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ABSTRACT 

For a successful realization of prognostics and health 
management (PHM), the availability of sufficient run-to-
failure data sets is a crucial factor. The sheer number of given 
data points holds less importance than the full coverage of the 
potential state space. However, full coverage is a major 
challenge in most industrial applications. Among other 
things, high investment and operating costs as well as the 
long service life of many technical systems make it difficult 
to acquire complete run-to-failure data sets. Consequently, in 
industrial applications data sets with specific deficiencies are 
frequently encountered. The development of appropriate 
methods to address such data scenarios is a fundamental 
research issue. Therefore, the purpose of this paper is to 
provide facilitation for this research. Accordingly, the paper 
starts by specifying the value and availability of data in PHM. 
Subsequently, criteria for characterizing data sets are defined 
independent of the actual PHM application. The criteria are 
used to identify typical data scenarios with specific 
deficiencies that possess significant relevance for industrial 
applications. Thereafter, the most comprehensive overview 
of data sets suitable for PHM and currently publicly 
accessible is provided. Thereby, not all previously identified 
data scenarios with their specific deficiencies are addressed 
by at least one data set. A program is established for the 
aforementioned facilitation of further research. One objective 
of the program is to create data sets reflecting these data 
scenarios using a test bench. First, possible applications and 
their degradation processes to be studied on the test bench are 
briefly characterized. Thereby, the final decision to select 
filtration as a test bench application is argued. Subsequently, 
the test bench created is introduced, including a description 
of the functional concept, pneumatic layout and components 

involved, as well as the filter media and test dusts employed. 
Typical run-to-failure trajectories are illustrated. Thereafter, 
the data set published under the name Preventive to 
Predictive Maintenance is presented. Additionally, a 
schedule for future releases of data sets on further industry-
relevant data scenarios is sketched.  

1. INTRODUCTION 

Key tasks in PHM are the detection of faults, the diagnosis of 
which component in a system causes the current fault 
condition, the health assessment, and the prognosis of the 
remaining useful life (RUL). The health information acquired 
accordingly serves as a foundation for the health 
management. Approaches to address the prognosis and 
diagnosis are often divided into data-driven methods, model-
based methods, and hybrid methods (Atamuradov, Medjaher, 
Dersin, Lamoureux, & Zerhouni, 2017).  

Each approach requires or at least benefits from the 
availability of sufficient data. Data-driven methods originate 
from the domains of statistics and machine learning (ML). 
The fundamental characteristic of these methods is that the 
modeling of system behavior is done entirely mathematically 
or rather statistically. Structural understanding of the 
behavior being modeled is not acquired. In order to use data-
driven methods in a purposeful way, all relevant areas of the 
state space should be reasonably covered by available data 
(Javed, Gouriveau, & Zerhouni, 2017). This involves at least 
that several run-to-failure data are available for each fault 
mode of the system (Uckun, Goebel, & Lucas, 2008). 
Depending on the application, different levels of production 
quality, operating conditions, and other additional aspects 
also hold importance.   

Much more than data-driven methods, (physical) model-
based methods require a thorough understanding of the 
mechanism involved in the degradation process. Even if 
theoretically no data is required for the creation of such a 
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physical model, it can be essential for a model-based 
approach when it comes to actually applying PHM. First, 
insufficiently precise known parameter values of a physical 
model can be reduced to a narrower range by means of data 
(An, Choi, & Kim, 2013). Second, the basis of scientific work 
is to assess whether a theory or model can be disproven by 
the data obtained from experiments (Popper, 1963). Testing 
based on concrete process data assists in identifying 
conditions that have hitherto been insufficiently modeled. 
Hybrid methods – which stem from the combination of data-
driven and physical models – accordingly also require the 
availability of data. Thus, for each of the approaches, 
plentiful data is required. 

However, one major drawback of PHM is that the objective 
of extensive data usually implies immense effort in terms of 
cost and time. Data of the assessed system in good condition 
is often plentiful available, but simply having several 
seamless run-to-failure data sets for each fault mode usually 
corresponds to a practically impossible amount of effort 
(Hemmer, Klausen, van Khang, Robbersmyr, & Waag, 2019; 
Pillai, Kaushik, Bhavikatti, Roy, & Kumar, 2016). Therefore, 
when PHM is applied in industrial domains, data scenarios 
are encountered that do not comply with ideal conditions. 
Instead, the available data often contains deficiencies that 
cannot be eliminated. For example, this could be missing 
parts within the life cycle recording, caused by a failure of 
the measurement system or the data handling. There could 
also be records on the beginning of the life cycle missing due 
to retrofitting of sensors. Another typical case is records that 
do not extend to the point of failure. There are a variety of 
reasons for this, such as premature replacement due to 
preventive maintenance, a very long life of a highly reliable 
system or not being able to operate the system up to its failure 
point due to the resultant harm (Chao, Kulkarni, Goebel, & 
Fink, 2021). Thus, examinations of such deficiencies and data 
scenarios are performed within this paper.  

For PHM, there are various methodologies, functional 
architectures, and frameworks that describe how to apply 
PHM. This often involves trying to distinguish the most 
promising approach for an application, whether it is data-
driven, model-based, hybrid, or classical reliability 
engineering. There are also many architectural schemes for 
integrating PHM into data processing of a manufacturing 
plant, vehicle, or building, for instance. Representative 
examples and reviews can be found in Aizpurua and 
Catterson (2015), Elattar, Elminir, and Riad (2016), Aizpurua 
and Catterson (2016), and Atamuradov, Medjaher, Dersin, 
Lamoureux, and Zerhouni (2017). Thus far, these 
frameworks and other types of guidance do not account for 
the deficiencies and their data scenarios mentioned before. 

In PHM research, there are already several papers that focus 
on developing suitable methods specifically for a particular 
data scenario; for example, Xu, Baraldi, Al-Dahidi, and Zio 
(2019), Cannarile, Baraldi, and Zio (2019), and Wiese, 

Pedersen, Nadimi, and Herp (2020). However, a general 
categorization of data scenarios detached from the particular 
application is missing. Furthermore, such data scenarios are 
only partially and rather coincidentally represented by 
publicly available data sets. Consequently, there is also a lack 
of individual data sets that specifically reflect the data 
scenarios. 

The main purpose of this paper is to contribute to the research 
on addressing PHM-specific data scenarios in industrial 
applications. Therefore, criteria for the assessment of data 
sets are defined in section 2. Based on these criteria, typical 
data scenarios with strong relevance to industrial applications 
are identified in section 3. Subsequently, the most 
comprehensive overview of publicly available data sets that 
are suitable for PHM research thus far is given in section 4. 
Here, some data sets are identified to represent specific data 
scenarios. Nonetheless, given that not all data scenarios with 
strong relevance are represented by these publicly available 
data sets, a program is established to provide data sets for all 
relevant scenarios. The data is generated by means of a 
filtration test bench, which is introduced in section 5, along 
with the first data set already generated. Additionally, future 
releases of further data sets on other data scenarios are 
sketched. The paper ends in section 6 with conclusions on the 
content and an outlook. Overall, the paper aims to provide: 

x Criteria for the qualitative assessment of PHM data sets 
x The most comprehensive overview on publicly available 

PHM data sets thus far 
x Publicly available data sets relevant for industrial 

applications 
x A foundation for further research on developing or 

adapting PHM methods to specific data scenarios 

2. DEFINITION OF CRITERIA FOR AN ASSESSMENT OF 
DATA SETS 

As stated in the previous section, having data available is an 
integral part of implementing PHM. Thereby, a distinction 
can be made between four essential tasks relating to the 
condition of a technical system, which serve as the basis for 
health management. The following categorization of the four 
tasks is based on Jia, Huang, Feng, Cai, and Lee (2018): 

x Fault detection/anomaly detection: Detect a fault 
state/anomaly of a technical system without knowing the 
root cause. This results in a binary classification problem 
with the states fault or no fault. 

x Diagnosis: Assign one or more causes to a detected fault 
state.  

x Health assessment: Assess the state of health or the 
current risk of failure of a system based on its current 
condition.  

x Prognosis: Predict the future state of health or RUL. 
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1. History provided by the data 2. Data acquisition 3. Data on degradation 
1.1 Data history range 

- Run-to-failure/threshold 
- End of life not recorded 
- Start during life cycle 
- No history, only a current 

status 
1.2 System with maintenance 
1.3 Lifetime criterion specified 

2.1 Recording 
- Continuous 
- Periodic, equidistant 
- Random 
- Condition-dependent 

2.2 Measurement properties 
- Sampling rate 
- Time information 

x Total operating time 
x Number of the current 

record without absolute 
time indication 

3.1 Data on 
- Parameters affecting the 

degradation 
- Health indicators 

3.2 Information on degradation 
3.3 Prior knowledge on: 

- Degradation features 
- Degradation process 

3.4 Reproducibility of the data 

4. System information 5. Quality & quantity of data 6. Data source 
4.1 Operating condition 

- Constant 
- Deterministic 
- Stochastic 

4.2 Failure modes of the system 
- Number from failure modes  
- Number of components  

4.3 Motivation for PHM adoption 
- Safety 
- Availability 
- Profitability 

4.4 Redundancy exists, what kind 

5.1 Coverage of state space 
- Relevant state space 

x Complete/partial 
- Extended state space 

5.2 Data volume 
- Total number of data 
- Number of data per state 

5.3 Data quality 
- Systematic measurement 

error/bias 
- Random measurement 

errors/noise 

6.1 Source 
- Simulation 
- Laboratory experiments 

x Accelerated/not 
accelerated 

- Real application 
x Selected test specimen 
x Random test specimen 

Table 1. Collection of criteria for the qualitative assessment of data sets at PHM. 

