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ABSTRACT 

Control moment gyros are known for their applications in 

attitude stabilization. These actuators are susceptible to 

malfunction, which results in faults and failures. Therefore, 

diagnosing the faults can improve the reliability of 

completing a mission while reducing maintenance costs. 

Thus, a model-based fault diagnosis method is proposed 

here. The intended algorithm is an enhanced version of 

previous work by the author. The enhancement employs a 

condensed approach to alleviate the delay caused by the 

filter’s confidence in its estimations. A case-study on a 

closed-loop controlled satellite is provided along with an 

extensive Monte Carlo simulation to evaluate the proposed 

method’s performance. The results show that the enhanced 

method can achieve superior performance while requiring 

less computational resources by eliminating extra grid 

search loops. 

1. INTRODUCTION 

A control moment gyros (CMG) consists of a flywheel 

gimballed about its axes. The torques generated by the 

rotation of the flywheels’ rotation axes provide a means to 

control the satellite’s orientation in space. 

Many researchers have examined fault isolation and 

identification (FII) in the past few years. Parameter 

estimation methods (Jiang et al., 2008; Li et al., 2011; 

Rahimi et al., 2015, 2020; Rahimi, Dev Kumar, et al., 2019; 

Rahimi, Kumar, et al., 2019; Ye et al., 2015), can achieve 

fault detection and isolation at the same time as these 

methods estimate the system parameters directly which 

offers time, source, and size of the fault altogether. 

To the author’s knowledge, the FII framework for CMGs as 

satellite actuators has not been explored extensively in the 

published literature. Rahimi et al. (2020) have proposed a 

hierarchical model-based fault detection, isolation, and 

identification (FDII) approach that employs a binary search 

to update the parameter estimation filter’s posterior 

covariance matrix elements. The proposed method in 

(Rahimi et al., 2020) provides an enhancement on a 

previously developed detection and isolation method in 

(Rahimi et al., 2017) by reducing the loops in the search for 

posterior covariance matrix elements from all elements to 

only the diagonal elements and further reducing it by 

moving from a multiple-value grid search to a binary grid 

search. The enhanced method in (Rahimi et al., 2020) 

provides speed and accuracy improvements in the estimator 

compared to (Rahimi et al., 2017). However, the author 

believes that further improvement can be made in the 

estimation process.   

Therefore, this paper proposes an enhancement on the 

method provided in (Rahimi et al., 2020) by further 

simplifying the grid search process and using fewer loops to 

reduce the estimator’s computational requirements without 

sacrificing the performance. Furthermore, the performance 

of the proposed enhancement is evaluated on a satellite 

stabilized by a four-single-gimbal-CMG (4SGCMG) cluster 

in comparison to the previous methods (Rahimi et al., 2020) 

and (Rahimi et al., 2017) to provide evidence on the 

superior performance of the novel approach.  

The remaining of this manuscript contains the problem 

definition in Section 2. The proposed enhancement in 

Section 3. The case-study in Section 4. The simulation 

setup, along with the results and discussions in Section 5, 

and finally, the conclusions in Section 6. 

2. PROBLEM DEFINITION 

Considering the nonlinear system: 

𝛺: {

𝜉𝑘+1 = 𝑓(𝜉𝑘, 𝑢𝑘 , 𝜃𝑘 , 𝑤𝑘
𝜉

)

𝜃𝑘+1 = 𝜃𝑘 + 𝑤𝑘
𝜃

𝑦𝑘 = 𝑔(𝜉𝑘 , 𝜃𝑘) + 𝑣𝑘

 (1)   
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where 𝜉𝑘 ∈ ℝ𝑛 , 𝑢𝑘 ∈ ℝ𝑚 , 𝜃𝑘 ∈ ℝ𝑙 , 𝑦𝑘 ∈ ℝ𝑚  denote state, 

control input, system parameters, and measurements, 

respectively. 𝑤𝑘
𝜉

∈ ℝ𝑛 , 𝑤𝑘
𝜃 ∈ ℝ𝑙 , 𝑣𝑘 ∈ ℝ𝑚  denote the 

additive process noise for states, additive process noise for 

parameters, and additive measurement noise, respectively. 

