
 

International Journal of Prognostics and Health Management, ISSN 2153-2648, 2021 
  

1 

Condition Monitoring of Slow-speed Gear Wear using a Trans-
mission Error-based Approach with Automated Feature Selection 

Stefan Sendlbeck1, Alexander Fimpel2, Benedikt Siewerin3, Michael Otto4, and Karsten Stahl5 

1,3,4,5 Institute of Machine Elements, Gear Research Centre (FZG), Technical University of Munich (TUM), Munich, 80333, 
Germany 

sendlbeck@fzg.mw.tum.de 
siewerin@fzg.mw.tum.de 

otto@fzg.mw.tum.de 
stahl@fzg.mw.tum.de 

2 Technical University of Munich (TUM), Munich, 80333, Germany 
alexander.fimpel@tum.de 

 
ABSTRACT 

Gear flank changes caused by wear do not only affect the 
dynamic behavior of gear systems, but they can also 
compromise the load-carrying capacity of gear teeth up to 
critical failure. To help avoid unintended consequences like 
downtime or safety risks, a condition monitoring system 
needs to be able to estimate the current wear during 
operation based on available sensor measurements. While 
many condition monitoring approaches in research rely on 
vibrational analysis with manual feature engineering, 
gearboxes running at slow speed do not reveal much 
excitation information for this purpose. We therefore 
introduce an approach for slow-speed gear wear monitoring 
that is based on the dynamic gear transmission error and that 
contains an automated feature selection process. For this 
purpose, we extract a large set of features from the 
preprocessed transmission error samples. Applying 
combined filter and embedded feature selection methods 
enables us to automatically identify and remove features 
with low relevance. The selection process consists of 
filtering features with no statistical dependence on the target 
wear value, removing redundant features with a correlation 
analysis and a recursive feature elimination process with 
cross-validation based on a random forest regressor. The 
remaining relevant set of features is the basis for model 
training and subsequent wear estimation. For this, the 
present research employed two independent ensemble 
models, random forest regression and gradient boosted 
regression trees. To train and test the proposed approach, we 
conducted slow-speed gear experiments with developing 

gear wear on a single-stage spur gear test rig setup. The 
results of both models show good gear wear estimation 
performance compared to the actual wear mass loss, even 
for small quantities. Hence, the proposed transmission error-
based approach with automated feature selection is able to 
quantify the degree of slow-speed wear and offers a possible 
way for condition monitoring and fault diagnosis. 

1. INTRODUCTION 

Due to the immense advances in information and sensor 
technology within recent years, machine learning algorithms 
together with growing computational power have improved 
numerous applications and offer many new possibilities. 
Applied to the field of machine condition monitoring, such 
approaches seem promising. A reliable condition monitoring 
system with high accuracy is the key for fault diagnosis and 
predictive maintenance strategies. It not only increases 
economic efficiency, but also ensures high safety for 
humans and machines. Therefore, it is necessary to acquire 
appropriate data, process and evaluate the data, and derive 
the machine’s condition within a certain time and precision. 
When it comes to gears, slow-speed wear is usually a 
phenomenon that is undesirable in a larger extent. Gradual 
material abrasion from the tooth flank can change the 
dynamic behavior of the entire system and can affect the 
gears’ load-carrying capacity up to critical failure. 
Therefore, a working condition monitoring system with 
regard to slow-speed gear wear can prevent such failures 
and helps to prepare adequate measures.  

With the present work, we address condition monitoring 
possibilities with focus on gear wear at slow rotational 
speeds. This research aims at correlating the dynamic 
transmission error with the corresponding degree of 
accumulated slow-speed wear of pinion and wheel. 
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Therefore, the idea is to combine a feature-based condition 
monitoring approach built on the dynamic gear transmission 
error with an automated feature selection process. While 
many current condition monitoring systems and research 
efforts rely on vibration-based analysis, low vibration 
excitation at slow operating speeds tends to provide not 
enough information for accurate slow-speed wear diagnosis. 
However, the latest sensor technology makes angular 
measurements of high quality possible. Consequently, we 
instead use the transmission error, which is very accurate at 
slow speeds and has a rapid reaction time to gear changes, 
as a basis for analysis. The present approach with a feature 
elimination process as part of feature selection, on the one 
hand allows, for interpretability in contrast to various deep 
learning approaches. On the other hand, it still requires an 
enormous number of features with a minimum amount of 
domain knowledge. The approach is validated on multiple 
gear tests with actual occurring slow-speed wear with 
detailed “run-to-failure” documentation. 

With the present paper, we first provide a review of 
previous research. Secondly, we elucidate the methods used 
that contain the experiment setup, the data acquisition, data 
preprocessing, and the condition monitoring model building 
and deployment including feature extraction and selection. 
We then give an insight into the achieved results and discuss 
them in terms of slow-speed wear condition monitoring. 

