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ABSTRACT

Data-driven machinery prognostics has seen increasing popu-
larity recently, especially with the effectiveness of deep learn-
ing methods growing. However, deep learning methods lack
useful properties such as the lack of uncertainty quantifica-
tion of their outputs and have a black-box nature. Neural or-
dinary differential equations (NODEs) use neural networks to
define differential equations that propagate data from the in-
puts to the outputs. They can be seen as a continuous gen-
eralization of a popular network architecture used for im-
age recognition known as the Residual Network (ResNet).
This paper compares the performance of each network for
machinery prognostics tasks to show the validity of Neural
ODEs in machinery prognostics. The comparison is done us-
ing NASA’s Commercial Modular Aero-Propulsion System
Simulation (C-MAPSS) dataset, which simulates the sensor
information of degrading turbofan engines. To compare both
architectures, they are set up as convolutional neural networks
and the sensors are transformed to the time-frequency domain
through the short-time Fourier transform (STFT). The spec-
trograms from the STFT are the input images to the networks
and the output is the estimated RUL; hence, the task is turned
into an image recognition task. The results found NODEs can
compete with state-of-the-art machinery prognostics meth-
ods. While it does not beat the state-of-the-art method, it is
close enough that it could warrant further research into using
NODEs. The potential benefits of using NODEs instead of
other network architectures are also discussed in this work.

1. INTRODUCTION

Machinery prognostics is defined as the process used to es-
timate the remaining useful life (RUL) of machinery or its
components. To estimate the RUL, data is needed that in-
dicates the machinery’s health and a prognostics method is
needed which will extrapolate and find the RUL based on the
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current health. There are three main categories of machin-
ery prognostics methods, physics-based, data-driven and hy-
brid. For this work data-driven methods are employed as they
have become increasingly popular as more data is gathered
on machinery using sensors (Zhao et al., 2019). Data-driven
models optimize their parameters based on the historical data
inputs to estimate the RUL, which is referred to as training
the model.

Machine learning techniques have become increasingly used
in data-driven machinery prognostics. Implementation of these
techniques generally involves pre-processing the historical data,
extracting features from the data that correlate well with the
RUL and training the machine learning model on the data and
features. However, deep learning methods do not require fea-
ture extraction as the deep neural networks can automatically
extract features from raw data (W. Zhang, Yang, & Wang,
2019).

The lack of a feature extraction step is not the only bene-
fit of using deep learning methods in machinery prognostics;
they perform well compared to other data-driven methods and
require no expert knowledge of the system. For example, re-
current neural networks (RNNs) are well suited for extracting
features from time-series signals, such as sensor signals, and
have been shown to achieve state-of-the-art performance in
this task. In machinery prognostics, RNNs have been used
to directly model and forecast the degradation of equipment
(Y. Zhang, Xiong, He, & Pecht, 2018; Zhou, Huang, Pang,
& Wang, 2019), or extract features directly from time-series
inputs and output a RUL estimate (Wu et al., 2019; Huang,
Huang, & Li, 2019; Listou Ellefsen, Bjørlykhaug, Æsøy, Ushakov,
& Zhang, 2019). While RNNs are well suited for time-series
problems other deep neural networks have also been utilized
for estimating the RUL.

The convolutional neural network (CNN) is a network which
is normally used in image recognition and does not need to
do computations sequentially like the RNN. Due to the CNNs
high performance in image analysis and recognition tasks it
is common to frame the machinery prognostics task as an im-

International Journal of Prognostics and Health Management, ISSN2153-2648, 2021 000 1

https://doi.org/10.36001/IJPHM.2021.v12i2.2938

     



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

age recognition task. This is usually done by applying a time-
frequency transform on the sensor signals and creating a spec-
trogram from the output coefficients and using that as the im-
age with a corresponding RUL as a target value. For example,
(Zhu, Chen, & Peng, 2019) used the wavelet transform on the
input sensor data to transform it into this time-frequency for-
mat and then used a CNN to estimate the RUL. Other trans-
forms have also been used such as, short-time Fourier trans-
forms (STFT) (Li, Zhang, & Ding, 2019), Empirical Mode
Decomposition (EMD) (Yang, Yao, Ye, & Xu, 2020), regular
Fourier transform (Wang, Zhao, Ma, Chang, & Mao, 2019)
and simply time-windowed raw data (Li, Ding, & Sun, 2018).
All these methods applied the CNN to the transformed data
to output a RUL.

Deep learning methods can estimate the RUL to a high accu-
racy, however, the methods mentioned so far did not focus on
interpretability of the results. These methods can be a black
box where the inputs are fed into the network and an out-
put is given that can be accurate assuming the correct data
was used as an input. Most deep learning methods in ma-
chinery prognostics only provide point estimates without in-
corporating uncertainty into the RUL estimate (Peng, Ye, &
Chen, 2019). The uncertainty quantification is important in
machinery prognostics for decision making due to the influ-
ence different sources of uncertainty have on the RUL predic-
tion (Sankararaman, 2015). Some techniques have however
been used to incorporate uncertainty into RUL estimates us-
ing machine learning or deep learning methods.

When using a measurable variable which somehow indicates
the component’s health, a Bayesian filter, such as the Kalman
or Particle filter, can be directly applied to update the variable
based on newly observed measurements. Hence, a machine
learning model may be used to model the health indicator
and extrapolate to some threshold value indicating the end of
its useful life while the Bayesian filter updates the probabil-
ity distribution given new measurements. For example, ma-
chine learning models such as the Relevance Vector Machine
(RVM) can be used to mathematically model the battery ca-
pacity degradation while using the particle filter to update the
RUL estimates based on new measurements (Saha, Goebel,
Poll, & Christophersen, 2009; Hu & Luo, 2013). (Guo, Li,
Jia, Lei, & Lin, 2017) did not have a measurable health indic-
tor but constructed one with a known threshold using bear-
ing vibration data as an input to a RNN whose output was a
one-dimensional health indicator variable. This health indi-
cator had a known threshold and a simple exponential model
was fit to the health indicator and used to extrapolate to the
threshold value. The exponential model parameters could be
described using normal distributions with more ease than a
deep neural network, which has considerably more parame-
ters. RNNs have also been altered to model physics-based
differential equations which describe health indictors such as
crack length and modelling grease degradation (Yucesan &

