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ABSTRACT

RUL estimation plays a vital role in effectively scheduling
maintenance operations. Unfortunately, it suffers from a se-
vere data imbalance where data from machines near their end
of life is rare. Additionally, the data produced by a machine
can only be labeled after the machine failed. Both of these
points make using data-driven methods for RUL estimation
difficult. Semi-Supervised Learning (SSL) can incorporate
the unlabeled data produced by machines that did not yet fail
into data-driven methods. Previous work on SSL evaluated
approaches under unrealistic conditions where the data near
failure was still available. Even so, only moderate improve-
ments were made. This paper defines more realistic evalua-
tion conditions and proposes a novel SSL approach based on
self-supervised pre-training. The method can outperform two
competing approaches from the literature and the supervised
baseline on the NASA Commercial Modular Aero-Propulsion
System Simulation dataset.

1. INTRODUCTION

Predictive Maintenance (PDM) is one of the core pillars of
Industry 4.0 and enables more cost-effective operation of ma-
chinery. While early approaches to PDM focused on hand-
crafted, physical models and heuristics, nowadays data-driven
methods are on the rise. Fueled by massive amounts of data
provided by an increasing number of sensors, data-driven
PDM makes hand-crafting physical models less necessary.
Due to the advent of deep learning, data-driven models can
ingest even more data without the need for specialized feature
engineering. Nevertheless, PDM suffers from a server data im-
balance as data from healthy machines is far more ubiquitous
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than data from degraded or faulty ones. This makes training
effective data-driven models a challenging task.

Remaining Useful Lifetime (RUL) estimation, as a sub-field
of PDM, is defined as “the length from the current time to
the end of the useful life”. (Si, Wang, Hu, & Zhou, 2011)
It plays a vital role in effectively scheduling maintenance
operations. Unfortunately, labeling data for RUL estimation is
only possible after a machine fails, making it hard to acquire
enough labeled data for conventional, supervised approaches
to work. On the other hand, large amounts of unlabeled data
are available from machines that did not yet fail. SSL can be
a possible solution for this problem.

It makes it possible to distill knowledge from large amounts
of unlabeled data, thus lowering the amount of labeled data
needed to achieve good performance. Specifically, SSL aims
to learn a conditional distribution P (y|x) where x ⇠ P (X)
are the available features (i.e. sensor readings) and y ⇠ P (Y )
are the labels (i.e. the RUL). The learning algorithm has
access to the set of labeled training data DL = {(x1, y1),
. . . , (xi, yi)} and the mutually exclusive set of unlabeled data
DU = {xi+1, . . . , xi+j}.

Recent works, e.g. (Listou Ellefsen, Bjørlykhaug, Æsøy,
Ushakov, & Zhang, 2019; Yoon et al., 2017), have shown
promising results using different SSL methods for RUL esti-
mation. More specifically, they were able to modestly reduce
the test Root Mean Squared Error (RMSE) and RUL-Score on
subsets of the NASA Commercial Modular Aero-Propulsion
System Simulation (C-MAPSS) dataset (Saxena & Goebel,
2008) using as few as 1% of the labeled data. Although these
findings are leading in the right direction, there are some
shortcomings this paper wants to address. First, the previ-
ous work only evaluates their SSL approaches on one of the
four subsets of the C-MAPSS dataset. As these subsets are
relatively small (compared to other deep learning data sets),
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at least all of the subsets should be investigated to see if the
performance improvements are universal. Secondly, the time
series of the unlabeled data were used as-is. In our previous
work (Krokotsch, Knaak, & Gühmann, 2020), we have shown
that unlabeled time series data for RUL estimation should
not contain time steps at the point of failure. If they do, the
whole time series could be labeled trivially, making the use of
SSL unnecessary. Therefore, the previous studies on SSL for
RUL estimation may produce overly optimistic results, as the
approaches have access to more data near failure than could
be considered realistically. This grade of degradation of the
unlabeled data, i.e. how far from failure the machines in it are,
is of significant importance for SSL.

As previous work produced only modest improvements, we
propose a novel SSL method based on self-supervised pre-
training. Self-supervision has been proven useful for pre-
training deep neural networks on unlabeled data (Doersch,
Gupta, & Efros, 2015; Gidaris, Singh, & Komodakis, 2018;
Devlin, Chang, Lee, & Toutanova, 2019). Our pre-training
task is to estimate the time between two time steps in a time
series as a proxy for the difference in RUL. Afterward, the pre-
trained network is fine-tuned on labeled data. We will conduct
experiments on all four subsets of C-MAPSS comparing our
approach and two common SSL approaches, i.e. Restricted
Boltzmann Machines (RBMs) and Autoencoders (AEs), to a
supervised baseline. This will serve to answer our following
research questions:

• Do findings of previous SSL studies on RUL estimation
hold when taking the grade of degradation of the unla-
beled data into account?

• Can self-supervised pre-training improve on other pre-
training-based SSL approaches for RUL estimation?

The remaining paper is structured as follows. First, we will
lay out the related work on RUL estimation with deep neu-
ral networks, Semi-Supervised Learning and self-supervised
learning in section 2. In section 3, we will describe our net-
work architecture, our semi-supervised learning approach, and
our self-supervised pre-training. Afterward, we explain our
experimental setup, including the data, performance metrics,
and competing approaches, as well as the evaluation procedure
and hyperparameter selection. Section 5 is concerned with
the presentation and discussion of our results, while section
6 concludes this paper and gives an outlook on future work.
The code to reproduce the results of this paper is available on
GitHub: www.github.com/tilman151/self-supervised-ssl

2. RELATED WORK

This section gives an overview of the current state of the
literature. First, we will discuss RUL estimation with Deep
Neural Networks (DNNs). Second, we will investigate Semi-
Supervised Learning and self-supervised learning in the scope

of RUL estimation.

2.1. Remaining Useful Lifetime Estimation

RUL estimation is often treated as a regression problem. Re-
cent work focuses mainly on DNNs because they work on
the raw data and do not require hand-crafted features. Obvi-
ously, the early works were focuses on shallow networks and
Multi-Layer Perceptrons (MLPs) (Gebraeel, Lawley, Liu, &
Parmeshwaran, 2004). Later ones settled on Convolutional
Neural Networks (CNNs) and LSTM as network architectures.

Long Short Term Memory Networks (LSTMs) are Recurrent
Neural Networks (RNNs) and a natural fit for the time series
data seen in RUL applications. They process one time step at a
time with the help of an internal cell state derived from all pre-
viously seen time steps. (Zheng, Ristovski, Farahat, & Gupta,
2017) used LSTMs on three benchmark datasets and found
them working best compared to MLPs and CNNs. Meanwhile,
(Wu, Yuan, Dong, Lin, & Liu, 2018) compared LSTMs against
vanilla RNNs and GRUs. They declared LSTMs superior, as
well.

CNNs on the other hand seem better suited for image data than
time series. But, using 1d-convolution instead of 2d we can
use it for RUL estimation, too. In a comparison, (Bai, Kolter,
& Koltun, 2018) found CNNs equal to LSTMs in performance,
even though they are faster in inference and training. First
attempts at RUL estimation from (Sateesh Babu, Zhao, & Li,
2016) were still worse than LSTMs. They were still using
2d-convolution and when (Li, Ding, & Sun, 2018) switched to
1d, they were able to surpass LSTMs altogether. (Zhu, Chen,
& Peng, 2019) combined features from multiple hidden layers
with their multi-scale CNN which did better on their dataset
than traditional CNNs. Instead of using raw time series data,
they transformed it to the frequency domain and used that
as the input of their network. (Jiang, Lee, & Zeng, 2020)
resorted to combining both network types and report better
performance.

Next to all networks were trained against Mean Squared Error
(MSE) (Zheng et al., 2017; Wu et al., 2018; Sateesh Babu et
al., 2016; Zhu et al., 2019; Jiang et al., 2020). Only (Li et al.,
2018) used RMSE.

2.2. Semi-Supervised Learning

SSL can be divided into several sub-fields (van Engelen &
Hoos, 2020). The most common distinction is the goal of
the training process itself. While transductive methods are
only concerned with providing the labels for the unlabeled
training data, inductive methods yield a model that can be
used on unseen data. We will focus on the inductive methods,
as for PDM applications we need to apply the trained model
on unseen data after training. Even though there are many
diverse approaches to SSL (e.g. S3VMs), we will narrow our
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perspective to the ones applicable to DNNs.

