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ABSTRACT 

We investigate the performance of three different data-
driven prognostic methodologies towards the Remaining 
Useful Life estimation of commercial aircraft brakes being 
continuously monitored for wear. The first approach utilizes 
a probabilistic multi-state deterioration mathematical model 
i.e., a Hidden Semi Markov model whilst the second utilizes 
a nonlinear regression approach through classical Artificial 
Neural Networks in a Bootstrap fashion in order to obtain 
prediction intervals to accompany the mean remaining life 
estimates. The third approach attempts to leverage the 
highly linear degradation data over time and uses a simple 
linear regression in a Bayesian framework. All 
methodologies, when properly trained with historical 
degradation data, achieve excellent performance in terms of 
early and accurate prediction of the remaining useful flights 
that the monitored set of brakes can safely serve. The paper 
presents a real-world application where it is demonstrated 
that even in non-complex linear degradation data the 
inherent data stochasticity prohibits the use of a simple 
mathematical approaches and asks for methodologies with 
uncertainty quantification.  

1. INTRODUCTION 
Aircraft maintenance ensures the airworthiness of the fleet 
by preventively maintaining aircraft systems and structures 
that are critical to safe and economic operations, and by 
correctively maintaining systems and structures that are not 

critical. Time-based maintenance (TBM) is the current 
preventive practice for most of the aircraft components; they 
are inspected and repaired if needed, based on fixed 
intervals which are determined by flight hours, flight cycles 
or calendar days, whichever comes first. Interval lengths 
may vary from one cycle during pre-flight inspections to 
several years during complete aircraft overhaul. Frequent 
maintenance tasks increase the operational costs and the 
downtime of an aircraft. Most inspections do not lead to any 
required follow-up maintenance and could therefore have 
been omitted if the state of the aircraft had been known a-
priori.   

An alternative practice to TBM would be to execute 
maintenance based on the real time health status of the 
aircraft, the so-called condition-based maintenance (CBM). 
CBM is a paradigm swift aiming to reliably assess the 
condition of the aircraft’s systems and structures, 
confidently estimate the future health state and 
informatively support the operators for the decision making 
on when maintenance should be performed (Lee & Mitici, 
2020), (Kallen & Noortwijk, 2005), (Li, Verhagen & 
Curran, 2020), (Ezhilarasu, Skaf & Jennions). The Advisory 
Council for Aeronautical Research in Europe (ACARE) 
envisages that, by 2050, all new aircraft will be designed for 
CBM and it is expected that CBM will contribute to a 
significant reduction in maintenance, repair and overhaul 
process time (ACARE, 2005). To put CBM in practice 
though, there is a need for assessing the current health state 
of a component and estimating its future condition and 
remaining useful life (RUL) in real-time (Li, Verhagen & 
Curran, 2020), (Adhikari & Buderath, 2016). The latter falls 
into the research field of prognostics; in particular, 
prognostics aim to provide reliable predictions and 
confidence to the operators for decision making that will 
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convert health related information to values (Jia, Huang, 
Feng, Cai & Lee, 2018).  

In modern aircrafts, such as the BOEING 787 Dreamliner 
and AIRBUS A350, thousands of sensors are integrated 
within several systems, which record condition and health 
parameters during the operational life of the fleet. One of 
these sensorized systems are the aircraft’s brakes. The brake 
system considered in this study is an electrically actuated 
carbon disc brake system embedded in each of the 8 wheels 
in the main landing gear of a wide-body aircraft. When 
activated, four brake actuators on each brake create a 
clamping force against the carbon-disc assembly, which 
creates friction and eventually decelerates the aircraft. 
Regular use of the brakes wears the pads and reduces their 
thickness. Two wear pins per brake system act as a visual 
indicator of the carbon thickness left. The aircraft itself 
measures the position of the actuators when clamped to the 
carbon discs and infers the carbon thickness from this 
measurement. This thickness can be wirelessly transmitted 
(as a percentage of original thickness) to the operator over 
ACARS (Aircraft Communications Addressing and 
Reporting System). A desirable thickness should be always 
present to ensure that the brakes are in a condition to stop 
the aircraft properly and are easily refurbished after 
removal.  

Currently, the maintenance of brakes is performed under 
TBM. More specifically, two maintenance tasks are used; a 
manual visual inspection of the brake wear pins by a ground 
engineer at a fixed flight-cycle interval and the subsequent 
replacement if needed. If a certain amount of wear is 
observed, a pad replacement is scheduled but due to safety 
reasons and regulations, the interval of inspection is much 
shorter than the expected life cycle of the pad. As a result, 
only a fraction of the inspections results in a requirement for 
pad replacement. Real-time and remote estimation of the 
brakes’ (future) condition would eliminate the need for these 
manual inspections, leading to a reduction in maintenance 
time. The electrical brakes could be one of the first 
examples of an aircraft system where a TBM policy may be 
substituted by CBM. The reason behind that is that the real-
time monitoring health parameter (pad thickness) is very 
similar to the critical parameter that is manually inspected 
today. Hence, the use-case presented in this paper can help 
mature CBM in aircraft maintenance.  