Viana, 2019; Dourado & Viana, 2019; Nascimento & Viana,
2019). These can similarly include uncertainty in their pa-
rameters due to the relative simplicity of the final degradation
model. Deep neural networks can incorporate uncertainty
into their structure and these are known as Bayesian neural
networks. (Peng et al., 2019) went through how to alter var-
ious state-of-the-art deep neural networks into Bayesian neu-
ral networks. However, most popular Bayesian networks rely
on either increasing the amount of parameters in the network
(Blundell, Cornebise, Kavukcuoglu, & Wierstra, 2015) or by
utilizing Monte Carlo simulations when evaluating the net-
work (Gal & Ghahramani, 2016) making them slower than
a standard deep neural network. Most of these methods that
account for uncertainty either,

• Use Monte Carlo simulation thereby increasing the com-
putational cost

• Require a physics-based mathematical description of the
degradation mechanics

• Require the output to be a measurable or known physics-
based health indicator

Hence, it would be useful to investigate avenues that allow
for deep learning methods to account for uncertainty without
these drawbacks.

Recently a type of neural network architecture known as Neu-
ral Ordinary Differential Equations (NODEs) has been intro-
duced (Chen, Rubanova, Bettencourt, & Duvenaud, 2018).
NODEs essentially describes the input to output variable trans-
formation by a trajectory through a vector field i.e. the net-
works hidden variable dynamics. The vector field is defined
by a neural network and the trajectory is solved using numer-
ical ODE solver schemes such as Euler’s method or Runge-
Kutta methods. The investigation of these vector fields which
define the hidden variable dynamics, could be a research av-
enue that has the potential to improve interpretability of the
network or quantify uncertainty (e.g. stochastic dynamics are
used instead). Existing knowledge on differential equations
could open interesting research avenues to alter the NODEs
architecture to give meaningful RUL estimates and reduce the
black-box nature of the network. The aim of this paper is to
show the applicability of NODEs in machinery prognostics
by applying them to the popular C-MAPSS turbofan engine
dataset and comparing their performance to other methods.
This is largely to show how NODEs hold up to state of the art
machinery prognostics methods. Hence, in this study NODEs
will function like most black-box neural networks without a
focus on its dynamics to keep the experiment simple. The
idea is to first investigate if NODEs can perform well on a
RUL estimation problem given degradation data. If it per-
forms well this may increase incentive and discussion of how
to leverage their properties to benefit machinery prognostics
tasks. Section 5 provides a discussion on the useful properties
NODEs have and how they might be leveraged for machinery
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prognostics given further research. Another network known
as the Residual Network (ResNet) (He, Zhang, Ren, & Sun,
2016), a type of CNN popular in image recognition tasks,
will also be included in the experiments. This is mainly due
to the fact NODEs were introduced as a continuous version
of the ResNet so they are expected to perform similarly. The
NODE-based network will be a CNN so it is easily compa-
rable with a ResNet and the input sensor data will be trans-
formed to spectrograms using a short-time Fourier transform
(STFT). Discussion of the results, including possible research
directions for utilizing or extending NODEs for machinery
prognostics applications, are given after the results of the ex-
periments.

2. BACKGROUND

2.1. Short-Time Fourier Transform

The short-time Fourier transform (STFT) is a way of analyz-
ing a non-stationary signal by approximating discrete parts of
the signal as stationary. This is done through a sliding win-
dow that acts over the signal and applies the Fourier transform
on the windowed signal to extract frequency information at
that time. Mathematically this can be stated as Eq. (1),

X(!, t) =

Z 1

�1
f(t)w(t� ⌧)e�j!tdt. (1)

Where f(t) is the signal, w(t � ⌧) is the window function,
X(!, t) is the resulting time-frequency signal.

The STFT was used for simplicity and does not require the
selection of a basis function as is the case with the Wavelet
transform. Different basis function selections can influence
the results significantly; this influence was avoided by using
the STFT instead of the Wavelet transform (Li et al., 2019).

2.2. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) (Yann Lecun, 1989)
are a feedforward neural network which use filters to extract
features and relate data points which are spatially close on
the grid. The filter is made up of learnable parameters called
weights which are optimized during the training of the net-
work. The main component of the CNN is the convolutional
layer; this layer performs the convolution operation between
the filter weights and the layer input data.

In this case, the inputs are a grid of intensity values found
from the time-frequency transform. Hence, the example of
the convolution layer will involve a 2D grid of input values.
The filter in the 2D case is a matrix of weight parameters that
act on the input values through the convolution operator. In
this 2D case the convolution operation will generate output
values that are elements of an output matrix whose size is
dependant on hyperparameters such as filter size and stride

(amount of spaces the filter “slides” over). The convolution
operator in this case will involve the filter “sliding” over the
input values in the grid and multiplying the filter values with
the inputs element-wise and summing these to a single value
(Dumoulin & Visin, 2016). The convolution layer operations
are showcased in Figure 1.

Figure 1. A 2⇥2 CNN filter sliding along input data (x), per-
forming convolution to produce an output matrix, “i” denotes
the position and order the filter is sliding in i.e. the filter starts
at i=1 and goes to i=2 etc. The values k represent the values
in the filter matrix. y are the outputs of the convolution oper-
ation and make up the elements of the CNN output matrix

The parameters in the filter are the trainable parameters which
are being optimized to produce the desired output given the
inputs. The CNN uses multiple filters and therefore give mul-
tiple outputs which are often flattened to a vector and be-
comes the input to standard feedforward neural network which
produces an output of the desired size. Notice that the CNN
essentially trains different filters which all give weighted av-
erages of the local area of the input data. In this work, the lo-
cal area represents the time and frequency coordinates while
the values themselves represent the intensity of the frequen-
cies at that time which indicates the energy of the signal.

2.3. ResNet

The Residual Network (ResNet) (He et al., 2016), is a con-
volutional neural network which learns the residual or differ-
ence in the hidden variables. The equation for the ResNet is
given by Eq. (2),

xi+1 = xi + fi(xi, ✓i). (2)

Where xi is the variable at the ResNet network layer indexed
by i = 1, ..., n, fi is a neural network used by the ResNet at
layer i and ✓i is the network parameters at layer i.