2. REVIEW OF PREVIOUS RESEARCH 

Estimation and prognosis of machine health has seen 
extensive research in academia and industry. Approaches 
that include machine learning methods have especially 
gained traction in this past decade, as the application of 
these advanced methods is made viable with the release of 
open-source and commercially available software libraries. 
In specialist and academic literature, two different types of 
approaches utilizing machine learning for gear condition 
monitoring systems exist: 

• Methodologies with feature engineering 
• Methodologies with feature learning (deep learning) 
Typically, feature engineering approaches extract features 
from gear vibration signals. Many different types of feature 
candidates for this specific purpose have been proposed. 
These feature candidates can be classified mainly as time 
domain features, frequency domain features or time-
frequency domain features. For gearbox fault diagnosis, for 
example, statistical features and higher order moments can 
be calculated from the raw, the derivative and the integral 
vibration signal as time domain features (Samanta, 2004). 
Examples for features extracted from the frequency domain 
of vibration signals are statistical metrics from individual 
frequency bands (Cerrada et al., 2016). Finally, time-
frequency domain features can be calculated, for instance, 
with the continuous wavelet transform, the discrete wavelet 
transform, and the wavelet packet transform (Yan, Gao, & 

Chen, 2014). Other popular sources of time-frequency 
domain features are the short time Fourier transform, the 
Wigner Ville distribution and the Hilbert Huang transform 
(Soualhi et al., 2018). The features calculated by these 
signal processing techniques are usually hand-picked and 
require domain specific knowledge. Generally, these 
engineered features attempt to capture changes in frequency 
and amplitude modulation of the vibration signal emitted by 
the meshing gears. McFadden (1986) developed a 
mathematical representation of this behavior and in the 
course of the last few decades, i.e. Wu, Zuo, and Parey 
(2008) and Feng and Zuo (2012) refined this representation 
for different types of gearboxes. The extracted features may 
be used in combination with machine learning methods, for 
example, with artificial neural networks (Pacheco et al., 
2016), support vector machines (Shen, Wang, Kong, & Tse, 
2013), random forests and others (Han, Jiang, Zhao, Wang, 
& Yin, 2018) to diagnose faults in gears and rotating 
machinery. In some cases, the set of features and the 
hyperparameters for the machine learning algorithm are 
selected with the support of metaheuristics, i.e. genetic 
algorithms (Cerrada et al., 2016; Samanta, 2004). 

Deep learning models have seen overwhelming success and 
enabled performance improvements for notoriously difficult 
problems in the field of computer vision and natural 
language processing. The use of these models is mostly in 
an end-to-end manner, thus making manual feature 
engineering unnecessary. Inspired by this kind of success, 
many researchers have introduced a deep learning workflow 
to various applications of condition monitoring. For 
example, Janssens et al. (2016) used a convolutional neural 
network to extract features automatically from vibration 
signals caused by rolling bearings to identify multiple 
different faulty bearing conditions. In this study, the authors 
show that compared to other machine learning methods that 
require feature engineering, e.g. support vector machines 
and random forest regressions, the convolutional neural 
network performs better. Zhao, Yan, Wang, and Mao (2017) 
took this idea further by introducing bi-directional LSTM 
(long-short term memory) layers in addition to 
convolutional layers. LSTM layers are used specifically for 
temporal modeling in artificial neuronal network 
architectures. The authors use the proposed network to 
predict the slow-speed wear condition of machine tools in 
milling machines. Lee, Kim, Kim, Hur, and Kim (2018) and 
Yang, Huang, Lu, and Zhong (2018) developed similar 
methods that incorporate LSTM layers. Approaches also 
exist that differ from the common combination of 
convolutional and LSTM layers, for example, by using 
sparse filtering for feature learning (Lei, Jia, Lin, Xing, & 
Ding, 2016). 

Methodologies to specifically model, simulate and 
determine wear and wear progression of gears exist in and 
out of context of condition monitoring and fault diagnosis. 
Choy, Polyshchuk, Zakrajsek, Handschuh, and Townsend 
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(1996) presented an analytical approach that models 
influence of pitting, gear wear and tooth fracture to the 
vibration signal of gearboxes. The authors imply that this 
model may also be applicable for gear fault diagnosis. 
Kuang and Lin (2001) and Ding and Kahraman (2007) use a 
similar approach. Hu, Smith, Randall, and Peng (2016) 
developed specialized condition indicators to specifically 
quantify and assess gear wear based on vibration 
measurements. According to the authors, these condition 
indicators may be used in combination with traditional 
condition indicators and particle analysis. Furthermore, 
Fromberger et al. (2016) presented different condition 
monitoring methods for gear fault diagnosis with special 
focus on utilizing position encoders and transmission error 
determination. In a study conducted by Chin, Smith, 
Borghesani, Randall, and Peng (2021), gear wear is 
determined by assessing changes of the DC component in 
the transmission error signal. This approach therefore makes 
use of typically omitted components of the transmission 
error signal. 

The current state of the art offers various approaches to 
monitor the condition of rotating machines and gears in 
particular. While the majority of research is based on 
vibrational data, only few studies consider the transmission 
error of gears, which seems especially suitable for 
consideration at slow speeds where the vibration excitation 
of transmissions is low. In addition, many datasets originate 
from analytical models for estimating gear wear, whereas 
actual lubricated slow-speed wear data is rarely used for 
analysis, although it is very relevant in practice. In terms of 
algorithms, feature engineering methods, particularly with 
automated feature selection, have proven to be suitable for 
various condition monitoring tasks, but their use for gear 
transmissions especially in combination with slow-speed 
wear lacks groundwork.  

We therefore see the need to evaluate transmission error 
data from actual lubricated slow-speed wear tests with low 
amounts of wear in combination with state-of-the-art 
automated feature engineering and machine learning 
methods for slow-speed wear condition monitoring. While 
both feature engineering and feature learning approaches 
seem to be promising, we will focus on automated feature 
engineering, due to interpretability advantages and the 
properties of the dataset available. 

3. METHODS 

With the goal in mind to identify and quantify gear damage, 
particularly slow-speed wear, we developed an approach 
and validated it with gear tests. The following sections 
contain the experiment setup, data acquisition, data 
processing and condition monitoring methods. 