𝑓(∙)  and 𝑔(∙ ) denote a nonlinear process model and a 

nonlinear measurement model, respectively. The objective 

is to develop an estimation method to isolate the location 

and identify the severity of the faults in the system with less 

computation time and more accuracy than (Rahimi et al., 

2020) and (Rahimi et al., 2017). 

This requires that the system component faults can affect the 

physical system parameters (Sobhani-Tehrani et al., 2014), 

under which the Eq. (1) will have:  

𝜃𝑘 = 𝜃0 + 𝛼𝑘  (2)   

where 𝜃0 ∈ ℝ𝑙  denotes the nominal parameter values and 

𝛼𝑘 ∈ ℝ𝐿  denotes the fault parameters containing 𝐿  fault 

elements. Employing Eq. (2), one can treat the nonlinear FII 

as a parameter estimation problem. 

3. METHODOLOGY 

The proposed FII in this study focuses on the second stage 

of a hierarchical approach by Rahimi et al. (2020) to 

propose a novel adaptation mechanism for the FII. Hence, 

fault detection is briefly explained, while the adaptation 

mechanism is further detailed. 

3.1. Fault Detection 

To detect the faults in the system, a residual 𝑟𝑘 is generated 

using (Rahimi et al., 2017) 

 𝑟𝑘 = �̂�𝑘
𝑠 − �̂�𝑘

𝑚 (3)   

where �̂�𝑘
𝑠 and �̂�𝑘

𝑚  are the estimated outputs for the system 

and model, respectively, with scalar 𝛽 defined as  

𝛽 = 𝑟𝑘
𝑇𝑟𝑘  (4)   

The threshold 𝛽0 (Rahimi et al., 2017) triggers a fault when 

𝛽 > 𝛽0. The next step in the process is updating the system 

model (Ω𝑠) to match the current state of the system referred 

to as FII, detailed in the next section. 

3.2. Filter Adaptation Algorithm 

The posterior estimates covariance matrix 𝑃𝜉𝜉  elements 

represent the confidence in the estimated values (Bisht & 

Singh, 2014). The issue arises as the filter converges and 

subsequently becomes slow to adapt to sudden changes. To 

address this, 𝑃𝜉𝜉  elements must be adapted to avoid latency 

following a fault detection. To achieve this, Rahimi et al. 

(2017) proposed the covariance adaptation algorithm 

(CAUKF) using the unscented Kalman filter (UKF) 

algorithm (2017). Rahimi et al. improved the method using 

a binary grid covariance adaptation algorithm (GAUKF) 

(2020), where the idea is to only consider the binary choice 

of "increase" or "no change" for the diagonal elements of 

the 𝑃𝜉𝜉 . In this study an improved version of the adaptation 

is proposed as simplified binary grid covariance adaptation 

algorithm (SGAUKF), as outlined in Table 1. For the 

proposed approach in this study, in step 2 of Table 1, the 

choices (combinations) are only formed for the even or odd 

𝑃𝑃𝑘  diagonal elements. This would reduce the order of 

options by half resulting in a loop with 2𝒟/2  instead of 2𝒟 

compared to the CAUKF. In Table 1, 𝑃𝑃𝑘  is used as a 

provisional variable for finding diagonal elements of the 𝑃𝑘. 

𝑃𝑃𝑖 is the binary combination to add to the previous step’s 

posterior covariance 𝑃𝑘−1, 𝑃𝑃𝑘𝑖
 is the candid superimposed 

posteriori covariance, and 𝑟𝑃𝑖
 is the residual for estimates of 

the next time step using 𝑃𝑃𝐾𝑖
 as posterior covariance. The 

rationale for only adjusting the odd or even elements in the 

diagonal for the posterior matrix is the fact that since the 

parameters that are being estimated are interrelated through 

the system dynamics, once the filter is adjusted to less 

confidence in half of its elements, it will try to compensate 

for the other elements as well. Hence, not having to check 

for all binary options reduces the computation time without 

sacrificing the performance. In some cases, it provides 

better performance, as will be seen in the results section. 

3.3. Fault Isolation and Identification 

The FII can be accomplished using Eq. (2). The number of 

possibilities corresponds to the sum of all 𝑘-combinations of 

the faulty units as   

𝐿 = ∑ (
𝑛
𝑝)

𝑛

𝑝=1

= ∑
𝑛!

𝑝! (𝑛 − 𝑝)!

