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1 LiDAR Software Architecture team at Bosch Braga, Portugal

2,3 Group of Systems Automation and Robotic (GASR), Department of Electrical Engineering,
Santa Catarina State University, Joinville, Brazil

andre.leal@udesc.br

ABSTRACT

This work presents a multilayer architecture for fault diagno-
sis in embedded systems based on formal modeling of Dis-
crete Event Systems (DES). Most works on diagnosis of DES
focus in faults of actuators, which are the devices subject
to intensive wear in industry. However, embedded systems
are commonly subject to cost reduction, which may increase
the probability of faults in the electronic hardware. Further,
in tech support of a product without a diagnosis system, it
takes time to identify if the fault is in software or the elec-
tronic board. In this case, the most common solution is to
replace the whole electronic board with an updated version
of the code. We propose a modeling approach which includes
the isolation of the source of the fault in the model, regard-
ing three layers of embedded systems: software, hardware
and sensors & actuators. The proposed method is applied to
a home appliance refrigerator and after exhaustive practical
tests with forced fault occurrences, all faults were diagnosed,
precisely identifying the layer and the faulty component. The
solution was then incorporated into the product manufactured
in industrial scale.

1. INTRODUCTION

The reliability and safety of engineering systems are hot top-
ics of research. These qualities are indispensable in any engi-
neering system, and the demand on them has an ever-increase
trendline. Faults may compromise the reliability and safety
of these systems, and therefore the possibility of avoiding a
fault is a desirable feature. The study of faults in engineer-
ing systems comprehend many different frameworks, such
as diagnosis and prognosis for continuous, hybrid and Dis-
crete Event Systems (DES) (Vignolles, Chanthery, & Ribot,
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2020); Remaining Useful Life (RUL) estimation (Ammour,
Leclercq, Sanlaville, & Lefebvre, 2017); Prognosis & Health
Management (PHM) (Goebel & Rajamani, 2021).

Fault diagnosis of engineering systems has many methods
for different kind of systems. Even when narrowing down
to techniques of embedded systems diagnosis there are many
different approaches. Many of these approaches are based in
complex mathematical backgrounds such as stochastic mod-
els (Ge, Nakajima, & Pantel, 2015), signal processing tech-
niques (Bennouna & Roux, 2013; Lu, He, & Zhao, 2018;
Lu et al., 2020) and hybrid models (Pons, Subias, & Trave-
Massuyes, 2015). Such approaches may be out of reach for
a software designer and, in this sense, we take advantage of
the DES’ formalism for fault diagnosis to develop a method
of fault diagnosis for embedded systems.

Discrete Event Systems are dynamical systems with a discrete
state space, in which the state-transition, i.e. the evolution of
the system, is event-driven (Cassandras & Lafortune, 2008).
Many kinds of systems are adequately represented by discrete
event models, such as embedded systems; manufacturing sys-
tems; computer networks; heating, ventilation, and air con-
ditioning systems (HVAC systems); and traffic control sys-
tems. The framework of fault diagnosis & prognosis of DES
may be applied in all of these systems, which would improve
its safety and reliability. DES can be modeled as automata
& languages, which is a branch of the theory of computa-
tion, and therefore is well known to a software designer. In
DES, fault diagnosis (Zaytoon & Lafortune, 2013) and fault
prognosis (Watanabe, Sebem, Leal, & Hounsell, 2021) have
different conditions. Roughly speaking, the conditions for
prognosis are stronger (i.e. more difficult to reach) than the
conditions for fault diagnosis, which means that, to fulfill the
prognosability condition it is necessary that, from the observ-
able behavior of the system, it is possible to infer about future
fault occurrences, while that in diagnosis the detection of the
fault is performed after its occurrence (Watanabe, Leal, Cury,

International Journal of Prognostics and Health Management, ISSN2153-2648, 2021 000 1

https://doi.org/10.36001/IJPHM.2021.v12i2.3067

      



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

& de Queiroz, 2021). In other words, a prognosable system
is always diagnosable, however, a diagnosable system is not
necessarily prognosable. In this paper we are interested in di-
agnosis of DES, as it has many formal frameworks such as
active diagnosis (Moreira & Leal, 2020), fault tolerant con-
trol (Fritz & Zhang, 2018), and diagnosis of sensor failures
(Takai, 2021), which aid the development of new strategies.