3.1. Experiments and Slow-speed Wear Data 

For validation, we conducted gear experiments and 
measured vibrations together with the angular positions of 
the gear shafts. This allows us to calculate the dynamic 
transmission error, which is the basis for further processing 
and for methods presented in this paper in terms of 
condition monitoring and health evaluation. 

3.1.1. Test Rig 

For the experiments of slow-speed wear investigation, we 
used a test rig based on a back-to-back principle according 
to DIN ISO 14635-1 (2006) (see Figure 1).  

The test rig contains a single stage test gearbox with two 
mating gears, a test pinion (1) and a test wheel (2). The 
electric motor (5) drives the gearbox via the input shaft (4). 
Moreover, the test gearbox is part of a mechanical power 
loop, including a further shaft (7) and a slave gearbox (8) 
with an identical transmission ratio as in the pair of test 
gears. The load-carrying clutch (6) enables twisting and 
subsequent fixing of the shaft (7). Thus, it is possible to 
apply torque moment to the shafts, thereby loading the gears 
with a predefined moment. To make sure that damage 
occurs predominantly on the pair of test gears, the slave 
gearbox has a higher load-carrying capacity than the test 
gearbox, i.e. by designing the slave gears with a larger face 
width. 

 
1 Test pinion 5 Electric motor 
2 Test wheel 6 Load-carrying clutch 
3 Torque measurement 7 Shaft 1 
4 Shaft 2 8 Slave gearbox 

Figure 1. FZG standard test rig according to DIN ISO 
14635-1 (2006). 

In addition to the FZG standard back-to-back test rig (see 
Figure 1), the test rig used here contains a reduction gearbox 
interconnected between the electric motor and the slave 
gearbox. This way, slow operating speeds of the test gears 
are possible. 
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3.1.2. Experiments 

Figure 2 shows the pair of test spur gears used for the slow-
speed wear testing. Further gear data are listed in Table 1.  

 
Figure 2. Test gear set. 

In total, we conducted three gear experiments, named 
experiment A, experiment B, and experiment C. The slow-
speed wear experiments lasted for approximately 120 h 
each. Occasional pauses with disassembly and assembly 
after a defined number of load cycles were necessary to 
quantify wear. The amount of wear is the accumulated mass 
loss, determined by the weighing of pinion and wheel. The 
relative gear position of pinion and wheel did not change 
due to the weighing process and the lubricant remained in 
the gearbox. The operating pinion shaft speed for testing 
was 13.4 rpm, the corresponding pinion shaft load 627 Nm. 

For additional details, refer to Siewerin, Dobler, Tobie, and 
Stahl (2020) and Schultheiss, Tobie, Michaelis, Höhn, and 
Stahl (2014), who describe the fundamental experiment 
setup and procedure. 

Gear data Value 
Tooth number z1 / z2 16 / 24 
Normal module mn 4.5 mm 
Normal pressure angle αn 20° 
Working pressure angle αw 22.44° 
Center distance a 91.5 mm 
Face width b 14 mm 
Helix angle β 0° 
Profile modification factor x1 / x2 0.1817 / 0.1715 

Tip diameter da1 / da2 82.46 mm / 
118.36 mm 

Table 1. Gear data, see also Siewerin et al. (2020). 

3.1.3. Slow-speed Wear Results – Ground Truth 

Occurring slow-speed wear not only resulted in 
characteristic marks (see Figure 3), but also led to a mass 
loss of the gears. The accumulated wear for three different 
experiments (A, B, and C) with regard to their runtime are 
displayed in Figure 4 and in the following serve as the 
ground truth for the condition monitoring approaches.  

 

 
Figure 3. Example for slow-speed wear of test gear pinion. 

The distinct differences in the severity of the wear behavior 
of experiment A, B, and C fundamentally result from 
different oil or grease used for lubrication. We will not 
further investigate this lubrication influence in the present 
work, but refer to Siewerin et al. (2020) for more details. 
With this paper, we instead focus on investigating the 
condition monitoring possibilities with regard to wear. 

 
Figure 4. Measured accumulated wear of pinion and wheel 

for experiment A, experiment B, and experiment C. 

3.2. Condition Monitoring Workflow 

The fundamental workflow we used to develop condition 
monitoring systems is depicted in Figure 5a). A crucial step 
in the condition monitoring workflow is model building; 
hence, it is further specified in Figure 5b). The methodology 
we developed uses a feature-based model building step, 
which requires feature engineering. In order to reduce the 
required amount of domain knowledge and human 
interaction typically associated with feature engineering, we 
used a selection process that automatically discovers 
promising feature candidates, as depicted in Figure 5c). This 
section aims to provide insights into each individual step 
and provides background information on the design choices 
that we made. 
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Figure 5. Fundamental workflows for a) condition 

monitoring, b) model building with feature-based models 
and c) feature selection. 

3.2.1. Data Acquisition 

The first step in a condition monitoring workflow is data 
acquisition. Typical methods to acquire data from machines 
in operation are debris analysis, thermography, performance 
analysis and vibration analysis (Randall, 2011). The 
methodology of data acquisition described in the following 
captures torsional vibration and angular movement. Data 
acquisition culminates in a dataset consisting of time series 
that each contain a transmission error signal for a specific 
slow-speed wear condition of the meshing gears. For this 
task, we defined a time series containing transmission error 
as the predictor variable, while the corresponding wear 
condition is used as the target variable. Wear condition were 
quantified as a combined weight loss of both pinion and 
wheel (see Section 3.1.3), which is reasonable because of 
the same material and heat treatment.  

