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ABSTRACT

Fibre ropes have been shown to be a viable alternative to steel
wire rope for offshore lifting operations. Visual inspection
remains a common method of fibre rope condition monitor-
ing and has the potential to be further automated by machine
learning. This would provide a valuable aid to current in-
spection frameworks to make more accurate decisions on re-
certification or retirement of fibre ropes in operational use.
Three different machine learning algorithms: decision tree,
random forest and support vector machine are compared to
classical statistical approaches such as logistic regression, k-
nearest neighbours and Naive-Bayes for condition classifica-
tion for fibre ropes under cyclic-bend-over-sheave (CBOS)
testing. By measuring the rope global elongation through-
out the CBOS tests, a binary classification system has been
used to label recorded samples as healthy or close to rup-
ture. Predictions are made on one rope through leave-one-
out cross validation. The models are then assessed through
calculating the accuracy, probability of detection, probabil-
ity of false alarm and Matthew’s Correlation Coefficient, and
ranked based on the results. The results show that both ma-
chine learning and classical statistical methods are effective
options for condition classification of fibre ropes under CBOS
regimes. Typical values for Matthews Correlation Coefficient
(MCC) were shown to exceed 0.8 for the best performing
methods.
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1. INTRODUCTION

As offshore lifting operations move to deeper waters exceed-
ing 3000 m, the possibility of implementing fibre ropes in-
stead of steel wire ropes has shown to be a viable alterna-
tive. The benefits of fibre rope over steel ropes is well doc-
umented ((Foster, 2002), (Rebel, Verreet, & Ridge, 2006)
and (Fronzaglia & Bosman, 2016)) but condition monitoring
and determination of retirement criteria remain issues. Ma-
chine learning is rapidly gaining traction as a condition mon-
itoring method across a number of industries ((Sutharssan,
Stoyanov, Bailey, & Yin, 2015), (Nguyen et al., 2019) and
(Chang, Lee, & Liu, 2018)). Due to improved monitoring
methods and storage of historical data, there has been a shift
in research towards “intelligent maintenance systems” focus-
ing on automatically determining the condition and detecting
faults of engineering components with less human interven-
tion. Condition monitoring for fibre ropes used for subsea de-
ployment also has potential for further advancement with ma-
chine learning. Manual inspection methods detailed in indus-
trial standards are still mainly used in condition classification
and are still largely based on experience from mooring appli-
cation (DNVGL, 2017), (DNVGL, 2018) and (ABS, 2011)).
Machine learning adaptation would serve as a useful aid to
these methods and allow inspectors and operators to make a
more informed decision on rope retirement or re-certification.

Fibre rope degradation mechanisms related to mooring and

offshore lifting have been summarised in previous studies ((Weller,

Johanning, Davies, & Banfield, 2015), (Faria, Bosman, Craw-

ford, Leite, & Boesten, 2017) and (McKenna, Hearle, & O’Hear,
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2004)). These include but are not limited to: creep, tem-
perature, abrasion, tension fatigue and compression fatigue.
These damage mechanisms and potential failure modes add
difficulty in developing an all-encompassing method of mon-
itoring fibre ropes. Therefore a combination of machine vi-
sion cameras, IR camera and a distance measuring laser were
proposed for this study.

Machine learning methods have previously been applied to
condition classification of steel wire ropes for hoisting in the
mining sector. The use of k-nearest neighbours and artificial
neural networks was adapted to classify the condition of bal-
ancing tail ropes in (Zhou et al., 2018) and a type of support
vector machine to classify rope faults based on vibration data
in (Xue, Tan, Shi, & Deng, 2020). To the authors’ knowl-
edge there has been no publicly released research related to
machine learning for condition classification of fibre ropes.

Condition monitoring for other engineering components ben-
efits greatly form publicly available data sets, therefore al-
lowing focus to be fully put on development for intelligent
maintenance algorithms, rather than focusing on data record-
ing. Fibre ropes for lifting operations do not benefit from this
and major efforts are required to create these data sets. This
article extends research on such condition monitoring meth-
ods performed at the University of Agder, Norway ((Falconer,
Gromsrud, Oland, & Grasmo, 2017), (Falconer, Grasmo, &
Nordgard-Hansen, 2019) and (Falconer, Nordgard-Hansen,
& Grasmo, 2020)) that make use of cyclic-bend-over-sheave
(CBOS) tests monitored by both computer vision and thermal
monitoring. The changes in geometry and temperature of the
rope recorded during CBOS testing are used to create features
that form the machine learning models.