Wrapper methods offer some of the oldest SSL approaches.
They rely on producing pseudo-labels for the unlabeled portion
of the data and then using it in conjunction with the labeled
data to train supervised. Self-training is one of the most basic
methods and was published in 1995 by (Yarowsky, 1995).
First, a model trained only on the labeled data provides the
pseudo-labels for the unlabeled data. Afterward, a final model
is trained on the combined labeled and pseudo-labeled data.

Pre-training-based methods rely on unsupervised learning.
The DNN or a part of it is trained with an unsupervised learn-
ing method and taken as the initialization for a supervised
learning stage. The literature provides examples for several
unsupervised approaches, most commonly AEs, used for pre-
training. (Cheng, Zhou, Ma, Wu, & Yuan, 2019) used deep au-
toencoders for semi-supervised machine translation. (Kingma,
Rezende, Mohamed, & Welling, 2014) used variational au-
toencoders for semi-supervised image classification.

There are several deep learning methods for SSL that di-
rectly incorporate an unsupervised component into their loss.
Examples are Ladder Networks (Rasmus, Valpola, Honkala,
Berglund, & Raiko, 2015) which incorporate an autoencoder
reconstruction loss, or Pseudo-ensembles (Bachman, Alsharif,
& Precup, 2014) which use a consistency loss between the
outputs of a parent network and perturbed child networks
for the unlabeled data. The survey of (van Engelen & Hoos,
2020) gives an excellent overview of the previously mentioned
methods.

There are a few papers on SSL for RUL estimation. (Listou
Ellefsen et al., 2019) used a RBM for pre-training on the
NASA C-MAPSS dataset. (Yoon et al., 2017) pre-trained their
network on the same dataset with a variational autoencoder.
(He, Dai, Lu, & Mou, 2018) used ladder networks for RUL
estimation of centrifugal pumps. Unfortunately, the field of
SSL suffers from a multitude of evaluation setups, which
makes comparing approaches difficult (Oliver, Odena, Raffel,
Cubuk, & Goodfellow, 2018). SSL for RUL estimation is not
excluded from this issue, as many papers report results only
on parts of their datasets, or omit critical information like the
amount of available labeled data. We aim to take these pitfalls
into account in this work.

2.3. Self-Supervised Learning

Like many methods in deep learning, self-supervised learn-
ing first succeeded in computer vision and spread to different
fields from there. The aim was to learn features that are bene-
ficial for solving common tasks (image classification, object
detection, etc.) in the absence of labeled data. For this, a
so-called pre-text task is defined to train a neural network,
which is then used as a feature extractor for the real task. For
example, (Doersch et al., 2015) predicted the position of an

image patch, cut from a larger image, in relation to another
patch from the same image. The trained network was then
able to perform object detection. Another example is (Gidaris
et al., 2018), who used predicting image rotation as a pre-text
task for classification. Approaches like these were able to pro-
duce state-of-the-art results in a semi-supervised regime (large
amount of unlabeled, small amount of labeled data) but could
not outperform supervised approaches trained on large-scale
datasets.

Self-supervised learning gained prominence as a pre-training
technique in natural language processing through (Devlin et
al., 2019). Their model, named BERT, was pre-trained on the
pre-text task of predicting missing words in sentences sampled
from a 3.3M word dataset, including the whole of the English
Wikipedia. The model was then able to produce state-of-the-
art results on eleven benchmark tasks by training a single layer
on top of the pre-trained network.

Metric learning is another possible pre-text task that can be
used supervised and self-supervised. It aims to learn a distance
or similarity metric between pairs of data points. The recent
work of (Musgrave, Belongie, & Lim, 2020) gives an excellent
overview of popular methods but shows that newer, more
complex approaches perform only as good as older, simple
ones. This leads us to the conclusion that even simple metric
learning methods could be used as a self-supervised pre-text
task, as well.

There is, to our knowledge, still a lack of work in self-super-
vised methods for multivariate time series data as found in
PDM applications. Recently, (Franceschi, Dieuleveut, & Jaggi,
2019) proposed a metric-learning-based pre-text task for time
series. They trained siamese networks (Baldi & Chauvin,
1993; Bromley et al., 1993) to predict the similarity of two
time series snippets with a triplet loss. Their pre-trained net-
work outperformed dynamic time warping in an unsupervised
regime, other deep learning approaches in a semi-supervised
regime and yield competitive results when compared to super-
vised state-of-the-art approaches. This hints at self-supervised
learning as a promising direction for pre-training on time se-
ries data.

3. METHODS

In this section, we will describe the neural network we use
for RUL estimation, SSL via pre-training, and our novel self-
supervised pre-training technique.

3.1. RUL Estimation Network

In general, DNNs for regression follow a common architec-
ture, as seen figure 1a. They consist of two networks: the
feature extractor f and a regression head g. Networks for
RUL estimation are no different, estimating the RUL value of
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(a) RUL Estimation Network

(b) Self-Supervised Siamese Network

Figure 1. Overview of the networks used in this work: De-
picted are the feature extractor f , the regression head g, and
the distance function h. The supervised RUL estimation net-
work takes a time frame xi as its input and predicts the RUL
value RUL0

i. The siamese network produces a pair of embed-
dings from the inputs xi and xj . The distance h(f(xi), f(xj))
is r0, the predicted relative RUL. The trainable parts of the
networks are depicted in red.

a sample x as:
RUL0 = g(f(x)) (1)

As seen in section 2.1, the feature extractor can take the form
of a CNN, LSTM or any other network architecture. The
regression head, on the other hand, almost always takes the
form of a simple linear layer (ax+ b) or a MLP.

We expect the network input x(k)
(i�w):i, or xi for short, to be a

time frame of size w from a multivariate time series k ending
at time step i. Therefore, we use a simple 1d-CNN feature
extractor with a fully-connected layer as the regression head.
The feature extractor consists of multiple 1d-CNN layers with
Dropout, Batch Normalization (Ioffe & Szegedy, 2015), and
a ReLU activation function, followed by a single linear layer
also with Batch Normalization and ReLU. The complete ar-
chitecture is depicted in figure 2. We selected a CNN because
they are faster to train than e.g. LSTMs and have less trainable
parameters than a MLP with similar performance. In this work,
we will focus on this feature extractor only, as we are mainly
concerned with the influence of pre-training it on unlabeled
data. Furthermore, previous works imply that differences in
performance between different extractor architectures for RUL
estimation are marginal (Li et al., 2018).

We train the network by mini-batch gradient descent with a
RMSE loss:

LRMSE =

vuut 1

|X|

|X|X

i=1

(RULi � RUL0
i)

2 (2)

where X is a (mini-)batch of samples {x1, ..., x|X|}, RULi

the RUL value associated with xi and RUL0
i = g(f(xi)).

3.2. SSL through Pre-Training

SSL is a machine learning regime that includes labeled and
unlabeled data into the training process. In this paper, we focus
on the two-stage approach of combining unsupervised pre-
training with supervised fine-tuning. First, the feature extractor
f is trained using a method that does not require labels on
the features of the labeled and unlabeled data. Afterward, the
pre-trained feature extractor is used as the starting point for the
conventional, supervised training as described in the previous
section. The regression head g is still initialized randomly.

This procedure aims for the feature extractor to learn useful
features from the unsupervised data that are beneficial to the
supervised training. For this to work, it is necessary to assume
that the marginal data distribution P (X) contains information
about the conditional distribution P (RUL|X) we want to
learn (van Engelen & Hoos, 2020). It follows that we have to
assume that the labeled and unlabeled data were generated by
the same distribution P .
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Figure 2. Architecture of the used Networks: The feature extractor f consists of six ConvBlocks. These blocks are stacks of
1d-convolutions of kernel size three, m filters, and either same or valid convolution padding with zeros, followed by Batch
Normalization and a Rectified Linear Unit (ReLU) activation function. The even layers use valid padding and the odd layers
use same padding. This makes it possible to use more ConvBlocks with valid padding only as same padding does not reduce
the size of the input. In between the ConvBlocks, we place 2d-dropout that drop whole time steps from their input. The
probability of dropping a time step is p. The last layer of the feature extractor is a fully-connected layer reducing its input to a
latent dimension of 64. The regression head g is a Batch Normalization layer followed by a ReLU activation function and a
fully-connected regression layer with a single unit.
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3.3. Self-Supervised Pre-Training

In this section, we lay out the intuitive motivation behind
our proposed self-supervised pre-training through analyzing
the latent space of trained networks. Afterward we derive a
pre-text task from this intuition and devise a training regime.