Which of the four tasks is to be performed, as well as what 
characteristics the data itself possesses are fundamental for 
utilizing a data set in PHM. In the following, industry-typical 
data scenarios are outlined based on their application 
independent data characteristics. This is primarily illustrated 
using the prognosis as an example task, but could also be 
applied to the other tasks, such as diagnosis. It is done by 
defining a set of criteria with six main criteria and their 
respective sub-criteria, as shown in Table 1. There are already 
various collections of criteria for the evaluation of data sets, 
which mostly come from the general data analysis domain. 
Examples of such collections are Kahn, Strong, and Wang 
(2002), Wang, Storey, and Firth (1995), and Merino, 
Caballero, Rivas, Serrano, and Mario (2016). Those focus on 
general data quality aspects, such as data format consistency, 
data security, and ease of manipulation. However, the authors 
are not aware of any having such a PHM focus, as is required 
for the present objective. Hence, criteria are designed by the 
authors. These are only intended to provide a generally valid 
description of typical data scenarios for PHM in industry, 
taking into account the main application independent 
characteristics. It should be noted that the individual sub-
criteria are not prioritized or further detailed, which is beyond 
the scope of this paper. In the following, the six main criteria 
with their sub-criteria are briefly explained: 

x The history provided by the data contains the sub-
criteria of data history range, system with maintenance, 

and lifetime criterion. The sub-criterion of data history 
range describes the part of the run-to-failure trajectory 
that is covered by the data. The second sub-criterion 
considers a system with maintenance and subsequent 
restart. The third sub-criterion involves the lifetime 
criterion of the system. 

x Data acquisition analyses the time characteristics of the 
measurement series. The first sub-criterion of recording 
distinguishes based on the time intervals between 
recorded data during the service life. The second sub-
criterion covers the measurement properties of the data 
recording. Part of this is the sampling rate as well as the 
absolute time information on the data points. 

x The third main criterion of data on degradation looks 
in detail at the state of information on the degradation 
process of the system. The first sub-criterion assesses 
whether the available data includes parameters affecting 
the degradation, such as mileage, operating hours and 
whether measurements also provide information about 
the health; for instance, particle concentration in oil. 
Next, it is evaluated whether the measurements directly 
reflect the health respective degradation or, as is usually 
the case, indirectly via a required data processing (Si, 
Wang, Hu, & Zhou, 2011). The third sub-criterion takes 
into account the prior knowledge about features that 
enable designing health indicators and prior knowledge 
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on the overall degradation process. The fourth sub-
criterion judges the reproducibility of data or present 
effects. 

x In the fourth main criterion, information on the overall 
system are considered. The first sub-criterion of 
operating condition characterizes the sequence of 
operating conditions during the service life of a system. 
The second sub-criterion focuses on the number of 
failure modes and the number of components that can 
trigger a failure of the system. The third sub-criterion 
considers the cause of the intended adoption of PHM. 
The fourth sub-criterion examines possible redundancies 
of components. 

x The fifth main criterion includes the quality and 
quantity of the data at hand. The first sub-criterion 
assesses the availability of data within the state space. 
The second sub-criterion covers the volume of data 
available. The total number of data and if can be assigned 
the number of data points per state are taken into 
account. 

x The sixth main criterion looks at the source from which 
the data is derived. The data can be generated by 
simulation, laboratory, test bench experiments or real 
application. 

In order for a data set to offer the greatest possible added 
value, sufficient knowledge on the existing data scenario is 
necessary. Developing a dependable PHM application 
without knowledge on the system considered and its available 
data is rather impossible in the authors' point of view. The 
level of knowledge about a planned PHM application can be 
assessed, for example, in using this set of criteria.  

3. IDENTIFICATION OF DATA SCENARIOS RELEVANT FOR 
INDUSTRIAL APPLICATIONS 

Specific data scenarios that typically occur with the same 
general data set characteristics in industrial application hold 
strong importance for the widespread implementation of 
PHM (Weiss & Brundage, 2021). These data scenarios – 
which involve deficiencies that require their own 
methodological adaptation – are therefore addressed. It is 
already evident from the combinatorics of the criteria that 
there are a large number of data scenarios. Hence, the focus 
is on relevant data scenarios related to individual criteria. The 
identification and categorization of data scenarios is based on 
the criteria collection. The selection of the data scenarios that 
are considered as relevant and listed below is based on typical 
causes of industrial applications, which yield to these 
scenarios with their data characteristics. Therefore, in the 
following, each data scenario is illustrated based on a 
description of its various causes. The assessment of industry-
typical causes is based on the experience of the authors.

Data history range (criterion 1.1) examines the degradation 
trajectories available for developing a prognosis application. 
It is analyzed how these are distributed over the service life 
of the technical system. These trajectories can be run-to-
failure or run-to-threshold data. In case of run-to-failure, data 
is available from the start to the failure throughout the entire 
life of the system. For run-to-threshold, data is available up 
to a defined threshold, where the system is also considered to 
be failed. 

Degradation trajectories are best suited for developing a 
prognosis application when the actual failure and RUL 
information exists. Data up to the point of system failure 
often originate from life cycle tests carried out specifically 
for this purpose. However, in actual applications, particularly 
valuable systems are rarely operated up to the point of actual 
system failure (Cannarile, Baraldi, & Zio, 2019). There are 
several reasons for the frequent occurrence of not recording 
the end of life. These include, as partially mentioned, 
predetermined replacement due to preventive maintenance. 
Predetermined maintenance intervals remain widespread in 
industrial domains, which makes such data frequently present 
(Chao, Kulkarni, Goebel, & Fink, 2021; Widodo & Yang, 
2011). Furthermore, a long service life of a highly reliable 
system can lead to the same type of data. Associated with this 
is the case of a short overall product development schedule, 
where life testing or field deployment may not have 
sufficiently progressed at the time of PHM implementation 
for a large number of failures to be present. However, it may 
also plainly be the case that the system cannot be operated up 
to its failure point due to the resultant harm (Chao, Kulkarni, 
Goebel, & Fink, 2021). Hence, despite a large number of life 
cycles recorded, the development of the prognosis 
application is made more difficult as the actual RUL 
information is not available. 

The next typical data scenario in industry is a data history that 
starts during the life cycle. For systems with long service 
lives, such as machine tools, it is often the case that they are 
retrofitted with sensors and degradation recording is started 
during the service life. Thus, the progression of the health in 
an initial part of the service life is not covered by the data and 
is therefore unknown. 

In accordance with the description above, two relevant data 
scenarios are identified: 

a) Data without the end of life being recorded  
b) Data with start of the data history during the life cycle 
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Criterion 2.1 considers the recording of the data over time 
in the context of the overall service life. In continuous 
recording, the measurements are logged concurrently as the 
system operates and are available seamless throughout its 
service life. If such form of recording is not performed or is 
not possible, gaps in the recording will occur. These can 
occur either equidistant or randomly resp. stochastically 
distributed. 

An example that causes such gaps is the use of defined test 
cycles for monitoring. These always follow the same 
sequence, after a period of use. This procedure is also referred 
to as active inspection or active monitoring. Such a scenario 
occurs, for instance, in the case of machining centers that 
manufacture products with different levels of complexity. 
Here, the operating time varies depending on the machined 
product and job. Thus, possible test cycles can only be 
performed between machining steps or after finishing a job at 
the earliest (Tobon-Mejia, Medjaher, & Zerhouni, 2012). 
This results in degradation measurements with inconsistent 
time spacing. It is similar to a random sample from the data 
of the continuous recording. The same data characteristic 
occurs when the objective is to reduce the amount of data. In 
industrial applications, it is often attempted to keep the 
amount of unmodified data transmitted and stored as small as 
reasonably possible (Omri, Al Masry, Mairot, Giampiccolo, 
& Zerhouni, 2021). This can result in equidistant or randomly 
distributed data batches, albeit which do not originate from a 
defined test interval with a specified load.  