2. PROGNOSTICS IN AIRCRAFT SYSTEMS AND 
STRUCTURES 

Prognostics, and specifically RUL estimations, have been in 
the epicenter of research and development for more than a 
decade resulting in two main categories of methodologies 
(Goebel, Daigle, Saxena, Sankararaman, Roychoudhury & 
Celaya, 2017); model-based prognostics (Autin, De Martin, 
Jacazio, Socheleau & Vachtsevanos, 2021), (Acuna & 
Orchard, 2016), (Dalla Vedova, Germanà, Berri & 

Maggiore, 2019) and data-driven prognostics (Rengasamy, 
Jafari, Rothwell,  Chen & Figueredo, 2020), (Verstraete, 
Droguett & Modarres, 2020). In the field of aircraft systems 
prognostics, few works have been published the last 10 
years with most of them dealing with the famous C-MAPPS 
simulation dataset from turbofan engines. In Autin et al. 
(2021), a model-based prognostic methodology that utilizes 
a high-fidelity dynamical model of flight control servo-
actuators and particle-filtering has proven very efficient in 
fault detection and failure prognosis. Particle-filtering-based 
prognostics has been indeed a popular approach in model-
based prognostics and gives excellent predictions when a 
physical model exists. In Dalla Vedova et al. (2019), the 
authors proposed a model-based fault detection and isolation 
method, employing a Genetic Algorithm (GA) to identify 
failure precursors before the performance of the system 
starts being compromised. In the data-driven field, we can 
indicatively mention (Rengasamy et al., 2020), (Verstraete 
et al. 2020), (Che, Wang, Fu, & Ni, 2019) (Lu, Wu, Huang 
& Qiu, 2019) where deep learning or logistic regression 
approaches have been successfully implemented for aircraft 
turbofan engine failure prognostics on simulated data. Both 
data-driven and model-based methodologies have their merit 
in the successful implementation of prognostics and their 
employment should be done considering two factors; the 
existence of a physical/phenomenological model that 
describes the degradation process and the availability and 
quality of condition or the existence of historical health 
monitoring degradation data under the various health states. 
While model-based methodologies are considered to be 
more accurate as they capture the physical phenomenon and 
they are easier to be understood by the operator/user, data-
driven methodologies become very popular nowadays as 
they can be scaled to multiple systems without the need for 
specific domain knowledge. The availability of vast amount 
of data, the increase of computational power and the 
capability of statistical models and/or Artificial Intelligence 
(AI) algorithms to use and learn from real world degradation 
data and train algorithms for reliable RUL estimations, 
constitute the data-driven approaches a cost-effective 
alternative to physics-based modelling (Dawn, Kim & Choi, 
2015). 

Data Analytics offer a wide range of mathematical 
algorithms which can be employed in a prognostic 
framework for RUL estimations; among them are artificial 
neural networks, i.e. deep learning, LSTM and Bayesian 
versions, logistic and Gaussian regression processes, Hidden 
Markov models (Loutas, Eleftheroglou & Zarouchas, 2017), 
(Eleftheroglou, Zarouchas, Loutas, Alderliesten & 
Benedictus, 2018) have been utilized for developing data-
driven prognostics frameworks and demonstrating their 
capabilities for aircraft systems as well as aircraft materials 
and structures. There is no common rule for the selection of 
an algorithm and it mainly depends on the knowledge about 
the system’s operational behavior, the associated historical 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

3 

data and the user’s experience and skillfulness to apply a 
certain type of algorithm. Nevertheless, as the accuracy of 
estimations is conditional to uncertainties, such as in-
complete knowledge of the future loading and 
environmental conditions, noisy or faulty data and the use of 
inaccurate models, it is essential that the algorithms can 
express a confidence about their prediction. When designing 
the prognostics framework, if uncertainty is not considered 
or carefully interpreted, the predictions could be 
meaningless compromising the mission of prognostics 
(Sankararaman & Goebel, 2015).  

The contribution of the present paper is to assess the 
feasibility of real-time and remote RUL prognostication via 
probabilistic data-driven methodologies in a new real-life 
degradation dataset from aircraft brakes. A real-world 
application is presented where we demonstrate that even in 
non-complex linear degradation data the inherent data 
stochasticity prohibits the use of a simple mathematical 
approaches and methodologies with uncertainty 
quantification are required. More specifically Artificial 
Neural Networks (ANN) with bootstrapping, a Bayesian 
approach to the classical Linear Regression (BLR) as well as 
the Non-Homogeneous Hidden Semi Markov Model 
(NHHSMM). ANN is a classical choice in regression 
problems and the prediction problem might as well be 
considered as such. The BLR is selected after observing the 
highly linear nature of the data. The NHHSMM is a 
statistical model more rich in structure and complex from a 
mathematical point of view and was found to outperform 
state-of-the-art machine learning algorithms in a series of 
studies that the authors published (Loutas, Eleftheroglou & 
Zarouchas, 2017), (Eleftheroglou, Zarouchas, Loutas, 
Alderliesten & Benedictus, 2018), (Eleftheroglou, Mansouri, 
Loutas, Karvelis, Georgoulas, Nikolakopoulos & Zarouchas, 
2019), (Loutas, Eleftheroglou, Georgoulas,  Loukopoulos, 
Mba & Bennett, 2020) thus is believed to be a challenging 
competitor to regression algorithms.  

The remainder of the paper is organized as follows: Section 
3 presents the dataset for the wear of the brake pads, the data 
pre-processing and how the training/test data separation was 
performed. Section 4 summarizes the basic principles of the 
3 data-driven models. Section 5 presents and discusses the 
results for the RUL estimations while section 6 compares 
the performance of the models using several performance 
metrics. The conclusions are given in section 7, along with a 
discussion for future work. 

3. METHODOLOGY 
The methodology developed in the present work is 
summarized in Figure 1. It starts from a representative 
dataset with historical degradation data from aircraft brakes 
wear. These data are pre-processed to form appropriate input 
for the data-driven models training. After the training, the 
models may be fed with unseen field sensor data and offer 

predictions of the RUL. This is a critical input for the 
maintenance management and could serve a future transition 
for a periodic maintenance paradigm to a CBM one. 