Equation 2 describes a ResNet block which can be illustrated
using the diagram shown in Figure 2.

The addition of the inputs xi to the neural network output
f(xi, ✓) results in the ResNet block having a “skip connec-
tion”. Therefore, the inputs (xi) as well as the network out-
puts (fi(xi, ✓i)) influence the final output of the ResNet block
(xi+1).

Notice that the network fi describes the difference or residual
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Figure 2. Schematic showing how inputs transform to out-
puts using the neural network f(xi, ✓) and a skip connection.
Where xi is the input data and ✓ are the network parameters.
Note that the rectangular block represents the neural networkL

represents element-wise addition and xi+1 are the outputs.

between the two hidden variables i.e. xi+1 � xi, hence the
name ResNet. This formulation was first applied to CNNs (fi
was a CNN) and resulted in improved performance on image
recognition tasks (He et al., 2016).

2.4. NODE

Neural Ordinary Differential Equations (NODEs) (Chen et
al., 2018) were first introduced as a continuous version of the
ResNet. The equation describing NODEs is given by Eq. (3),

xt+1 = xt + f(xt, t, ✓). (3)

Where, xt is the variable at the layer indexed by t = 1, ..., n,
f is the neural network describing the ODE i.e. dxt

dt and ✓
represents the network parameters.

Figure 3 shows a simple illustrated example of how NODEs
take input variables and transform them to an output variable.

Figure 3. A visual example of how NODE propagates the
input variable x0 through the network, which is described by
an ODE. Each solid arrow is an evaluation of the network
dxt
dt = f(xt, t) which is used to find the next step or next

network hidden layer variable, where t is the depth of the
network. Since, there are 5 arrows shown this is equivalent to
a network with 5 hidden layers. The dotted path labelled x(t)
is the trajectory the variables take through the NODE and xN
is the final output of the NODE.

Here, the network f is constant throughout each layer or eval-
uation while the ResNet had a different network block for

each layer fi. This is the major difference between NODEs
and other neural networks, NODE uses a neural network to
describe a larger “network”. The inputs are transformed to the
network output variables using a numerical differential equa-
tion solver and the network f acts as the function describing
the first order ODE dx

dt . In this case the input variables are
propagated through the vector field described by the neural
network f . By choosing the number of steps (or step-size) in
the ODE solver the amount of “layers” or functional evalua-
tions are controlled. Since the parameters of the neural net-
work ✓ do not change as the variables are propagated through
the vector field; the network will be denoted as f(xt, t) in-
stead of f(xt, t, ✓) for simplicity.

3. DATA

To compare the ResNet and NODEs they will both be trained
on a prognostics dataset to estimate the RUL of machinery.
This section will explain the contents of the dataset, addition-
ally it covers how the data was prepared to become the inputs
of the neural networks, as well as how the RUL targets were
prepared for the supervised learning task.

3.1. C-MAPSS dataset

The data used here is NASA’s Commercial modular aero-
propulsion system simulation (C-MAPSS) dataset (Saxena &
Goebel, n.d.). This dataset was produced through simulations
of sensor readings for aircraft gas turbine engines. The RUL
values and therefore the time of failure is known for each
simulated engine and was found when the simulated vari-
ables reached a certain threshold determined by a failure cri-
teria. There are four separate datasets which vary in difficulty
with respect to RUL estimation, a summary of each dataset
is given in Table 1. The possible failure modes that could
occur in this dataset set are either the high-pressure compres-
sor (HPC) or fan degrading below a certain threshold. Each
dataset includes training and testing trajectories (time-series
data) which contain the sensor values and operating condi-
tions of a number of different units/engines. The training set
is simulated until failure, hence, the final time point is the
time of failure (i.e. RUL = 0 at the final time). The testing
dataset contains trajectories until a random time point and the
RUL at that time point is supplied for each trajectory. The
trained network can be evaluated on this testing set and the es-
timated RUL can be compared with the true RUL value given
in the testing dataset.

Each dataset consists of multiple time series for both the
training and testing datasets. There are 26 columns of data
for each unit. The contents of each column are specified in
Table 2.

Using the CMAPSS dataset the two CNNs, both the ResNet
and NODEs (now referred to as NODE-CNN) architectures
will be trained using the training dataset and have their per-
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Table 1. Different datasets found in CMAPSS: these state
how many different engines are simulated, the number of op-
erating conditions and the number of possible failure condi-
tions they can experience (Fault Modes)

Dataset Train
Trajectories

Test
Trajectories

Operating
Conditions

Fault
Modes

FD001 100 100 1 1
FD002 260 259 6 1
FD003 100 100 1 2
FD004 248 249 6 2

Table 2. Information contained in each column for the train-
ing and testing datasets

Columns Data Contained
1 unit number
2 time (cycles)
3 operational setting 1
4 operational setting 2
5 operational setting 3
6-26 sensor measurements (1-21)

formance compared on the testing dataset. Note that, NODE-
CNN will have a CNN architecture simply for ease of com-
parison to the ResNet. Specifics on evaluating the perfor-
mance of the network on the test data will be mentioned in
section 5 (Results and Discussion).

3.2. Preparing Data

For the prognostics algorithm used in this study, the data must
be prepared to be suitable as an input of the CNNs used (both
the ResNet and NODE-CNN). Here suitability means that the
CNN can easily extract the relevant features from the data
and correlate the features to the RUL. For example, the time-
series signals can be converted to a 2D time-frequency spec-
tral plot using time-frequency methods such as wavelet trans-
forms or short-time Fourier transforms (Zhu et al., 2019; Li
et al., 2019). This would convert the time-series data into an
image format from which the CNN can extract features. For
this experiment a similar process to (Zhu et al., 2019) was
used which involved the following general steps,

1. Relevant sensor signals are taken from the machinery
sensor data and normalized with Eq. (5).

2. A short-time Fourier transform is applied to each of the
different time-series sensor signals (i.e. output tensor
size = [amount of sensors, time, frequency]).