3.3.1. Motivation

To be able to design a suitable pre-text task, one has to un-
derstand the supervised training process and its shortcomings.
The architecture of our neural network suggests the following
division of labor between the feature extractor f and the re-
gression head g. The regression head consists mostly of affine
operations and a single non-linearity in form of the ReLU
activation function. It can, therefore, learn only a nearly linear
mapping between the outputs of the feature extractor and the
RUL. Consequently, an optimal feature extractor needs to
linearize the relationship between its output and the RUL to
match the capabilities of the regression head. In other words,
the feature extractor maps a non-linear degradation process
to a linear one, while the regression head maps this linear
degradation process to RUL.

To verify this assumption, we will look at the features learned
by the feature extractor f trained with different amounts of
labeled data. One of them is trained with many labeled data
points and achieves a low validation error, while the other is
trained on only a few labeled data points and achieves a much
higher validation error. Unfortunately, high-dimensional data,
such as the extracted features, is impossible to understand
for humans. Therefore, we project it into two dimensions
by using Uniform Manifold Approximation and Projection
(UMAP) (McInnes, Healy, Saul, & Grossberger, 2018), and
plot the features in a scatter plot. UMAP is a reasonable choice
for visualizing the learned features, as we do not need to
make assumptions about it as with, e.g., principal component
analysis.

Figure 3a depicts the features extracted from the validation
data of C-MAPSS subset FD004 after training on all available
labeled data. The network achieves a validation MSE loss of
19.3. We can observe a snake-like structure in the features
that broadens on the left side and narrows on the right side.
Through coloring the data points according to their associ-
ated RUL value, we can see that the left end of the snake
corresponds to high and the right side to low RUL values.
Furthermore, no discernible sub-structures are apparent which
shows that the network does not differentiate between time
frames from different time series and the same RUL. The clear
gradient of RUL values inside the snake-like structure hints at
a linear relationship between RUL and the learned features.

Figure 3b depicts the features extracted by a feature extractor
trained only on three labeled time series, which corresponds
to 2% of the available labeled data. The network achieves

a validation loss of 31.8. Again, we can observe the snake-
like structure but this time the high-RUL end is much more
feathered out. Additionally, the RUL values are not as clearly
separated as in the previous figure. The noisier gradient of
RUL values can be interpreted as a failure of the feature extrac-
tor to linearize the relationship between RUL and its features.

Comparing the two plots supports our theory about the nature
of the features learned by the feature extractor. A suitable
pre-text task should result in a feature extractor that effec-
tively takes care of the non-linearity of the degradation pro-
cess. We can, furthermore, conclude via transitivity that if the
relationship between RUL and learned features is linear, the
relationship between two learned feature vectors is linear as
well.

3.3.2. Definition of the Pre-Text Task

To derive a pre-text task from the intuition gained in the previ-
ous section, we need to formalize it. We want to train a feature
extractor f so that the extracted features for each data point
can be mapped to a RUL by a (nearly) linear function h (in
the supervised case, the regression head):

RUL = h(f(x)) (3)

For this derivation, we will assume that h is a completely linear
function. With this assumption, we can make the following
statement:

RULi � RULj = h(f(xi)� h(f(xj)) (4)
RULi � RULj = h(f(xi)� f(xj)) + c (5)

r = h(f(xi)� f(xj)) + c (6)

where c is a constant equal to the bias term of h. The difference
in RUL of two data points has to be proportional to the dif-
ference between their extracted features. In consequence, we
should be able to train an optimal feature extractor by letting
it predict the difference in RUL of two data points for a given
linear function h. We will hereafter refer to this difference as
the relative RUL r between two data points.

Because the pre-text task needs to work with unlabeled data,
we cannot calculate r directly from the ground truth RUL.
We need to derive r from the data itself, which is why our
method falls under the category of self-supervised learning.
By definition, RUL can be calculated as:

RUL(k)
i = |k|� i (7)

where k is a time series, i is the current time step, and |k|
is the length of the time series. The relative RUL r of two
data points i and j from the time series k can therefore be
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(b) Three labeled time series

Figure 3. Features produces by trained feature extractors:
The depicted features are UMAP projections of the output of
a feature extractor f . The first plot shows an f trained on all
labeled data from FD004, while the second one shows an f
trained on only three time series. Both were trained for 10
epochs. The color indicates the RUL value associated with
the embedding. Both (a) and (b) were generated from the
validation data of FD004. The random seed for both training
runs was fixed.

calculated as:

r = RUL(k)
i � RUL(k)

j (8)
r = (|k|� i)� (|k|� j) (9)
r = j � i (10)

This eliminates the length of the time series from the equation
and makes it possible to use data from machines that did not
yet fail. Combining equation 10 and 6 we get the following
formulation of the pre-text task:

j � i = h(f(x(k)
i )� f(x(k)

j )) (11)

We can ignore the constant c from equation 6 here, as it is not
dependent on f and therefore does not influence the optimiza-
tion process. Alternatively, we can restrict h to have a bias
term equal to zero.

Unfortunately, the literature for C-MAPSS (Heimes, 2008)
does not adhere to the RUL definition of equation 7. Instead,
they declare a maximum value RULMAX which results in a
piece-wise linear RUL function:

RUL(k)
i = max (RULMAX, |k|� i) (12)

This prohibits the step from equation 9 to 10. Nevertheless,
equation 10 is still an acceptable approximation of r, if we
assume that i < j and i� j  RULMAX, 8i, j. Additionally,
we can now normalize r to the range of [0, 1] by dividing it by
RULMAX. The final pre-text task for the C-MAPSS dataset is
then:

h(f(x(k)
i )� f(x(k)

j )) ⇡ j � i

RULMAX
(13)

i < j, i� j  RULMAX 8i, j

3.3.3. Training Procedure

The goal of our pre-training is training a neural network on
estimating the target value r from equation 13. Afterward, we
extract the feature extractor f from the pre-trained network to
initialize the RUL estimation network. We realize this goal
by training siamese networks (Bromley et al., 1993; Baldi
& Chauvin, 1993) with metric learning. Metric learning is
concerned with learning a distance metric of data points, in our
case the relative RUL r. Siamese networks take the form of the
feature extractor f and a distance function h(a, b) operating
on two samples, xi and xj , so that:

r0 = h(f(xi), f(xj)) (14)

where r0 is the predicted value of r. To be consistent with
equation 13, h needs to be a linear function. We, instead,
decide to use a function defined as:

h(a, b) =

����

����
a

||a|| �
b

||b||

����

����
2

(15)
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where || · || is the euclidean norm. Our reason is that the eu-
clidean norm behaves linear in the desired domain and has
the added benefit of being symmetric. Dividing the embed-
dings by their norm restricts the embedding space to a hyper
ball, which often is found to be useful for metric learning
(Musgrave et al., 2020).

Figure 1b depicts the schematic structure of the siamese net-
works. We use MSE as a loss function with mini-batch gradi-
ent descent to train the siamese networks:

LMSE =
1

|X|

|X|X

k=1

(rk � r0k) (16)

For each (mini-)batch X , we sample |X| time series from the
training data, uniformly sample pairs of time frames x(k)

i and
x(k)
j , and calculate rk according to equation 13. Because both

samples are time frames from the same time series, a differ-
ence between i and j that is much smaller than the length of the
time frame results in significant overlap between the samples.
Preliminary experiments have shown that this can destabilize
the pre-training. Therefore, we introduce a minimum distance
for sampling pairs, which is regarded as a hyperparameter. We
used the Adam optimizer (Kingma & Ba, 2014) for training
with the default values of 0.9 and 0.99 for �1 and �2.

4. EXPERIMENTAL DESIGN

This section describes the data set used for our experiments,
which performance metrics were used, and how the evaluation
was conducted.