 

Figure 1. Concept and methodology flowchart 

3.1. Dataset 

A real-life historical dataset from the widebody fleet of a 
European airline is utilized. The dataset deals with the usage 
and degradation of the brakes of several aircraft in a wide-
body fleet. The brakes refer to the braking system of the 
main landing gear. Every aircraft has eight brakes. They 
have some built-in features, such as a continuous real-time 
measurement of the carbon disc thickness. Over time, due to 
wear, the thickness of the brake disc reduces. When the 
thickness of a brake’s disc is thinner than a threshold, the 
brake is replaced within a limited number of aircraft cycles. 
In its initial form, the dataset consists of full registration 
histories for each plane, after each flight. Specifically, it 
consists of the landing date and time, the departure and 
landing airport, and eight columns with the real-time 
measurement of the carbon disc thickness left, expressed in 
percentage. The dataset needs to be transformed to a more 
usable form in order to be used as input into the prognostic 
algorithms. 

3.2. Data Preprocessing 

Each brake is assumed to be an independent system, its 
degradation history is independent of the other brakes’ 
histories and no connection is considered between the 
brake’s RUL and the airplane that it belongs to, or to the 
brake’s position. So, for each brake a full dataset consisting 
of three columns. Table 1 gives an example of how the final 
dataset is organized. The first column entails the already 
performed flights, the second column gathers the sensor 
indications regarding the percentage (%) of remaining  
brake    disc    thickness,    which    can   be    calculated   as: 
(100 − $%&'!"#$%&	()*!)%, and the last column represents 
the expected output; i.e., the remaining useful flights before 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

4 

replacement for each brake. We consider the performed 
flights variable as the only time variable because the brakes 
are only used during the landing phase of the flight. After 
creating complete brake degradation histories, a failure 
threshold is defined at the first time the sensor value reaches  

Performed Flights Sensor_Data (%) RUL (flights) 

1062 0 0 

1056 1 6 

1050 1.5 12 

… … … 

12 76 1050 

6 76.33 1056 

0 77.17 1062 

Table 1. Sensor data structure for an aircraft brake 

zero, and we do not consider any flights performed from that 
point on, if any. This threshold accounts for a safety buffer; 
in reality, a non-zero pad thickness is left for safe 
operations, even when the sensor reading is at 0%. 
Furthermore, a 6-flights moving average window is applied 
to smoothen the data as eq. (1) explains, with i ∈ [0,6) and   
k ∈ [1,7,13, …]. The correlation between those two input 
variables (performed flights and sensor data) and the 
expected output (Remaining Useful Life) is depicted in 
Figure 2.  

Flights_Performed = max (Flights_Performed(k+i)), 

Sensor_data = average (Sensor_data(k+i)),                      (1) 

RUL = min (RUL(k+i)), 

3.3. Training/Testing datasets preparation 

Out of the total 56 available brake degradation histories, 27 
histories are selected to be used as the dataset for training, 
evaluating and testing the methods chosen for predicting the 
remaining useful life. The remaining 29 are considered 
incomplete degradation histories and therefore are not 
included. Those 27 are selected as they are complete 
degradation histories i.e., disc brake pad thickness decays 
from 100% to 0%. 3 out of 27 exhibit a rather different 
degradation rate, as compared to the rest, and are considered 
as outliers. Two of them are left outliers, since their 
lifespans are shorter than the rest of the population on 
average. The third is a right outlier i.e., it has a longer 
lifespan. The outliers are used only in the testing phase to 
check the proposed algorithms’ predictive capabilities, since 
one prognostic challenge is to be able to predict accurately 
the RUL of an outlier without using it in the training 
process. The remaining 24 histories represent complete 
sensor data from 8 brake sets of 3 aircrafts. For the training 
of the prognostic algorithms a k-fold leave-two-out method 
was used.  Randomly, one of those 3 aircrafts is chosen to 

provide the testing and validation set each time. Hence, 16 
out of the 24 brakes constitute the training set at all times. 

 

Figure 2. A representative (partial) overview of the brake 
degradation dataset a) The correlation between RUL and 
already performed flights b) The correlation between RUL 
and the sensor data. 

Then, the following process is repeated 8 times. Out of the 
remaining 8 brakes, for each run, one is picked as the test 
set, the following one as the validation, and then the 
remaining six of them are placed back at the training set. 
The procedure is summarized in Figure 3. 

4. MATHEMATICAL MODELS FOR PROGNOSTICS  

Three different mathematical models are selected based on 
previous experience of the authors, to deal with the 
estimation of the RUL as well as the uncertainty 
quantification i.e., determination of confidence intervals. 
First, after observing the rather linear degradation behavior 
of sensor data in Figure 2, linear regression with a Bayesian 
implementation to quantify uncertainty is suggested. Second 
option is a Generalized Hidden Semi Markov model that 
considers degradation as a multi-state process, a latent 
Markov chain which manifests itself through condition 
monitoring data. Finally, an Artificial Neural Network 
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(ANN) is utilized through a bootstrapping approach to 
determine confidence intervals to the mean predictions. 

 

Figure 3. The process for choosing Test and Validation Set 
each time 

4.1. Bayesian Linear Regression (BLR) 

In linear regression a target t is approximated by a linear 
function y(x+, .) = .,1  as follows ti = y(xi, .) + εi 
where εi~Ν(0, σ

2). The Bayesian perspective on classical 
linear regression does not consider the model’s weights as 
deterministic but instead considers them random variables 
and sets Gaussian priors with zero mean and potentially 
variable variance at each weight i.e.  p(.|:) =
; N(w+|0, α+

/0)1

+23
. In a fully Bayesian approach the 

model’s hyperparameters are also random variables defined 
by Gamma distributions i.e., p(:) = ∏ Gamma1

+23 (α+|a, b) 
and p(σ4) = Gamma(σ4|c, d). The parameters a,b,c,d of the 
Gamma hyperpriors are fixed to 10-6. The parameters : and 
σ2 are estimated iteratively by maximizing the log marginal 
likelihood of the targets p(t|:, σ4) which comes in closed 
form. The scikit-learn 0.23.2 python software was utilized 
for the implementation. This is based on the algorithm 
described in (Tipping, 2001) where all the necessary 
mathematical details are given.  