𝑛

𝑝=1

 (5)   

where, at time step 𝑘, 𝑝 denotes the number of faulty units, 

and 𝑛 is the total number of available units.  

A dual state/parameter estimation (Rahimi et al., 2020) is 

employed to estimate the system states and fault parameters 

in the system and achieves the FII in one step. At this stage, 

�̂�𝑘
𝑠  and �̂�𝑘

𝑚  are introduced as parameter estimates for the 

system and model, respectively, using Ω𝑠 . A normalized 

residual is calculated using Eq. (4) as 𝛽 = 𝑟𝑇𝔐𝑟, where 𝔐 

is the weight matrix for 𝑦𝑘  normalization. 

1: 𝑟𝑜𝑙𝑑 = ∞  
2: Generate binary combinations (total of 2𝒟/2) 

3:         For 𝑃𝑃𝑖 = 1 𝑡𝑜 combinations count (2𝒟/2) 

                 𝑃𝑃𝑘𝑖
= 𝑃𝑘−1 + 𝑃𝑃𝑖 

3b:                 Calculate 𝜉𝑘 using 𝑃𝑃𝑘  

3c:                 Calculate 𝑟𝑃𝑖
= (𝑧𝑘 − 𝜉𝑘)𝑇(𝑧𝑘 − 𝜉𝑘)  

4:         Go to 3 

5: 𝑃𝑘 = 𝑃𝑃𝑘𝑖
(𝑖𝑛𝑑𝑒𝑥 𝑜𝑓(𝑚𝑖𝑛𝑖𝑚𝑢𝑚(𝑟𝑃𝑖

)) 

Table 1. SGAUKF algorithm 
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This process is repeated until the residual is smaller than 

𝜀𝑟 = 1 × 10−3 after which the Ω𝑠 is updated with the new 

�̂�𝑘
𝑠 . Once the system parameters are estimated, one can 

evaluate 𝛼𝑘  to achieve fault isolation using the fact that 

during a fault 𝛼𝑘 ≠ 0 . Furthermore, employing a 1-to-k 

encoding, the corresponding fault scenario can be obtained. 

4. CASE STUDY: FAULT DIAGNOSIS FOR CMGS 

The proposed FII is evaluated using an ACS of a three-axis 

stabilized satellite with a 4SGCMG cluster. The simulation 

setup is shown in Figure 2, with details as follows: 

4.1.  Satellite Dynamics and Kinematics 

For a satellite employing CMGs, the dynamics and 

kinematics equations can be written as (Wie et al., 2001) 

𝐽�̇�𝐵𝐼
𝐵 = −𝜔𝐵𝐼

𝐵 × (𝐽𝑠𝜔𝐵𝐼
𝐵 + ℎ𝐶𝑀𝐺) − ℎ̇𝐶𝑀𝐺 + 𝜏𝑒  (6)  

[
�̇�𝑣

�̇�4
] =

1

2
[
𝑞4𝐼 + 𝑞𝑣

×

−𝑞𝑣
𝑇 ] 𝜔𝐵𝐿

𝐵  (7)    

where 𝜔𝐵𝐼
𝐵  is the satellite’s angular velocity. 𝜏𝑒 ∈ ℝ3×1 

denotes the external torque. 𝐽 = 𝐽𝑠 − 𝐴𝐽𝑤𝐴𝑇 with 𝐽𝑠 ∈ ℝ3×3 

denoting satellite’s inertia with actuators included. 𝐽𝑤 ∈
ℝ4×4 = 𝑑𝑖𝑎𝑔([𝐽𝑤1, 𝐽𝑤2, 𝐽𝑤3, 𝐽𝑤4])  denotes CMGs moments 

of inertia. ℎ𝐶𝑀𝐺  and  ℎ̇𝐶𝑀𝐺  can be obtained from Eq. (9) and 

Eq. (10), respectively. 𝑞4 ∈ ℝ,  𝑞𝑣 ∈ ℝ3×1 = [𝑞1, 𝑞2, 𝑞3]𝑇  

denote quaternions. 𝐼 ∈ ℝ3×3  is the identity matrix and 

superscript (∙)× denotes skew-symmetric form of matrix (∙).  