3. Bilinear interpolation is used to change the size of each
time-frequency signal to a 30 ⇥ 30 format (i.e. output
tensor size = [amount of sensors, 30, 30]).

A general diagram of the data transformation is shown in Fig-
ure 4.

Firstly, it is important to drop sensors whose values do not
change (or change very little) during the life of the machine,

Time-Frequency
 Transform

Time Window

Figure 4. A single time-series signal which is transformed
to the time-frequency domain using the STFT. The frequency
intensities from the Fourier coefficients is shown in the image
that results from the time-frequency transform

as they do not capture useful degradation information of the
machine for estimating the RUL. To drop the relevant sensor
signals from the dataset a small threshold standard deviation
was chosen (e.g. 1 ⇥ 10�8). Any sensor signals whose stan-
dard deviation was below this threshold were not used. Some
sensor signals were constant throughout but had large out-
liers; these standard deviations passed the threshold test. It
was found these signals did not help performance and there-
fore another criteria was added to ensure these sensors were
also dropped. This criteria simply checked how many unique
values were in the sensor signal, if there were less unique
values than a threshold value (less than 3 unique values in
this case) it was dropped. This procedure identified a group
of sensor signals which were better suited for the machinery
prognostics task. The sensors which were dropped are listed
in Table 3.

Table 3. Sensors dropped from the total of 21 sensors

Sensor Number
1
5

16
18
19

It is common in prognostics to normalize the time series data
so all sensor signals are similar in magnitude. This is often
done by taking the means and standard deviations of the sen-
sor signals for each unit and applying Eq. (4),

x̂(n)
d =

x(n)
d � µ(n)

d

�(n)
d

. (4)

Where, x̂(n)
d are the normalized sensor values for unit number

n and sensor d. Similarly, µ(n)
d denotes the means of each

sensor, �(n)
d denotes the standard deviations and x(n)

d are the
raw sensor values.

Normalization is often carried out this way, by calculating the
mean and standard deviation based on the sensor data for a
particular unit. However, with multiple operating conditions
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such as in the datasets FD002 and FD004 (see Table 1), (Pasa,
Medeiros, & Yoneyama, 2019) showed it is often more useful
to normalize the sensor data based on a particular operating
condition. Hence, for these datasets the normalization of the
data can done by applying Eq. (5) (Pasa et al., 2019),

x̂(n)
d =

NcX

c=0

�c �
x(n)
d � µ(c)

d

�(c)
d

. (5)

In this case, µ(c)
d and �(c)

d are the mean and standard devi-
ation of sensor signal d given it is in operating condition c,
Nc denotes the total number of operating conditions (e.g. 6
for FD002 and FD004), � is the element-wise multiplication
operator and �c = 1 when the data at that time point is in
the operating condition c otherwise �c = 0. The different
operating conditions can be found through different combi-
nations of the three operational setting variables. For FD001
and FD003 the settings have little change during operation
and hence, only have one operating condition. FD002 and
FD004 have 6 distinct clusters/combinations the operational
settings could fall under, hence, they have 6 operating con-
ditions. A clustering algorithm can be used to classify the
sensor values at any time into one of these operating condi-
tions. In this case the K-means clustering algorithm was used
for simplicity. The comparison between using the operating
condition normalization (Eq. (5)) versus the standard signal-
based normalization (Eq. (4)), applied on the same unit is
shown in Figures 5 and 6.

Figure 5. Normalization based on signal mean and standard
deviation applied on unit 1’s sensor values in the training
dataset

Secondly, a short-time Fourier transform is performed on these
signals to achieve a time-frequency representation i.e. a plot
of intensities (based on Fourier coefficients) along the time-
frequency axes. The transform is applied to the signal start-
ing from the initial time to the current time. These time-

Figure 6. Normalization based on operating condition mean
and standard deviation applied on unit 1’s sensor values in the
training dataset

frequency output intensities are stored in a matrix whose size
based on the time window size chosen. Each of the signals
also have varying length and hence to store batches of input
data and have consistent output sizes for the CNN, the inputs
should have the same size. To achieve this bilinear interpo-
lation will be used to convert the time-frequency signals to a
30⇥ 30 size “image-like” format.

The testing and training data preparation differed in one ma-
jor aspect; the testing signals were converted to spectrograms
using the entire signal while the training signals were broken
up into smaller signals then converted. The reason for this
is that the testing signals have a corresponding RUL value
and are not at their end of life, while all the training signals
would have a target of RUL = 0 if the entire signal was used.
Hence, the training signals were split into multiple signals
based on a hyperparameter called split which determined the
proportion of the signal to converted into a spectrogram and
used as an input. This split hyperparameter calculated the
proportion of the signal to be used through Eq. (6),

pi =
i

split+ 1
, for i = 1, ..., split. (6)

Here, pi is a multiplier that determines the proportion of the
signal used. For example if L is the total length of the signal
then Li = L⇥pi would be the length of the cut signal used to
create a spectrogram. Note that split cuts the training signal
into a number of smaller signals through the different values
of i = 1, ..., split. The denominator of the equation is also
split + 1 so that the entire signal is never used as the entire
signal has a corresponding RUL value of zero which is not
useful.

Finally the target RULs were altered to incorporate a maxi-
mum RUL value. The maximum RUL signifies that the net-
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work cannot estimate the RUL beyond this point as the input
data is not in the degradation stage. This was noticed when
training Multilayer Perceptron Networks (MLP) on the C-
MAPSS dataset as the networks early RUL estimates would
stay relatively constant up to a point then start to decline
(Heimes, 2008). Hence, here the target RULs all had a maxi-
mum value of rmax = 130 cycles which also allows for more
direct comparison to other prognostics methods which apply
the same rmax. By setting a maximum RUL value not only
is the predictive performance increased, it also signifies the
RUL value where the network cannot make a reasonable RUL
prediction for higher values. The point at which the RUL
starts to decline from rmax also signifies the start of degrada-
tion as the network now has data which it can use to predict
the RUL with more confidence.