4.2. Non-Homogenous Hidden Semi Markov Model 
(NHHSMM)  

NHHSMM is a mathematical model that describes the 
association between a hidden stochastic degradation process 
and an observed one which manifests via condition/health 
monitoring data. The NHHSMM is actually a double 

stochastic process. The hidden process is a finite Semi 
Markov chain and the observed process, conditioned on the 
hidden one. To properly describe the bi-dimensional 
stochastic process, the model’s parameters θ need to be 
estimated. These parameters characterize the transition rate 
distribution between the hidden states (degradation process), 
as well as the correlation between the hidden states and 
historical data (observation process). The studied system is 
assumed to start its operation from a healthy state and 
during its service life transits to states of higher degradation 
until it reaches its failure state.  
The model’s parameters θ are obtained via a Maximum 
Likelihood Estimator (MLE) θ* of the model parameters θ 
through a procedure described in detail in (Moghaddass & 
Zuo, 2014). The MLE algorithm leads to the maximization 
the likelihood function L(θ,x(1:Μ)) Eq. (2), where x(m) is the 
m-th degradation history, M is the number of available 
degradation histories. 
 
LGH, 1(0:7)I = ∏ PrG1(9)LHI7

920

							:
!2;<=(:)
MNNNNNOL>GH, 1(0:7)I = ∑ log(Pr(1(9)|H))7

920 	   

								
	⇒ 	H

∗
= argmax

@
%∑ log %Pr'1(m)(H)*M

m=1 *  

(2) 

    
Initializing with random values for θ and solving the 
aforementioned optimization problem the parameter 
estimation process is concluded and prognostic-related 
measures can be defined and calculated. The mean value 
and the associated confidence intervals of RUL are obtained 
through the conditional reliability function 

RVtWx0:E" , L > tF, H∗Y = Pr VL > tWx0:E" , L > tF, H∗Y  i.e. the 

probability that the studied system continues its safe 
operation after a time point t (less than a considered life-
time limit L) further than the present time tp, given the 
optimal model parameters H∗. This is a definition apparently 
conditional on available historical health data (the 
observation sequence x1:tp ) and the estimated model’s 

parameters H∗. The mean RUL is obtained as the integral of 
the conditional reliability as shown in Eq. (3) whereas the 
confidence intervals are calculated through the cumulative 
distribution function (CDF) of RUL in Eq. (4). 
 

RUL$ %t'x!:#! , L > t$, +∗, = . R%t + τ'x!:#! , L > t$, +∗,dτ
&

'
 (3) 

Pr %RUL#! ≤ t'x!:#! , +∗, = 1 − R%t + τ'x!:#! , L > t$, +∗, (4) 
 

4.3. Bootstrapped Artificial Neural Networks (BNN) 

Artificial Neural Networks (ANN) are a well-known class of 
AI algorithms with regression and classification capabilities. 
They are highly capable of capturing linear and non-linear 
correlation between input data and expected output if 
provided with sufficient data. Considering a stochastic 
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process, such as a system’s degradation, the ith  measured 
target ti can be represented as: 

t! = y(x!) + ε! = f(x!, +) + ε! (5) 

where y(x+) is the real regression mean and εi is a random 
variable with zero expectation, representing some 
noise.	f(x+,+)   is a function trying to correlate the input 
variables xi with the true regression mean y(x+) given a set 
of variables +. The output of an ANN model  ypred(xi) is 

an estimate of the true regression mean y(x+): 

ypred(xi) = f(xi,+) (6) 

And the prediction error can be expressed as: 

ti − ypred(xi) = [y(xi) − f(xi,+)] + εi (7) 

There are two types affecting the prediction error εi in eq.7, 
the epistemic and the aleatoric error. Assuming statistical 
independence between the two, the total variance can be 
expressed as σt

2(xi) = σypred
2 (xi) + σε

2(xi). The variance of 

the epistemic error comes from the model mis-specification 
uncertainty. The variance of the aleatoric error comes from 
the inherent noise in the real-world data. Bootstrapping is a 
meta-algorithm, a method for constructing confidence 
intervals using the outcomes of several AI models with 
deterministic outputs such as the ANNs. It is a data 
resampling technique that aims at approximating the 
unknown statistical distribution of the error by an empirical 
distribution (Efron & Tibshirani, 1993). 
As Figure 4 summarizes, given a dataset, B ANN models 
are randomly initialized and the dataset splits into B training 
sets by resampling with replacement. We train those B 
ANNs using as a cost function the mean squared error. 
Confidence Intervals can be constructed if we realize a large 
number of ANNs (B>100) and assume that the predictions 
follow a normal distribution as utilized in (Khosravi, 
Nahavandi & Atiya, 2011), (Pierce, Worden & Bezazi, 
2008), (El-Sayed, Riad, Elsafty & Estaitia, 2017). The mean 
prediction values and the variance can then be simply 
calculated as: 

ymean(xi) =
1

B
+ ypred(xi)

B

b=1

 

 
(8) 

σypred
2 (xi) =

1

B − 1
+%ymean(xi) − ypred(xi)*

2
B

b=1

 
 
(9) 

 

 
Figure 4. Bootstrapping ANN for uncertainty quantification  
 
The variance σypred

2  comes mainly from random initialization 

of the model parameters and the use of different datasets for 
training the ANNs. Once the mean value and variance are 
estimated, the ith  CI with a confidence level of (1 − a)%  
can be constructed as: 

ymean(xi) ± t1−a
2
	,σypred2 (xi) 

 
(10) 

In the present study, 200 ANNs were realized for the method. 
Each ANNy has one hidden layer with twenty neurons. The 
activation function is ReLU, except for the output neuron 
which has a linear activation function and the data are 
normalized in the [-1,1] range.  The learning rate was set to 
10-4 with a decay rate of 10-5. A gradient descent-based 
Adam optimizer was used. 
 