4.2. Actuators 

The CMG angular momentum depends on its gimbal angles 

𝛿 = (𝛿1, … , 𝛿𝑛)  and flywheels angular speed Ω =
(Ω1, … , Ω𝑛) with  

ℎ̇𝐶𝑀𝐺 = 𝐴𝐶𝑀𝐺 �̇� (8) 

where 𝐴𝐶𝑀𝐺 = 𝐴𝐶𝑀𝐺(𝛿) ∈ ℝ3×𝑛 is the Jacobin matrix.  

Calculating the inverse of 𝐴𝐶𝑀𝐺 �̇� = ℎ̇𝐶𝑀𝐺 , one can obtain 

the CMG steering logic. For a 4SGCMG (Figure 1) with an 

out-of-plane angle of 𝛽 = 54.73°,  

 

Figure 1. 4SGCMG schematics 

 

 

Figure 2. FII simulation setup 

The angular momentum becomes 

ℎ𝐶𝑀𝐺 = [

−𝑐𝛽𝑠𝛿1 −𝑐𝛿2 𝑐𝛽𝑠𝛿3 𝑐𝛿4

𝑐𝛿1 −𝑐𝛽𝑠𝛿2 −𝑐𝛿3 𝑐𝛽𝑠𝛿4

𝑠𝛽𝑠𝛿1 𝑠𝛽𝑠𝛿2 𝑠𝛽𝑠𝛿3 𝑠𝛽𝑠𝛿4

] × 

[ℎ01
(𝛺1) ℎ02

(𝛺2) ℎ03
(𝛺3) ℎ04

(𝛺4)]
𝑇

 

(9) 

where ℎ𝑖 , 𝛿𝑖, Ω𝑖 , and ℎ0𝑖
, denote the angular momentum, the 

gimbal angle, flywheel angular speed, and the momentum 

magnitude for the 𝑖th CMG, respectively. Taking the time 

derivative, one would arrive at 

ℎ̇𝐶𝑀𝐺 = [ℎ01
(𝛺1) ℎ02

(𝛺2) ℎ03
(𝛺3) ℎ04

(𝛺4)]𝐴𝐶𝑀𝐺�̇� (10) 

where 𝛿 denotes the gimbal angle vector with  

𝐴𝐶𝑀𝐺 = [

−𝑐𝛽𝑐𝛿1 −𝑠𝛿2 𝑐𝛽𝑐𝛿3 −𝑠𝛿4

−𝑠𝛿1 −𝑐𝛽𝑐𝛿2 −𝑠𝛿3 𝑐𝛽𝑐𝛿4

𝑠𝛽𝑐𝛿1 𝑠𝛽𝑐𝛿2 𝑠𝛽𝑐𝛿3 𝑠𝛽𝑐𝛿4

] (11) 

Consequently, the torque command ℎ̇ yields 

ℎ̇𝐶𝑀𝐺 = 𝑢 = −𝜏𝑐 − 𝜔𝐵𝐼
𝐵 × ℎ𝐶𝑀𝐺  (12) 

Given control torque 𝜏𝑐  and having ℎ0 = h0𝑖
; 𝑖 = 1 … 4,  �̇�  

can be obtained as (Wie et al., 2001) 

�̇� = (
1

ℎ0

)𝐴𝐶𝑀𝐺
+ ℎ̇𝐶𝑀𝐺  (13) 

where 𝐴𝐶𝑀𝐺
+ = 𝐴𝐶𝑀𝐺

𝑇 (𝐴𝐶𝑀𝐺𝐴𝐶𝑀𝐺
𝑇 )−1. 

4.3. Controller 

A sliding mode controller is used to attain the desired 

attitude of 𝑞𝑑 ∈ ℝ4×1 and 𝜔𝑑 ∈ ℝ3×1 (Kumar et al., 2018). 

The quaternion and angular velocity errors are obtained as 

𝑞𝑒 = 𝑞𝑑4𝑞𝑣 − 𝑞4𝑞𝑑𝑣 + 𝑞𝑣
×𝑞𝑑𝑣  

𝑞𝑒4 = 𝑞𝑑4𝑞4 + 𝑞𝑑𝑣
𝑇 𝑞𝑣 

(14)  

𝜔𝑒 = 𝜔𝐵𝐿
𝐵 − 𝐶𝑒𝜔𝑑  (15)  

where 𝐶𝑒 = 𝐶(𝑞𝑒 , 𝑞4𝑒) is given by 

𝐶𝑒 = (𝑞4𝑒
2 − 𝑞𝑒

𝑇𝑞𝑒)𝐼 + 2𝑞𝑒𝑞𝑒
𝑇 − 2𝑞4𝑒𝑞𝑒

× (16)  