The process of fault diagnosis is formed by three main tasks:
detection, isolation and identification (Zaytoon & Lafortune,
2013). Fault detection is recognizing a malfunction within
the system. Fault isolation is determining which component
has caused the fault. Finally, fault identification is detailing
characteristics of the faults nature (e.g. a relay stuck closed).

In fault diagnosis of DES, these three tasks are not clearly de-
fined, as it depends on the modeling abstraction taken by the
designer. In other words, depending on the level of abstrac-
tion of the model, only fault detection is possible, requiring
another techniques for isolation/identification. In order to iso-
late the fault, each component which is subject to fault should
be modeled.

After a fault occurrence it is important to take an automatic
recovery action or simply externalize this fault information
(e.g. in a display) to be used during a corrective maintenance
intervention. Thus, the more accurate is the isolation of the
fault, the more effective will be the recovery action or the
corrective maintenance.

To illustrate this, let us take an example in which a pump is
used to drain the water from inside to outside of a washing
machine. Consider a fault which leads to the impossibility
of emptying the water from the basket, thus, the sources of
faults could be:

a) Software – an error or inconsistency in the pump control
algorithm, due to an unknown bug, or even due to an electro-
magnetic interference that can corrupt data coming from the
system, thus preventing the pump from starting;

b) Hardware – a fault in the electronic board, such as a dam-
aged component or circuit, preventing the pump from start-
ing;

c) Actuator – a mechanical/electrical fault in the pump.

In most diagnosis approaches, this fault would simply be mod-
eled as a fault in the pump (actuator) (Naha, Thammayyab-
babu, Samanta, Routray, & Deb, 2017; Lu et al., 2018, 2020;
Ning, Han, Wu, & Wang, 2018; Lu, He, Yuan, & Kong,
2017; Gandhi, Turk, & Dahiya, 2020; Ranade, Provan, El-
Din Mady, & O’Sullivan, 2020; Guo et al., 2019). In indus-
trial environments, this modeling approach is adequate be-
cause the actuators are subject to intensive wear in unfavor-
able conditions, such as high temperature, dust, etc. Also, the
industrial electronics are robust and oversized, i.e they have
high reliability and the probability of fault in electronic com-

ponents are low. Finally, considering software faults in indus-
trial environments, it is common that the software developer
is always accessible, which may quickly intervene to solve
the problem (different of an electronic product which would
be sent to the tech support). Also, in industrial environments
there are software tools which allows the supervision of the
system, with logs and alarms (such as Supervisory Control
and Data Acquisition – SCADA), facilitating the identifica-
tion of a fault in the software.

In embedded systems manufactured in industrial scale, cost
reduction and time to market are necessary factors to main-
tain the business competitiveness. These factors may increase
the probability of faults in the software and electronic hard-
ware. Moreover, when a bug in the software shows up, the
consumer will send the product to the tech support. In this
case, the most common solution is to replace the whole elec-
tronic board, probably with an updated version of the code.
In this method, the tech support saves time, without the need
to identify if the fault is in the software or hardware.

Recalling the example, in the maintenance of the washing ma-
chine, the worst case would be to manually test the pump, and
if the pump is ok, the next step would be to replace the whole
electronic board, without knowing if the fault is in the elec-
tronic board or software.

It is important to mention that there are tools which can verify
the correctness of a software code a priori (Clarke, Kroen-
ing, & Lerda, 2004), however, there are faults which may
still happen in the software. For example, in the manufactur-
ing line of an embedded system, there is an operator which
chooses a compiled archive which will be installed in the
electronic board. Also, a determined product may have two
kinds of electronic boards (e.g. a board with ethernet con-
nection or other board with wifi connection). Usually, these
boards have similar serial numbers, and it is possible that the
operator download a wrong version of the code to the micro-
controller. In this case, the consumer will receive a product
which may work normally in most situations. Also, if this
product is sent to the tech support, this problem may not be
identified. Fault diagnosis techniques are most adequate to
overcome this problem.