5. RESULTS AND DISCUSSION 

Mean RUL predictions and 95% confidence intervals for six 
of the total eleven brakes that were used as test sets, are 
presented in Figure 5 and Figure 6. Brakes 3, 6 and 8 
concern normal systems of similar behavior, while Brakes 9-
11 are the aforementioned outliers i.e. the brakes that 
experience shorter or higher lifetime than the average.  
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Figure 5. Prognostic Results with 95% confidence intervals 
on (a) Brake #3, (b) Brake #6, (c) Brake #8 

Looking closely the results of Figure 5 we can see that at the 
beginning of the operational life, NHHSMM rather fails to 
capture the ground truth in all case studies mainly due to the 
selection of the number of possible discrete degradation 
states (N). In the present study N=4 is chosen since N>4 will 
increase the computational effort without providing more 
reliable prognostics. 

 
Figure 6. Prognostic Results with 95% confidence intervals 
on (a) Brake #9 (Outlier 1), (b) Brake#10 (Outlier 2), (c) 
Brake #11 (Outlier 3) 

It is generally admitted that early operation time RUL 
predictions cannot be reliable due to limited real-time data 
and possible future operation uncertainties. On the other 
hand, both BLR and BNN have no difficulty to follow the 
degradation trend from its beginning. It is obvious that in all 
presented case studies, BNN has the narrowest confidence 
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interval, while BLR and NHHSMM have wider CIs. It is 
also worth mentioning that NHHSMM, for the majority of 
the presented results, provides more conservative mean 
estimates, while the mean estimates of BNN and BLR are, 
in most cases, close to each other. While NHHSMM, after 
overcoming the initial plateau, seems to have a clear 
monotonic tendency, both BLRs and BNNs mean estimates 
have some volatility. This volatility appears to be present at 
the same x-values for both models, revealing the existence 
of some possible abnormalities in the dataset. It is highly 
notable that all three models mean predictions converge 
very close to the ground truth as the end of lifetime 
approaches and it is of paramount importance to have 
successful predictions. The width of confidence intervals 
decreases as well as operational time passes leading to 
increasingly more confident mean estimates. 
Figure 6 summarizes the prognostic result for the outlier 
cases (Brake 9, Brake 10, Brake 11). Outliers as mentioned 
previously are systems that degrade sooner than average or 
later than average, and therefore experiencing shorter or 
higher lifetime than average. In our case Brake 9 and Brake 
10 are left outliers, as they degrade sooner than average, 
whilst Brake 11 is considered as a right outlier since it 
degrades later than average. From the results shown in 
Figure 5 we can make the following comments. BNN 
outperforms NHHSMM and BLR for both left and right 
outliers, since ground truths seem to be within the predicted 
CI and the mean values seem to be close to ground truth 
even from the very beginning. The BNN estimated CIs are 
wider regarding the outliers, than the predicted CIs for the 
other eight brakes, while BLR and NHHSMM provide CIs 
of almost the same width. To quantify even more these 
qualitative observations, we proceed to a prognostic 
performance assessment through special metrics. 

6. PROGNOSTIC PERFORMANCE METRICS 
The metrics used in our case study assess both the mean 
value predictions as well as Confidence Intervals (CI). For 
the assessment of the CI, the most important characteristic is 
the coverage probability CICP (Confidence Interval 
Coverage Probability). It is measured by counting every 
target value that is in the defined confidence interval. 

`a`b = 0

T
c dU(aV(eU), fU)

T

U20
,   

where dU(aV(eU), fU) = g
1, fU ∈ aV(eU)
0, 	hfℎ%'$jk%

   

(11) 

and where, l   is the number of target values that belong 
inside the confidence interval aV(eU), (1 − a)%.  Another 
crucial metric concerning the CI is the mean confidence 
interval width (MCIW), which can be easily expressed as: 

m`an =
1
l
o(pU − qU)	
T

U20

 
(12) 

with pU  and qU  being the upper and lower value of the CI 
respectively. For the assessment of the predicted mean 
values several metrics as analyzed in the classical work of 
(Saxena, Celaya, Saha, Saha & Goebel, 2010) are used. The 
Root Mean Squared Error (RMSE), the Mean Absolute 
Percentage Error (MAPE), the Prognostic Horizon (PH) and 
the Cumulative Relative Accuracy (CRA) are defined in the 
following: 

rmst = u∑ GtW(fU)I
4T

U20

l
 

  
 
 (13) 

mvwt =
100
l
x

|tW(fU)|	
yXYZ[(fU)

T

U20

 

 
 
 (14) 

bz = t{q − fU 
 (15) 

 

`r| =
∑ r|T
U20 (fU)

}
,$ℎ%'%		r|(fU) = 1 − ~

tW(fU)
yXYZ[(fU)

~, 

		&l�		tW(fU) = yXYZ[(fU) − yW[VT(fU)	

 
(16) 