4.1. Data

We evaluate the effect of our pre-training technique on the pub-
licly available NASA C-MAPSS dataset (Saxena & Goebel,
2008). It is a dataset of simulated aero engines commonly used
to benchmark RUL estimation algorithms. Each engine starts
its simulation with a random level of initial wear that is still
considered as healthy. At a random time during the simulation,
a fault is inserted into the engine. The simulation ends when
the engine is no longer functional. For each engine, the time
series of 3 operation parameters and 21 sensor readings are
recorded. The sensor readings are subjected to additive sensor
noise.

The dataset contains four subsets (FD001 - FD004) of different
operating conditions and possible fault modes. Engines in
FD001 and FD002 experience only high-pressure compressor
(HPC) degradation, while the ones in FD003 and FD004 can
additionally experience fan degradation. Further, in FD001
and FD003 are engines run under only one operating condition,
while engines from FD002 and FD004 vary between six. Each
subset is split into training and test data by the dataset authors.
The training data contains multivariate time series data of aero
engines up until the time step they failed. Each time series can

Dataset FD001 FD002 FD003 FD004
# Training Engines 100 260 100 249
# Test Engines 100 259 100 248
# Operation Conditions 1 6 1 6
# Failure Modes 1 1 2 2

Table 1. C-MAPSS Dataset

be considered as a different engine of the same type. The test
data’s time series stop at a random time step before failure, for
which the true RUL label is provided. Table 1 summarizes the
details of the dataset. We construct one validation set from
each training set by taking 20% of the time series.

For pre-processing, we follow (Li et al., 2018) and select 14
of the 21 sensor channels with the indices 2, 3, 4, 7, 8, 9, 11,
12, 13, 14, 15, 17, 20, and 21 as the input of the network.
The features are scaled by channel, using a min-max scaling
calculated on each subsets’ training set. We then use a sliding
window with a step size of one to obtain frames of unified
length in the time dimension. We use a window size of 30, 20,
30, and 15 for the subsets 1-4. These sizes were determined by
the length shortest time series in each subsets test set. The RUL
labels are calculated by a piece-wise RUL function (Heimes,
2008) with a maximum value RULMAX of 125.

4.2. Data Scenarios

As described in the introduction, unlabeled RUL data cannot
contain the point of failure as we could simply compute the
labels otherwise. It follows that we have to truncate the time
series before failure when studying SSL, as the model would
have access to more failure data than normally available oth-
erwise. How early we truncate the time series represents the
grade of degradation of the engine that the time series was
collected from. Previous work on SSL for RUL estimation
varied only the amount of labeled data available, i.e. how
many engines had already failed. Our experimental design
includes varying the grade of degradation for the unlabeled
data, too.

Adapting our previous work (Krokotsch et al., 2020), we im-
pose data scenarios on each subset. In our case, a data scenario
is characterized by the number of failed engines and grade of
degradation of the unlabeled ones. Both factors are interpreted
as percentages. A data scenario of number of engines at n%
would mean that only n% of the machines in the subset are
used as labeled data for training. The rest is assumed to have
not yet failed and is used as unlabeled data. This limits the
amount of machine-to-machine variance that is covered by
the labeled data. A data scenario of grade of degradation at
n% would mean that only the first n% of time steps of each
unlabeled time series is available during training, as seen in
figure 4. This effectively limits the amount of available data
near failure.

We use five different grades of degradation of 40%, 60%, 70%,
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Figure 4. Grade of Degradation: The plot depicts the time
series of the RUL and an exemplary sensor reading of a fic-
titious engine in the C-MAPSS dataset. The arrows indicate
which part of the time series is used for a given grade of
degradation.

80% and 90% for our evaluation. A grades of degradation
of 100% would not make sense, as the unlabeled machines
would have failed already and could be used as labeled data.
The lower limit of percentages is chosen due to the piece-wise
linear degradation model. Using fewer than 40% of the time
steps would mean that the unlabeled data contains next to no
data with a RUL of less than RULMAX. This means that the
unlabeled data would come from completely healthy machines
and may add no benefit to training.

The number of failed engines is set at 2%, 10%, 20%, 40%,
100%. Using 100% of failed machines means that no unla-
beled data is available and pre-training is conducted on the
labeled data only. We decided on these percentages because
preliminary experiments did not show any degradation in per-
formance for more than 40% compared to using 100% of the
engines. The lower limit of 2% is chosen because it results in
at least one failed engine for each subset.

4.3. Performance Metrics

We employ two common performance metrics from the field of
PDM. The first is the RMSE, as described in equation (2) over
the test set. The second is the RUL-Score, first proposed in the
PHM 2008 Data Challenge (Heimes, 2008). It is calculated as
follows:

si =

(
e�

�RULi
13 � 1 for �RULi < 0

e
�RULi

10 � 1 for �RULi � 0
(17)

where �RULi is the difference between predicted and true
RUL for sample xi. This metric penalizes overestimating RUL
more than underestimating it as the former has a bigger impact
on maintenance actions. We report the sum over all samples

in the test set following previous work in the field.

We will discuss the results using both metrics. Although,
we will focus on RMSE as we view it as the more intuitive
measure of performance.

4.4. Supervised Baseline

The baseline for our experiments is training the RUL estima-
tion network in a supervised fashion as described in section
3.1. The training will only incorporate the available labeled
data. We used the Adam optimizer (Kingma & Ba, 2014) with
the default values for 0.9 and 0.99 for �1 and �2.

4.5. Competing Approaches

Aside from the baseline, we compare our pre-training approach
to two other methods found in the literature. The first approach
is unsupervised pre-training via a deep AE. We construct the
AE so that our feature extractor network is used as the encoder.
The decoder is an exact mirror image of the encoder with
transposed convolutions replacing the convolutional layers.
The AE is then trained to reconstruct its input via mini-batch
gradient descent with a MSE loss. As for the baseline, we
used the Adam optimizer.

The second approach is unsupervised pre-training via a RBM.
The first layer of the feature extractor is interpreted as a RBM
with Gaussian visible units and ReLU hidden units and trained
until convergence. The other layers of the feature extractor
remain randomly initialized. Again, Adam was used as the
optimizer.

Even though (Listou Ellefsen et al., 2019; Yoon et al., 2017)
reported results for RBMs and variational AEs, we choose
to reproduce the competing approaches ourselves. This has
several reasons. First, the mentioned papers evaluated their
approaches only on FD001 or FD004 which paints a limited
picture of the approaches’ performance. Second, the men-
tioned papers used a slightly different experimental setup,
i.e. a different RULmax, making comparison difficult. Fur-
thermore, the aforementioned RULmax was optimized as a
hyperparameter in one of the papers. As this value controls
the possible range of the performance metrics, optimizing it
results in improperly optimistic results.

4.6. Evaluation Procedure

The baseline, our approach and the competing SSL methods
are evaluated on each of the subsets of the C-MAPSS dataset
subject to each of our selected data scenarios. This results
in 100 different experimental setups (4 subsets, 5 number of
failed engines, 5 grades of degradation) for each SSL method.
The baseline includes only 20 setups, as it does not use un-
labeled data which makes varying the grade of degradation
superfluous.
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Each experimental setup is replicated ten times. For each repli-
cation, a new split of labeled and unlabeled data is randomly
samples according to the data scenario. The splits are held
constant across methods, i.e. the baseline receives the same
labeled data as the SSL methods given the same data scenario.
This makes comparison easier as much more replications than
ten would be needed for the low labeled data scenarios to
receive statistically stable performance estimates.

The pre-training stage for the SSL methods receives the la-
beled and unlabeled portions of the data and trains for at least
100 epochs. The RBM is trained for five epochs as it contains
only one layer. Early stopping is used to select the model with
the lowest validation loss. For our method we monitor the
MSE loss for the relative RUL target and for the autoencoder
the MSE reconstruction loss.

The supervised training stage receives only the labeled portion
of the data and is trained for at least 200 epochs. The weights
of the selected pre-trained model are used to initialize the
network in this stage for the SSL methods. The baseline is ini-
tialized randomly. It should be noted that we divide the output
of the feature extractor by its norm if the pre-training was self-
supervised. Again, early stopping on the validation RMSE
is used to select the best model for which the performance
metrics over the test set are calculated. We report the perfor-
mance for each subset/data scenario combination separately
and averaged over the ten replications.