4. METHODOLOGY

This section states the details of the experiments performed
on the data using the different network architectures. The
general process used to estimate the RUL will be stated as
well as the specifics of the hyperparameters used to construct
the network. Both the ResNet and NODE-CNNs have sim-
ilar processes for estimating the RUL, therefore, a general
overview is given below which is relevant to both architec-
tures. The general steps involved with transforming the input
data into an output RUL estimate are as follows,

1. A separate CNN is used to downsample (reduce the di-
mensions of) the prepared input data described in the pre-
vious section.

2. This step applies either the ResNet or NODE to extract
features from the downsampled input data.

3. The final output from the ResNet/NODE is flattened to
a vector and the input to a standard feedforward MLP
network. The output of this MLP is the RUL estimate of
the machinery.

Bayesian optimization tools were used to optimize the hyper-
parameters. The software package Ax which uses the pack-
age BoTorch as a backend (Balandat et al., 2019) was used to
tune the hyperparameters using Bayesian optimization. Bayesian
optimization uses a curve-fitting method known as Gaussian
process regression to optimize the hyperparameters based on
some criterion (Frazier, 2018). It takes a vector of hyperpa-
rameters as inputs and outputs some criterion or loss value. In
the deep learning case the hyperparameters are used to train
the neural network; after training the criterion can be calcu-
lated and this represents the point on a curve. The goal of
Bayesian optimization is to find the vector of input hyperpa-
rameters that minimizes the criterion which is the equivalent
of finding the minimum of the curve. Each new criterion cal-
culated for a set of input hyperparameters is treated as a data
point describing the curve and Bayesian methods are used to

update the curve based on this new data.

The criterion used for hyperparameter optimization in this
work is the normalized score function (Eq. (7)). The score
function was designed to result in higher loss values for RUL
estimates that are larger than the actual RUL (Saxena, Goebel,
Simon, & Eklund, 2008). This is done to encourage more
conservative estimates so that failures do not occur before the
prediction from the estimated RUL.

s =

8
>><

>>:

1
N

NP
i=1

exp
h
�(ŷi�yi)

13

i
� 1, if ŷi  yi

1
N

NP
i=1

exp
h
(ŷi�yi)

10

i
� 1, if ŷi > yi

(7)

Where ŷi is the estimated RUL of unit i from the network, yi
is the actual RUL of unit i and N is the total amount of units
in the dataset. Notice here an average score is used (referred
to as normalized score), hence it is the score found in (Saxena
et al., 2008) divided by the total amount of units N .

The criterion is evaluated on a validation set, separate from
the dataset the network is trained on when tuning the hyperpa-
rameters. Here the validation set was acquired from the orig-
inal training data which is further split into a training dataset
and a validation dataset. An 80%/20% (training/validation)
split was used on the original training data in this particular
case. The new training set is used to optimize the network
during the hyperparameter optimization while the validation
set acts as a testing dataset that the network did not see dur-
ing training. The validation loss therefore represents a testing
loss that can be used to optimize the hyperparameters. Note
that the testing dataset is left alone and untouched by any op-
timization process to avoid overfitting.

This hyperparameter optimization method was chosen as it is
more computationally efficient than other optimization meth-
ods such as random search which randomly tests different hy-
perparameter combinations. Bayesian optimization reduces
the amount of time required to find well performing hyper-
parameters compared to other methods which may find more
optimal hyperparameters but require a longer time to search
for them. The hyperparameters which are being tuned are,

• Learning rate
• Batch size
• Time window for STFT
• split (see Eq. (6))
• Weight decay (L2 regularization on the network parame-

ters)
• Training epochs

Once the hyperparameters are chosen the networks could be
trained on the full training dataset. The network is trained
using the Mean Squared Error loss function (Eq. (8)).
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MSE =
1

N

NX

i=1

(ŷi � yi)
2. (8)

4.1. ResNet

For the ResNet experiment the time-frequency data was the
input to an initial set of downsampling convolutional layers
which extracted features and reduced the dimensionality of
the data. The output of the downsampling layers became
the inputs to the first ResNet block, while the outputs of one
ResNet block were the inputs of the next. The output of the fi-
nal ResNet block was flattened and passed through a feedfor-
ward network which would output the RUL estimate. Table
4 shows the basic layout of the ResNet architecture used as
well as the size of the output tensors of each layer. Note that
the network sizes were simply chosen based on other exam-
ples of CNNs used in machinery prognostics tasks and further
optimization could be done if necessary.

Table 4. Architecture of the ResNet. Note that bs refers to
batch size of the training data and channels are the number
of filters each CNN uses. The last part of the table specifies
the ResNet Block used in the architecture and uses generic
dimension (dim) keywords instead of numbers to define a
generic ResNet Block. Also note the ResNet block in the
downsampling layers lowers the dimensions by setting the
stride of the first Conv2D layer in the ResNet block to the
appropriate value.

Layers Layer Output Size
Downsampling Layers
Conv2D (bs,channels,28,28)
ResNet block (bs,channels,14,14)
ResNet block (bs,channels,7,7)
ResNet Layers
ResNet block ⇥n (bs,channels,7,7)
Feedforward Layers
BatchNorm (bs, channels, 7, 7)
ReLU (bs, channels, 7, 7)
AvgPooling (bs, channels, 1, 1)
Flatten (bs, channels)
Linear (bs, 816)
ReLU (bs, 816)
Linear (bs, 200)
ReLU (bs, 200)
Linear (bs, 1)
ResNet Block
BatchNorm (bs, channels, dim, dim)
ReLU (bs, channels, dim, dim)
Conv2D (bs, channels, dim, dim)
BatchNorm (bs, channels, dim, dim)
ReLU (bs, channels, dim, dim)
Conv2D (bs, channels, dim, dim)

Figure 7 shows the layout of the ResNet used to estimate the
RUL using the turbofan engine data.

Hyperparameters such as learning rate, weight decay and batch
size affect the optimization process when training the network

RUL

Downsampling  
CNN

ResNet Block Feedforward
Network

Inputs

Figure 7. An illustration of the ResNet architecture layout
used in this experiment. Note each rectangular block is a
CNN and the

L
is an addition operator

and hence affects the overall performance of the trained net-
work. Other hyperparameters such as the kernel/filter size
of the convolutional layers or the number of filters the con-
volution layers use (convolution channel size), directly af-
fects the network architecture and therefore also affect perfor-
mance. The ResNet hyperparameters used in the experiments
are stated in section A of the appendix.