In this study decision trees, random forest and support vec-
tor machines are compared to classic statistical methods such
as k-nearest neighbours, logistic regression and Naive-Bayes
for binary classification of fibre rope condition. The meth-
ods chosen for application reflect current practice in machine
learning for diagnostics of engineering components. An in-
troduction to these methods is outlined in Section 2 and the
experimental set-up with associated data processing steps are
summarised in Section 3. The results of the classification
models are presented in Section 4, followed by discussion in
Section 5. Subsequently, the potential for industrial applica-
tion of machine learning for fibre rope offshore construction
cranes is discussed in Section 6. Finally, conclusions are of-
fered in Section 7.

2. METHODS

In this section, a brief overview of the methods that are ap-
plied in the present study is given.

2.1. Decision Tree (DT)

This study applies the decision tree algorithm as detailed in
(Breiman, Friedman, Olshen, & Stone, 1984), using the im-
plementation in scikit-learn (Pedregosa et al., 2011). It com-
prises a flowchart that assigns each sample to one of two
classes based on a condition selected from the features avail-
able. The samples are split based on an attribute selection
measure, in this case the Gini index, which measures the
impurity of a data split with respect to the classes available
((Rokach & Maimon, 2005) and (Mingers, 1989)). This pro-
cess is performed recursively until all samples are assigned to
a class or there are no more features available to make splits.
The depth of the trees can also be limited to change the com-
plexity of the model. For example, a deeper tree can lead to a
more accurate result but has the risk of creating an overfitted
model due to unrealistic complexity. Since there is a random
element involved in the algorithm each tree configuration is
repeated 20 times to assess the spread and confidence in the
classification predictions.

2.2. Random Forest (RF)

Random forest is an example of an ensemble learning method
comprised of many decision trees. The method is described in
detail in (Breiman, 2001) and also implemented using scikit-
learn (Pedregosa et al., 2011). A random forest is formed with
a defined number of decision trees, where each individual tree
is formed on a subset of samples and features created through
random sampling with replacement. These multiple predic-
tions are combined in the bagging phase (Breiman, 1996),
where the a class is assigned based on a majority vote by the
individual trees in the random forest. Similar to the decision
tree algorithm, the depth of the individual tree can also be
controlled. The number of trees that make up the forest can
also be adjusted. Each configuration is repeated 20 times to
assess the variation in the predictions made by the model.

2.3. Support vector machine (SVM)

Support vector machine has also found use for classification
problems as defined in (Cortes & Vapnik, 1995) and are im-
plemented through scikit-learn (Pedregosa et al., 2011). The
algorithm works by fitting a hyperplane that divides a set of
instances into classes. The optimal solution is separated is
where the margin that separates the instances has been max-
imised, with the instances used referred to as “support vec-
tors” (Shmilovici, 2005). The generalisation to the nonlinear
case is achieved by applying the so-called kernel trick, us-
ing nonlinear kernel functions for transforming the task into
a higher-dimensional space, in which the number of possible
linearly separating hyperplanes is larger than in the original
space. In this study linear (SVM-linear), Sigmoid (SVM-
Sigmoid) and radial basis function (SVM-RBF) models are
applied to alter the hyperplane shape applied to the data. Each
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configuration is performed once and the performance of the
kernels is compared.

2.4. Classical Statistical Methods

The machine learning models detailed previously are also com-
pared and assessed along with classical statistical approaches
such as k-nearest neighbours (Altman, 1992), Naive-Bayes
(Rish, 2014) and logistic regression (Cramer, 2002). These
methods are also commonly used for classification problems
as an alternative to machine learning. As this research is new
use for machine learning, classical statistical methods are also
investigated to assess if they are sufficient enough to achieve
good classification results.