In addition to the previous time-influenced recordings, 
condition or event-based recordings are also relevant in 
practice and likewise lead to gaps in the data set. Here, the 
acquisition is started when a defined threshold value is 
exceeded; for example, in terms of load, fault mode or 
damage gradient. This can also be seen as a recording trigger 
(Zhu, Nostrand, Spiegel, & Morton, 2014). It should be noted 
that the measurement can be continuous but the data is only 
recorded, i.e. stored, when a changed state is detected. By 
recording in this manner, the amount of data can be reduced 
by avoiding recording when there is little or no change of 
state and thus information.  

Hence, the following two data scenarios are identified:  

c) Data with random recording 
d) Data with condition-dependent recording 

The measurement properties (criterion 2.2) take into 
account the time information linked to the data. For example, 
this affects the ability to assign a data point to the overall life. 
This could be knowledge on the total current operating time 
or the current cycle count. The length of the service life thus 
far is usually an important input feature in the prognosis on 
its own. For example, a distinction can be made between 
similar appearing run-in effects at the beginning of the 
service life and degradation effects at the end.  

Systems for which no overall time information is available 
can be seen, for example, in self-sufficient systems that are 
not continuously powered. Therefore, the corresponding data 
scenario is identified as:  

e) Data batches with total/with partial/without time 
information  

Regarding the criterion of redundancy (criterion 4.4), the 
aspect of workload sharing is considered, for example. This 
means similar subsystems that work in parallel and are all 
active during operation. If one subsystem fails, the remaining 
subsystem(s) also takes over its workload. As illustrated by 
this example, redundancies in a system already influence 
maintenance strategies that do not take into account the 
current system state, namely corrective maintenance and 
preventive maintenance (Dong, Liu, & Du, 2019; Mendes, 
Coit, & Ribeiro, 2014). However, for maintenance strategies 
such as predictive maintenance, redundancy is particularly 
important. The load distribution among intact subsystems as 
well as the degradation state of the partner system(s) 
significantly influence the RUL of each subsystem. 
Furthermore, there can be sudden changes in the loads as well 
as the RUL if one subsystem fails. This research topic is 
highly relevant to the industry and at the same time represents 
a field of research with few PHM-related studies thus far. The 
basis for such research could be a data set that reflects this 
data scenario. The resulting data scenario is: 

f) Data on the life of redundant subsystems containing the 
failure of subsystem(s)  

In the context of PHM, the state space (criterion 5.1) 
represents all possible loads, fault modes, wear rates, 
operating states, etc. of the technical system. It needs to be 
assessed to what extent the relevant part of the state space – 
as it can also be encountered in the actual application – is 
covered by the data. Partial coverage of the state space 
occurs, for example, when not all fault modes are present in 
the data used for the development of a prognosis application.  

As argued in section 1, it is not possible to generate actual 
run-to-failure records for most industrial applications of 
PHM, as the service life is a few years of operation. Possible 
solutions to the problem of no actual records being accessible 
are accelerated testing under laboratory conditions or, to 
some extent, simulations tailored to the degradation process. 
Even if the basic degradation mechanism is to be maintained, 
such data is referred to an extended state space in the criteria 
catalog, as they do not occur in the actual application. In the 
case of accelerated testing, this leads to load conditions that 
are significantly increased to enhance degradation. The 
challenge in developing a prognosis for this kind of scenario 
is to accomplish the carry-over to the actual application with 
regular load conditions.   
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Based on the described data characteristics, there are two data 
scenarios of practical relevance: 

g) Data sets with partial coverage of the relevant state space 
h) Presence of training data that is to be mapped to the 

extended state space  

The data quality (criterion 5.3) is significantly affected by 
the sensors, sensor location, and peripherals used. This yields 
a different bias and different random noise (Atamuradov, 
Medjaher, Dersin, Lamoureux, & Zerhouni, 2017). If 
technical systems are in the market with different sensors and 
their positioning, for example at the customer’s request, this 
results in varying data qualities. This typically occurs when 
cost-benefit analyses are carried out in the course of product 
development to identify the most suitable components for 
different customers from a techno-economic perspective. A 
diagnostic or prognostic model that has been developed based 
on a significantly different data quality must take this into 
account. This applies especially for the management of 
uncertainties. The corresponding data scenario is therefore:  

i) Run-to-failure data with differing measurement bias 
and noise 

4. EVALUATION BASED ON AN OVERVIEW OF PUBLICLY 
AVAILABLE DATA SETS 

Large run-to-failure data sets are hold strong value. The 
companies and institutions that possess such data sets 
therefore have clear reasons not to provide free access to their 
data sets (Saxena, Goebel, Simon, & Eklund, 2008). The few 
publicly available data sets therefore hold strong value to the 
research community. They enable the mutual empirical 
benchmarking of the many different methods at PHM 
(Ramasso & Saxena, 2014). Furthermore, they offer 
researchers the opportunity to demonstrate a concrete 
application of their presented methods. Hence, as a basis for 
further research on data sets with specific data scenarios, this 
section provides an overview of the currently publicly 
available data sets and highlights different aspects of the 
overview. Subsequently, the data sets from the overview are 
examined for compliances with the identified data scenarios 
from section 3. 

4.1. Scope of the Data Set Overview 

The current data set overview differs from previous 
overviews such as Jia, Huang, Feng, Cai, and Lee (2018) and 
Huang, Di, Jin, and Lee (2017), because in addition to typical 
PHM sources, as they are stated in Lei et al. (2018) and 
Ochella and Shafiee (2019), many more sources and 
platforms for possible data sets are taken into account. By 
typical sources, we refer to the PHM Data Challenges of the 
PHM Society (PHM Society, 2021) and the Prognostics 
Center of Excellence of the National Aeronautics and Space 
Administration (NASA) (Prognostics Center of Excellence - 
Data Repository, 2021). Moreover, the scope of the overview 

is extended to research institutions and comparable 
organizations that deal with the aforementioned PHM tasks. 
Another beneficial feature is the recency of this overview. In 
the light of Industry 4.0 and the associated availability of 
data, ML approaches are becoming increasingly common in 
technical systems and production facilities (Dalzochio, et al., 
2020; Cachada, et al., 2018). This enhances the interest in 
data sets derived from technical systems, as these are also 
needed and used in other research areas. Therefore, artificial 
intelligence (AI) or ML dedicated data repositories are 
considered in the overview as additional platforms. By 
covering research institutions and comparable organizations 
as well as AI and ML dedicated data repositories, the 
overview is the most comprehensive so far. 

An important constraint of the overview is that data sets that 
do not consider the degradation state but only the process 
quality (often the quality of a manufactured product) are not 
included.  

4.2. Overview and its Analysis 

Table 3 in the appendix lists in detail the 70 PHM-related data 
sets contained in the overview. The table also contains the 
publishing authors or institutions and the URL where the 
respective data set can be obtained. A summary of the 
distribution of the 70 data sets among their sources and 
platforms is given in Figure 1. With a total of 29 data sets, the 
PHM Society and NASA continue to have a major impact on 
the provision of data sets. The data sets from these sources 
are widely used in the PHM-related literature and are most 
commonly used as benchmarks to validate newly developed 
PHM methods (Lei, et al., 2018; Kim, An, & Choi, 2016). 
This is advantageous for developing PHM methods as it 
provides a reference for the performance of a method. For the 
industrial application of PHM, this can be a disadvantage as 
the same use cases and thus also the same data scenarios are 
considered.  

Additional sources and platforms include the online 
community Kaggle (Kaggle: Your Machine Learning and 
Data Science Community, 2021) and the repository of the 
University of California at Irvine (UCI) (UCI Machine 
Learning Repository, 2021). Especially for the online 
community Kaggle, it can be observed that data sets are 
added here with major frequency compared to the previous 
sources, thus providing the most recent data sets. The sources 
of the remaining 22 data sets, which are referred to as Others 
(PHM 16 /ML 6) in Figure 1, stem from other online 
communities, the various research institutions and 
comparable organizations. The division of their focus on 
PHM or general ML can be made rather less precisely. Again, 
some of the data sets are very recent in terms of their 
publication date.  
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Figure 1. Depiction of the number of data sets provided by 

each platform. 

Data sets from PHM Challenges and the NASA are generally 
well documented in accordance with scientific standards, 
which also applies to various other data sets from PHM-
related institutions, as can be seen in Saxena, Goebel, Simon, 
and Eklund (2008), for instance. Especially regarding other 
sources and platforms, the quality of the information on the 
data should not be neglected when using them. Nevertheless, 
many data sets with a logical structure and valuable 
description are also included here. Data sets that have no 
actual description at all are not part of this overview, as their 
usability and therefore value is clearly limited.  