For research in terms of condition monitoring, we added 
additional measurement equipment to the test rig described 
in Section 3.1.1. The input and output shaft of the test 
gearbox each contain an angle measurement sensor (see 
Figure 6). Therewith, it is possible to measure the absolute 
angle position of the input shaft as well as the angle position 
of the output shaft synchronously. The angular sensors work 
contactless based on optical acquisition. Furthermore, they 
come with a resolution of 32 bit. The sample rate used in the 
present experiments was 8.67 kHz. 

The angular measurement took place in an intermittent 
manner every 20 minutes for 60 seconds throughout the 
entire experiment runtime. 

 
Figure 6. Test gearbox and measurement equipment.  

3.2.2. Data Preprocessing 

Subsequently, the acquired data is preprocessed. 
Section 3.1.3 contains the determination of the slow-speed 
wear target variable. We carried out five weight 
measurements during each experiment, which makes it 
possible to approximate the wear condition by linear 
interpolation. The continuous lines in Figure 4 show an 
approximation of how slow-speed gear wear evolves over 
time. From this point onwards, we used the relative 
combined weight loss instead of the absolute combined 
weight loss to improve comparability among experiments A, 
B and C. The unit that we used for relative combined weight 
loss is parts per million (ppm). 

In a first preprocessing step, we used the synchronously 
measured angular data of the shafts to calculate the 
transmission error Δ𝜑(𝑡)  of the pair of test gears (see 
Eq. (1), (Brecher, Gorgels, Hesse, & Hellmann, 2011; 
Niemann & Winter, 2003)) with 𝑧1,2 as the teeth numbers 
and Δ𝜑1,2(𝑡) as the rotation angles of pinion and wheel.  

Δ𝜑(𝑡) = Δ𝜑2(𝑡) −
𝑧1
𝑧2
Δ𝜑1(𝑡) (1) 

Because of the measurement location outside of the test 
gearbox, the transmission error includes the transfer path of 
the sensor to the corresponding gear. However, due to the 
high stiffness of the shafts compared to the gear mesh and 
the proximity of the sensors and gears’ positions on the 
shafts, we do not see a considerable influence.  

Preprocessing also includes outlier detection, removal and 
replacement (Aggarwal, 2017). The approach we employed 
to identify outliers is a modified version of the commonly 
used z-value test. These so-called robust z-values are 
calculated using Eq. (2) (Pedregosa et al., 2011, 2020). 
Notice how, compared to regular calculation of z-values, 
robust z-values 𝑧𝑡𝑟  use the median �̃�  of all signal values 𝑥 
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instead of the mean in the numerator and an interquartile 
range (IQR) between the third quartile 𝑄3 and the first 
quartile 𝑄1  instead of the standard deviation in the 
denominator. These modifications ensure robustness 
towards outliers with values that differ from the rest of the 
signal by several magnitudes. Hence, individual signal 
values 𝑥𝑡 within a single signal that correspond to a robust 
z-value 𝑧𝑡𝑟  higher than 10 are unlikely to be caused by 
nominal test rig operation. Therefore, these values are 
subject to either removal or replacement, depending on the 
temporal location within the signal. This outlier removal 
procedure is only viable because we assume the underlying 
data generation process to be approximately stationary. 

𝑧𝑡𝑟 =
𝑥𝑡 − �̃�
𝑄3 − 𝑄1

 (2) 

An exemplary amplitude spectrum of the unfiltered 
transmission error signal with annotations for selected 
characteristic frequencies is shown in Figure 7. 

 
Figure 7. Exemplary excerpt of a transmission error 

frequency spectrum showing the characteristic frequencies. 

Frequency Value 
Gear mesh 𝑓𝑔𝑚 3.56 Hz 
Pinion shaft 𝑓1 0.22 Hz 
Wheel shaft 𝑓2 0.15 Hz 
Hunting tooth 𝑓ℎ𝑡 0.07 Hz 

Table 2. Frequencies in the gear transmission system. 

Parameter Value 
Filter type Butterworth 
Passband edge frequency Gear mesh frequency 
Stopband edge frequency Pinion shaft frequency 
Maximum loss in passband 1 dB 
Minimum attenuation in stopband 40 dB 

Table 3. Filter design parameters to remove low frequency 
components from the transmission error signal. 

The exact values for these characteristic frequencies at 
nominal test rig speed are listed in Table 2. Based on the 
assumption that low frequency components in the 

transmission error signal do not contain relevant information 
about the wear condition of the meshing gears, we removed 
these frequencies with a digital high-pass filter. Table 3 
contains appropriate filter design parameters to accomplish 
filtering. Both passband and stopband edge frequencies are 
dynamically adapted to accommodate minor speed 
fluctuations of the test rig in order to preserve critical 
information in the signal. 

Figure 8 shows an exemplary excerpt of the high-pass 
filtered transmission error from the recorded data for one of 
the tests. Due to the occurring slow-speed wear, the 
transmission error changes from the beginning to the end of 
the test. This change is the basis for the fault diagnosis 
approach presented in this paper.  

 
Figure 8. Exemplary transmission error (high-pass filtered) 
of experiment A at the beginning (no wear) and end of the 

test (occurring wear) for approximately seven mesh periods. 