3. EXPERIMENTAL STUDY
3.1. CBOS Testing and Data Acquisition

Two different types of 28 mm diameter, 12-strand HMPE fi-
bre rope (denoted “A” and “B”’) were tested in a CBOS test
machine installed by DEP Engineering at the Mechatronics
Innovation Lab (MIL) in Grimstad, Norway. The machine
has two sheaves: a driving sheave and a test sheave. The test
sheave is designed to be smaller than the driving sheave so
that the rope break would occur there. The driving sheave is
controlled via a motor which instigates rope movement dur-
ing testing. The test sheave is 800 mm diameter and made of
42CrNiMo4 steel with a U-groove profile, which equates to
a D/d ratio of 28.6:1. It is attached to a portion of the ma-
chine which moves with the extension of a hydraulic cylin-
der. Tension in the rope is applied and maintained via this
hydraulic cylinder, which will extend as the test progresses.
Each rope is tested until failure, which can occur through rup-
ture or accelerated extension of the rope detected by sensors
in the cylinder. An overview of the machine is shown in Fig-
ure 1. The safety factor (SF) of the each test is defined by
expression 1:

MBL,ope

SF =
Ttest

ey
where M B L, is the rope minimum break load as specified
by the manufacturer and Ty is the test tension exerted by
the cylinder in the CBOS machine. The safety factors used in
testing for data sets A and B are 11 and 8, respectively. Data
set A contains five ropes and data set B contains four ropes.

Data is acquired from a set-up that includes: four machine
vision cameras, a thermal camera and a distance measuring
laser. The features used in model training are derived from
the data acquired through the monitoring system. Algorithms
developed in OpenCV (Bradski, 2000) are used to extract lo-
cal length and width data from the machine vision cameras.
The change in these parameters as result of fatigue and abra-
sion during CBOS testing can be monitored. FLIR software

Driving
sheave

[Test sheave |8

Figure 1. Overview of CBOS machine at Mechatronics Inno-
vation Lab, Grimstad, Norway.

with built-in features is used for thermal data (FLIR, 2015)
recorded with the IR cameras. This allows the temperature in
each distinct bending zone to be monitored throughout test-
ing. The distance measuring laser allows the global length to
be continuously monitored and the effect of creep on elonga-
tion to be monitored. Further specific details related to data
acquisition are available from previous work (Falconer et al.,
2020).

Figure 2 shows a schematic of different bending zones mea-
sured throughout each experiment: the straight zone (SZ),
single bend zone (SBZ) and double bend zone (DBZ). For
each of the eight sections defined in Figure 2, one length mea-
surement and four width measurements are used as features.
Each separate local length measurement equates to half a lay
length. Computer vision data is recorded for 2000 images,
corresponding to 13-15 complete cycles, every 1000 cycles.
The values for each recording are thus aggregated to give me-
dian, maximum, minimum and standard deviations for these
geometric features. The thermal camera was set to sample at
100 Hz for 2000 images, resulting in a 20 seconds video for
each period. This was sufficient to record at least one full cy-
cle in the CBOS test. Temperatures are only available for the
lumped zone SZ, SBZ and DBZ and the temperature values
within the rope part of each relevant image are aggregated
as average, maximum, minimum and standard deviation. A
complete list of features used in this study is shown in Ta-
ble 1.

3.2. Data Pre-processing

After recording the data is treated for outliers and missing
data. Outliers in the geometric measurements are handled
using mean absolute deviation. This is due to the morpho-
logical operations in the width and length calculations occa-
sionally detecting points outside of the rope region of inter-
est in the images. Therefore, this is applied to both length
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Figure 2. Summary of bending zones monitored during

CBOS testing.

Table 1. List of features used for condition classification in
data sets A and B.

Data type [ Feature (zone) | Parameter
Local Iength:
SZ1,S72,
SBZ1, SBZ2,
DBZ-A-1, DBZ-A-2, di
DBZ-B-1, DBZ-B-2 m‘gjir;a;‘r’n
Geometric Widh: minimum,
Sle SZZ standard deviation
SBZ1, SBZ2,
DBZ-A-1, DBZ-A-2,
DBZ-B-1, DBZ-B-2
average,
Thermal Temperature: maximum,
SZ,SBZ, DBZ minimum,
standard deviation

and width measurements and will exclude outliers from the
median, maximum, minimum and standard deviation calcu-
lations.

Missing data may occur as a result of instrumentation issues.
The machine learning algorithms applied in this study omit
the whole record if any feature has missing data, meaning
useful data can also be left out. Therefore imputation of miss-
ing data points is done through interpolation.

After these steps, the raw measurements from the data ac-
quisition phase are scaled by subtracting the mean value and
dividing by the standard deviation. This done for each rope
tested to improve comparability between the rope samples
and is a standard step to prepare data for machine learning
application.