The sliding manifold can be formulated using these terms as  

𝜎 = 𝜔𝑒 + 𝜆𝑐𝑡𝑟𝑠𝑔𝑛(𝑞4𝑒)𝑞𝑒  (17)  

where 𝜆𝑐𝑡𝑟 > 0 is the sliding gain, and 𝑠𝑔𝑛(∙) is the sign 

function. The required control command is defined as 

𝑢𝑟 = −𝑝0𝜎  (18)  

where 𝑝0 = 0.1 (Wie et al., 2001), 𝜆𝑐𝑡𝑟 = 1 (Kumar et al., 

2018). 
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4.4. Fault Formulation 

Faults are injected into 𝐴𝐶𝑀𝐺  in Eq. (11) to represent 

intermittent time-varying faults using 

𝐴𝐶𝑀𝐺 = 𝐴𝐶𝑀𝐺𝐹𝑝 (19)   

where 

𝐹𝑝 = 𝑑𝑖𝑎𝑔([𝑓𝑝1
, 𝑓𝑝2

, 𝑓𝑝3
, 𝑓𝑝4

]) (20)   

where 𝑓𝑝𝑖
∈ [0,1]  denotes the 𝑖 th CMG’s effectiveness,  

𝑏𝑒𝑎𝑟𝑖𝑛𝑔 𝑖𝑛 𝑚𝑖𝑛𝑑 𝑓𝑝 = 1 for nominal performance and 𝑓𝑝 =

0 for failure (Kim et al., 2015). 

4.5. Fault Scenario 

The total number of possibilities for faulty scenarios using 

Eq. (5) adds up to 16. To easily refer to each scenario, Table 

2 assigns each possibility a number where FW abbreviates 

faulty wheels. For example, in scenario 0, no wheel is 

faulty, and in scenario 15, all wheels are faulty. 

Having the building components of the FII detailed so far, 

the proposed fault diagnosis for this case study can be 

formulated as follows: 

4.6. Fault Detection 

The satellite dynamics and kinematics are defined in Eq. (6) 

and Eq. (7) with 𝐴𝐶𝑀𝐺  in Eq. (11). The controller that 

stabilizes the attitude employs Eq. (18) to obtain 𝑢𝑟  and 

uses that to acquire the �̇� from Eq. (13). At this stage, the 

system states, outputs, and controls are defined as  

𝜉 = [𝑞1, 𝑞2, 𝑞3, 𝜔1, 𝜔2, 𝜔3, 𝛿1, 𝛿2, 𝛿3, 𝛿4] 

𝑦 = [𝑞1, 𝑞2, 𝑞3, 𝜔1, 𝜔2, 𝜔3, 𝛿1, 𝛿2, 𝛿3, 𝛿4] 

𝑢 = [𝜏𝑥 , 𝜏𝑦 , 𝜏𝑧] 

(21)  

where 𝑢𝑖 are used to calculate ℎ̇𝑐𝑚𝑔 in Eq. (12) and plugged 

into Eq. (13) to obtain �̇�𝑖. The simulation is initiated with a 

system model Ω𝑠  where 𝛼𝑖 = 0 . The estimated output 

vectors �̂�𝑠 and �̂�𝑚   employ Ω𝑠  for the UKF in (Rahimi et 

al., 2020) to obtain the states that leads to residual 𝑟𝑘 

generation in Eq. (3). The residuals are used to form scalar 

𝛽  in Eq. (4) (Rahimi et al., 2017) for fault detection 

followed by FII, as discussed in the next section. 