4.2. NODE-CNN

Much like the ResNet described previously, the NODE-CNN
layout (Figure 8) involves a downsampling layer that reduces
the dimensions of the input data and extracts features. The
main difference between the ResNet and the NODE-CNN
network layout is that the ResNet Blocks described in the pre-
vious section are replaced with a NODE-CNN block. This
block is effectively a CNN whose output (the rate of change
of the hidden network variables) is used in a numerical ODE
solver and propagates the hidden state forward one layer. Fi-
nally, like the ResNet a feedforward network is used to trans-
form the output of the previous CNN network to a single
value which is the RUL estimate. The NODE-CNN layout
and data output sizes of each layer are shown in Table 5. Sim-
ilarly to the ResNet sizes the hidden layer sizes here are not
optimized but simply chosen based on similar CNNs used in
prognostics tasks.

The NODE-CNN is similar to the ResNet, however, the ResNet
blocks can be seen as using Euler’s method to solve for each
blocks output. For this NODE-CNN the Runge-Kutta method
is used instead; this improves how the trajectory of the dif-
ferential equation is propagated through the network layer
space. The reason for using Runge-Kutta instead of an adap-
tive solver is due to the more reliable performance of using
a fixed number of steps (the solver will not stop half-way
through due to stiffness of the ODE). It is also used because
of the size of the problem and the networks involved which
caused large computation times when using adaptive solvers.
Hence, the Runge-Kutta (RK) solver was used to train the net-
work reliably and in a reasonable amount of time. Like the
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RUL

Downsampling  
CNN

Feedforward
Network

Inputs

NODE

Figure 8. An illustration of the NODE-CNN architecture used
for this experiment. Note that f(x, t) is the CNN that de-
scribes the gradient at any point (x, t) and is used in the nu-
merical ODE solver to propagate the trajectory forward. In
this case t is not time but the depth of the NODE network.

Table 5. Architecture of the NODE-CNN

Layers Layer Output Size
Downsampling Layers
Conv2D (bs, channels, 28, 28)
BatchNorm (bs, channels, 28, 28)
ReLU (bs, channels, 28, 28)
Conv2D (bs, channels, 14, 14)
BatchNorm (bs, channels, 14, 14)
ReLU (bs, channels, 14, 14)
Conv2D (bs, channels, 7, 7)
CNN-NODE
BatchNorm (bs, channels, 7, 7)
ReLU (bs, channels, 7, 7)
Conv2D (bs, channels, 7, 7)
BatchNorm (bs, channels, 7, 7)
ReLU (bs, channels, 7, 7)
Conv2D (bs, channels, 7, 7)
BatchNorm (bs, channels, 7, 7)
Feedforward Layers
BatchNorm (bs, channels, 7, 7)
ReLU (bs, channels, 7, 7)
AvgPooling (bs, channels, 1, 1)
Flatten (bs, channels)
Linear (bs, 816)
ReLU (bs, 816)
Linear (bs, 200)
ReLU (bs, 200)
Linear (bs, 1)

ResNet, hyperparameters were chosen through the Bayesian
optimization procedure. The NODE-CNN hyperparameters
used in the experiments are stated in section B of the ap-
pendix.

5. RESULTS AND DISCUSSION

To compare the performance of the models the RMSE be-
tween the RUL estimates for the testing dataset and the actual
RUL values are used as a performance indicator. The RMSE
can be calculated as shown in Eq. (9),

RMSE =

vuut 1

N

NX

i=1

(ŷi � yi)2. (9)

The RMSE is commonly used in many similar works when
dealing with the C-MAPSS dataset allowing for direct com-
parison between different methods. RMSE values are ac-
quired for each of the C-MAPSS testing datasets were calcu-
lated using Eq. (9) (Table 6). The other testing performance
criterion used was the score originally introduced in (Saxena
et al., 2008). A normalized version of this score is shown
in Eq. (7) which was used for hyperparameter tuning, how-
ever, other prognostics methods use the non-normalized ver-
sion (Eq. (10)) and it will therefore be used for comparison
here.

s =

8
>><

>>:

NP
i=1

exp
h
�(ŷi�yi)

13

i
� 1, if ŷi  yi

NP
i=1

exp
h
(ŷi�yi)

10

i
� 1, if ŷi > yi

(10)

Table 7 shows the (non-normalized) scores compared with the
other prognostics methods. Table 8 shows the times taken to
train the networks as well as the times taken to evaluate each
testing dataset. Data preparation occurred before training and
hence, these times are not fully indicative of real time perfor-
mance. However, the times taken for the STFT to generate
the images are given in the table as well. Different hyper-
parameter choices (e.g. time window) affected the time val-
ues, hence, the times for each network and dataset was given.
Also note due to the different amount of spectrograms/images
being generated based on the split hyperparameter, the total
times can differ significantly; for ease of comparison the time
taken to generate one image was stated in the table under the
column “STFT times”.

Each unit in the testing dataset went through the same data
preparation process as the training set which involves normal-
izing based on the operating condition and applying STFT on
the signals. Figure 9 shows the box and whisker plots that
were generated using the difference between estimated and
target RUL values for each unit in the testing datasets. The
figure gives an idea of the spread of errors between estimated
RUL and the true RUL values over all the units in each testing
dataset. Note that the negative values correspond to an esti-
mate that was less than the true RUL, while positive values
indicate a larger RUL estimate. Finally, Figure 10 shows how
the RMSE on each testing dataset alters by adjusting number
of steps in the numerical ODE solver. In this case the variable
associated with “time”, describes the depth of the NODE net-
work. The network depth is controlled by choosing an inter-
val (t 2 [0, 1]) and splitting the interval into a even number
of steps. Hence, increasing the number of steps increases the
resolution, which in standard ODEs would increase the ac-
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curacy at the expensive of computational time. For this test,
the NODE-CNN was retrained with 10 steps using 50 epochs,
so there were more step options to test before reaching zero
steps when reducing number of steps. Note, the newly trained
networks do not have optimal RMSE values; but this experi-
ment is only concerned with the relative differences in RMSE
as the number of steps changes. In regards to hardware, the
training and testing of the neural networks were performed
on a NVIDA GeForce RTX2080 GPU.