4.3. Status of the Representation of Data Scenarios 

In the following, the data scenarios from the overview are 
examined for compliances with the identified data scenarios 
from section 3. The descriptions of the data sets were 
considered to estimate their respective data scenarios. First, 
the data scenarios for which there is a corresponding data set 
are specified. 

Data with start of the data history during the life cycle 
(b): This data scenario is already considered in the NASA - 
Turbofan engine degradation simulation data set, which is 
often used as a benchmark in PHM research. The data set 
involves initial wear at the start of the simulated turbines’ 
service life trajectories (Saxena, Goebel, Simon, & Eklund, 
2008). This can be considered as a start during the lifetime. 

Data sets with partial coverage of the relevant state space 
(g): The data set that shares this scenario is Data Challenge 
PHM Soc. 2020 Europe - Filtration System. The training data 
only contains run-to-failure data sets with particles of size 
45 − 53 μm  and 63 − 75 μm . On the other hand, the test 
data only examines predictions for particles of size 53 −
63 μm. Hence, data on this particle size are not available for 
modeling or training. This results in incomplete coverage of 
the relevant state space. Nonetheless, an extrapolation where 

the test data comprised one of the boundary particle sizes 
would be even more challenging.  

Further data scenarios cannot be identified based on the data 
set descriptions. The following seven data scenarios are 
therefore designated as not covered thus far: 

x Data without the end of life being recorded (a) 
x Data with random recording (c) 
x Data with condition-dependent recording (d) 
x Data batches with total/with partial/without time 

information (e) 
x Data on the life of redundant subsystems containing the 

failure of subsystem(s) (f) 
x Presence of training data which is to be mapped to the 

extended state space (h) 
x Run-to-failure data with differing measurement bias and 

noise (i) 

For data scenario (a), it is noted that there are data sets for 
which no exact point of failure is defined. However, these 
data sets do not contain any test data for which the end of life 
or the RUL value is specified. The objective of the data 
scenario to make the most use of incomplete degradation 
trajectories for the effective development of a RUL 
prediction is thus not addressed. 

For data scenario (h), the following still needs to be 
considered. In the overview, no equivalent data set that 
reflects these characteristics is found. While there are data 
sets such as IEEE PHM Data Challenge 2012 - FEMTO 
Bearing Data Set and NASA - IGBT that stem from 
accelerated life tests, there is no test data under regular load 
conditions. As such, these data sets do not address the carry-
over challenge in this scenario, but rather contain a PHM task 
under special load conditions. 

The 70 data sets listed in Table 3 in the appendix often 
originate from specific tests or simulations. Consequently, 
they generally have a significantly higher degree of 
completeness than is usually the case in real applications and 
do not sufficiently represent the previously mentioned data 
scenarios. Among other things, one main task in PHM 
research is therefore still to generate realistic data sets that 
require purposeful treatment of deficiencies and data 
characteristics. 

5. ESTABLISHED PROGRAM TO GENERATE DATA SETS 
FOR RELEVANT DATA SCENARIOS 

In order to facilitate research regarding the most relevant data 
scenarios, a program is established. In accordance with the 
conclusion of the previous section, one main objective of this 
program is to generate and publicly provide data sets 
reflecting the data scenarios. For this purpose, an application 
with its degradation process is selected as data source and the 
corresponding test bench is introduced.  

70
Datasets

14
PHM Society

15
NASA

16
Others PHM

13
Kaggle

6
UCI

6
Others ML

45
Institutions 

and Platforms 
dedicated to 

PHM

25
Institutions

and Platforms  
dedicated to 
general ML
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5.1. Selection Process of the Test Bench Application 

The selection of the application with its degradation process, 
which is studied on the test bench, takes place in two stages. 
The result of an initial pre-selection of possibilities is four 
applications, which are described below with the central 
characteristics of their degradation process. They are all 
fundamentally suitable to be used as studied application. For 
the final selection, special focus is placed on research aspects 
of PHM. Based on these aspects, the final selection is 
explained subsequently. 

1. Filtration: Almost all industries depend on filtration as a 
process step, such as the food, power generation, chemical 
industries, etc. The health of a filter has a considerable 
influence on the filter performance itself, but also on the 
efficiency of the respective overall industrial process of 
which it is part (Sparks & Chase, 2015). The degradation and 
the resulting maintenance process of a filter are primarily 
caused by its loading. There are additional failure 
mechanisms of minor relevance such as aging, fatigue or 
chemical damaging (Sparks & Chase, 2015; Saarela, 
Hulsund, Taipale, & Hegle, 2014). Here, only the separation 
of solids and fluids (here: liquids, gases) is examined, which 
is the filtration type with the highest industrial significance. 
For instance, the global industrial air filtration market in 2019 
is estimated at USD 3.19 billion (Statista Research 
Department, 2019). Consequently, filtration has also been 
studied in PHM; for example, in Eker, Camci, and Jennions 
(2016), Sreenuch, Khan, and Li (2015), Saarela, Hulsund, 
Taipale, and Hegle (2014), and Skaf, Eker, and Jennions 
(2017). The main focus of these works is placed on the 
filtration of solids from liquids, more precisely the fuel 
filtration of vehicles.  

2. Gear failure: As with filtration, almost all industries 
depend on gears and the assurance of their reliable operation. 
Hence, degradation of gears – especially in the context of 
condition diagnosis – has already been thoroughly 
investigated within PHM (Sharma & Parey, 2016). Common 
fault modes for gears are scuffing, pitting, spalling, abrasive 
wear, and cracking (Sharma & Parey, 2016; Cubillo, 
Perinpanayagam, & Esperon-Miguez, 2016). The underlying 
causes of such failures can be divided into three categories: 
operational conditions (overload, fatigue, etc.), lubricant 
(lubricant failure, contamination, etc.), and assembly 
(misalignment, tight fit, etc.) (Cubillo, Perinpanayagam, & 
Esperon-Miguez, 2016). The most common measurement 
techniques for monitoring gears are measurement of 
vibration, acoustic emission, temperature, oil condition, and 
torque fluctuation (Večeř, Kreidl, & Šmíd, 2005; Kundu, 
Darpe, & Kulkarni, 2020).  

3. Mechanical stress to the attachment of electronic 
components: Nowadays, most technical systems include 
electronic components, which is why an in-depth study of 
their degradation process has already taken place in PHM 
research. A typical failure mechanism is the fatigue of their 

attachment, such as wire bond, solder leads, and bond pads. 
This is primarily due to temperature and motion factors. 
Material stresses can arise from temperature gradients or 
thermal load cycles when a thermal expansion mismatch 
exists. Vibrations and shocks are the main source of stress by 
motion (Gu, Barker, & Pecht, 2007; Cheng, Raghavan, Gu, 
Mathew, & Pecht, 2018, S. 63ff. 75). 

4. Wear of stamping dies: Stamping is a widely-applied 
type of sheet metal processing method. Stamping is a highly 
complex process with many influencing parameters such as 
elastic and plastic deformations, lubrication, the dynamic and 
static behavior of the matrix (Ge, Du, Zhang, & Xu, 2004). 
In particular, the increasingly relevant processing of high-
strength steels is responsible for high wear rates and the 
resulting defective production (Shanbhag, Rolfe, 
Arunachalam, & Pereira, 2018). The main causes of wear are 
adhesive and abrasive wear. The degradation due to wear 
occurs often highly stochastically and rapidly progresses, 
which makes fixed maintenance times unsuitable. There are 
various approaches for capturing the degradation state, such 
as measurements of stamping force, strain, acoustic emission, 
and vibration (Huang & Dzulfikri, 2021). A test bench to 
investigate wear of the stamping die can be undertaken, as 
Ge, Du, Zhang, and Xu (2004) and Shanbhag, Pereira, Voss, 
Ubhayaratne, and Rolfe (2019) show in a reduced scale. 

The four applications considered feature degradation 
processes that are representative of PHM deployments. The 
final decision on the test bench application is based on 
aspects that particularly address the provision of data relevant 
to PHM research. These aspects are physical modeling of the 
degradation process, variety of operating conditions, testing 
effort, and research potential on system-level PHM. From the 
authors’ perspective, filtration is consistently ranked among 
the best in all aspects. Therefore, filtration is selected as the 
test bench application and its properties with respect to these 
aspects are described in the following. As mentioned above, 
filtration studies in PHM have mainly focused on the 
separation of liquid and solid particles to date. However, here 
the separation of gas and solid particles is now applied. 
Therefore, the application with its generated data 
significantly differs from previous test setups and especially 
from the data set Data Challenge PHM Soc. 2020 Europe - 
Filtration System in the overview.  