The multilayer diagnostic system (which is a part of the archi-
tecture presented in this work) takes advantage of the charac-
teristics of the decentralized diagnosis structure (Zaytoon &
Lafortune, 2013). In fact, the multilayer diagnostic system
is a particular case of the decentralized diagnosis, without
a coordinator. There is no need of a coordinator due to the
independence between faults of different devices and layers
in the embedded systems, which allows each subsystem and
its respective diagnosers to be modeled independently. Fur-
thermore, there is no exponential explosion in the state space
size in the automata models, as the subsystems models are
not composed, and therefore the method is suitable for large
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embedded systems.

There are fault diagnosis approaches for the software (Yang,
Bian, Li, Tan, & Tang, 2018), electronic hardware (Yan et
al., 2018) or actuators (Lu et al., 2017) of embedded systems,
however, to the best of our knowledge, we have not found
a diagnosis architecture which considers the three layers of
embedded systems.

In the work of Yang et al. (2018), they combine the artificial
intelligence method of case-based reasoning with a Bayesian
network to achieve the diagnosis of an embedded software
system. They claim it can be extended to a multi-level di-
agnosis, which could be applied to the electronic board and
actuators. On the other side, this technique is very complex,
as it relates knowledge of artificial intelligence and statistics
(Bayesian network).

The work of Yan et al. (2018) provides a technique of fault
diagnosis in electronic boards, for faults caused by the effects
of high power electromagnetic effects in the components of
an electronic board. This technique is very specific and does
not cover most applications of embedded systems.

The work of Lu et al. (2017) present a specific technique of
online diagnosis of motor bearing. In other words, they de-
velop a mathematical model which will only work on motors.
This is the case for most fault diagnosis techniques of actua-
tors, they are designed for a specific kind of actuator, based
on their signals.

The main novelty of this work is the multilayer architecture
for fault diagnosis which formally ensures that faults will be
detected, isolated and identified according to each layer of the
embedded system. We demonstrate the design of the diagno-
sis system applied to a home appliance refrigerator.

2. NOTIONS AND PRELIMINARIES

In this section we present the basic mathematical formulation,
definitions and notation used in the article. For the reader
which is not familiarized with the common mathematical no-
tation of discrete event systems, it is highly recommended to
read the work of Cassandras and Lafortune (2008).

2.1. Languages and Automata

Let G = (X,⌃, �,�, x0) denote a finite automaton, where
X is the state space, ⌃ = ⌃o[̇⌃uo is a finite event set that
is partitioned into an observable and an unobservable events
set, � : X ⇥ ⌃ ! X is a partial state transition function,
� : X ! 2

⌃ is the function of active events and x0 the initial
state. ⌃⇤ denotes the set of all possible sequences of finite
length formed with events of ⌃, including the empty trace ".
The prefix-closure of s is denoted by s. The length of string s
is denoted as ||s||. L(G) represents the language of G, where
L(G) ⇢ ⌃

⇤. �f represents a fault event and ⌃f represents a

set of fault events. The set of all strings of L that ends with
the event �f is denoted by  (⌃f ) = {s�f 2 L : �f 2 ⌃f}.
And, L/s = {t 2 ⌃⇤

: st 2 L} is the post-language of L
after a string s.

The observer represents the observable behavior of G and is
defined as Obs(G,⌃o) = (Xo,⌃o, �o,�o, x0o), where Xo 2
2
X (Cassandras & Lafortune, 2008).

The projection Po : ⌃
⇤ ! ⌃

⇤
o is defined as Po(") := ";

Po(�) := �, if � 2 ⌃o, or Po(�) := ", if � 2 ⌃uo; and
Po(s�) := Po(s)Po(�), for s 2 ⌃⇤, and � 2 ⌃. The inverse
projection is defined by P�1

o (t) := {s 2 ⌃⇤
: Po(s) = t}.

The projection and inverse projection can be extended to a
language L by applying its respective rules to all strings in L,
respectively denoted by Po(L) and P�1

o (Lo).

2.2. Fault Diagnosis of Discrete Events Systems

The diagnosability concept refers to the capability to detect
any fault in a system within a finite delay, based only on the
occurrence of observable events recorded by the sensors. In
terms of DES modeled by automata, a language generated by
an automaton is diagnosable in relation to a set of observable
events ⌃o and a set of fault events ⌃f ✓ ⌃uo, if every fault
event occurrence can be detected after the observation of a
finite number of events occurrences.