5.1. Discussion

The ResNet and NODE-CNN showed good performance when
compared to the other methods in Tables 6 and 7. In par-
ticular, ResNet and NODE-CNN performed especially well
on the FD002 and FD004 datasets. This is most likely due
to the fact that these datasets have multiple operating condi-
tions and it was shown in (Pasa et al., 2019) that performing
operating condition based normalization (Eq. (5)) improves
performance in this case. Hence, ResNet and NODE-CNN
outperformed the other methods on the FD002 and FD004
datasets which did not use operating condition based normal-
ization (only the methods from (Pasa et al., 2019) used this
normalization technique). When comparing the performance
on datasets FD002 and FD004 to (Pasa et al., 2019), it can
be seen that NODE-CNN outperformed their regular (non-
ResNet) CNN. The improved performance could be due to
the fact that ResNet and NODE outperform regular CNNs in
image recognition tasks (He et al., 2016; Chen et al., 2018),
hence, the architecture of NODE-CNN may simply be an im-
provement to the simpler CNN architecture used in (Pasa et
al., 2019). For the datasets with only one operating condition
(FD001 and FD003) also had relatively good performance
compared to state-of-the-art techniques. However, the best
results for these datasets was achieved by (Listou Ellefsen
et al., 2019) who used a Restricted Boltzmann Machine to
extract degradation features and input them into an LSTM,
which estimated the RUL. It should also be noted that (Listou
Ellefsen et al., 2019) did not employ the same operating con-
dition based normalization as was done in this study. Hence,
it may still retain state-of-the-art performance for the FD002
and FD004 datasets if the sensor signals were normalized
this way. The multi-scale CNN (Li et al., 2018) also outper-
formed the NODE-CNN and ResNet in terms of the RMSE
measure for FD001 and FD003, but NODE-CNN and ResNet
had better scores. This could be due to the fact both ResNet
and NODE-CNN had their hyperparameters tuned to mini-
mize the normalized score criterion and hence would pro-
duce more conservative RUL estimates; but not necessarily
better RMSEs. However, a more detailed analysis would be
required to state this as fact. While not outperforming all
these techniques completely; the aim of showing NODEs and
ResNets could compete with state-of-the-art techniques has
been achieved.

Using the intuition of an ODE modeling a dynamic system,
it may be expected that changing the time step-size used in
the numerical ODE solver would affect the accuracy of the
NODE-CNN. The altering of this step-size would normally
provide a trade-off between accuracy and computation time.
(Queiruga, Erichson, Taylor, & Mahoney, 2020) mentioned
that the solution accuracy of NODEs does not change with
step-size in the same manner as a standard ODE would. For
their tests they used NODEs to model the dynamics of a me-
chanical system; while here NODE-CNN was used to model
some unknown and more abstract dynamics of the hidden
variables in a neural network. Hence, their accuracy refers to
the error between the “true” trajectory and the NODEs trajec-
tory at each time-point; while the error discussed here is the
error between the final estimates the network produced and
some known value. Their results showed that NODEs using
4th order Runge-Kutta did achieve some increased accuracy
with increased resolution (decreasing time step) but not sig-
nificant compared to what is expected by a numerical integra-
tor ODE solver. Figure 10 shows the number of steps did not
affect the testing loss on the final outputs except in extreme
cases (number of steps altered by a factor of 10 from the orig-
inal training value) before the error increased. This could be
due to the fact the number of steps corresponds to the depth of
the NODE-CNN and not necessarily an increase in resolution
(and therefore accuracy). This suggests one must be careful
when designing the network and specifying the problem if a
relationship between step-size and solution accuracy is to be
achieved. Here the network was used as a standard black-
box, feedforward network and so it did not benefit from the
accuracy-time trade-off. (Queiruga et al., 2020) also mention
how NODEs can be altered to achieve this property; section
5.2 discusses this further.

Table 8 states the training and testing times of the NODE-
CNN and shows they are significantly greater than the ResNets.
For training times, this is partly due to the fact NODE-CNN
had more training epochs as chosen by the Bayesian hyper-
parameter optimization (epochs are stated in Appendices A
and B). Another factor is that NODE-CNN uses Runge-Kutta
method for the ODE solver, meaning there are more func-
tional evaluations at each time point. Euler’s method would
bring the times down closer to the ResNet times due to only
evaluating the network once at each time point. Table 8 also
shows the testing evaluation times for Euler method. Testing
times are used as training times have more factors that influ-
ence them such as training hyperparameters, hence, testing
times are easier to compare. The idea is to now discuss possi-
ble research avenues that could be explored which may pro-
vide benefits to machinery prognostics and can be achieved
due to the unique architecture and properties of NODEs.
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Table 6. RMSE performance on each of the testing CMAPSS datasets with maximum RUL value of 130

Method FD001 FD002 FD003 FD004
ResNet (This work) 12.81 16.92 14.68 18.25
NODE-CNN (This work) 13.65 14.30 12.65 15.06
CNN (Pasa et al., 2019) 15.00 17.50 14.80 17.40
LSTM (Pasa et al., 2019) 16.50 18.10 15.90 17.20
MLP (Pasa et al., 2019) 15.10 18.00 14.30 16.60
CNN (Li et al., 2018) 12.61 22.36 12.64 23.31
LSTM (Listou Ellefsen et al., 2019) 12.56 22.73 12.10 22.66

Table 7. comparison of the scores (Eq. (10)) on each of the testing CMAPSS datasets with maximum RUL value of 130

Method FD001 FD002 FD003 FD004
ResNet (This work) 250 2250 428 1842
NODE-CNN (This work) 235 886 270 947
CNN (Pasa et al., 2019) 369 1757 332 1678
LSTM (Pasa et al., 2019) 444 942 718 1487
MLP (Pasa et al., 2019) 411 1113 1091 2755
CNN (Li et al., 2018) 273 10412 284 12466
LSTM (Listou Ellefsen et al., 2019) 231 3366 251 2840

Table 8. Network training times (with the data already prepared) and testing times when evaluating the trained network on new
data. Note RK4 stands for Runge-Kutta (4th order) method when solving NODEs. Euler’s method testing times is also shown
to illustrate the time difference between the ODE solver methods. Times for the STFT are also shown. Note due to the split
hyperparameter each dataset has a different amount of images to prepare and therefore the time per image generated is given
for better comparison.