 
Besides RMSE and MAPE which are well known and 
widely used in prognostic results assessment, the Prognostic 
Horizon is the difference between a time fU , when the 
predictions meet specified performance criteria, and the time 
corresponding to the end of life (EoL). Cumulative Relative 
Accuracy is the normalized sum of relative prediction 
accuracies at specific time instances. More details regarding 
the metrics can be found in the classical paper of Saxena et 
al. [30]. In Table 2 the prognostic performance metrics for 
all the brakes of the test set are presented.  
Although predictions are available from the very onset of 
the operational phase of the brakes, we focus on the 
performance at the 75% of the lifetime and thus we calculate 
the metrics ignoring the first 25% of the lifetime of each 
brake. It is desirable for CICP and CRA to get the maximum 
value of 1 and for the PH a maximum value of 0.75 (since 
we focus on the performance at the 75% of the lifetime), 
while the rest of the presented metrics (MCIW, RMSE, 
MAPE) are desirable to take as low values as possible. 
The average metric values across all eleven brakes are also 
calculated and presented in Table 2. Overall, the BNN 
clearly outperforms the other two models with BLR 
performing second best and NHHSMM being the worst of 
the three. More specifically, regarding RMSE and MAPE 
metrics, which represent the error of the predicted mean 
RUL from the ground truth RUL, BNN outperforms the 
other two methods in almost every single case. BLR 
performs well in normal degradation scenarios, however, it 
fails to accurately predict the RUL of the outliers. Although 
NHHSMM performs quite well close to the brake’s end of 
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life, it fails to do so in the initial part, in almost every case, 
which leads to poor RMSE and MAPE metrics.  

Table 2: Prognostic performance metrics for all brakes of 
the test set and average metric values (with bold in the 
bottom of the table the best average performance attained 
among the three algorithms) 

Brake 
# 

Algorithm CICP MCIW RMSE MAPE CRA PH 

 
1 

BNN 0.42 60.45 36.78 8.42 0.90 0.74 
NHHSMM 0.55 125.50 47.57 11.10 0.85 0.74 
BLR 1.00 133.16 37.60 8.92 0.86 0.74 

 
2 

BNN 0.19 59.75 43.39 11.54 0.87 0.75 
NHHSMM 1.00 132.58 46.65 13.38 0.66 0.75 
BLR 1.00 133.44 40.10 10.78 0.85 0.75 

3 BNN 1.00 59.61 8.75 2.02 0.97 0.75 
NHHSMM 1.00 127.88 12.89 3.45 0.92 0.75 
BLR 1.00 133.51 8.16 1.68 0.95 0.75 

4 BNN 0.50 58.61 33.80 8.06 0.91 0.75 
NHHSMM 1.00 124.10 36.01 9.47 0.85 0.75 
BLR 1.00 132.47 32.33 8.21 0.86 0.75 

5 BNN 1.00 69.48 10.54 2.39 0.95 0.75 
NHHSMM 1.00 130.03 9.05 2.23 0.88 0.75 
BLR 1.00 133.53 10.83 2.36 0.93 0.75 

6 BNN 1.00 78.10 6.37 1.35 0.97 0.74 
NHHSMM 0.98 128.09 15.05 3.09 0.93 0.74 
BLR 1.00 132.65 14.76 3.61 0.90 0.74 

7 BNN 1.00 70.18 10.56 2.67 0.95 0.74 
NHHSMM 1.00 129.05 20.14 4.74 0.89 0.74 
BLR 1.00 133.62 13.50 3.66 0.93 0.74 

8 BNN 1.00 59.06 8.46 1.98 0.95 0.75 
NHHSMM 1.00 128.07 6.16 1.37 0.94 0.75 
BLR 1.00 133.50 6.72 1.56 0.94 0.75 

9 BNN 1.00 118.17 19.65 6.90 0.87 0.75 
NHHSMM 0.33 77.78 36.24 14.62 0.77 0.75 
BLR 0.84 135.14 52.92 20.12 0.71 0.33 

10 BNN 1.00 85.84 17.11 5.27 0.93 0.75 
NHHSMM 0.35 110.65 45.79 13.71 0.75 0.15 
BLR 1.00 133.44 9.19 2.74 0.95 0.75 

11 BNN 0.99 154.91 37.81 7.44 0.88 0.75 
NHHSMM 0.98 162.43 46.43 9.89 0.69 0.75 
BLR 0.80 132.20 58.38 12.00 0.80 0.68 

Average Metrics 
 BNN 0.83 79.46 21.20 5.27 0.92 0.75 
 NHHSMM 0.84 125.10 29.27 7.91 0.83 0.69 
 BLR 0.97 133.33 25.86 6.87 0.88 0.70 
 
Concerning the CICP and MCIW metrics, which quantify 
the coverage of the ground truth RUL from the confidence 
interval and the confidence interval’s mean width, 
respectively, BLR seems to have the highest coverage 
probability but at the same time the widest Confidence 
Intervals. BNN has by far the tightest Confidence Intervals 
at the expense of coverage probability. NHHSMM has a 
slightly higher CICP value from BNN and slightly lower 
MCIW value than BLR. Optimizing both those metrics, by 
acquiring minimum MCIW and maximum CICP, results in 
an optimum confidence interval. 

In terms of the Prognostic Horizon metric, BNN hits the 
absolute best (0.75) outperforming the other two algorithms. 
Furthermore, BNN outperforms the other two algorithms in 
almost every single case, when it comes to the CRA metric.  