Since the early studies related to fault diagnosis in DES, the
following assumptions are made (Sampath, Sengupta, Lafor-
tune, Sinnamohideen, & Teneketzis, 1995):

(A1) The language L generated by G is live. This means
that there is a transition defined at each state x in X ,
formally we say �(x) 6= ; for all x 2 X;

(A2) Automaton G has no cycle of unobservable events, i.e.
8ust 2 L, s 2 ⌃⇤

uo, 9n0 2 N such that ||s||  n0.

The assumption A1 is made considering that the system is al-
ways operating and the assumption A2 is necessary to prevent
that the occurrence of the fault event ceases to be detected in
case of the system staying stuck in a cycle of states formed
only by unobservable events.

Considering � 2 ⌃ and s 2 ⌃⇤, we use the notation � 2 s to
denote that � is an event of the string s. With a slight abuse of
notation, we write that ⌃f 2 s to denote the fact that �f 2 s
for some �f 2 ⌃f or formally s \  (⌃f ) 6= ;. Finally,
we can formally present the definition of diagnosability of a
language (Sampath et al., 1995):

Definition 1 Let L be a live and prefix-closed language.
Then L is diagnosable with respect to the projection Po and
⌃f = {�f} if the following condition holds true:

(9n 2 N)(8s 2  (⌃f ))(8t 2 L/s)(||t|| � n ) D), (1)
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where the diagnosis condition D is expressed by:

(8! 2 P�1

o (Po(st)))(⌃f 2 !). (2)

The definition presented above has the following meaning:
Let s be an arbitrary string generated by the system that ends
with a fault event belonging to the set ⌃f , and t is any suf-
ficiently long continuation of the string s. Then the diagnos-
ability condition D requires that all strings in L that gener-
ates the same record of observable events, such as the string
st should contain in it a fault event of the set⌃f . This implies
that in all continuations t of s the occurrence of the fault can
be detected within a finite delay.

One way to verify whether the occurrence of a fault (unob-
servable event) in a DES can be detected or not is by building
a device called diagnoser. The diagnoser for G, is a deter-
ministic automaton Gd = (Xd,⌃o, �d,�d, x0d) and can be
obtained from Obs(G||Al), where Al is a two-state label au-
tomaton as shown in Fig. 1.

N Y
�f �f

Figure 1. Label automaton Al.

Note that the composition G||Al generates states composed
by x 2 X of G and l 2 XAl of Al, in which XAl = {Y,N}.
For simplicity, the composed states are denoted as xl, where
xY indicate that the fault �f has occurred and xN indicate
it has not occurred. When Gd = Obs(G||Al) is computed,
the fault (unobservable) events are removed from the lan-
guage. This procedure merge all states q, p 2 XG||Al such
that �(q,�f ) = p into xd = q, p. Thus a state xd 2 Xd is
represented by xd = {xil1, x2l2, · · · , xnln} where xi 2 X
and li 2 XAl for i = 1, 2, · · · , n. A state is called certain
(of fault) if l = Y; and normal (i.e. non-faulty) if l = N.
If 9xl, yl̃ 2 xd, x not necessarily distinct of y, such that
l = Y and l̃ = N, then xd is an uncertain state of Gd.

The computational complexity of obtaining the diagnosers is,
in the worst case, exponential in the cardinality of the state
space of the system model. However, according to Paoli, Sar-
tini, and Lafortune (2011), “the experience with applications
of the diagnoser approach has shown that due to the structure
of real systems, their diagnosers usually have a state space
whose cardinality is of the same order as that of the origi-
nal system”. For more details about this topic, see Yin and
Lafortune (2017).

Let L(G, x) = {s 2 ⌃⇤
: �(x, s) 2 X}, i.e., the set of all

strings that leads the automaton G from state x 2 X to any
other state. Then a set of states {x1, x2, . . . , xn} ⇢ X form a
cycle in G if 9s such that s = �1�2 . . .�n 2 L(G, x1) where
�(xl,�l) = xl+1, l = 1, . . . , n� 1 and �(xn,�n) = x1.