Dataset NODE
(RK4)
Training
time (s)

NODE
(RK4)
Testing
time (s)

ResNet
Training
Time (s)

ResNet
Testing
time (s)

NODE
(Euler)
Testing
time (s)

ResNet
STFT time
(s)

NODE
STFT time
(s)

FD001 405.847 1.076 294.622 0.341 0.653 0.157 0.145
FD002 645.829 2.780 567.658 0.909 1.276 0.381 0.388
FD003 188.352 1.066 73.068 0.344 0.522 0.162 0.159
FD004 697.284 2.669 349.930 0.861 1.226 0.387 0.384

(a) ResNet (b) NODE-CNN

Figure 9. Box and whisker plot for the ResNet (9a) and NODE-CNN (9b) RUL differences (ŷ = estimated RUL and y = true
RUL) over all the units for each testing dataset

5.2. Future Work

The continuous nature of NODE allows for adaptive step-
sizes or increasing/decreasing the resolution of step sizes. This
flexibility could provide certain benefits when it comes to the
network performance. Although as mentioned in the discus-
sion above, one must be careful with how the problem is

framed if this property is to be achieved. (Queiruga et al.,
2020) essentially achieve this by making the network param-
eters a function of time and refining step-sizes as training time
increases. A network could be trained with higher resolution
(low step-size over a specific interval) and then the step-size
could be reduced or customized depending on the comput-
ing power available or required accuracy of the task. Simi-
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(a) FD001 (b) FD002

(c) FD003 (d) FD004

Figure 10. Graphs showing testing performance as measured by the RMSE metric verses the number of steps used for the
numerical integration method (4th order Runge-Kutta). Here the network was retrained using 10 steps in the ODE solver
otherwise the same hyperparameters mentioned in Appendix B were used, but 50 epochs are used for faster training as the
relative performance is of interest here. During testing the number of steps was altered and the RMSE was recalculated for the
testing dataset as shown on the plot. The vertical dotted line indicates the number of steps the network was trained on.

lar topics on how to train NODEs with higher resolution and
then lowering it while retaining an acceptable accuracy can
be found in (Queiruga et al., 2020). Another benefit could
come from the differential equation formulation of the net-
work. This allows for interesting avenues to explore by ex-
ploiting the properties of differential equations. For exam-
ple, NODEs can be extended to neural stochastic differential
equations to incorporate uncertainty into the network outputs
(Li, Wong, Chen, & Duvenaud, 2020). Uncertainty quan-
tification of RUL estimates is considered a challenge in ma-
chinery prognostics (Lei et al., 2018), hence, this differential
equation approach to neural networks could provide for inter-
esting solutions to this problem.

6. CONCLUSIONS

It has been shown that the ResNet and CNN-NODE can per-
form competitively to other state-of-the-art machinery prog-
nostics methods. This could lead to NODE being utilized and
adapted for machinery prognostics tasks due to the potential
benefits of treating neural networks as differential equations.
The main benefits discussed were adaptive network sizes and
quantifying uncertainty in estimates. NODEs describe a vec-
tor field which in this case propagates the hidden network
variables; starting from the inputs and letting the variables at
the end of the trajectory become the outputs. The amount of

steps to get from the initial layer to the final layer however
can be chosen by the user. Hence, there is a possibility to
train a network and then depending on the computing power
available picking the appropriate step-size for the ODE solver
at the cost of the accuracy of the solution. Ideas like this have
been explored in (Queiruga et al., 2020) but have yet to be ap-
plied in a machinery prognostics setting. The other benefit of
using NODE or extending NODE to other differential equa-
tion types is that differential equations are well understood
compared to deep neural networks. With knowledge of differ-
ential equations NODE could be extended to solve stochastic
differential equations (Li et al., 2020) and include confidence
intervals for the RUL estimates. By including confidence in-
tervals for RUL estimates this would capture uncertainty and
would allow for improved decision making capability in ma-
chinery prognostics tasks.
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APPENDIX

A. ResNet Hyperparameters

This appendix contains the hyperparameters used for training
the ResNet on different datasets. Table 9 states the values of
these hyperparameters.

B. NODE-CNN Hyperparameters

This appendix contains the hyperparameters used for training
the NODE-CNN on different datasets. Table 10 states the
values of these hyperparameters.
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Table 9. Hyperparameters used to train the ResNet and affect its architecture. Hyperparameters for each C-MAPSS dataset are
listed

Hyperparameter FD001 FD002 FD003 FD004
Batch size (bs) 586 213 538 348
Learning rate 3.39⇥ 10�5 6.97⇥ 10�3 9.79⇥ 10�3 2.21⇥ 10�5

Weight Decay (L2) 2.10⇥ 10�4 7.54⇥ 10�4 4.31⇥ 10�4 2.17⇥ 10�4

Time Window 28 10 12 15
Data split (split in Eq. (6)) 184 197 64 123
Training epochs 99 57 59 62
Convolution Kernel size 3 3 3 3
Convolution channel size 64 64 64 64
Amount of ResNet blocks (n) 6 6 6 6

Table 10. Hyperparameters used to train the NODE-CNN and affect its architecture. Hyperparameters for each C-MAPSS
dataset are listed

Hyperparameter FD001 FD002 FD003 FD004
Batch size (bs) 206 580 207 482
Learning rate 9.22⇥ 10�3 5.52⇥ 10�4 1.11⇥ 10�3 5.46⇥ 10�3

Weight Decay (L2) 1.14⇥ 10�4 1.08⇥ 10�9 3.26⇥ 10�9 2.75⇥ 10�8

Time Window 30 10 38 15
Data split (split in Eq. (6)) 103 70 96 75
Training epochs 136 149 65 148
Convolution Kernel size 3 3 3 3
Convolution channel size 64 64 64 64
steps for RK solver 5 5 5 5
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