Physical modeling of the degradation process: 
Degradation processes of various technical systems are 
highly complex. Consequently, physical modeling of them is 
only possible at all with great effort. A distinct feature of 
filter loading for PHM research is that it is one of the few 
failure mechanisms with significant complexity, besides 
crack propagation, for which several physical models are 
nevertheless described in the literature; for example, Eker, 
Camci, and Jennions (2016), Abdolghader, Brochot, 
Haghighat, and Bahloul (2018), Chikhi, Clavier, Laurent, 
Fichot, and Quintard (2016), Thomas, Penicot, Contal, 
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Leclerc, and Vendel (2001), Bergman, et al. (1978), and 
Novick, et al. (1990). 

Variety of operating conditions: The possibility to have a 
wide range of operating conditions is given for filtration. This 
involves variation of the filter media, test particles, 
concentration of particles in the fluid, flow rate, flow angle, 
etc. It holds particular value that the mentioned condition 
changes require no or only minor additional setup effort when 
performing run-to-failure tests. 

Testing effort: Run-to-failure test cycles of filters can be 
performed automatically in less than one hour. The 
maintenance time between tests is also less than one hour and 
primarily comprises cleaning contaminated components of 
the test bench. Consumables of the tests are simply test dust, 
filter media, and pressurized air. 

Research potential on system-level PHM: One area of 
PHM that still holds strong research potential today is system-
level PHM (Lei, et al., 2018). It features system-wide fault 
identification, an examination of the interactions of failure 
mechanisms, and, as a result of system-wide condition 
diagnosis and prognosis, a more comprehensive health 
management. Data sets on this extend beyond the objective 
of this paper but also hold strong interest to the research 
community. The proposal to use a filtration application for 
such studies has already been introduced by Niculita, Irving, 
and Jennions (2012). Such a fluidic system is highly modular 
and can be further extended by peripheral components and 
their failures. This includes increased system complexity due 
to line branching, clogging of lines, leakage at joints and 
lines, degradation of pump or compressor, stuck valves, etc.  

 
Figure 2. Front side of the filtration test bench with its 

particle feed system, sensors, open filtration chamber, and a 
clogged filter (Hagmeyer, Mauthe, Dutt, & Zeiler, 2021). 

5.2. Air Filtration Test Bench 

In the following, the test bench created in accordance with 
the selection is introduced. The test bench enables data 
generation by performing run-to-failure tests on the filtration 
process of gas or, in this case, specifically compressed air. 
The front of the test bench with its essential components, 
namely the particle feeder and the filtration chamber, is 
shown in Figure 2. When testing filter media, a general 
distinction is made between pressure and suction operation. 
The fluid flow through the filter can be achieved by 
increasing the pressure in front of the filter or reducing the 

Figure 3. Pneumatic layout of the test bench (Hagmeyer, Mauthe, Dutt, & Zeiler, 2021).
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pressure behind the filter compared to the ambient pressure. 
In this case, an external pressurized air supply is used to 
employ the pressure operation principle. The pneumatic 
layout of the test bench can be seen in Figure 3. The air 
preparation unit and the soft-start valve shown in it serve 
exclusively to ensure proper functioning of the system but do 
not affect the test procedure. By means of the corresponding 
valves, the filter loading can be carried out in a flow- or 
pressure-controlled mode. The connected 5/3- and 3/2-way 
valves enable selection of the respective control mode. The 
filter loading process is recorded by a flowmeter and a 
differential pressure sensor. A controlled amount of dust is 
introduced into the compressed air stream by using an 
atomizer nozzle and a particle feed drive system. The 
components behind the 3/2-way valves are those essential for 
testing, which are all shown in Figure 2. In the following, a 
further insight into the key features of the test bench and the 
test procedure is provided. 

Filter media: The test objects are filter pads made of cut flat 
material, which are fixed in the filtration chamber. The 
effective filter area is hereby squared and (78.3 𝑚𝑚)2  in 
size. Figure 2 also depicts a loaded filter after finishing a life 
test. In addition to the effective filter area, particularly 
important properties for testing are the nominal volume flow 
per unit area, the maximum volume flow per unit area, the 
differential pressure in the unloaded state, the maximum 
differential pressure and the matching of filter class and 
particle distribution utilized. For the physical modeling of the 
filter loading, additional information regarding the filter 
medium is required. For fibrous filters, this includes the 
packing density, the fiber diameter and the pad thickness 
(Song, Park, & Lee, 2006). 

Test particles and particle feeding system: Standardized 
test dusts with a defined distribution function in terms of 
particle size and chemical composition are used for filter 
loading. Here, Arizona Test Dust is used in accordance with 
the ISO 12103-1 standard in particle sizes from A2 to A4. 
Representative differential pressure trajectories of the three 
particle sizes are shown in Figure 4. Size type A2 is the test 
dust with the smallest mean particle size and A4 the dust with 
the largest. As is common in filtration, the smaller particles 
result in a higher differential pressure for the same loading 
mass (Song, Park, & Lee, 2006).  

The dispersion of the dust particles into the compressed air 
takes place by means of a nozzle for powdered solids, based 
on the Venturi principle. The test dust is placed in a cylinder 
and fed to the nozzle by an electrically-operated spindle 
drive, as can be seen in Figure 3. By moving the spindle drive, 
the quantity of particles introduced into the air stream per 
time is controlled independently from the flow rate and 
allows setting load profiles. 

 
Figure 4. Representative differential pressure trajectories for 

filter loading with three different particle sizes. 
Sensors: During life tests, the volume flow rate, the velocity 
of the particle feed drive, and the differential pressure across 
the filter are recorded. The flow sensor is located in front of 
the particle nozzle. The reason for this is the underlying 
measuring principle of thermal cooling by the flowing fluid. 
This is considerably influenced in its measuring accuracy by 
the contamination of the pressurized air. However, the sensor 
arrangement in front of the nozzle causes the flow rate to be 
falsified. Therefore, characteristic curves are measured and 
used for compensation. The differential pressure across the 
filter can be measured up to 2500 Pa, which is considerably 
above the regular operating range of the tested filters. The 
pressure ports in the filtration chamber are designed to 
minimize the influence on the differential pressure reading by 
the air flowing past the ports. 

Control and user interface: The control and data acquisition 
is undertaken by a programmable logic controller (PLC). The 
user interface (UI) is based on Node-Red and communicates 
with the PLC via OPC UA, which is a protocol for industrial 
machine-to-machine communication. The life cycle tests are 
automated, whereby the test conditions and the termination 
criteria are defined in the UI. 

As with any scientific experiment, an effort is made to reduce 
the influence of external disturbances on the measurement 
result. For this purpose, the nozzle and the filtration chamber 
are always cleaned between two test runs. The spindle of the 
particle feeding system is always in the same bottom end 
position at the beginning of a test and the cylinder is filled 
with the same amount of dust. However, variations in 
measurement results, which are inherent to the filter 
application, are an essential part of its use in studies. Such 
fluctuations are common in PHM applications and a source 
of uncertainty for PHM tasks (Goebel, et al., 2017). For 
instance, filter media made of randomly oriented non-woven 
fiber material are tested. The orientation of fibers when the 
filter media is manufactured results in varying filtration 
characteristics among tested filter pads (Chase, Beniwal, & 
Venkataraman, 2000). 
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5.3. Data Set: Preventive to Predictive Maintenance 

A data set has been published by the name Preventive to 
Predictive Maintenance. This data set reflects the data 
scenario Data without the end of life being recorded (a). 
Information on its availability is provided in section 5.4. The 
data set is based on the transition from an application of 
preventive maintenance to an application of predictive 
maintenance, with the data deficiencies that it entails. It is an 
issue with strong industrial relevance (Selcuk, 2017). The 
fundamental difference between the two forms of 
maintenance is illustrated in Figure 5. Preventive 
maintenance takes action when a predefined threshold of time 
units, work cycles, etc. is reached. When determining the 
threshold value, factors such as the failure costs, wasted life, 
as well as the lead time of a maintenance action need to be 
taken into account. (Wang, Chu, & Wu, 2007). Since the 
actual state of the system under consideration is not 
incorporated, life is given away under a mild load, and under 
excessive load failure can still occur, as depicted in Figure 
5a. On the other hand, predictive maintenance determines the 
current condition and predicts at least the RUL. This shall 
enable improved management of the entire maintenance 
process, a higher usage rate of the available life and a 
reduction of unplanned downtimes (Selcuk, 2017).  