4.7. Hyperparameter Selection

We began hyperparameter selection using the fixed network
architecture shown in figure 2 and conducted a random search
in two steps. First, the hyperparameters of the supervised stage
(i.e. learning rate, dropout, and batch size) were optimized
for each subset of C-MAPSS. A network was trained in a
supervised fashion with all available labeled data as described
in section 4.6. After 100 trials, the hyperparameters of the
network with the best validation RMSE were selected. The
hyperparameters in question can be seen in table 2 under
supervised stage.

In a second step, the hyperparameters of the pre-training stages
(i.e. learning rate, dropout, batch size, and minimum pair
distance) were optimized similarly. The networks are trained
without labels at 80% grade of degradation as described in
section 4.6. For our method we selected hyperparameters
according to the validation MSE loss for the relative RUL
target and for the autoencoder according to the validation
MSE reconstruction loss. As stability was an issue, each
hyperparameter configuration was trained five times and the
mean of these replications is used for selection. For the RBM
we adopted the hyperparameters from (Listou Ellefsen et al.,
2019). We set the learning rate for this method to 10�4 by
hand as it was not given in the paper.

It should be noted that all optimizations used no labels at
all and can therefore be conducted independently from the
amount of labeled data. The selected hyperparameters can be
seen in table 2, too.

5. RESULTS

First, we will describe the results of our experiments for each
C-MAPSS subset. Afterward, we will interpret the findings
and set them into context.

5.1. Comparison of Approaches

Our experiments produced too many data points to present
them all in detail. We will therefore show only slices of our
results as plots. The results plotted against the percentage of
labeled data are shown in figures 5 and 6 at 80% degradation.
The results plotted against grade of degradation are shown in
figures 7 and 8 at 2% of the labeled data. The complete results
are shown in appendix A in tables 3, 4, 5 and 6.

Overall we can conclude that a significant drop in baseline
performance was mostly observable for very low amounts of
labeled data. In figure 5 we can see that the performance of
the baseline (blue) has a relatively small standard deviation
for 100%, 40%, and 20% of labeled data. For the subsets
FD002 and FD004, the mean and standard deviation increase
only at 2% labeled data. For FD001, the performance already
drops at 40% labeled data and for FD003 at 10%. One has to
keep in mind, though, that FD002 and FD004 are more than
twice as large as FD001 and FD003, which means that they
have a higher amount of labeled data available at the same
percentage.

Performance on FD001 shows only marginal improvement
through SSL. In figure 5 we can see that the median RMSE
performances is well inside of each others IQRs with the
exception of 40% labeled data where AE pre-training achieves
much better performance. In one case, i.e. for 2% labeled data,
the performance of RBM pre-training was even worse than the
baseline. The RUL-Score metric in figure 6 paints a similar
picture, even though pre-trained models seem slightly better
for 20% and 40% labeled data. For 2% labeled data, the SSL
approaches had a worse mean RUL-Score performance than
the baseline. These findings are stable for different grades
of degradation, as well. Figures 7 and 8 show no discernible
trend with respect to the grade of degradation for any method.
Overall, the AE seems to perform slightly better than the other
approaches.

Performance on FD002 clearly benefits from RBM and self-
supervised pre-training. The self-supervised pre-training, in
particular, beats the baseline and the other approaches most
of the time, especially in low-labeled data scenarios. On the
other hand, there is an extreme drop in performance for our
method at 40% degradation. This is true for all percentages of
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Hyperparameter Search Space Configuration for
FD001 FD002 FD003 FD004

Supervised Stage
Learning Rate qlogu(1�4, 1�1, 5�5) 0.0056 0.0903 0.095 0.06635
Dropout qu(0.0, 0.5, 0.1) 0.4 0.3 0.2 0.0
Batch Size [64, 128, 256, 512] 128 512 64 64

Self-Supervised Pre-Training
Learning Rate qlogu(1�4, 1�1, 5�5) 0.00015 0.01155 0.00615 0.07455
Dropout qu(0.0, 0.5, 0.1) 0.2 0.4 0.1 0.1
Batch Size [64, 128, 256, 512] 64 64 64 64
Minimum Distance [1, 10, 15, 30] 10 15 15 10

Autoencoder Pre-Training
Learning Rate qlogu(1�4, 1�1, 5�5) 0.0001 0.0248 0.015 0.0006
Dropout qu(0.0, 0.5, 0.1) 0.1 0.4 0.0 0.0
Batch Size [64, 128, 256, 512] 64 256 64 64
Minimum Distance [1, 10, 15, 30] 1 15 1 10

Table 2. Hyperparameters: The search space qlogu(a, b, c) draws samples uniformly on a logarithmic scale from the interval
[a, b] quantized to c. The search space qu(a, b, c) draws samples uniformly from the interval [a, b] quantized to c. The minimum
distance was optimized for the autoencoder, as well, due to implementation reasons. It should not influence the results
significantly, though.

Figure 5. RMSE at 80% degradation: The plots show the results on the four subsets of the C-MAPSS dataset. We plot the
RMSE test performance against the percentage of labeled data. The remaining data were used as unlabeled data with a grade of
degradation of 80%. The box represents the interquartile range (IQR) and the middle line the median performance. The ends of
the whiskers depict the minimum and maximum performance that was not deemed an outlier. Outliers are defined as more than
1.5 times IQR away from the lower or upper end of the box. We can see that the performance degrades only slowly with less
labeled data. Significant drops in performance can be seen for 10% labeled data for FD003, 40% for FD001, and 2% for the
other subsets.
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Figure 6. RUL-Score at 80% degradation: The plots show the results on the four subsets of the C-MAPSS dataset. We plot
the RUL Score test performance on a logarithmic scale against the percentage of labeled data. The remaining data was used as
unlabeled data with a grade of degradation of 80%. See figure 5 for an explanation of the box plots. The results are similar to the
RMSE in figure 5 but show significantly worse scores for the AE pre-training on FD004.

Figure 7. RMSE at 2% of labeled data: The plots show the results on the four subsets of the C-MAPSS dataset. We plot the
RMSE test performance against the grade of degradation when only 2% of the labeled data was used. The median performance
of the baseline is depicted in blue. See figure 5 for an explanation of the box plots. We can observe that the performance of the
AE and the RBM is relatively constant on all grades of degradation. The self-supervised method’s performance degrades for
lower degradation, which can be seen best in FD004. Nevertheless, the self-supervised method shows much better performance
on higher grades of degradation in FD002 and FD004 than the competing methods. On the remaining subsets, the performance
of the self-supervised method is comparable to the other approaches.
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Figure 8. RUL-Score at 2% of labeled data: The plots show the results on the four subsets of the C-MAPSS dataset. We plot
the RUL Score test performance on a logarithmic scale against the grade of degradation when only 2% of the labeled data was
used. The median performance of the baseline is depicted in blue. See figure 5 for an explanation of the box plots. The results
are similar to the RMSE in figure 5 but show significantly worse scores for the AE pre-training on FD004. We can also observe
that the median score of the self-supervised approach is the lowest for all grades of degradation on FD002. FD003 and FD004.

labeled data but most apparent for 2%. When looking at figure
8, only self-supervised pre-training reliably beats the median
performance of the baseline in terms of RUL-Score for grades
of degradation above 40%.

Performance gains on FD003 are better than on FD001 but still
minor. For 2% labeled data, the self-supervised pre-training
beats the baseline and the other methods for next to all grades
of degradation in terms of mean RMSE and RUL-score. Never-
theless, the IQRs of our method and the RBM are often highly
overlapping. As on FD001, we can see no trend concerning
the grade of degradation.

On FD004, we can see the benefits of our approach most
clearly. While AE and RBM pre-training bring next to no
performance gains in terms of median RMSE, self-supervised
pre-training outperforms the baseline reliably, as seen in figure
5 and 7. Nevertheless, we can observe a downward trend in
performance with respect to the grade of degradation for our
method. The competing approaches do not suffer from this.
Figures 6 and 8 reveal devastating performance losses for AE
pre-training in terms of RUL-Score.