3.3. Labelling

To perform classification predictions on the ropes, the records
need to be appropriately labelled. This study is a binary clas-
sification problem, therefore the ropes can be considered ei-
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Figure 3. Example of labelling process on rope AS with tran-
sition point between both classes.

Preprocessing:
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Apply SVM, RF
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Figure 4. Operations flowchart.

ther Healthy (HE) or Close To Rupture (CTR). The devel-
opment of the global length resembles a creep curve with
three distinct stages: primary, secondary and tertiary creep.
The tertiary creep stage encompasses the accelerated creep
phase after the transition point. Fitting the global length de-
velopment to a polynomial allows a quantitative definition of
the transition from secondary to tertiary creep, thereby la-
belling each sample as “HE” or “CTR”, as shown in Figure 3.
The “CTR” labelled examples equate to the accelerated creep
phase. This labelling process allows an automated, quantita-
tive definition of rope condition to be implemented.

3.4. Model Training and Assessment

Leave one out cross validation (LOOCV) is performed on the
CBOS data sets. A summary of the steps in the LOOCYV pro-
cess in this study are detailed in Figure 4.

The results are shown through metrics that are derived from
Confusion matrix description, which is shown in Figure 5.

The correct predictions can be summarised as true positives
(TP) and true negatives (TN) and the incorrect classifications
are quantified as false positives (FP) and false negatives (FN).
The negative and positive classes coincide with the HE and
CTR classes, respectively. The metrics used for model as-
sessment accuracy (ACC), probability of detection (POD),
probability of false alarm (PFA) and Matthews correlation co-
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s(cmw)| TP | FP
g
SHE| FN | TN
a
(CTR)  (HE)
True class

Figure 5. Overview of confusion matrix.

efficient (MCC) are shown in Expressions 2- 5:

TP+ TN

ACC = TP+TN + FP+FN )
TP

POD = 757N )
FP

PRA= FP+FN @

TP-TN —-FP-FN

MCC =

Length between morkers in pixels: 931.775

Length between morkers i pixels: 1032.564

Figure 6. Example of changes in rope in DBZ between the
start and the end of a CBOS test.

\/ (TP + FP)(TP+ FN)(TN + FP)(TN + FN) example the classifications predicted by the models at the var-

&)

ACC is the most general of the metrics presented in this sec-
tion and simply takes into account the number of correct pre-
dictions across of the whole data set. The closer the value is
to 1, the better the model is performing. However, this does
not take into account the number of samples present in each
class.

POD can be summarised as the likelihood of a CTR being
correctly classified. The closer the metric is to 1, the better the
model is deemed to have performed in this aspect. A model
that fails to detect CTR samples runs the risk of allowing the
rope to continue operation until it fails.

PFA is interpreted as the probability of an “HE” sample being
mislabelled as “CTR”. If a model has a higher tendency to
classify samples as CTR when they are HE, it would lead to
more false alarms during condition monitoring. This could
potentially prove to be costly due to operational stoppages
for inspection and therefore a lower value is preferred.

MCC takes into account all four values in the confusion ma-
trix and provides a more balanced assessment regardless of
whether one class is disproportionately over- or under-repre-
sented. A value close to 1 means that both classes are being
predicted well and show that true and predicted classes are
correlated.

However, none of the metrics give information about what
specific samples have been misclassified. Figure 8 shows an

ious stages of the CBOS test. Separate results are presented
for data sets A and B and the values of the metrics are av-
eraged over the number of individual ropes in each data set.
The algorithms are then ranked and compared based on the
predictions made.

4. RESULTS
4.1. CBOS test results

Figure 6 shows an example of changes observed in the rope
from the start and end of the CBOS test. Using the images
captured from the computer vision set-up (top image), it is
possible to monitor changes in both local length and width. In
this example there is significant localised increase in length,
as well as the presence of ruptured strands and extruded loops.
These defects can also be observed using the thermal moni-
toring set-up (bottom image). The ropes structure changes
as the test progresses and the temperature difference between
warmer compact core and the cooler ruptured strands is clearly
visible.

The number of cycles each rope had at failure is summarised
in Table 2. It can be seen that the number of cycles counted
for data set B is fairly consistent, however there are slight
variations with data set A. These “earlier” failures for ropes
Al and A4 are attributed to the splicing used in these rope
samples. Due to experimental limitations, a portion of this
splice was in contact with the driving sheave, resulting in fail-
ure there instead of at the test sheave.
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Figure 7. Confusion matrices for results on rope A5 for six
different algorithms.