After filtering, we split each individual measurement signal 
into multiple sub-series. For meshing gears, multiple natural 
frequencies exist to divide the signal. Typical split 
frequencies coincide with those mentioned in Table 2 and 
their respective harmonics. The fundamental frequency of 
the transmission error signal matches the hunting tooth 
frequency 𝑓ℎ𝑡 , which is calculated according to Eq. (3) 
(Mark, 2015; Scheffer & Girdhar, 2004), with 𝑓𝑔𝑚  as the 
gear mesh frequency. For this, the greatest common divisor 
𝑧𝑔𝑐𝑑 of the number of teeth on the pinion 𝑧1 and the wheel 
𝑧2 needs to be determined. Successively, each measurement 
is split into single hunting tooth cycles in order to capture 
every possible tooth contact in a sub-series of a 
measurement. 

𝑓ℎ𝑡 =
𝑓𝑔𝑚 ⋅ 𝑧𝑔𝑐𝑑
𝑧1 ⋅ 𝑧2

 (3) 

Applied to the existing data, this step yields a total of 1,372 
sub-series for experiment A, 1,384 sub-series for 
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experiment B, and 1,353 sub-series for experiment C. The 
slight difference in the number of sub-series results from 
minimally different durations of each experiment. 

3.2.3. Model Building and Model Deployment 

We then used the preprocessed data for model building, 
which is arguably the most important step in the condition 
monitoring workflow. For this research project, we defined 
a model as an input-output mapping between the 
preprocessed time series containing the transmission error of 
the meshing gears and the corresponding wear. Generally, 
there are two different types of models to accomplish this: 

• Physics-based models 
• Data-driven models 
The key difference between the two is that physics-based 
models derive the target variable from a predefined set of 
rules, while data-driven approaches derive the rules 
themselves from the presented data. These “learnt” rules can 
then be applied to new, “unseen” data. At this point, it is 
important to mention that a mixture of both model types is 
possible. The scope of our research is limited to data-driven 
models. Within this scope, we identified three different 
implementations of data-driven models for time series 
analysis: instance-based approaches that use dynamic time 
warping, feature-based approaches and feature learning 
approaches. Feature-based approaches in particular have the 
benefit of creating interpretable insight into the data and 
therefore are the preferred approach. The workflow to create 
feature-based models that we used is depicted in Figure 5b). 

Feature Extraction and Selection 
The proposed method uses massive feature extraction as a 
concept by Fulcher and Jones (2014) to create a large set of 
features from measurement signals. This approach is 
universally applicable for time series and helps to 
understand the underlying processes that generate the data. 
Using features has multiple benefits. It is possible to 
calculate features from time series with different lengths 
and, after feature calculation, the amount of data is greatly 
reduced. This approach of feature extraction does not 
require extensive domain knowledge, although if useful 
features are known, they should certainly be included. 
Typical feature sources that can be used to extract features 
from time series are (Fulcher, 2017): 

• Statistical features such as mean, median, mode, 
standard deviation, quantiles, skewness and variance 

• Features resulting from a discrete Fourier transform and 
similar concepts, e.g. discrete wavelet transform 

• Measures of stationarity 
• Parameters from statistical time series models 
• Autocorrelation functions 

This listing is not exhaustive. The informed reader may 
have noticed that features that have proven to be useful for 
gearbox damage evaluation have not been mentioned in 
particular. Many of these domain-specific statistical 
features, such as FM0, FM4, and M6A use a signal with 
removed gear mesh and shaft frequencies as well as their 
respective harmonics from the vibration signal. Removing 
the gear mesh frequency harmonics would especially 
eliminate a significant amount of information from the 
transmission error signal. For more information on 
statistical features for gear vibration signals, refer to the 
work of Samuel and Pines (2005), and more recently the 
work of Zhu, Nostrand, Spiegel, and Morton (2014), and 
Sharma and Parey (2016). The result of feature extraction is 
a design matrix where each row represents a sub-series and 
each column contains the values for a specific feature. This 
process yields a design matrix with 5,650 columns and 
therefore 5,650 features. The features are based on the 
efficient features of the tsfresh python package v0.15.1 
(Christ, Braun, Neuffer, & Kempa-Liehr, 2018). 

Since this type of feature extraction requires little domain 
knowledge, the design matrix likely contains features that 
do not contain meaningful information that contributes to 
the prediction of gear wear condition. In fact, these useless 
features can hamper predictive performance and may 
increase model-training time. Consequently, feature 
selection is a crucial step in the proposed workflow. Feature 
selection methods attempt to retain features with the highest 
predictive performance while removing all others. 
Generally, three different approaches to feature selection 
exist (Guyon & Elisseeff, 2000): wrapper methods, 
embedded methods and filter methods. With numerous 
features, wrapper methods quickly become computationally 
infeasible, which is why they are not further explored in the 
approach we propose. Both filter and embedded feature 
selection techniques are used in this proposal.  

Only data from experiment C is part of feature selection. At 
first, we used the so called FRESH algorithm developed by 
Christ et al. (2018) to filter features from the design matrix 
that show no statistical dependence on the target variable. 
This was done by means of hypothesis testing. At first, each 
feature was checked individually for statistical relevance. 
For continuous features with continuous target variables, the 
authors of the FRESH algorithm suggest using the Kendall 
rank test. Rejecting the hypothesis about the data makes it 
relevant for target prediction. The rejection threshold 
THOLDk  of a p-value is determined by the Benjamini-
Yekutieli procedure with Eq. (4) (Benjamini & Yekutieli, 
2001). In this equation, 𝑘  is the rank of a p-value after 
sorting all p-values in ascending order and 𝑚 is the overall 
number of hypothesis tests conducted to yield the p-values. 
Once a p-value at rank 𝑘  is lower than the respective 
threshold THOLDk, all p-values with a higher rank indicate 
rejected hypothesis tests. The Benjamini-Yekutieli 
procedure attempts to control the so-called false discovery 
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rate 𝐹𝐷𝑅 seen in hypothesis testing. The false discover rate 
coincides with type I errors in hypothesis testing: 
“discovery” of dependencies that do not actually exist. We 
used a false discovery rate of 0.05 for the procedure. 
Completing this procedure reduces the amount of feature 
columns in the design matrix from 5,650 to 3,038. 