7. CONCLUSION 

We investigated the potential of probabilistic data-driven 
methodologies based on statistical and AI models on the 
prediction of the RUL of an actual aircraft system (brakes) 
that are currently maintained under the TBM philosophy. 
For this purpose, we utilized a blind real-life dataset 
generated by a wide-body aircraft from a large European 
Airliner. A rather simple data preprocessing through moving 
average filtering was followed and produced quite good 
degradation histories. We utilized three state-of-the-art 
mathematical models to implement the prognostic task with 
the results being summarized in Figures 5, 6 & 7. 
The main conclusion is the feasibility of all models to 
successfully predict the Remaining Useful Life of the 
aircraft brakes even from very early on during their service 
time. For the best performing model i.e., BNNs, mean 
predictions of <10% MAPE are achieved, all across the test-
set and even for outlier cases. This is an important 
achievement towards a Condition-Based-Maintenance 
paradigm shift in commercial aviation. It was successfully 
demonstrated that aircraft brakes’ useful safe operation can 
be reliably prognosed through a data-driven approach that 
relies on available historical data without requiring 
extremely sophisticated or computationally intensive 
algorithms. BLR and NHHSMM perform very well in most 
test-set cases but rather underperform in the outliers’ 
scenarios. Also, well established models such as BNNs and 
BLRs outperformed a more sophisticated approach such as 
the NHHSMM. This is an interesting conclusion that 
highlights the importance of a careful selection of the 
mathematical model that is to be utilized for the prognostic 
methodology development.  
Finally, it becomes apparent, that in order to achieve the 
prognostic task even in a problem with strong linear 
correlation of sensor data to remaining useful life one has to 
resort to advanced algorithms. Even though the correlation 
is linear for each brake, the slope of each degradation curve 
is rather stochastic (see Figure 2b). If a simple linear 
regression method was utilized, a deterministic curve with a 
single slope would result, in order to estimate the Remaining 
Useful Life of the aircraft brakes. Besides this approach 
would severely underperform in outlier cases it cannot 
moreover quantify the uncertainty behind the mean 
prediction, an aspect of utmost importance from a 
maintenance planning point of view. To capture (at least 
partially) outlier cases you need to quantify the uncertainty 
behind the mean estimate and determine confidence 
intervals. Thus, more sophisticated mathematics are required 
i.e., probabilistic versions of “simple” algorithms etc. 
Interestingly enough, the Bayesian version of the “simple” 
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linear regression is not the best performer as we 
demonstrated in the paper. The transition to CBM of aircraft 
systems fundamentally calls for reliable prognostics. The 
present work demonstrates that this is feasible but the road 
towards a Condition-Based-Maintenance paradigm shift in 
commercial aviation has still several challenges ahead that 
are beyond the objectives of the present work. 

ACKNOWLEDGEMENT 

The present work was financially supported by the European 
Union’s Horizon 2020 research and innovation programme 
ReMAP (Grant Agreement Number: 769288). The support 
is sincerely appreciated by the authors.  

REFERENCES 

Acuna, D. E. & Orchard, M. E. (2017). Particle-filtering-
based failure prognosis via sigma-points: Application to 
Lithium-Ion battery state-of-charge monitoring, 
Mechanical Systems and Signal Processing, 85, pp. 
827-848,  https://doi.org/10.1016/j.mssp.2016.08.029 

Adhikari, P.P. & Buderath, M. A framework for aircraft 
maintenance strategy including CBM, Proceedings of 
the European Conference Prognostics Health 
Management Society 2016, pp. 1-10. 

Autin, S.; De Martin, A.; Jacazio, G.; Socheleau, J.; 
Vachtsevanos, G. (2021), International Journal of 
Prognostics and Health Management, Results of a 
Feasibility Study of a Prognostic System for Electro-
Hydraulic Flight Control Actuators, 12 (3), pp. 1-18. 
https://doi.org/10.36001/ijphm.2021.v12i3.2935 

Che, C.; Wang, H.; Fu, Q.; Ni, X. (2019) Combining 
multiple deep learning algorithms for prognostic and 
health management of aircraft, Aerospace Science and 
Technology, 94, 105423. 
https://doi.org/10.1016/j.ast.2019.105423 

Dalla Vedova, M.D.L.; Germanà, A.; Berri, P.C.; Maggiore, 
P. (2019). Model-Based Fault Detection and 
Identification for Prognostics of Electromechanical 
Actuators Using Genetic Algorithms. Aerospace 6 (94) 
https://doi.org/10.3390/aerospace6090094 

Dawn, A,; Kim, N.H.; Choi, J-H. (2015) Practical options 
for selecting data-driven or physics-based prognostics 
algorithms with reviews, Reliability Engineering & 
System Safety, 133, pp. 223-236. 
https://doi.org/10.1016/j.ress.2014.09.014 

Efron, B.; Tibshirani, R.J. (1993) An Introduction to the 
Bootstrap, Chapman and Hall, New York, 
https://doi.org/10.1007/978-1-4899-4541-9 

Eleftheroglou, N.; Mansouri, S.S.; Loutas, T.; Karvelis, P.; 
Georgoulas, G.; Nikolakopoulos, G.; Zarouchas, D. 
(2019). Intelligent data-driven prognostic 
methodologies for the real-time remaining useful life 
until the end-of-discharge estimation of the Lithium-
Polymer batteries of unmanned aerial vehicles with 
uncertainty quantification, Applied Energy, 254, 

113677. 
https://doi.org/10.1016/j.apenergy.2019.113677 

Eleftheroglou, N.; Zarouchas, D.; Loutas, T.; Alderliesten, 
R.; Benedictus, R. (2018). Structural health monitoring 
data fusion for in-situ life prognosis of composite 
structures, Reliability Engineering & System Safety, 
178, pp. 40-54. 
https://doi.org/10.1016/j.ress.2018.04.031 

El-Sayed, M.; Riad, F.; Elsafty, M.; Estaitia, Y. (2017). 
Algorithms of Confidence Intervals of WG Distribution 
Based on Progressive Type-II Censoring Samples. 
Journal of Computer and Communications, 5, pp. 101-
116. https://doi: 10.4236/jcc.2017.57011. 