The data set mimics already having run-to-threshold data sets 
at hand. However, due to the fixed maintenance periods while 
recording the data, these service lives are at most as long as 
the maintenance interval. The only times when the system 
failure is known is when lifespan is shorter than the 
maintenance interval. All other service lives are right 
censored. The challenge of this data scenario is to make the 
most use of the right censored service lives for the effective 
development of a RUL prediction. The utilization of right 
censored data in statistical lifetime models has already been 
thoroughly investigated in the related discipline of reliability 
engineering (Yang, 2007). Nonetheless, in the case of PHM, 
the research on censored data is not as extensive. There are 
only a limited number of papers on this subject; for instance, 
Widodo and Yang (2011), TV, Diksha, Malhotra, Vig, and 
Shroff (2019), and Chi, Lin, Chen, and Huang (2020). 

The training data provided contains 50 predominantly 
censored service lives. However, the test data contains 50 
randomly censored service lives for which the corresponding 
RUL is also given. The aim is to use the vast but censored 
training data to develop a RUL prediction for the test data and 
present solutions for addressing the data scenario. The data 
set incorporates a much more detailed description on the test 
configurations used, so that model-based and hybrid 
approaches are also feasible. Among others, this involves the 
physical properties of the filter (filter type, filter area, fiber 
diameter, degree of filling, filter thickness) and the properties 
of the test dust (distribution of particle size, density). 

 
 

 
Figure 5. Visualization of a) preventive maintenance and 
b) predictive maintenance (Hagmeyer, Mauthe, Dutt, & 

Zeiler, 2021). 

5.4. Publication of Further Data Sets for Additional 
Data Scenarios 

One main objective of the program is to publish data sets for 
data scenarios where no data sets are available thus far. 
Table 2 lists the planned publication date of further data sets 
regarding their data scenarios. Besides the core objective of 
encouraging research on data scenarios, the data sets could 
also be used directly for PHM in related filtering applications, 
for example, as part of the research topic transfer learning 
(Moradi & Groth, 2020). 

Data scenario Publication 
date 

Data without the end of life being 
recorded (a) 

Already 
published 

Data with random recording (c)  12/2021 

Run-to-failure data with differing 
measurement bias and noise (i) 6/2022 

Data batches with total/with partial/ 
without time information (e)  10/2022 

Presence of training data which is to be 
mapped to the extended state space (h) 5/2023 

Data on the life of redundant subsystems 
containing the failure of subsystem(s) (f)  2023-2024 

Table 2. Schedule for planned releases of publicly available 
data sets on data scenarios. 
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In addition to the data set, a detailed description of the 
respective experimental condition is provided. The 
description includes sufficient information to allow physical 
modeling to be included in the solution approach for the 
given data scenario. The data sets and their experiment 
descriptions are made available on Kaggle for public use 
under the license type CC BY 4.0. The first data set 
Preventive to Predictive Maintenance is already released. 
The publishing account and its URL are: 

- Prognostics @ HSE 
- https://www.kaggle.com/prognosticshse 

The data of each test run from the test bench will only be part 
of one data set. New test runs will be performed for each data 
set, preferably also under different operating conditions. The 
data sets to be published are therefore from different 
populations. This ensures that by including the data set of 
another data scenario, no inference is possible for resolving 
the respective deficiencies and data characteristics. 

6. CONCLUSIONS AND OUTLOOK 

6.1. Conclusions 

Data is the basis for a purposeful implementation of PHM. 
However, in industrial applications, this data typically 
involve specific characteristics and deficiencies. The defined 
criteria collection provides an approach to systematically 
assess specific data characteristics and deficiencies regarding 
PHM. The data scenarios identified by means of the criteria 
catalog hold strong relevance and addressing them 
appropriately is an important research issue in PHM. 

The ensuing overview of publicly available data sets leads to 
two main conclusions. First, data sets appropriate for PHM 
research are not only provided by typical sources such as the 
PHM Data Challenges of the PHM Society; rather, there are 
also platforms on general ML that increasingly provide 
suitable data sets. These platforms are not covered by any 
previous data set overview, making this overview the most 
comprehensive one thus far. Second, the data sets listed in the 
overview rarely cover industry-relevant data scenarios, but 
instead often represent seamless records of specific tests and 
simulations.  

The established program to facilitate research on addressing 
data scenarios therefore has as one of its main objectives to 
provide data sets representing these data scenarios. The 
selection process of the test bench application revealed that 
filtration is the most suitable application for generating 
appropriate data. The test bench created and introduced 
features run-to-failure trajectories of filter loading that show 
the general pattern of an increasing degradation rate, which 
is representative of many PHM applications. A data set on 
one data scenario has already been published, while the 
schedule of further publications is also outlined. Overall, this 

paper provides a significant step forward in the research on 
addressing industry-relevant data scenarios. 

6.2. Outlook 

Based on the identified industry-relevant data scenarios, a 
methodology is to be developed within the scope of the 
introduced program. There are already methodologies for 
PHM, but none that address ways of dealing with such data 
scenarios. The purpose of this methodology is to recommend 
solutions for relevant data scenarios that feature data 
deficiencies. 

From the authors’ perspective, there are a number of potential 
research issues to further advance the state of research on the 
topic of this paper. Those issues extend beyond the scope of 
the mentioned program. 

The key aspect here is how to address different data 
scenarios. This aspect is one of the inherent features that 
distinguishes PHM as a specific field of application from 
general research on data-driven, hybrid, and model-based 
methods. In PHM, there are already studies dedicated to 
particular data scenarios, but there remains substantial 
research potential. 

This research on data scenarios can be backed up by the 
creation of further data sets, in addition to what is planned 
here. Having a selection of data sets for the same data 
scenario where one set then proves to be the most appropriate 
benchmark through the use by the research community is a 
preferable way forward. In addition, a wide-scale industry 
study could provide a quantitative statement on the relevance 
of different data scenarios. 
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APPENDIX 

No. Data Set Designation and Reference to data origin URL for Data Download 
1 Data Challenge PHM Soc. 2008 - Turbofan 

NASA Prognostics Center of Excellence 
https://ti.arc.nasa.gov/tech/dash/group
s/pcoe/prognostic-data-repository/ 
#phm08_challenge 

2 Data Challenge PHM Soc. 2009 - Gearbox Fault Detection 
PHM Society, Gearbox fault detection data set, 2010 

https://c3.nasa.gov/dashlink/resources
/997/ 

3 Data Challenge PHM Soc. 2010 - CNC milling machine cutters 
X. Li1, B.S. Lim1, J.H. Zhou1, S. Huang1, S.J. Phua1, K.C. Shaw1, and M.J. Er2 
1Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 
638075 2School of Electrical and Electronic Engineering, Nanyang Technological 
University, Nanyang Avenue, Singapore 639798  

https://www.phmsociety.org/competiti
on/phm/10 

4 Data Challenge PHM Soc. 2011 - Anemometer Fault Detection 
Creators Unknown 

https://www.phmsociety.org/competiti
on/phm/11/problem 

5 Data Challenge PHM Soc. 2013 
Creators Unkown 

https://www.phmsociety.org/events/co
nference/phm/13/challenge 

6 Data Challenge PHM Soc. 2014 
Creators Unknown 

https://www.phmsociety.org/events/co
nference/phm/14/data-challenge 

7 Data Challenge PHM Soc. 2015 - Plant Fault Detection 
Creators Unknown 

https://www.phmsociety.org/events/co
nference/phm/15/data-challenge 

8 Data Challenge PHM Soc. 2016 - Semiconductor CMP 
Crystec Technology Trading GmbH 

https://www.phmsociety.org/events/co
nference/phm/16/data-challenge 

9 Data Challenge PHM Soc. 2017 - Bogie Vehicle 
Creators Unknown 

https://www.phmsociety.org/events/co
nference/phm/17/data-challenge 

10 Data Challenge PHM Soc. 2018 - Ion Mill in Waver Manufactoring 
A dataset shared by Kai Goebel (NASA) 

https://www.phmsociety.org/events/co
nference/phm/18/data-challenge 

11 Data Challenge PHM Soc. 2019 - Fatigue Cracks 
Creators Unknown 

https://www.phmdata.org/2019datach
allenge/ 

12 Data Challenge PHM Soc. 2020 Europe - Filtration System 
Eker, O. F., Camci, F., & Jennions, I. K. (2016). Physics-based prognostic modelling 
of filter clogging phenomena. Mechanical Systems and Signal Processing, 75, pp. 395-
412. 