THOLDk  =  
k
m
  ⋅  

FDR

∑ 1
i

m
i=1

 
(4) 

Similar information may be contained among the remaining 
features, i.e. mean and median are typical examples for 
features that in practice often have the same value (Christ, 
Kempa-Liehr, & Feindt, 2017). Removing highly correlated 
features therefore serves the purpose of removing redundant 
information. Typically, this problem is addressed with a 
principal component analysis; however, in order to keep 
intuitive interpretability high, we propose usage of a simple 
correlation analysis as suggested by Albon (2018). This 
method uses the Pearson correlation coefficient to quantify 
the linear correlation of a pair of features. Highly correlated 
features are defined as having an absolute correlation 
coefficient higher than 0.95. If a pair of features is highly 
correlated, one of the two is removed. We made this 
decision despite the known downfalls of the Pearson 
correlation coefficient and descriptive statistics. In our 
dataset, we found and removed 92 correlated features in this 
step, reducing the feature count to 2,946.  

Finally, feature selection concludes with recursive feature 
elimination, which Guyon, Weston, Barnhill, and Vapnik 
(2002) first developed and applied in combination with 
support vector machines. Recursive feature elimination is 
applicable with every machine learning algorithm that 
creates an internal feature ranking.  

 
Figure 9. Depiction of recursive feature elimination paired 

with cross-validation. 

The algorithm we used for this proposal is random forest 
regression; we elucidate more details and benefits of tree-
based methods in the paragraph “Model Selection, Training 
and Evaluation”. The process of recursive feature 
elimination with cross-validation is depicted in Figure 9. 
Since the optimal number of features is not known, a cross-
validation score is calculated at every step of recursive 
feature elimination. This helps to evaluate at which point 
there are enough features to describe the system. 

First, we passed an initial dataset with all features to the 
random forest regressor and a cross-validation score was 
calculated. Subsequently, the random forest regression 
model was retrained after removing the features with the 
lowest feature importance from the initial set of features. 
This process was repeated until all features were removed. 
The cross-validation scores were used to monitor model 
performance during the recursive feature elimination 
process. Every iteration 0.001 % of the initial number of 
features was removed. We obtained the final number of 
features by selecting the smallest number of features before 
the model performance decreased significantly. By 
observing the plot in Figure 10, we selected a total of 15 
features (see Table 4). This corresponds to the final number 
of features. 

 
Figure 10. Cross-validated RMSE during recursive feature 

elimination.  

No. Feature No. Feature 

1 Skewness 9 Amplitude at 18th 
order 𝑓𝑔𝑚 

2 Median 10 Quantile 0.3  

3 Amplitude at 1st order 
𝑓𝑔𝑚 11 Quantile 0.8 

4 Ratio beyond 0.5𝜎 12 Quantile 0.6 

5 Amplitude at 4th order 
𝑓𝑔𝑚 13 Variance 

6 Amplitude at 15th 
order 𝑓𝑔𝑚 14 Amplitude at 8th order 

𝑓𝑔𝑚 

7 Amplitude at 3th order 
𝑓𝑔𝑚 15 Ratio beyond 1𝜎 

8 Amplitude at 25th 
order 𝑓𝑔𝑚   

Table 4. Selected set of the 15 highest rated of 5,650 
features ordered by descending importance. 
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Model Selection, Training and Evaluation 
Finally, we used the selected features to train a machine 
learning model. For the sake of brevity, we are covering 
model selection, training and evaluation in a single section. 
Selecting a machine learning algorithm is no simple task. 
Many different approaches exist ranging from support 
vector machines, neural networks, linear regression to 
decision trees and more advanced deep learning techniques. 
Machine learning algorithms based on decision trees are 
popular because of multiple reasons (Louppe, 2014): 

• Decision trees are interpretable (white box models) 
• They work with numerical and categorical variables as 

input 
• Decision trees select features as a part of the tree 

growing process 
• They are robust to errors in the training data 
• They are non-parametric 
Obviously there are not only upsides to decision trees; their 
main downside is their lack of accuracy compared to other 
machine learning methods, as decision trees are generally 
known as high variance estimators (Murphy, 2012). 
Decision trees are the basis for more advanced methods 
such as random forests (Breiman, 2001) and gradient 
boosting methods (Friedman, 2001). Both methods are 
classified as ensemble learning and perform well in 
comparative studies, e.g. those carried out by Caruana and 
Niculescu-Mizil (2006), Fernández-Delgado, Cernadas, 
Barro, and Amorim (2014), and more recently Olson, La 
Cava, Mustahsan, Varik, and Moore (2018). In fact, random 
forests and gradient boosted trees are among the most 
popular algorithms used by data scientists and machine 
learning practitioners (Kaggle, 2019). Because of their 
widespread use and their generally good performance, we 
used both, random forest regression (RFR) and gradient 
boosted regression trees (GBRT) as models in our proposed 
workflow and compared the results. 