A set of uncertain states {xd1 , xd2 , . . . , xdp} ⇢ Xd forms

an indeterminate cycle if the following conditions hold true
(Carvalho, Basilio, & Moreira, 2010):

(C1) xd1 , xd2 , . . . , xdp form a cycle in Gd, that is, there is
�l 2 ⌃o, l = 1, 2, . . . , p, such that �d(xdl ,�l) =

xdl+1 , l = 1, 2, . . . , p� 1 and �d(xdp ,�p) = xd1 ;

(C2) 9(xl
kl , Y ), (x̃rl

l , N) 2 xdl, for xkl
l not necessarily

distinct from x̃rl
l , l = 1, 2, . . . , p, kl = 1, 2, . . . ,ml,

and rl = 1, 2, . . . , m̃l in such a way that the sequence
of states {xkl

l }, l = 1, 2, . . . , p, kl = 1, 2, . . . ,ml and
{x̃rl

l }, l = 1, 2, . . . , p, rl = 1, 2, . . . , m̃l, form cycles
in G.

In words, an indeterminate cycle in a diagnoser is a cycle
composed exclusively of uncertain states, which corresponds
to the presence of two cycling traces in the system with the
same observable projection, such that �f occurs in one trace
but not in the other trace (Zaytoon & Lafortune, 2013).

Finally, the condition for diagnosability of G is determined in
Theorem 1.

Theorem 1 (Sampath et al., 1995) A language L generated
by an automaton G is diagnosable with respect to its projec-
tion Po and ⌃f = {�f} if, and only if, its diagnoser Gd has
no indeterminate cycles.

2.3. Examples

In this section we show trivial examples to illustrate two dif-
ferent cases regarding the diagnosability of DES.

Consider the models G1 and G2 presented in Fig. 2a and
Fig. 2b, respectively. For both models ⌃o = {a, b} and
⌃uo = {f}.

1 2

3

5 4

a

b
f

a
a

b

(a)

1 2

4 3

a

b f

a

b

(b)

Figure 2. Automata models: (a) G1 and (b) G2.

For G1, the normal behavior is contained in the states 1 and 2.
The fault is diagnosable in this case, because after the occur-
rence of the fault, the sequence of events aa will be observed.

For G2, the normal behavior is contained in the states 1 and 2.
The fault is not diagnosable in this case, because after the oc-
currence of the fault, there is no observable event (nor string)
which differs from the normal behavior. In other words, the
observable strings in the faulty states shadows the normal be-
havior, making it impossible to distinguish between normal
and faulty states.
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In the following we show the diagnosers for G1 and G2,
which can be used to formally verify the diagnosability of
such systems. In Fig. 3a is displayed the diagnoser for G1.
There is no indeterminate cycle in Gd1 and, therefore, the
fault f in G1 is diagnosable. In Fig. 3b is displayed the di-
agnoser for G2. There is an indeterminate cycle in Gd2 and,
therefore, the fault f in G2 is not diagnosable.

1N 2N,3F

5F 4F

a

b
a

a

b

(a)

1N 2N,3F

Indeterminate

Cycle

1N,4F

a

ba

(b)

Figure 3. Diagnosers: (a) Gd1 and (b) Gd2; for the respective
models G1 and G2.

3. ARCHITECTURE FOR FAULT DIAGNOSIS IN EMBED-
DED SYSTEMS

To allow the multilayer diagnostic system to be embedded in
a device, it is necessary first to create a structure that allows
the diagnosers access all data that is required to perform the
diagnosis. In order to meet these conditions, we present a di-
agnostic architecture that considers the multilayer diagnostic
system, as shown in Fig. 4.
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Figure 4. Multilayer architecture for the diagnosis of embed-
ded systems.

In this architecture, the embedded system is divided in three
main layers: the Loads and Sensors, Hardware and Software
layers. In these layers are the purpose, or the final task of the
embedded system.

The Interface block adequately manage the user requests tak-
ing into consideration the information of the actuators and
sensors.

The Events Handler combines information of the layers from
below (Fig. 4) in order to generate the necessary events in the
format expected by the diagnosers.

The Multilayer Diagnostic System (MDS) monitors the sys-
tem with modular diagnosers, which receive the information
from the Events Handler. When a fault occurs, it is detected
in the MDS and informed to the Fault Manager (FM) block.

