaluation on metrics that fleet managers
may also be interested on, such as the precision of our SOH
estimate and its ability to detect the typical capacity fade ex-
pected in a lithium-ion battery. The precision is an impor-
tant metric for the fleet manager since in increases their con-
fidence in the estimations, which is important for decision-
making. It is measured quantitatively by the standard devia-
tion over a rolling window. On the other hand, the ability to
accurately track capacity fade will be a qualitative metric.

2.2. Operation Metrics

As previously mentioned, the charging strategy used in the
operation of BEV may have an impact on the accuracy of the
SOH estimation. In order to understand the charging strat-
egy, we gather some metrics from the data of each charging
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session, such as:

1. Start SOC (%)
2. End SOC (%)
3. Delta SOC (Start SOC � End SOC) (%)
4. Average Power (kW)
5. Odometer value (km)

We then analyse the distributions of these metrics in order
to understand if fast-charging is being used during operation,
or if overnight charging is dominant. We will also look into
correlations between charging strategies and the daily driven
distance.

3. RESULTS AND DISCUSSION

3.1. Data Collection

The data is collected on-board the vehicle using Stratio’s1

data logger. The logger is connected the CAN of the vehi-
cle. CAN networks are the de facto standard for in vehicle
communication and used by the multitude of on-board com-
puters to share data between them. For example, these data
can be sensor values or computed actuator positions used for
controlling the multitude of actuators within a vehicle. As the
complexity of vehicles has increased in the past years, more
CAN buses have been added in order to accommodate the in-
crease in used bandwidth. Nowadays, buses and trucks com-
monly use eight or more CAN lines, often connecting more
than 30 on-board computers. The specialization of these net-
works has lead to several new CAN protocols, as well as some
proprietary CAN configurations. These configurations pose
a challenging problem when trying to read data from them.
Without the proper configuration settings, the data are impos-
sible to decode. The setting can be obtained from the original
equipment manufacturer (OEM) or through extensive reverse
engineering.

Stratio’s data logger can simultaneously connect up to three
CAN buses and monitor more than 300 signals. This eas-
ily amounts to very large volumes of data and thus high data
transfer costs, as the collected data is sent to Stratio’s servers
through a 4G cellular connection. The device utilizes both
down sampling and data compression in order to reduce the
transmission costs.

We have collected data in real-time from two vehicle fleets
with distinct operators and non-overlapping vehicle models.
All vehicles in the fleets are BEV designed for urban opera-
tion. The collected date ranges are shown in Table 1. It should
be noted that communication can be temporarily interrupted
for some vehicles, so there is no guarantee that each vehicle in
the fleet has data available in the whole date range. We have
collected data from multiple systems within the vehicles, but
the signals acquired from the traction battery systems include
1https://stratioautomotive.com/

Table 1. Description of the vehicle fleets data collection date
ranges.

Fleet Start Date End Date
FLT0 2021-06-01 2021-11-15
FLT1 2019-01-01 2021-11-15

Table 2. Description of the vehicle data acquisition parame-
ters.

Signal Fleet 0 Fleet 1
Period Resolution Period Resolution

Odometer 10s 1km 10s 1km
Current 1s 4A 1s 1A
Voltage 1s 3.8V 1s 3.4V

SOC 10s 1.2% 10s 0.4%

current, voltage, BMS SOC and mean cell temperature. The
acquisition parameters for each signal are described in Ta-
ble 2.

3.2. Operation Analysis

We start by doing an analysis of how the vehicles are being
operated in our fleets. In Figure 2, we plot the distributions
of the starting SOC and delta SOC for charging sessions,
grouped by the fleets described in Table 1. It should be noted
that in these box plots, the whiskers represent 10 and 90%
quantiles, while the colored box represents the quantile Q1,
median and quantile Q3, in order.

Both of these metrics show very different distributions. In
regards to the start SOC of the charging sessions, FLT0 shows
a median of 73%, while FLT1 has a median of 48%. There
is no intersection between fleets of the intervals between Q1
and Q3. On the other hand, the delta SOC median is 14% for
FLT0 and 52% for FLT1. There is also no intersection of the
intervals between Q1 and Q3 for this metric.

The data show that FLT0 charges mostly during operation
with short stops for fast-charging. The SOC rarely drops be-
low 50% and the typical stop adds less than 20% of charge.
On the contrary, FLT1 uses exclusively slow-charging at the
depot after a full operation day. This is confirmed by the sig-
nificantly lower starting SOC and larger SOC increases of
the charging sessions. The vehicles typically charge when
the SOC reaches below 50% SOC and then are charged until
full. The fact that FLT0 has half of their charges with SOC
deltas below 15% means that likely less than half of the ac-
quired data is being used for the SOH estimation following
our methodology.