Parameter selection and model evaluation were carried out 
using the data from experiment C, while the test data came 
from experiments A and B. For this analysis, we treated 
experiment C as “run-to-failure” experiment that contains 
all gear wear states we are trying to detect. A 5-fold cross-
validation supports the parameter selection, which we 
applied after shuffling the samples. The metric we used to 
score each fold is the RMSE. The models we applied use the 
implementation by the scikit-learn library (Pedregosa et al., 
2011). Parametrization is kept simple, since model 
performance tends to increase with model size and therefore 
with tree size. Instead of extensive algorithmic 
hyperparameter tuning, we therefore selected the parameter 
values by hand. The most important parameter values are 

discussed in the following; the remaining parameters are 
unchanged from the default values provided by scikit-learn.  

Both RFR and GBRT models use an ensemble of 500 
decision trees, each with an unlimited depth. In order to 
control overfitting and support generalization, the minimum 
number of samples required for a node split in a decision 
tree was set to 5 for both models. The maximum number of 
features for the growth of each decision tree was capped at 
80 % of all available features. Similarly, each decision tree 
was grown with regard to only 80 % of all available training 
samples. The gradient boosting method also requires a 
learning rate that defines how much information each 
additional tree contributes to the entire model. A typical 
value for the learning rate is 0.1, which coincides with the 
value we chose. 

Fold no. RFR GBRT 
RMSE 1st Fold 3.35 ppm 2.75 ppm 
RMSE 2nd Fold 4.18 ppm 4.61 ppm 
RMSE 3rd Fold 2.21 ppm 1.93 ppm 
RMSE 4th Fold 3.20 ppm 3.52 ppm 
RMSE 5th Fold 2.08 ppm 1.87 ppm 
RMSE average 3.00 ppm 2.94 ppm 

Table 5. RMSE values of both decision tree ensembles as a 
result of cross-validation. 

The results of cross-validation of the final model are 
portrayed in Table 5. A regression plot for both models 
displays both the ground truth and the predicted values 
against each other (see Figure 12). 

4. RESULTS 

The results of the proposed workflow follow the model 
deployment step in Figure 5a). The feature selection process 
resulted in 15 relevant features. In Figure 11, the six highest 
rated features according to feature importance are plotted 
against wear. We improved comparability by min-max 
normalization of the feature values. The features depicted 
make up over 90 % of the feature importance determined by 
the recursive feature elimination algorithm. Three of the top 
six features are statistical features. While “skewness” and 
“median” are self-explanatory, the “ratio beyond 0.5𝜎 ” 
quantifies the ratio of signal values that are further than half 
a standard deviation away from the signal mean. The 
remaining three features are categorized as amplitudes at 
specific frequencies in the frequency spectrum. All high-
ranking frequencies selected by the feature selection 
algorithm are harmonics of the gear mesh frequency, 
namely the first, fourth and fifteenth order of the gear mesh 
frequency.  
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a) Skewness  b) Median 

 

 

 
c) Amplitude at 1st order 𝑓𝑔𝑚  d) Ratio beyond 0.5𝜎 

 

 

 

e) Amplitude at 4th order 𝑓𝑔𝑚  f) Amplitude at 15th order 𝑓𝑔𝑚 

Figure 11. The six highest rated features rated by recursive feature elimination. The features are min-max normalized to 
improve comparability.

As previously mentioned, we trained and tuned both the 
RFR and the GBRT only with data from experiment C, 
which we considered a “run-to-failure” experiment. We 
used the data from experiment A and experiment B to 
simulate deployment of the models. The features extracted 
from experiment A and B correspond to those selected 
considering only experiment C. Figure 12 depicts the 
resulting regression plots from the simulated deployment. 
The vertical axis of each plot displays the slow-speed wear 
predicted by the model, while the horizontal axis shows the 

ground truth. An ideal model would produce the dashed line 
graph in every plot. 

Overall, both models performed well. Goodness of fit, 
which we determined with the R2 coefficient of 
determination and the RMSE for both models, are at 
acceptable levels. These performance metrics also reveal 
that the GBRT model slightly outperforms the RFR model. 
The plots additionally show a resemblance to an 
approximately piecewise constant function, which is typical 
for methods based on decision trees. 
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a) RFR – Experiment A b) GBRT – Experiment A 

  
c) RFR – Experiment B d) GBRT – Experiment B 

Figure 12: Regression results from the test data (experiment A and experiment B).

5. DISCUSSION 

With this paper, we provide an implementation of our 
proposed approach to condition monitoring and predictive 
maintenance tasks with a continuous target variable. 
Without going into further detail, we would like to note that 
adaptation of this approach to classification problems with 
categorical target variables is straightforward. The present 
approach is mainly data driven, as domain knowledge is 
solely required in the data acquisition and preprocessing 
steps. Because gear transmission systems in slow operation 
do not provide sufficient vibration excitation, we chose to 
use the dynamic transmission error as the input signal to the 
condition monitoring workflow in the presented use-case. 
To demonstrate the viability of this approach, we used a 
dataset containing transmission error data from spur gears 
and the respective combined slow-speed wear of both pinion 