The FM manages the information of the faults reported by
each diagnoser in the MDS, and then communicates it to the
Application block. Among the key attributes of the FM in-
clude: the ability to generate fault identification codes; orga-
nize the faults in a list according to a pre-established priority;
generate a log with the situation of the system when a fault is
reported by any diagnoser.

Finally, the Application block is responsible for providing an
interaction with an external user. The user can see (e.g. in
a display) the code of the fault; also, the use can reset the
system after a maintenance is performed.

3.1. Multilayer Diagnostic System

We propose the Multilayer Diagnostic System, depicted in
Fig. 4, whose aim is to isolate the source of the fault with
respect to the layers of embedded systems. The multilayer
diagnostic system will be called a deterministic multilayer
diagnostic system if and only if the conditions imposed by
Definition 2 are true.

Definition 2 (Deterministic Multilayer Diagnostic System)
Let ⌃f = {⌃fsw ,⌃fhw ,⌃f`s} be the system fault set, where:
⌃fsw = {�swi}, with i 2 I = 1, ..., ns; ⌃fhw = {�hwj},
with j 2 I = 1, ..., nh; and ⌃f`s = {�`sk}, with k 2
I = 1, ..., n` denote respectively the fault set on the soft-
ware, hardware and loads and sensors layers, and ns, nh

and n` denote the number of faults on these sets. Also let
Gdswi

, Gdhwj
and Gd`sk

be the diagnosers for the faults of
the type �swi , �hwj and �`sk , respectively. The diagnostic
system is a Deterministic Multilayer Diagnostic System if af-
ter the occurrence of a particular fault belonging to ⌃f , only
its respective diagnoser: Gdswi

, Gdhwj
or Gd`sk

, recognize
it.

To illustrate the Definition 2, let’s recall the washing machine
example. In the case of a fault in the pump, when it can not
be turned on due to a broken coil winding, for example, the
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diagnoser of this pump, allocated in the Loads and Sensors
Layer, should detect this fault, and it is not allowed, for ex-
ample, for the diagnoser of the pump drive circuit (Hardware
Layer Diagnostic), nor, for the diagnoser of the pump control
(Software Layer Diagnostic) to detect this fault.

4. APPLICATION: FROST FREE REFRIGERATOR

The proposed method is applied to a frost free refrigerator,
manufactured by Whirlpool Corporation. The models were
calculated in the software IDES (Integrated Discrete Event
Systems) (Rudie et al., 2020). The diagnosers were imple-
mented in software using C language, embedded in the same
microcontroller where the main software of this refrigerator
is located. In the following, we demonstrate the design for
some of the diagnosers for this application according to the
layers proposed in Section 3.

Diagnosers were designed for three routines in the Software
Layer: thermostatic routine, compressor control routine and
defrost routine. Considering the Hardware Layer, the diag-
nostic was designed for two circuits: compressor relay and
defrost heater relay. For the Loads and Sensors Layer, di-
agnosers were designed for: the compressor and the defrost
heater. In the following, the design process for one diagnoser
of each layer is presented in order to illustrate specific tech-
niques, such as sensor mapping. The fault events for each
layer are listed in Table 1.

Table 1. Fault events modeled for the refrigerator application

Symbol Event Description
�sw1 fTC Thermostatic control routine fault
�sw2 fCC Compressor control routine fault
�sw3 fDC Defrost control routine fault
�hw1 fCRO Compressor relay stuck open
�hw2 fCRC Compressor relay stuck closed
�hw3 fDRO Defrost heater relay stuck open
�hw4 fDRC Defrost heater relay stuck closed
�`s1 fCP Fault in the compressor
�`s2 fDH Fault in the defrost heater resistor

The thermostatic routine controls when the compressor must
be turned on or off in order to keep the refrigerator temper-
ature within the selected range. To perform this control, this
routine reads the temperature value provided by the sensor
and compares it with the reference values Ton and Toff . The
automaton that represents the model of thermostatic routine
GTC is shown in Fig. 5a.