4.2. Classification Comparison

Figure 7 shows an example of confusion matrix results for the
six different techniques applied to rope AS. Figure 8 shows
an qualitative example of the six different techniques applied
and the results given for rope AS5. The true transition point
between the HE and CTR classes is highlighted by the vertical
blue line.

It is shown that most models identify a too early transition
between the classes. There are a substantial number of HE
instances classified as CTR before the transition point indi-
cated by the vertical blue line for every different model.

The decision tree is shown to have a particularly poor perfor-
mance in comparison to the other algorithms. It misclassifies
a significant number of both HE and CTR samples. More-
over, when a rope break is imminent it continues to classify
the rope as safe for use.

k-nearest neighbor gives a lot more false alarms earlier in the
CBOS test than the other algorithms. This could prove costly
in terms of operation downtime, as a rope identified as po-
tentially failing requires inspection and remedial actions to
ensure continually safe use.

CTR - oammmen ¢ ammen CTR et e
a
< e DT = SVM
o]
HE | coms—— ® ssnemes wwsme ®® o HE { sees——n = ss—
0 20000 40000 60000 80000 100000120000140000 0 20000 40000 60000 80000 100000120000140000
CTR —_—— CTR
w
= + RF + NBayes
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HE — S S— ) .~ . HE | OEEmES ¢ SE— - . -
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w
8 = LogReg a  Knearest
o]
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Cycles Cycles

Figure 8. Example of classification results on rope A5 for six
different algorithms.
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Figure 9. ACC results for each algorithm compared between
data set A and B.

4.3. Average Metrics

The average results for metrics ACC, POD, PFA and MCC in
data set A and B are shown in Figure 9 to Figure 12. The best
performing configuration of each algorithm is presented and
assessed for classification performance.

An ACC value that exceeds 90 % generally indicates a very
good performance, as it measures how many correct classi-
fications were made across all samples. Random forest and
SVM-linear were shown to be best performing machine learn-
ing algorithms in data sets A and B respectively.

k-nearest was also shown to have similar scores in data set
A to random forest, however as shown in Figure 9, this can
be deceptive due to extensive mislabelling of HE samples as
CTR in the earlier portions of the rope test time. These mis-
classification are reflected by the higher PFA score, indicating
that there is around a 10 % probability of a HE sample being
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Figure 10. POD results for each algorithm compared between
data set A and B.
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Figure 11. PFA results for each algorithm compared between
data set A and B.

misclassified as CTR. These types of misclassification could
prove costly due to increased down time for inspections.

Similarly, POD above 90 % also indicates a very good perfor-
mance as this assesses how effective the model at classifying
the CTR class. This was shown to drop between data sets A
and B, indicating that the data used in B was to the detriment
of successfully classifying the CTR class.

Generally, a lower PFA score indicates better performance.
PFA is shown to decrease dramatically between data set A
and B. From the outset a zero PFA score is ideal, however
in the case of Naive-Bayes, random forest and decision tree
in data set B this indicates the models were biased towards
predicting the majority of the samples as HE. There was no
misclassification of HE samples as CTR but they failed to
identify a number of CTR samples. These models could lead
to dangerous operation as a rope that is nearing the end of its
usage could potentially be classified as being safe to continue.

SVM linear increases dramatically in performance from A to
B. This is reflected in the increase in scores for both MCC and
ACC between A and B, indicating that the algorithm was able

McC
DT
SVM-Linear INNEGEGEGEGEGEEEEEEEEE—
Log Regression | e
SVM-Sigmoid [
SVM-RBF [ —.
Naive-Bayes |
K-nearest | e
RF - e —
0.50 0.60 0.70 0.80 0.90
HA EB

Figure 12. MCC results for each algorithm compared be-
tween data set A and B.

to better predict both classes with the change in data used.

Generally the ACC, POD, PFA and MCC show distinct group-
ings in data set A. When only assessing ACC and POD, the
best performing algorithms could be interpreted as perform-
ing at the same level. However, when considering PFA and
MCC scores, there is a clearer separation between the algo-
rithms indicating that these metrics have to be used in combi-
nation to properly assess a model.