We can conclude that SSL can be beneficial for RUL estima-
tion even under realistic conditions with varying grades of
degradation. However, no approach was able to reliably beat
the baseline on all subsets under all data scenarios. A repre-
sentative validation set and careful hyperparameter tuning are
needed to assure improved performance and detect negative
outcomes. Self-supervised pre-training seems to be a step

in the right direction, as it often outperforms the competing
approaches. Nevertheless, its performance trends downward
on FD002 and FD004 with a falling grade of degradation.

5.2. Discussion of Findings

Our results revealed several points worthy of further discus-
sion. First of all, there is the matter of minimal baseline per-
formance drops when using as few as 40% of the labeled data.
A possible explanation for this is the fact that the C-MAPSS
dataset is the product of a simulation which may lead to little
variation between the individual time series. If the variation
between time series is small, the network needs less data to
learn useful patterns from it. The differences between the sub-
sets may be explained by the varying number of available time
series per subset. Additional experiments where the absolute
number of labeled data is varied instead of a percentage can
be used to confirm this hypothesis.

The next point would be the discrepancies between RMSE
and RUL-Score performance best seen on FD004 for the AE
pre-training. Even though the RMSE performance is similar
to the other approaches, the RUL-Score is much higher. This
phenomenon can be explained through the asymmetric nature
of the RUL-score, i.e. that late predictions incur a higher
penalty than early ones. The AE pre-trained models seem to
make predominantly late predictions, even though the absolute
difference from the real RUL is similar to the other approaches.

Another interesting finding is, that RBM pre-training is com-
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petitive with AE pre-training, even though it pre-trains only
the first layer. Both methods use a reconstruction-based pre-
training task, which makes the comparison even more inter-
esting. An explaining factor could be that the bottleneck size
of the autoencoder was not optimized as a hyperparameter,
although it has a significant influence on the reconstruction ca-
pabilities of the AE. We did not optimize it because changing
the bottleneck size would change the number of model param-
eters making the comparison with other methods difficult. A
bigger bottleneck may increase performance because of the
increased parameter count independently from pre-training.
Additional experiments where the bottleneck size is optimized
for the autoencoder and then compared to the other approaches
on the same model architecture could prove this hypothesis.

The last point is the downward trend in performance for self-
supervised pre-training with respect to the grade of degrada-
tion. At least on FD002 and FD004, we can observe that
performance drops at lower grades of degradation and even
makes our approach worse than the baseline in some cases.
This problem may lie in the nature of the pre-text task we
choose. It is based on the assumption that differences in the
features of two time frames are correlated with the difference
in RUL. If we take the piece-wise linear degradation model
of C-MAPSS at face value, there are no differences in RUL
above RULmax. Consequently, there should not be a differ-
ence in the features either. Our pre-text task on the other hand
is only accurate for a linear degradation model as we cannot
take RULmax into account on unlabeled data. Looking at
the percentage of time frames above and below RULmax for
different grades of degradation, we can see that in FD004 only
11% of the training data has a label below a RULmax of 125
at 40% grade of degradation. Coincidentally, the trend is most
obvious on this subset. The training data of FD001, FD002,
and FD003 has 33%, 23%, and 16% labels below 125 at 40%
grade of degradation. Less data with labels below RULmax

makes the approximation of our pre-text task less accurate.

6. CONCLUSION & FUTURE WORK

We presented a study of three SSL approaches on the NASA
C-MAPSS dataset under improved, more realistic evaluation
conditions. These conditions take into account that realistic,
unlabeled data does not contain features near the point of
failure. Concerning our first research question, our results
show that, contrary to previous studies, SSL does not always
improve the accuracy of RUL estimation. This underlines the
importance of a representative validation set to identify nega-
tive outcomes which may not always be available in settings
with few labeled time series.

In answering our second research question, we have shown that
our SSL approach, based on self-supervised pre-training, has
superior performance compared to the competing approaches
under certain conditions. More work is necessary to replicate

these findings on other datasets. Nevertheless, our approach
was not able to beat the baseline performance reliably under
all data scenarios. Most notably, the performance dropped
when the grade of degradation was low.

Future work includes conducting the experiments outlined
in the discussion section to test the proposed explanations to
the observed phenomena. Additionally, advanced techniques
from the field of metric learning, e.g. hard sample mining
or triplet loss, could be used to improve the self-supervised
pre-training. Theoretically, our approach could be used for
Unsupervised Domain Adaption (DA), too, as it shares many
characteristics with SSL. Unsupervised DA is of high interest
for RUL estimation as labeled and unlabeled data often do not
share the same domain. Investigating the effectiveness of our
approach for general, non-linear degradation processes, e.g.
tool wear estimation, is another direction for future work.
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A. COMPLETE RESULT TABLES

FD001
2% 10% 20% 40% 100%

None 31.30± 6.16 25.45± 2.31 24.21± 1.31 21.94± 3.08 14.63± 0.81

40%
AE 33.37± 9.53 24.71± 1.28 23.56± 3.12 17.27± 1.47 15.03± 0.61
RBM 33.49± 7.49 25.90± 1.93 25.09± 1.61 21.02± 3.17 15.67± 0.57
Ours 32.35± 6.08 24.42± 1.58 24.91± 1.87 21.38± 2.32 14.34± 0.81

60%
AE 32.17± 8.94 24.62± 1.75 22.65± 2.46 17.95± 1.92 15.09± 0.52
RBM 32.64± 7.45 27.06± 1.79 24.78± 2.73 19.50± 2.93 15.68± 1.01
Ours 29.88± 3.83 25.81± 2.36 23.93± 1.72 22.41± 1.82 14.48± 0.87

70%
AE 34.93± 8.64 25.10± 2.23 21.70± 2.09 17.71± 1.79 15.02± 0.58
RBM 33.00± 7.40 26.00± 1.77 23.95± 1.55 19.21± 1.92 15.45± 0.71
Ours 29.52± 5.26 24.90± 1.47 22.96± 2.38 18.51± 2.76 15.35± 0.78

80%
AE 30.24± 7.16 25.32± 2.23 22.41± 3.07 17.13± 1.31 15.40± 0.62
RBM 33.58± 7.05 25.53± 2.36 24.43± 1.66 19.56± 4.02 15.55± 0.88
Ours 28.50± 2.68 25.13± 2.28 23.64± 1.52 20.98± 2.52 14.33± 0.74

90%
AE 30.57± 7.00 26.04± 1.92 21.84± 1.82 17.26± 1.34 14.89± 0.65
RBM 31.86± 5.30 25.05± 2.17 25.01± 2.53 19.44± 2.36 15.55± 0.47
Ours 31.69± 6.62 25.20± 1.92 23.52± 2.24 18.74± 3.53 15.39± 0.78

FD002
2% 10% 20% 40% 100%

None 29.80± 6.38 23.87± 1.30 22.83± 1.03 20.73± 0.94 17.55± 0.62

40%
AE 33.86± 7.88 23.12± 1.11 21.91± 0.96 20.48± 0.90 17.19± 0.30
RBM 27.43± 4.30 22.79± 0.70 20.98± 0.65 19.41± 0.92 17.19± 0.51
Ours 42.04± 4.47 24.04± 0.84 22.09± 1.31 20.44± 0.80 18.34± 0.84

60%
AE 30.95± 6.38 23.25± 0.92 22.26± 1.05 20.69± 0.91 17.78± 1.22
RBM 26.50± 3.22 22.87± 0.90 21.36± 1.01 19.42± 0.68 17.54± 0.74
Ours 25.46± 3.79 22.86± 1.17 22.14± 1.35 20.45± 0.84 18.45± 0.78

70%
AE 28.03± 4.85 23.84± 1.06 22.43± 1.83 20.49± 0.82 17.56± 1.22
RBM 26.83± 3.91 22.85± 1.20 21.41± 1.19 19.33± 0.58 17.17± 0.46
Ours 24.82± 4.00 21.79± 1.42 20.25± 0.77 18.66± 0.69 16.83± 0.44

80%
AE 32.36± 7.24 23.29± 0.90 21.87± 0.90 19.92± 0.90 17.21± 0.58
RBM 27.13± 4.05 22.84± 0.86 21.35± 0.66 19.13± 0.87 17.10± 0.57
Ours 24.82± 3.43 22.43± 1.11 21.21± 1.26 19.79± 0.65 18.23± 0.63