Next, the diagnoser GdTC is obtained by calculating GdTC =

Obs(GTC ||AlTC), shown in Fig. 5b. The fault event for
the label automaton AlTC is fTC . The state 4Y represents
the state where the diagnoser is certain of the fault occur-
rence. Note that there is a cycle of uncertain states {1N,4Y},
{2N,4Y} and {3N,4Y} 2 XGdTC , however it is not an in-
determinate cycle, fulfilling the Conditions (C1) and (C2) of
diagnosability. To exemplify this fulfillment, consider the au-
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Figure 5. Automata models for (a) thermostatic routine GTC ;
(b) thermostatic routine diagnoser GdTC .

tomata GTC and GdTC of Fig. 5a and 5b, respectively. The
normal behavior of the GTC is in states SATISF, COOLING
or DEF. On the other side, if the system is deviated to a faulty
behavior, the GdTC current state will be for sure 4Y. In other
words, any deviation of the non-faulty behavior will lead to
state 4Y of GdTC .

The circuit board of this refrigerator has a feedback circuit,
which reads the output signal of each relay. This feedback can
be used to indicate the status of the relay, open or closed. This
feedback signals were considered on the diagnosers design.

Since both relays have the same model, for simplicity a generic
model and diagnoser will be used for both relays, where `
(load) must be understood as Compressor (` = CP ) or De-
frost Heater (` = DH) for each case. Two types of faults
were considered for the relays: f`RO (Stuck Open) and f`RC

(Stuck Closed). Also a sensor mapping (Sampath, Sengupta,
Lafortune, Sinnamohideen, & Teneketzis, 1996) is consid-
ered in the Events Handler block, in which virtual events are
generated depending on the state of the sensors, as shown in
Table 2. The automaton that represents the relays models with
sensor mapping is shown in Fig. 6a.

For the relays diagnosers the computation is given by Gd`R =

Obs(G`R||Al`RC ||Al`RO) and shown in Fig. 6b, where Al`RC

with �f = f`RC ; and Al`RO with �f = f`RO.
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Figure 6. Automata models for (a) ` relay G`R; (b) ` relay
diagnoser Gd`R.
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Table 2. Sensors Mapping in the Events Handler Block

State Mapping Event

`
R

el
ay

ROP [Set ` Off, ` FB Off ] S`0FB0

RCL [Set ` On, ` FB On] S`1FB1

ROF [Set ` On, ` FB Off ] S`1FB0

RCF [Set ` Off, ` FB On] S`0FB1

D
ef

ro
st

H
ea

te
r DHOFF,ROP

DH FB Off AND
[Def End By Temp
OR
Def End By T imeout]

C1

DHON, RCL

DH FB On AND
Def Start C2

DHF, ROP

DH FB Off AND
Def End By T imeout
AND
Def End Temp < Tref

C3

DHF, RCL

DH FB On AND
Def Start C2

In order to distinguish the heater fault and the heater relay
fault, it is necessary to consider also the sensor mapping in
the Events Handler block, as shown in Table 2. This map-
ping was obtained by creating a virtual sensor to generate
the events of the defrosting routine and using the informa-
tion from defrost sensor. In Fig. 7a the automaton GDH that
models defrost heater is depicted.

The label automaton AlDH is obtained considering �f =

fDH . Thus the diagnoser GdDH shown in Fig. 7b is obtained
by calculating GdDH = Obs(GDH ||AlDH).
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Set DH On,
Set DH Off,
DH FB Off

Set DH On,
Set DH Off,
DH FB On

Set DH On,
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C2

C1
fDHfDH

C2

C3

(a)

1N,3Y

2N,4Y

3Y,4Y

C2C1

C3

(b)

Figure 7. Automata models for (a) defrost heater GDH ; (b)
defrost heater diagnoser GdDH .

4.1. Results

In this Section we describe the methodology and results of
the tests realized to validate the proposed architecture.

The automata models in the Multilayer Diagnostic System,
as well as the sensor mapping in the Events Handler block,
designed in the Section 4, were automatically translated to
C code through the software tool Doctor Who, which was
developed in the context of this work.

For the validation of the proposed method it was used the
STVD (ST Visual Develop, from the ST Microelectronics
manufacturer) which allows to online edit and monitor vari-
ables of the code running in the microcontroller. Along with
the STVD, it was developed, in the context of this work, the

Figure 8. Screenshot of the automata player software tool,
which can monitor events online, through a serial communi-
cation with the microcontroller.

software tool Automata Player Monitor which can monitor
the events of the refrigerator through a serial communication
and display it in the graphical representation of the automaton
in an online environment, as shown in Fig. 8.