and wheel. First, the data was high-pass filtered and 
therefore centered on zero. Subsequently, each signal was 
split into individual hunting tooth cycles. We chose this 
particular way of splitting, because the hunting tooth cycle 
contains all meshing combinations and thereby is a 
universal approach. However, other signal sub-series 
lengths, e.g. according to one gear shaft frequency or even 
according to the gear mesh frequency would surely 
influence the overall model performance. Subsequently, vast 
amounts of features were extracted from each individual 
sub-series and through algorithmic feature selection, only 
the most important features were retained. Compared to 
manual feature selection, this approach reduces the human 
effort and involvement in feature engineering significantly. 
Compared to feature/representation-learning approaches that 
are typically implemented with deep neural networks, our 
proposed approach returns features that may easily be 
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understood and interpreted by humans. However, models 
with feature engineering, both in an automated massive or 
manual way, are only as good as the available feature set. 
Although we extracted a large set of features, it is not a 
given that no other supplemental and perhaps more suitable 
features exist. In particular, expanding the feature set with 
features specific to gearboxes could help to improve wear 
estimation capabilities further. If this approach is used to 
extract and select features from gear vibration data, the 
addition of gear vibration specific features is crucial. The 
parameters of the implemented algorithmic feature selection 
are chosen based on best practices combined with the usage 
of reasonable computational resources as ulterior motive. 
Ideally, the extracted set of features and the progression of 
feature values allows conclusions about the underlying 
physical principles generating the data. We would like to 
encourage experimentation and usage of the proposed 
workflow for condition monitoring tasks with other 
machinery and sensor arrangements. Finally, we emphasize 
that the importance of data acquisition, preprocessing, 
feature extraction and feature selection is pronounced 
compared to the other steps in the condition monitoring 
workflow, especially model building. 

Obviously, our approach and implementation are not 
holistic solutions to all condition monitoring tasks. For 
example, the models we used are based on decision trees, 
which are known to not extrapolate well. For our dataset and 
use-case however, this is not a concern, since extrapolation 
is not necessary with the existence of “run-to-failure” data. 
Examples of model types that are better suited for 
extrapolation are linear models and neural networks. Most 
of the parameters for the ensemble models GBRT and RFR 
have values that are similar to the defaults provided by 
scikit-learn. Because slight modifications to the baseline 
parameters already yield good results, we did not attempt an 
additional, extensive algorithmic hyperparameter 
optimization. All downsides aside, methods based on 
decision trees are white box models. Decision boundaries 
and the decision-making process of decision trees are 
therefore traceable without extensive effort. This attribute is 
likely relevant for applications that require transparency, 
such as condition monitoring of components that are crucial 
for safety in a system. 

Overall, the proposed approach shows good slow-speed 
wear estimation results throughout the whole experiment 
range. Even at the beginning of lifetime for small quantities 
of wear, which intuitively are harder to estimate, the results 
are acceptable. This does especially apply when using a 
GBRT model. The basis for calculations are three 
experiments with one of them used for training. The 
obtained results are even more promising considering the 
rather low number of experiments used for training and 
testing. However, this also raises the question of the overall 
validity of the results when it comes to general gear shapes 
and setups. All experiments use the same experiment setup 

with one spur gear stage. Because the transmission error and 
the vibrational behavior is sensitive to gear shapes and gear 
system design, additional experiments are nearly imperative. 
The same accounts for variations in operating conditions 
such as speed or load. Beyond the physical influences, 
higher rotational speeds also reduce the angle measurement 
quality due to a limited sample rate and hence reduce the 
transmission error determination accuracy. 

6. CONCLUSION 

Monitoring of slow-speed gear wear is an important 
contribution to realizing a predictive maintenance strategy 
to avoid critical failures of gear systems.  

With this paper, we show that an approach based on the 
dynamic transmission error that contains an automated 
feature selection process is a suitable way for slow-speed 
wear estimation. The approach includes extracting a large 
set of features from the preprocessed transmission error in 
order to find and select the most relevant features. 
Therefore, the feature selection and elimination process 
contain a combined filter and embedded feature selection 
method including recursive feature elimination. By doing 
so, only a small amount of domain knowledge is necessary. 
Nevertheless, due to the explicit nature of calculation, the 
resulting features still allow for interpretability if required. 
Comparing both RFR and GBRT models used for 
subsequent training, GBRT slightly outperforms RFR, but at 
a high overall performance level.  

Considering everything, the presented approach offers good 
estimations for slow-speed wear in the course of condition 
monitoring. It even seems to be promising for higher speeds 
in combination with vibrational analysis, which, however, 
needs to be addressed in further research. 

NOMENCLATURE 

FDR  False discovery rate 
FZG  Gear Research Centre, TUM 
GBRT  Gradient boosted regression trees 
IQR  Interquartile range 
LSTM  Long-short term memory 
𝑄1  First quartile 
𝑄3  Third quartile 
𝑅2  Coefficient of determination 
RFR  Random forest regression 
𝑅𝑀𝑆𝐸  Root mean square error 
THOLD𝑘 Threshold at rank k 
𝑐𝑣  Cross-validated 
𝑓1,2  Shaft frequency (pinion, wheel), in Hz 
𝑓𝑔𝑚  Gear mesh frequency, in Hz 
𝑓ℎ𝑡  Hunting tooth frequency, in Hz 
𝑘  Rank of p-value 
𝑚  Number of hypothesis tests 
�̃�  Overall signal median 
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𝑥𝑡  Signal value at timestep t 
𝑧1,2  Number of teeth (pinion, wheel) 
𝑧𝑔𝑐𝑑 Greatest common divisor of pinion and 

wheel number of teeth 
𝑧𝑡𝑟   Robust z-score at timestep t 
Δ𝜑(𝑡)  Transmission error, in ° 
Δ𝜑1,2(𝑡)  Rotation angle (pinion, wheel), in ° 
𝜎  Standard deviation 
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