5. DISCUSSION

The performance of each method is assessed and discussed
individually in the following sections. Then the performance
of the machine learning algorithms against the classical statis-
tical methods is also considered and discussed. Despite dis-
crepancies between the rope lifetimes, it is possible to achieve
good condition classification results using both machine learn-
ing and statistical approaches with all the viable data from the
zones outlined in Figure 2.

5.1. Decision Tree

The decision tree method implemented in this study performed
worse than all other algorithms, both machine learning and

statistical based. Decision tree is an example of a heuristic

algorithm and will classify instances based on the feature that

has the lowest Gini index value. This approach causes the re-

sults of individual trees to vary, as a feature may produce the

same “impurity” but the resulting segmentation point could

classify samples differently. Unless explicitly programmed

to make consistent data splits on the same features, the deci-

sion tree will produce variation in results.

The method is however shown to be useful for exploratory
analysis of the features best suited to distinguishing between
the two classes established in this study. For fibre rope condi-
tion monitoring of CBOS testing it highlights that the features
derived from the SBZ and DBZ are more relevant than those
from the SZ section. This is as expected, since more bend-
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ing occurs in these zones leading to greater deformation and
more variation in width, length and temperature to form data
splits. The method should not be used as a stand-alone clas-
sification method but can be used as a technique for feature
reduction before repeating the modelling process with other
machine learning or statistical approaches.

5.2. Random Forest

Random forest was the most effective method for data set A
but performed worse than all other algorithms apart from de-
cision tree in data set B. Data set B had less data than data
set A, so therefore the decrease in the amount of data to split
the records contributes to the detriment in performance. This
is due to the model not being able to achieve the same model
complexity at shallow tree depths with fewer samples. This
highlights the importance of having an extensive data set to
make predictions when using random forest as indicated in
data set A.

The technique is robust due to the properties of the algo-
rithm, with random sampling with replacement and the ma-
jority vote system of trees contributing to more stable predic-
tions. It is also possible to achieve excellent predictions with
shallow tree depths, which limits the need for excessive com-
puter capacity. However again, both of these characteristics
are reliant on substantial and good quality data to achieve the
model complexity needed to give the good results achieved
through random sampling and the majority vote system.

5.3. Support Vector Machine

The linear kernel was not as effective in data set A, however
was the best performing machine learning algorithm in data
set B. The linear kernel is the simplest implementation of
SVM, which puts a straight hyperplane in the higher dimen-
sional space to separate the samples into classes. In data set
A, there is lower temperatures in the bending zones during
the experiment compared to data set B. Features with mea-
surements that change little contribute noise to the process
of finding the optimal hyperplane. In data set B there were
larger temperature differences between the bending zones due
to greater tension, allowing a more optimal split to be found
due to more distinctly scaled values.

SVM using both the radial basis function and sigmoid kernels
performed to more or less the exact same levels in both data
sets, indicating the hyperplane shapes imposed were more
adaptable to the differences between data sets A and B. While
the linear kernel is limited in the separating hyperplane it can
impose for class separation, the other kernels presented here
can form a more complex hyperplane that can serve to sepa-
rate the classes more effectively. Compared to decision tree
and random forest, the SVM is a much more adaptable and
consistent algorithm as reflected in the results presented.

Table 2. List of cycles at failure during CBOS testing in data
sets A and B.

Data type ‘ SF ‘ Rope ID | No. cycles at failure

Al 73304
A2 122,368
A 1 A3 120,430
Al 87.314
A5 143374
BI 14,943
B2 13.883
B 8 B3 13.901
B4 13,998

5.4. Machine Learning and Statistical Methods Compar-
ison

Both the machine learning and classical statistical approaches
were shown to be valid methods for classifying condition of
fibre ropes during CBOS testing. The k-nearest neighbours
algorithm was shown to perform just as well or slightly worse
than the best performing machine learning algorithm when
assessed using only metrics. However, Figure 8 demonstrates
that there is a possibility that k-nearest neighbours produces a
substantial amount of false alarms at earlier stages of testing.
The false alarms for random forest occur closer to the transi-
tion point between classes and avoid very early stoppages.