http://phmeurope.org/2020/data-
challenge-2020 

13 Data Challenge PHM Soc. 2021 Europe: SCARA-robot 
Swiss Centre for Electronics and Microtechnology (CSEM) 

https://phm-europe.org/data-challenge 

14 PHM Data Challenge 2021 - Turbofan 2 
M. Chao, C.Kulkarni, K. Goebel and O. Fink (2021). "Aircraft Engine Run-to-Failure 
Dataset under real flight conditions", NASA Ames Prognostics Data Repository, 
NASA Ames Research Center, Moffett Field, CA  
(additional validation data compared to data set no. 29 ) 

https://data.phmsociety.org/2021-
phm-conference-data-challenge/ 

15 NASA - Milling Data set 
A. Agogino and K. Goebel. BEST lab, UC Berkeley. "Milling Data Set ", NASA 
Ames Prognostics Data Repository, NASA Ames Research Center, Moffett Field, CA 

https://ti.arc.nasa.gov/tech/dash/group
s/pcoe/prognostic-data-
repository/#milling 

16 NASA - Li-ion Battery Aging Datasets 
B. Saha and K. Goebel. "Battery Data Set", NASA Ames Prognostics Data Repository, 
NASA Ames Research Center, Moffett Field, CA 

https://ti.arc.nasa.gov/tech/dash/group
s/pcoe/prognostic-data-
repository/#battery 

17 NASA - Bearing Data Set 
J. Lee, H. Qiu, G. Yu, J. Lin, and Rexnord Technical Services. IMS, University of 
Cincinnati. "Bearing Data Set", NASA Ames Prognostics Data Repository, NASA 
Ames Research Center, Moffett Field, CA 

https://ti.arc.nasa.gov/tech/dash/group
s/pcoe/prognostic-data-
repository/#bearing 

18 NASA - Turbofan engine degradation simulation data set 
A. Saxena and K. Goebel. "Turbofan Engine Degradation Simulation Data Set", 
NASA Ames Prognostics Data Repository, NASA Ames Research Center, Moffett 
Field, CA 

https://ti.arc.nasa.gov/tech/dash/group
s/pcoe/prognostic-data-
repository/#turbofan 
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19 NASA - CFRP Composites Data Set 

Abhinav Saxena, Kai Goebel, Cecilia C. Larrosa, and Fu-Kuo Chang "CFRP 
Composites Data Set", NASA Ames Prognostics Data Repository, NASA Ames 
Research Center, Moffett Field, CA 

https://ti.arc.nasa.gov/tech/dash/group
s/pcoe/prognostic-data-repository 
/#composites 

20 NASA - IGBT 
J. Celaya, Phil Wysocki, and K. Goebel "IGBT Accelerated Aging Data Set", NASA 
Ames Prognostics Data Repository, NASA Ames Research Center, Moffett Field, CA 

https://ti.arc.nasa.gov/tech/dash/group
s/pcoe/prognostic-data-
repository/#igbt 

21 NASA - Trebuchet 
B. Morton. Sentient Corporation. "Trebuchet Data Set", NASA Ames Prognostics 
Data Repository, NASA Ames Research Center, Moffett Field, CA 

https://ti.arc.nasa.gov/tech/dash/group
s/pcoe/prognostic-data-repository 
/#trebuchet 

22 NASA - Randomized Battery Usage Data Set 
B. Bole, C. Kulkarni, and M. Daigle "Randomized Battery Usage Data Set", NASA 
Ames Prognostics Data Repository, NASA Ames Research Center, Moffett Field, CA 

https://ti.arc.nasa.gov/tech/dash/group
s/pcoe/prognostic-data-repository 
/#batteryrnddischarge 

23 NASA - Capacitor Electrical Stress 
J. Renwick, C. Kulkarni, and J Celaya "Capacitor Electrical Stress Data Set", NASA 
Ames Prognostics Data Repository, NASA Ames Research Center, Moffett Field, CA 

https://ti.arc.nasa.gov/tech/dash/group
s/pcoe/prognostic-data-repository 
/#escapacitor 

24 NASA - MOSFET Thermal Overstress Aging 
J. R. Celaya, A. Saxena, S. Saha, and K. Goebel "MOSFET Thermal Overstress Aging 
Data Set", NASA Ames Prognostics Data Repository, NASA Ames Research Center, 
Moffett Field, CA 

https://ti.arc.nasa.gov/tech/dash/group
s/pcoe/prognostic-data-
repository/#mosfet 

25 NASA - Capacitor Electrical Stress 2 
J. Celaya, C. Kulkarni, G. Biswas, and K. Goebel "Capacitor Electrical Stress Data Set 
- 2", NASA Ames Prognostics Data Repository, NASA Ames Research Center, 
Moffett Field, CA 

https://ti.arc.nasa.gov/tech/dash/group
s/pcoe/prognostic-data-repository 
/#eoscapacitor 

26 NASA - HIRF Battery 
C. Kulkarni, E. Hogge, C. Quach and K. Goebel "HIRF Battery Data Set", NASA 
Ames Prognostics Data Repository (http://ti.arc.nasa.gov/project/prognostic-data-
repository), NASA Ames Research Center, Moffett Field, CA 

https://ti.arc.nasa.gov/tech/dash/group
s/pcoe/prognostic-data-repository 
/#hirfbatterytests 

27 NASA - Small Satellite Power Simulation 
C. Kulkarni and A. Guarneros "Small Satellite Power Simulation Data Set", NASA 
Ames Prognostics Data Repository, NASA Ames Research Center, Moffett Field, CA 

https://ti.arc.nasa.gov/tech/dash/group
s/pcoe/prognostic-data-repository 
/#smallsat 

28 NASA - Algae Raceway Data Set 
Brad Bebout, Leslie Profert-Bebout, Erich Fleming, Angela Detweiler, and Kai Goebel 
"Algae Raceway Data Set", NASA Ames Prognostics Data Repository, NASA Ames 
Research Center, Moffett Field, CA 

https://ti.arc.nasa.gov/tech/dash/group
s/pcoe/prognostic-data-
repository/#algae 

29 NASA - Turbofan engine degradation simulation data set 2 
M. Chao, C.Kulkarni, K. Goebel and O. Fink (2021). "Aircraft Engine Run-to-Failure 
Dataset under real flight conditions", NASA Ames Prognostics Data Repository, 
NASA Ames Research Center, Moffett Field, CA 

https://ti.arc.nasa.gov/tech/dash/group
s/pcoe/prognostic-data-repository 
/#turbofan-2 

30 IEEE PHM Data Challenge 2012 - FEMTO Bearing Data Set 
FEMTO-ST Institute, Besançon, France 

https://github.com/wkzs111/phm-
ieee-2012-data-challenge-dataset 

31 IEEE PHM Data Challenge 2014 - Fuel Cell 
FCLAB Research Federation (FR CNRS 3539, France) 

https://repository.lboro.ac.uk/articles/
dataset/IEEE_2014_Data_Challenge_
Data/3518141 

32 Kaggle - Air pressure system failures in Scania trucks 
Scania CV AB - Stockholm 

https://www.kaggle.com/uciml/aps-
failure-at-scania-trucks-data-set 

33 Kaggle - CNC Mill Tool Wear 
System-level Manufacturing and Automation Research Testbed (SMART) at the 
University of Michigan 

https://www.kaggle.com/shasun/tool-
wear-detection-in-cnc-mill 
#experiment_03.csv 

34 Kaggle - E-coating ultrafiltration maintenance 
Tinsley Bridge Limited, Sheffield, United Kingdom 

https://www.kaggle.com/boyangs444/
process-data-for-predictive-
maintenance 

35 Kaggle - Genesis Demonstrator 
Institut für industrielle Informationstechnik (inIT) der Technischen Hochschule 
Ostwestfalen-Lippe (IMPROVE) 

https://www.kaggle.com/inIT-
OWL/genesis-demonstrator-data-for-
machine-learning 
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36 Kaggle - Microsoft Azure Predictive Maintenance 

Azure AI Notebooks for Predictive Maintenance 
https://www.kaggle.com/arnabbiswas
1/microsoft-azure-predictive-mainten 
ance?select=PdM_telemetry.csv 

37 Kaggle - One Year Industrial Component Degradation 
Institut für industrielle Informationstechnik (inIT) der Technischen Hochschule 
Ostwestfalen-Lippe (IMPROVE) 

https://www.kaggle.com/inIT-
OWL/one-year-industrial-component-
degradation 

38 Kaggle - Predict maintenance 
Creators Unkown 

https://www.kaggle.com/c/predictive-
maintenance1/overview 

39 Kaggle - Predictive Maintenance Hydraulics System 
ZeMA gGmbH, Eschberger Weg 46, 66121 Saarbrücken 

https://www.kaggle.com/mayank1897
/condition-monitoring-of-hydraulic-
systems?select=description.txt 