We also explored the relationship between the fleet charg-
ing strategy, average charging power and the daily distance
driven, represented in Figures 3a and 3b. FLT1 shows a
median daily distance driven of 170km, with 75% of days
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Figure 2. Box plot of two charging sessions parameters: start-
ing SOC, SOC(t = 0), and the total SOC increase, �SOC.
The whiskers define the 10 and 90% quantiles. Colors encode
the distinct vehicle fleets.

showing less than 200km. For these distances, which can be
covered with a single charge, overnight charging is ideal, as
the operator can also take advantage of off-peak electricity
rates. FLT0 shows a median daily distance of 266km with
75% of days below 317km, and some vehicles going over
400km. This is beyond the operational limit of today’s BEVs
and therefore requires fast-charging during the day. This spe-
cific fleet uses a network of fast-chargers deployed by the fleet
operator. The use of fast-charging is confirmed by the visual-
ization of charging power in Figure 3b. While FLT0 shows a
median power of 125kW peaking on 250kW, FLT1 is limited
to a median of 41kW and peak of 125kW.

3.3. State-of-Health

In this section, we present the results of the evaluation strat-
egy described in Section 2.1.2. We have evaluated the perfor-
mance of the methodology proposed in this paper described
by Eq. (4), hereinafter referred to as Proposed Algorithm.
For comparison, we have also evaluated the methodology de-
scribed by Eq. (3) in Vichard et al. (2021), which we call
Algorithm 1.

The first evaluation metric is the standard deviation of the
SOH predictions. We calculate it on 30-day rolling windows
per vehicle and average it for the entire fleet. We aggregate
this metric across the two methodologies and fleets analysed.
We have also removed charges below 10% for Algorithm 1,
in order to reduce the estimation noise. The results are shown
in the top plot of Figure 4.

The plot shows no interesting features or trends in the noise
over time in any case. For either fleet, the proposed method-
ology has significantly lower noise (p ⌧ 0.01). There is a
significant difference in precision between fleets with both
methodologies. We believe this is mostly due to the different
operation factors that we presented in the previous section.

(a)

(b)

Figure 3. Visualization of daily (a) travelled distance and (b)
session average charging power, separated by the two vehicle
fleets. The whiskers define the 10% and 90% quantiles.

Fleet FLT1 uses mostly fast-charging at a rate that is limited
by the battery SOC at the time. Therefore, the battery cur-
rent variance is proportional to the variance observed in the
SOC level. Fleet FLT0 does not as high a current variance
as FLT1 observes due to the use of overnight charging. A
second source of uncertainty may be sensor accuracy (SOC
and current), as different fleets contain vehicles from differ-
ent OEMs. In this study, we will not test these hypotheses.

In regards to the accuracy qualification of the SOH curves,
our best efforts are limited to verifying the capacity fade rates
seen in the fleets. To estimate the fade rate, we applied a lin-
ear regression model on the SOH metric using the odometer
value as the independent variable. The results show strong
variance within the fleets, but mean capacity fade rates of 2.4
% per 100.000km for Proposed Algorithm and 7.1% for Al-

gorithm 1. Either value is possible for lithium-ion batteries
depending on design and operation parameters. For visualiza-
tion, we show the fleet-averaged SOH with a rolling window
of 30 days in the bottom plot of Figure 4. The plot shows
the negative trend of SOH that characterizes the process of
capacity fade across all fleets and methodologies. Comparing
the two methodologies on the longest operating fleet FLT1,
we see that our methodology shows significantly smaller de-
viations from the linear decay. Although some cell processes,
such as capacity regeneration, may temporarily change the
maximum available capacity, they are unlikely to create the
deviations we see with Algorithm 1. Therefore, we believe
that the proposed methodology may be more accurate.
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Figure 4. Top figure: 30-day rolling average of the SOH metric standard deviation. Bottom figure: 30-day rolling average of
the SOH metric. Both plots contain data split by methodology and vehicle fleet. The Proposed methodology refers to the one
proposed in this paper, described by Eq. (4), and Algorithm 1 refers to the methodology presented in Vichard et al. (2021).

4. CONCLUSION

We presented in this paper a novel methodology to address
the problem of determining the SOH of a traction battery
within an electric vehicle. Although there are several method-
ologies already described in the literature, many of them are
very difficult to implement in an active fleet. The proposed
methodology was implemented using a third-party connected
data logger in urban vehicle fleets in normal operation. This
type of solution is valued by fleet operators who are inter-
ested in monitoring the BEV in their fleets with a minimally
intrusive solution.

We have tested our methodology on a data set that we have ac-
quired from 105 vehicles covering a time-span of up to three
years. The results show that the solution can be integrated
in a battery health management product. Moreover, our esti-
mations show lower standard deviation while maintaining or
slightly improving accuracy when compared to other method-
ologies in the literature. On a longer time scale, the estimated
SOH over time appears to correctly follow the expected ca-
pacity fade of lithium-ion batteries.

Future work will involve further reducing variance of the
SOH estimation by improving the SOC signal given by the
vehicle’s BMS. There is also the opportunity to study the im-

pact of other imputation methods for the missing data caused
by partial charge sessions. We will also keep acquiring data
for these fleets in an effort to develop new prognostics models
for the battery based on the SOH metric.
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