However, the results presented in this paper show that there
is merit in applying machine learning for fibre rope condition
monitoring. In a machine learning application, the models
created can only perform if there is enough data available.
In situations where data is limited a classical statistical ap-
proach can suffice, as shown by the robust performance of
logistic regression and k-nearest neighbours across both data
sets. Logistic regression was also shown to be less hampered
by smaller data sets as reflected by the stronger performance
in data set B than in data set A. Some machine learning algo-
rithms in this study, such as decision tree and random forest,
performed worse in data set B than in data set A and failed
to adapt to the smaller data set. Also SVM-linear showed an
increase in performance with a smaller data set.

This also highlights the adaptability of different machine learn-
ing models for different circumstances. In situations where

there is both enough and good quality data, machine learning

should be used as the approach for condition classification.

Howeyver, in situations where there is a smaller data set, a

classical statistical approach could be more appropriate be-

fore attempting machine learning to find potential improve-

ments in condition classification.

6. FUTURE WORK AND ADAPTATION FOR FIELD
DEPLOYMENT

Further work is required to develop machine learning applied
to fibre rope condition monitoring. There is a possibility of
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improving on the current feature set by considering the time
each rope spends at elevated temperatures, which could give
further insight into rope lifetime. Moreover, embedded mag-
netic or electric threads could be weaved into the rope, which
would allow additional data processing techniques to assess
rope degradation. Combining these techniques with the fea-
tures outlined in this paper can also improve prediction re-
sults.

Another potential improvement could be through limiting the
number of features used for training. Features that vary very
little throughout the experiments essentially contribute noise
to machine learning models and hamper classification perfor-
mance. This can be done by assessing the difference between
using only geometric data and comparing it to using both ge-
ometric and thermal data. There is also the possibility to test
the effect of limiting features from certain bend zones on per-
formance and focusing only on features related to the SBZ
and DBZ. The sensitivity of classification results to data loss
can be further explored. The effect of using only visual fea-
tures or temperatures can be further explored to assess the
effect on what type of data is the best for achieving the best
classification results.

In this study, the two different data sets are tested indepen-
dently of one another. Combining data from two different
rope types can also be assessed to see if it improves algorithm
performance. With respect to field application, this would be
useful as an industry-wide approach, where different sizes of
cranes would use potentially several different diameters and
types of rope in the same fleet of ships. Implementing the
sensors detailed in this paper at a location near one of the
main sheaves would give insight into how the measurements
fluctuate during a real offshore lifting operation. Addition-
ally, the rope sections would have to be properly tracked and
marked, as different parts of the rope could be subject to ex-
tended bending periods and heat build up due to active heave
compensation during lifting operations. The historical data
could then be used to analyse the measurements and assess
for patterns. Predictions on ropes in use can be continually
updated as ropes are maintained or replaced based on the his-
torical data from other equipment.

Data availability is also highlighted as an important factor in
algorithm performance. Due to lack of operational data for
fibre ropes of offshore lifting, CBOS testing is chosen as the
approach to simulate similar forces and movements in a lab-
oratory environment. However, CBOS testing is a long and
expensive process to perform, so therefore robust intelligence
maintenance algorithms that work would be of great advan-
tage. Data recording was limited during these experiments, in
particular for data set B, which highlighted the need for more
frequent data recording to create larger data sets.

Furthermore, there are other machine learning approaches that
can be implemented for classification problems. Neural net-

works are a suitable candidate as a machine learning tech-
nique, in addition to the algorithms presented in this paper.
Similar to the techniques used previously, there is potential to
use and adapt different network architectures and configura-
tions for different data sets, such as the fibre rope measure-
ments presented in this paper.

In addition to condition classification, the algorithms can also
be adapted for remaining useful life estimation. Rather than
simply assessing a class, a continuous variable could be de-
veloped to give a more accurate number or fraction which
predicts the rope lifetime.

7. CONCLUSION

The research in this paper has indicated that both machine
learning and classical statistical approaches based on com-
puter vision and thermal monitoring are viable methods for
condition classification in fibre ropes. Both were shown to
effectively classify fibre rope condition during CBOS testing.
However, it has also highlighted the need for a greater amount
of data to truly gain advantage from different machine learn-
ing approaches. This was shown by the inconsistent perfor-
mance of random forest between both data sets presented.

Ultimately, the methods proposed in this paper have the po-
tential to be developed further for condition classification in
fibre ropes. Additionally, with an established framework for
machine learning there is further possibility to adapt these
methods for remaining useful life estimation in fibre ropes
subject to CBOS regimes.
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