40 Kaggle - Preventive to Predictive Maintenance 
Hagmeyer, Simon; Mauthe, Fabian; Dutt, Marcel; Zeiler, Peter “Preventive to 
Predictive Maintenance Dataset”, Hochschule Esslingen - University of Applied 
Sciences: Research Department Reliability Engineering and Prognostics and Health 
Management, Göppingen, Germany, DOI: 10.34740/kaggle/dsv/2339298 

https://www.kaggle.com/prognosticsh
se/preventive-to-predicitve-
maintenance 

41 Kaggle - Production Plant Data for Condition Monitoring 
IMPROVE research project 

https://www.kaggle.com/inIT-
OWL/production-plant-data-for-
condition-monitoring 

42 Kaggle - Pump 
Kaggle User: UnknownClass  

https://www.kaggle.com/nphantawee 
/pump-sensor-data 

43 Kaggle - Sensor Fault Detection 
Schneider-Electric, France 

https://www.kaggle.com/arashnic/sens
or-fault-detection-data 

44 Kaggle - Versatile Production System 
Institut für industrielle Informationstechnik (inIT) der Technischen Hochschule 
Ostwestfalen-Lippe (IMPROVE) 

https://www.kaggle.com/inIT-
OWL/versatileproductionsystem 

45 UCI - Condition Based Maintenance of Naval Propulsion Plants Data Set 
1: DIBRIS - University of Genoa 2: School of Marine Science and Technology, 
Newcastle University 

http://archive.ics.uci.edu/ml/datasets/
Condition+Based+Maintenance+of+N
aval+Propulsion+Plants 

46 UCI - Condition monitoring of hydraulic systems Data Set 
ZeMA - Zentrum für Mechatronik und Automatisierungstechnik gemeinnützige GmbH 
Saarbrücken 

https://archive.ics.uci.edu/ml/datasets/
Condition+monitoring+of+hydraulic+
systems 

47 UCI - Mechanical Analysis 1990 
University of Torino, Italy 

http://archive.ics.uci.edu\ml\datasets\
Mechanical+Analysis 

48 UCI - Robot Execution Failures Data Set 
Universidade Nova de Lisboa, Monte da Caparica, Portugal 

https://archive.ics.uci.edu\ml\datasets\
Robot+Execution+Failures 

49 UCI - Steel Plates Faults 
Semeion Research Center of Sciences of Communication - Rome, Italy 

https://archive.ics.uci.edu/ml/datasets/
steel+plates+faults 

50 UCI - AI4I 2020 Predictive Maintenance Data Set 
Matzka, S. (2020). “Explainable Artificial Intelligence for Predictive Maintenance 
Applications,"  Proceedings of the Third International Conference on Artificial 
Intelligence for Industries (AI4I), pp. 69-74, doi: 10.1109/AI4I49448.2020.00023. 

https://archive.ics.uci.edu/ml/datasets/
AI4I+2020+Predictive+Maintenance+
Dataset 

51 AIDAR Lab - Air Compressor 
Nishchal K. Verma, R. K. Sevakula, S. Dixit and Salour A. (2016). Intelligent 
Condition Based Monitoring using Acoustic Signals for Air Compressors, IEEE 
Transactions on Reliability, vol. 65, no. 1, pp. 291-309. 

http://www.iitk.ac.in/idea/datasets/ 

52 AIDAR Lab - Drill Bit 
Nishchal K. Verma, R. K. Sevakula, S. Dixit and Salour A. (2015). Data Driven 
Approach for Drill Bit Monitoring, Reliability Digest, pp. 19-26. 

http://www.iitk.ac.in/idea/datasets/ 

53 Aramis - Data Challenge ESREL2020PSAM15 
Francesco Cannarile (Aramis Srl, Italy), Michele Compare (Aramis Srl, Italy and 
Politecnico di Milano, Italy), Piero Baraldi (Politecnico di Milano, Italy), Zhe Yang 
(Politecnico di Milano, Italy), Enrico Zio (Politecnico di Milano, Italy and MINES 
ParisTech, France). 

https://aramis3d.com/innovation-
challenges/ 

54 Backblaze - Hard Drive Stats 
Backblaze, Inc. 

https://www.backblaze.com/b2/hard-
drive-test-data.html 
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55 Bearing Data Center - Fan and Bearing 

Case Western Reserve University, USA 
https://csegroups.case.edu/bearingdata
center/pages/download-data-file 

56 GitHub - Predictive Maintenance using PySpark 
GitHub User: linya9191 

https://github.com/Azure/PySpark-
Predictive-Maintenance 

57 Mendeley - Brushless DC motor 
Mazzoleni, Mirko; Scandella, Matteo; Previdi, Fabio; Pispola, Giulio (2019). Data for: 
First endurance activity of a Brushless DC motor for aerospace applications - 
REPRISE project, Mendeley Data, V2, doi: 10.17632/m58bdhy2df.2 

https://data.mendeley.com/datasets/m
58bdhy2df/2 

58 Mendeley - Diesel Engine Faults 
Denys Pestana-Viana - Federal Center of Technological Education Celso Suckow da 
Fonseca (CEFET-RJ), Rio de Janeiro, Brazil 

https://data.mendeley.com/datasets/k2
2zxz29kr/1 

59 MFPT - Condition Based Maintenance Fault 
Data Assembled and Prepared on behalf of MFPT by Dr Eric Bechhoefer, Chief 
Engineer, NRG Systems 

https://www.mfpt.org/fault-data-sets/ 

60 OpenEI - Evaluation of Building Fault 
LBNL, PNNL, NREL, ORNL and ASHRAE RP-1312 (Drexel University) 

https://data.openei.org/submissions/91
0 

61 OpenEI - Gearbox Fault Diagnosis 
OpenEI User: Yogesh Pandya  

https://data.openei.org/submissions/62
3 

62 ResearchGate - Driveline Unbalanced Shaft 
Giacomo Barbieri and David Sanchez-Londono and Laura Cattaneo and Luca 
Fumagalli and David Romero 

https://www.researchgate.net/publicati
on/341220576_Dataset_A_Case_Stud
y_for_Problem-
based_Learning_Education_in_Fault_
Diagnosis_Assessment 

63 SDOL - Diagnostics 101 bearing data 
Kim, S., An, D., Choi, J-H. (2020). Diagnostics 101: A Tutorial for Fault Diagnostics 
of Rolling Element Bearing Using Envelope Analysis in MATLAB. Applied Sciences. 
10(20):7302. doi:10.3390/app10207302 

https://www.kau-sdol.com/bearing 

64 SDOL - HS Gear 
 Creators Unknown 

https://www.kau-sdol.com/kaug 

65 SDOL - KAU Gear 
 Creators Unknown 

https://www.kau-sdol.com/kaug 

66 Uni Lulea - Vibration Signals Wind Turbines 
Luleå University of Technology: Martin del Campo Barraza, Sergio (Department of 
Computer Science, Electrical and Space Engineering, Embedded Internet Systems 
Lab); Sandin, Fredrik (Department of Computer Science, Electrical and Space 
Engineering, Embedded Internet Systems Lab); Strömbergsson, Daniel (Department of 
Engineering Sciences and Mathematics, Machine Elements) 

http://ltu.diva-portal.org/smash 
/record.jsf?pid=diva2%3A1244889&d
swid=-6104 

67 Uni Paderborn KAt - Bearing Damage 
University Paderborn Kat 

https://mb.uni-paderborn.de/kat 
/forschung/datacenter/bearing-
datacenter/data-sets-and-download/ 

68 Virkler 
Virkler, D. A., Hillberry, B. M. and Goel, P. K. (1979). The Statistical Nature of 
Fatigue Crack Propagation. Journal of Engineering Materials and Technology 101, 
148–153. 

https://rdrr.io/github/SimoneHermann
/hierRegSDE/man/Virkler.html 

69 WASEDA - Fault Detection and Classification 
De Bruijn, B., Nguyen, T. A., Bucur, D., & Tei, K. (2016). Benchmark datasets for 
fault detection and classification in sensor data. In A. Ahrens, O. Postolache, & C. 
Benavente-Peces (Eds.), SENSORNETS 2016 - Proceedings of the 5th International 
Confererence on Sensor Networks (pp. 185-195). (SENSORNETS 2016 - Proceedings 
of the 5th International Confererence on Sensor Networks). SciTePress. 
https://doi.org/10.5220/0005637901850195 

https://waseda.pure.elsevier.com/en/p
ublications/benchmark-datasets-for-
fault-detection-and-classification-in-
sens 

70 Zenodo - Predictive maintenance dataset 
Huawei Munich Research Center 

https://zenodo.org/record/3653909#.Y
AmTTBYxkcQ 

Table 3. Overview of publicly available datasets for research on PHM, sorted by the providing data platform. The designation 
of the data sets is divided into two parts consisting of the source or platform and the underlying technical application.   
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