Ezhilarasu, C.M.; Skaf, Z.; Jennions, I.K. (2019). The 
application of reasoning to aerospace Integrated Vehicle 
Health Management (IVHM): Challenges and 
opportunities, Progress in Aerospace Sciences, 105 pp. 
60-73, https://doi.org/10.1016/j.paerosci.2019.01.001 

Goebel, K.; Daigle, M.; Saxena, A.; Sankararaman, S.; 
Roychoudhury, I.; Celaya, (2017), Prognostics: The 
science of prediction,  CA, CreateSpace Independent 
Publishing Platform; 1st ed.  

Jia, X.; Huang, B.; Feng, J.; Cai, H.;  Lee, J. (2018). A 
Review of PHM Data Competitions from 2008 to 2017: 
Methodologies and Analytics. Proceedings of the 
Annual Conference of the Prognostics and Health 
Management Society, Philadelphia, Pennsylvania, USA. 

Kallen, M.J. & van Noortwijk, J.M. (2005) Optimal 
maintenance decisions under imperfect inspection, 
Reliability Engineering and System Safety, 90 (2-3), pp. 
177-185. https://doi.org/10.1016/j.ress.2004.10.004 

Khosravi, A., Nahavandi, S., Creighton, D. and Atiya, A. F. 
(2011). Comprehensive Review of Neural Network-
Based Prediction Intervals and New Advances, IEEE 
Transactions on Neural Networks, 22 (9) pp. 1341-
1356, doi: 0.1109/TNN.2011.2162110. 

Lee, J. & Mitici, M. (2020). An integrated assessment of 
safety and efficiency of aircraft maintenance strategies 
using agent-based modelling and stochastic Petri nets, 
Reliability Engineering & System Safety, 202, 107052. 
https://doi.org/10.1016/j.ress.2020.107052 

Li, R.; Verhagen, W.J.C.; Curran, R. (2020) Toward a 
methodology of requirements definition for prognostics 
and health management system to support aircraft 
predictive maintenance, Aerospace Science and 
Technology, 102, 105877. 
https://doi.org/10.1016/j.ast.2020.105877   

Loutas, T.; Eleftheroglou, N.; Zarouchas, D. (2017) A data-
driven probabilistic framework towards the in-situ 
prognostics of fatigue life of composites based on 
acoustic emission data, Composite Structures, 161, pp. 
522-529. 
https://doi.org/10.1016/j.compstruct.2020.112386 

Loutas, T.; Eleftheroglou, N.; Georgoulas, G.; Loukopoulos, 
P.; Mba D.; Bennett, I. (2020). Valve Failure 
Prognostics in Reciprocating Compressors Utilizing 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

11 

Temperature Measurements, PCA-Based Data Fusion, 
and Probabilistic Algorithms, IEEE Transactions on 
Industrial Electronics, 67 (6), pp. 5022-5029, doi: 
10.1109/TIE.2019.2926048. 

Lu, F.; Wu, J.; Huang, J.; Qiu, X. (2019). Aircraft engine 
degradation prognostics based on logistic regression 
and novel OS-ELM algorithm, Aerospace Science and 
Technology, 84, pp. 661-671. 
https://doi.org/10.1016/j.ast.2018.09.044 

Moghaddass, R.; Zuo, M. J. (2014). An integrated 
framework for online diagnostic and prognostic health 
monitoring using a multistate deterioration process, 
Reliability Engineering & System Safety, 124, pp. 92-
104. https://doi.org/10.1016/j.ress.2013.11.006 

Nix, D.A.; Weigend, A.S. (1995). Learning local error bars 
for nonlinear regression, Advances in Neural 
Information Processing Systems, vol. 7, G. Tesauro, D. 
Touretzky, and T. Leen, Eds. Cambridge, MA, USA: 
MIT Press, pp. 489–496. 

Pierce, S. G.; Worden, K.; Bezazi, A. (2008). Uncertainty 
analysis of a neural network used for fatigue lifetime 
prediction, Mechanical Systems Signal Processing, 22 
(6), pp. 1395–1411. 
https://doi.org/10.1016/j.ymssp.2007.12.004 

Rengasamy, D.; Jafari, M.; Rothwell, B.; Chen X.; 
Figueredo, G. (2020). Deep Learning with Dynamically 
Weighted Loss Function for Sensor-Based Prognostics 
and Health Management, Sensors, 20 (3), 723; 
https://doi.org/10.3390/s20030723 

Sankararaman, S. & Goebel, K. (2020) Uncertainty in 
prognostics and systems health management, 
International journal of prognostics and health 
management, pp.1-14 
https://doi.org/10.36001/ijphm.2015.v6i4.2319. 

Strategic Research & Innovation Agenda, Vol. 2, Advisory 
Council for Aviation Research and Innovation in 
Europe (ACARE), September 2012, 
www.acare4europe.com  

Saxena A, Celaya J, Saha B, Saha S, Goebel K. (2020) 
Metrics for offline evaluation of prognostic 
performance, International. Journal Prognostics Health 
Management, 1, pp.1–20. 

Tipping, M. Sparse Bayesian learning and the relevance 
vector machine, Journal of machine learning research 1, 
2001, pp. 211-244. 

Verstraete, D.; Droguett, E.; Modarres, M. A Deep 
Adversarial Approach Based on Multi-Sensor Fusion 
for Semi-Supervised Remaining Useful Life 
Prognostics, Sensors 2020, 20(1), 176; 
https://doi.org/10.3390/s20010176 