90%
AE 31.55± 6.75 23.70± 1.07 22.30± 1.00 20.71± 1.36 17.55± 0.53
RBM 26.98± 3.73 22.55± 1.12 20.99± 1.07 19.46± 0.70 17.28± 0.39
Ours 24.99± 3.80 21.48± 1.39 20.26± 1.23 18.82± 0.72 16.80± 0.44

Table 3. RMSE results for FD001 and FD002: We report the mean and standard deviation. The rows represent the grade of
degradation and the columns the percent of labeled data of the data scenario. The second column contains the pre-training
method, where None is the baseline without any pre-training, and Ours is the self-supervised pre-training. The bold results mark
the best mean performance for each data scenario. If no result is bold, no approach was able to beat the baseline.
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FD003
2% 10% 20% 40% 100%

None 42.33± 20.56 22.99± 4.02 16.55± 0.94 14.58± 1.06 13.88± 0.58

40%
AE 35.08± 6.38 22.12± 5.31 17.05± 1.63 14.75± 1.12 13.96± 0.59
RBM 35.83± 7.00 22.98± 4.85 16.82± 1.13 15.19± 0.82 14.50± 0.50
Ours 31.82± 4.51 22.98± 4.30 16.00± 0.86 14.39± 0.85 13.47± 0.18

60%
AE 34.00± 6.89 21.26± 4.86 16.77± 1.62 15.09± 1.14 14.16± 0.49
RBM 31.63± 6.02 22.63± 3.93 17.04± 1.89 15.33± 0.84 14.45± 0.42
Ours 33.79± 4.74 24.80± 4.77 17.10± 1.19 14.52± 1.10 13.09± 0.74

70%
AE 35.01± 5.99 22.00± 4.80 16.36± 1.15 15.39± 0.93 13.85± 0.42
RBM 36.30± 7.52 22.36± 4.23 16.68± 1.35 15.51± 0.88 14.61± 0.45
Ours 33.10± 4.34 22.35± 4.82 16.73± 1.45 15.14± 1.18 13.64± 0.62

80%
AE 36.35± 5.06 21.24± 3.75 16.49± 1.60 14.82± 0.76 14.03± 0.50
RBM 34.29± 6.83 22.87± 4.63 17.31± 0.86 15.52± 0.66 14.68± 0.56
Ours 33.47± 5.57 22.98± 5.18 16.54± 2.04 14.60± 0.91 13.05± 0.53

90%
AE 33.37± 5.36 20.14± 4.09 17.10± 2.03 14.84± 0.88 14.17± 0.35
RBM 36.48± 7.74 23.47± 4.27 17.26± 1.35 15.06± 0.92 14.34± 0.57
Ours 31.79± 3.53 21.19± 4.13 16.34± 1.19 14.78± 0.75 13.83± 0.49

FD004
2% 10% 20% 40% 100%

None 35.44± 2.22 27.00± 1.37 25.18± 1.13 23.51± 0.62 21.66± 0.90

40%
AE 36.07± 4.39 28.53± 2.26 25.39± 1.36 23.20± 1.06 21.62± 0.71
RBM 35.99± 2.38 28.46± 2.20 25.74± 0.90 23.55± 0.62 21.48± 0.54
Ours 36.41± 1.71 31.15± 3.66 25.44± 1.67 23.24± 1.84 21.11± 0.52

60%
AE 35.60± 3.68 28.34± 2.36 24.88± 0.97 23.42± 0.97 21.30± 0.37
RBM 35.59± 3.69 27.61± 2.44 25.48± 1.22 23.22± 0.48 21.18± 0.62
Ours 34.20± 4.08 29.40± 2.77 25.31± 2.28 22.24± 1.21 20.96± 0.67

70%
AE 35.72± 3.72 28.28± 1.82 25.34± 1.30 23.19± 0.71 21.26± 0.56
RBM 35.41± 2.69 27.32± 2.30 25.40± 1.39 23.02± 0.73 21.08± 0.52
Ours 31.58± 1.57 27.02± 2.07 23.88± 2.14 22.48± 1.51 20.95± 0.67

80%
AE 34.68± 2.34 28.16± 1.73 25.47± 1.79 22.74± 1.08 21.23± 0.62
RBM 37.15± 4.56 27.95± 2.36 25.20± 1.08 23.43± 1.25 21.26± 0.89
Ours 29.23± 2.74 25.84± 2.84 24.26± 2.11 21.46± 0.68 20.95± 0.67

90%
AE 35.95± 2.96 27.57± 1.28 25.66± 1.14 23.43± 1.20 21.73± 0.59
RBM 35.88± 2.70 27.84± 1.82 25.69± 1.31 23.73± 0.78 21.25± 0.44
Ours 31.07± 3.81 24.20± 2.14 24.17± 2.88 21.82± 1.22 20.90± 0.62

Table 4. RMSE results for FD003 and FD004: Please consult table 3 for further information.
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FD001
2% 10% 20% 40% 100%

None 5.64e3± 3.25e3 1.49e4± 1.11e4 1.04e4± 7.48e3 5.28e3± 6.35e3 4.24e2± 1.15e2

40%
AE 1.51e4± 1.28e4 4.57e3± 2.37e3 7.39e3± 7.22e3 1.03e3± 7.22e2 4.79e2± 1.03e2
RBM 1.62e4± 8.24e3 1.73e4± 1.83e4 9.79e3± 9.05e3 3.69e3± 4.48e3 5.32e2± 6.25e1
Ours 2.04e4± 9.05e3 1.14e4± 8.40e3 1.57e4± 1.32e4 3.90e3± 2.89e3 3.97e2± 8.31e1

60%
AE 1.38e4± 1.28e4 9.80e3± 1.20e4 4.76e3± 4.94e3 9.85e2± 5.46e2 4.79e2± 6.05e1
RBM 1.76e4± 1.56e4 1.89e4± 2.34e4 1.55e4± 1.58e4 2.95e3± 4.13e3 5.14e2± 9.48e1
Ours 1.80e4± 2.13e4 1.08e4± 5.36e3 8.08e3± 5.60e3 6.04e3± 5.29e3 4.04e2± 8.41e1

70%
AE 3.16e4± 3.61e4 1.42e4± 1.67e4 2.71e3± 2.45e3 8.92e2± 4.70e2 4.76e2± 7.56e1
RBM 1.49e4± 1.42e4 1.37e4± 1.51e4 5.71e3± 5.43e3 1.06e3± 5.36e2 4.91e2± 1.05e2
Ours 9.03e3± 8.16e3 9.96e3± 8.28e3 7.18e3± 8.90e3 1.45e3± 1.53e3 4.86e2± 9.98e1

80%
AE 8.31e3± 9.62e3 1.32e4± 1.20e4 4.74e3± 5.51e3 9.11e2± 6.53e2 5.22e2± 9.65e1
RBM 3.00e4± 2.83e4 1.55e4± 2.14e4 6.26e3± 6.15e3 4.72e3± 8.42e3 5.13e2± 1.41e2
Ours 1.13e4± 1.47e4 1.54e4± 1.46e4 6.48e3± 4.50e3 3.62e3± 2.74e3 3.98e2± 7.89e1

90%
AE 1.01e4± 5.01e3 1.25e4± 1.48e4 2.99e3± 2.53e3 9.04e2± 3.92e2 5.06e2± 1.74e2
RBM 1.62e4± 1.09e4 1.37e4± 1.05e4 1.22e4± 1.37e4 1.27e3± 7.67e2 4.95e2± 6.30e1
Ours 1.50e4± 1.18e4 1.06e4± 1.03e4 7.26e3± 8.44e3 3.50e3± 6.38e3 4.89e2± 9.89e1

FD002
2% 10% 20% 40% 100%

None 6.95e4± 7.74e4 2.02e4± 1.70e4 9.21e3± 4.80e3 4.79e3± 1.95e3 1.99e3± 6.11e2

40%
AE 1.25e5± 1.32e5 1.21e4± 5.90e3 8.23e3± 4.71e3 5.80e3± 2.51e3 1.86e3± 5.80e2
RBM 7.16e4± 7.74e4 1.35e4± 8.68e3 6.08e3± 2.18e3 4.33e3± 2.30e3 1.69e3± 2.60e2
Ours 1.43e5± 8.00e4 1.45e4± 1.00e4 8.20e3± 3.92e3 4.12e3± 2.29e3 2.71e3± 1.74e3