In order to verify the proposed method, the frost free refriger-
ator prototype was submitted to exhaustive tests in Whirlpool’s
laboratory. The tests were designed to force faulty situations
(regarding all modeled faults) to verify the effectiveness of
the multilayer diagnostic system. In total, 9 different kinds of
faults were tested.

For the Software Layer faults, bugs were intentionally placed
in the code.:

• Bug insertion in the thermostatic routine;
• Bug insertion in compressor control routine;
• Bug insertion in the defrost routine.

For the Hardware Layer faults, the input and output of the re-
lays were short-circuited in the case of relay stuck closed. For
the relay stuck open faults, the relays coils were disconnected
from the circuit, keeping the relay open in this case:

• Compressor control relay locked closed;
• Compressor control relay locked open;
• Defrost resistor relay locked closed;
• Defrost resistor relay locked open.

For the Loads and Sensors Layer faults, the loads were dis-
connected from the circuit to simulate the broken filament
(defrost heater) or damaged coil (compressor):

• Broken heating filament for the defrost resistance;
• Damaged internal starter coil of the compressor.
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4.2. Test plan

In this section we precisely describe the test procedure, point-
ing out how the faults were tested, and how many times they
were ran.

Test 1:

• Initial condition: Temperature below the control point;
• 5 door opening of 30s every hour.

Test 2:

• Initial condition: Temperature above the control point;
• 5 door openings every 30s every hour.

Test 3:

• Initial condition: Temperature above the control point;
• Door closed for 6 hours.

Test 4:

• Initial condition: Temperature below the control point;
• Door closed for 6 hours.

Test 5:

• Closed doors;
• 2 defrost cycles.

Test 6:

• Opening doors (random);
• 2 defrost cycles.

Test 7: Fast freezer mode activated (this forces the compres-
sor to stay on for 6 hours straight and inhibits defrosting dur-
ing this period).

Test 8: Holiday mode activated. This forces you to decrease
the compressor running time and make adaptive defrosts (based
on longer times).

Test 9: Forcing emergency defrost condition. The defrost is
forced by time, even without temperature conditions.

Each test was repeated for each type fault:

9 faults⇥ 9 tests = 81. (3)

Each test was repeated 3 times for each setpoint (Min, Med
and Max), except for tests 7 and 8 which are not applicable to
setpoints but to holiday mode and fast freezer mode only:

9 faults⇥ 7 tests⇥ 3 setpoints +

+ 9 faults⇥ 2 tests = 207

The whole procedure was repeated combining each failure
two by two (9 tests combined 2 by 2 = 36 combinations):

36 comb.⇥ 7 tests⇥ 3 setpoints +

+ 36 comb.⇥ 2 tests = 828 runs

In total, 1035 runs where executed.

Results show that each fault was precisely diagnosed accord-
ing to the forced faulty situations, correctly detecting, iso-
lating and identifying the faults. Furthermore, we have not
observed any false positives, nor false negatives diagnostics,
and therefore there is no need of a confusion matrix.

5. CONCLUSION

The multilayer architecture is adequate for diagnosis of em-
bedded systems. The main advantage of this method is to
achieve an isolation of the fault, regarding the three layers
of embedded systems: software, hardware and loads & sen-
sors. The necessary conditions to define the diagnostic sys-
tem as deterministic multilayer diagnostic system were pre-
sented. The proposed method was applied in a case study,
in which exhaustive practical tests were made. In a labora-
tory test, faulty situations for all modeled faults were forced
in the prototype. Results show that all modeled faults were
precisely detected, isolated and identified with respect to its
own layer and device. The results of this work led to an appli-
cation of this method in home appliance refrigerators, which
were produced in industrial scale.

Whirlpool (Joinville) have included this method in their re-
frigerators, with slightly differences to: adequate the method
to their product operational system; to use software which
they already own licenses; and, to adequate the method to
the developers knowledge to facilitate the code reading and
maintenance. The obtained advantages were relevant, and
Whirlpool’s (Joinville) refrigerator quality became a refer-
ence to other Whirlpool’s plants.
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