60%
AE 1.01e5± 1.03e5 1.20e4± 5.64e3 6.71e3± 2.70e3 5.46e3± 2.16e3 2.08e3± 1.13e3
RBM 3.92e4± 4.56e4 1.29e4± 7.54e3 8.26e3± 4.54e3 3.10e3± 8.06e2 1.82e3± 3.69e2
Ours 2.99e4± 2.72e4 1.25e4± 1.04e4 7.69e3± 6.09e3 3.71e3± 9.67e2 2.78e3± 1.72e3

70%
AE 7.06e4± 9.35e4 1.92e4± 1.71e4 1.02e4± 9.86e3 5.08e3± 1.72e3 2.59e3± 1.93e3
RBM 6.14e4± 6.51e4 1.30e4± 4.50e3 7.90e3± 5.90e3 3.57e3± 1.23e3 1.76e3± 2.73e2
Ours 3.33e4± 4.39e4 1.78e4± 2.29e4 4.74e3± 4.02e3 2.76e3± 1.38e3 1.67e3± 1.97e2

80%
AE 9.93e4± 1.01e5 1.56e4± 1.63e4 7.76e3± 4.89e3 4.58e3± 2.32e3 1.74e3± 2.47e2
RBM 6.16e4± 6.11e4 1.02e4± 3.96e3 8.27e3± 3.91e3 3.32e3± 1.34e3 1.65e3± 2.47e2
Ours 3.55e4± 5.25e4 1.04e4± 4.79e3 6.25e3± 4.44e3 3.88e3± 2.41e3 2.13e3± 4.91e2

90%
AE 7.85e4± 7.03e4 1.48e4± 6.75e3 8.13e3± 3.31e3 5.43e3± 3.63e3 1.88e3± 3.15e2
RBM 4.95e4± 5.63e4 1.03e4± 6.69e3 7.04e3± 5.64e3 3.44e3± 1.30e3 1.68e3± 2.25e2
Ours 3.75e4± 5.15e4 8.11e3± 4.40e3 3.91e3± 2.10e3 2.41e3± 6.83e2 1.66e3± 2.01e2

Table 5. RUL-Score results for FD001 and FD002: We report the mean and standard deviation. The rows represent the grade
of degradation and the columns the percent of labeled data of the data scenario. The second column contains the pre-training
method, where None is the baseline without any pre-training, and Ours is the self-supervised pre-training. The bold results mark
the best mean performance for each data scenario. If no result is bold, no approach was able to beat the baseline. Please note that
the standard deviation of these results can be misleading as RUL-Score is an exponential measure.
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FD003
2% 10% 20% 40% 100%

None 1.18e8± 2.62e8 8.96e3± 1.20e4 1.31e3± 6.83e2 7.03e2± 3.82e2 7.48e2± 1.71e2

40%
AE 2.93e4± 3.11e4 2.02e4± 5.66e4 1.40e3± 9.24e2 6.94e2± 3.24e2 7.13e2± 2.08e2
RBM 9.06e4± 1.13e5 4.18e3± 3.15e3 3.43e3± 7.44e3 9.74e2± 5.84e2 9.88e2± 3.10e2
Ours 1.51e4± 1.31e4 7.16e3± 9.81e3 1.02e3± 5.83e2 6.20e2± 2.76e2 4.95e2± 1.12e2

60%
AE 4.03e4± 6.81e4 7.16e3± 1.35e4 1.39e3± 7.65e2 9.76e2± 3.91e2 7.10e2± 1.44e2
RBM 4.07e4± 6.87e4 9.77e3± 2.35e4 2.64e3± 4.86e3 1.03e3± 6.20e2 9.02e2± 3.54e2
Ours 3.35e4± 4.47e4 7.24e3± 7.05e3 1.71e3± 1.55e3 6.13e2± 2.42e2 4.74e2± 1.71e2

70%
AE 3.91e4± 3.60e4 7.12e3± 1.50e4 1.05e3± 4.12e2 1.04e3± 6.46e2 6.78e2± 1.75e2
RBM 6.09e4± 7.69e4 3.49e3± 3.45e3 1.42e3± 6.43e2 1.01e3± 3.75e2 9.28e2± 2.79e2
Ours 1.65e4± 1.88e4 1.20e4± 3.14e4 1.16e3± 5.47e2 7.17e2± 2.83e2 5.25e2± 1.27e2

80%
AE 4.36e4± 3.58e4 4.11e3± 5.66e3 1.21e3± 6.58e2 8.46e2± 3.09e2 6.14e2± 1.39e2
RBM 5.96e4± 7.59e4 8.60e3± 1.82e4 1.47e3± 7.13e2 9.10e2± 2.92e2 1.01e3± 2.76e2
Ours 4.20e4± 7.41e4 6.77e3± 9.98e3 9.61e2± 3.88e2 5.96e2± 2.08e2 4.59e2± 1.39e2

90%
AE 3.22e4± 4.59e4 3.40e3± 5.39e3 1.73e3± 1.23e3 8.26e2± 4.42e2 6.66e2± 8.99e1
RBM 8.56e4± 8.92e4 5.24e3± 6.90e3 1.97e3± 1.67e3 9.11e2± 5.46e2 9.92e2± 4.93e2
Ours 1.31e4± 7.50e3 3.44e3± 4.80e3 1.14e3± 5.58e2 6.69e2± 2.35e2 5.55e2± 9.86e1

FD004
2% 10% 20% 40% 100%

None 1.63e5± 1.58e5 2.52e4± 2.33e4 1.69e4± 9.37e3 9.15e3± 3.29e3 6.21e3± 1.62e3

40%
AE 1.44e6± 9.82e5 1.56e6± 8.75e5 2.08e6± 6.41e5 2.27e6± 1.34e6 1.77e6± 9.15e5
RBM 1.60e5± 1.52e5 3.90e4± 3.43e4 1.69e4± 8.72e3 7.79e3± 2.62e3 6.03e3± 2.25e3
Ours 1.02e5± 4.04e4 5.25e4± 7.18e4 1.65e4± 1.28e4 1.12e4± 7.05e3 5.26e3± 1.71e3

60%
AE 1.10e6± 8.70e5 1.82e6± 8.91e5 1.71e6± 1.29e6 1.94e6± 1.00e6 1.42e6± 6.38e5
RBM 1.41e5± 1.12e5 3.66e4± 3.26e4 1.29e4± 5.23e3 8.53e3± 5.18e3 5.76e3± 1.30e3
Ours 3.69e4± 1.60e4 3.04e4± 1.76e4 1.66e4± 1.35e4 6.67e3± 3.77e3 4.29e3± 9.92e2

70%
AE 1.80e5± 2.11e5 3.86e4± 3.61e4 1.64e4± 7.75e3 1.08e4± 8.82e3 5.73e3± 1.43e3
RBM 1.43e5± 1.39e5 3.68e4± 5.13e4 1.53e4± 9.11e3 9.53e3± 4.82e3 5.38e3± 1.94e3
Ours 3.52e4± 1.87e4 1.54e4± 6.76e3 8.43e3± 4.92e3 8.52e3± 5.06e3 4.25e3± 1.01e3

80%
AE 1.46e6± 1.01e6 1.76e6± 1.09e6 1.37e6± 6.03e5 1.75e6± 6.24e5 1.71e6± 8.83e5
RBM 2.11e5± 2.24e5 3.41e4± 2.14e4 1.42e4± 8.29e3 9.48e3± 5.50e3 5.13e3± 1.09e3
Ours 2.18e4± 2.11e4 1.61e4± 1.51e4 1.36e4± 1.10e4 5.87e3± 2.13e3 4.25e3± 1.01e3

90%
AE 1.58e5± 1.73e5 3.28e4± 2.23e4 1.59e4± 1.02e4 1.04e4± 5.96e3 5.74e3± 4.26e2
RBM 1.46e5± 1.24e5 2.51e4± 2.21e4 1.61e4± 1.16e4 1.09e4± 5.88e3 5.60e3± 1.27e3
Ours 5.05e4± 7.02e4 1.14e4± 7.05e3 1.17e4± 1.27e4 5.52e3± 2.95e3 4.04e3± 8.03e2

Table 6. RUL-Score results for FD003 and FD004: Please consult table 5 for further information.
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