4.7. Fault Isolation and Identification 

Here, 𝑓𝑝𝑖
s are estimated for updating Ω𝑠  where the system 

states and parameters, control inputs, and measurements are 

defined respectively as 

𝜉 = [𝑞1, 𝑞2, 𝑞3, 𝜔1, 𝜔2, 𝜔3, 𝛿1, 𝛿2, 𝛿3, 𝛿4] 

𝜃 = [𝑓𝑝1
, 𝑓𝑝2

, 𝑓𝑝3
, 𝑓𝑝4

] 

𝑦 = [𝑞1, 𝑞2, 𝑞3, 𝜔1, 𝜔2, 𝜔3, 𝛿1, 𝛿2, 𝛿3, 𝛿4] 

𝑢 = [𝜏𝑥 , 𝜏𝑦 , 𝜏𝑧] 

(22)  

 

No. FW No. FW No. FW No. FW 

0 None 4 4 8 2,3 12 1,2,4 
1 1 5 1,2 9 2,4 13 1,3,4 
2 2 6 1,3 10 3,4 14 2,3,4 
3 3 7 1,4 11 1,2,3 15 1,2,3,4 

Table 2. Fault scenarios for 4SGCMG 

The dual UKF process in (Rahimi et al., 2020) is employed 

to estimate the states 𝜉  and parameters 𝜃 . Having 𝜃 

estimates, one can obtain 𝛼 using  

�̂� = �̂� − 𝜃0 (23)  

where �̂�  and �̂�  denote the fault parameter and system 

parameter estimates, respectively. Once 𝛼𝑖 s are estimated, 

the updated Ω𝑠  replaces the reference model, and 

monitoring continues. 

5. RESULTS AND DISCUSSIONS 

For performance evaluations, numerical simulations were 

conducted in MATLAB with an integration step size of 𝑇𝑠 =
0.01 𝑠𝑒𝑐  for a total simulation time of 200 sec. The 

simulation was run on an Intel® computer with i7-4790 

3.60 GHz CPU and 16.00 GB RAM. A list of other 

simulation parameters is provided in Table 3 where the 

Euler angles to quaternion conversions follow the 3-2-1 

sequence. The initial and desired conditions for roll, pitch, 

and yaw are (−90°, 10°, 10°) and (0°, 0°, 0°), respectively. 

𝜎𝑄 = 10−5 and 𝜎𝑅 = 10−4 are used for the UKF. Additive 

noise is considered for the measurements in Eq. (21) and 

(22) when discussing the signal to noise ratio (SNR) in the 

following sections. The fault scenario considered is an out-

of-phase abrupt, as detailed in Table 4. The system response 

and fault detection results are not provided as this study 

focuses on isolation. Hence, only the results for FII in Table 

4 scenario with Monte Carlo (MC) simulations are 

provided. In the following sections, simulation results were 

obtained for three SNRs: 45dB, 55dB, and 75dB; however, 

only the 45dB (worst-case scenario) results are reported 

unless explicitly mentioned otherwise. 

Parameter Value 

UKF [𝛼, 𝜅, 𝜆] [1,2,2] 

Process noise 𝑄0 = 𝜎𝑄
2𝐼𝑛×𝑛 

Measurement noise 𝑅0 = 𝜎𝑅
2𝐼𝑚×𝑚 

𝐽𝑠 diag[0.015, 0.017, 0.020][kg. m2] 

𝐽𝑤 10−5 × diag[1,1,1,1][kg. m2] 

Initial [𝑞1𝑞2𝑞3] [0.696, -0.707, 0.0] 

Initial [𝜔1 𝜔2 𝜔3] [0,0,0] rad/s 

Desired [𝑞1𝑞2𝑞3] [0,0,0] 

Desired [𝜔1 𝜔2 𝜔3] [0,0,0] rad/s 

Table 3. Simulation parameters 
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Time (sec) 𝑓𝑝1
 𝑓𝑝2

 𝑓𝑝3
 𝑓𝑝4

 

𝑡 < 20 1 1 1 1 

20 ≤ 𝑡 < 40 0.5 1 1 1 

40 ≤ 𝑡 < 70 1 0.1 1 1 

70 ≤ 𝑡 < 100 1 1 0.1 1 

100 ≤ 𝑡 < 150 1 1 1 0.1 

𝑡 ≥ 150 1 1 1 1 

Table 4. Case-study out-of-phase abrupt fault 

5.1.1. Monte Carlo Analysis 

To conduct Monte Carlo simulations, the confusion matrix 

(CM) in Table 6 is filled with the simulation results of 100 

cases for the fault scenario described in Table 4. Each case 

consists of random values for the satellite attitude (𝑞, 𝜔) 

initial conditions in addition to, the start time (𝑇𝐹𝑠), duration 

(𝑇𝐹𝑑), and severity of the fault (𝛼𝑖) with ranges in Table 5. 

It should be noted that the duration of the fault is dependent 

on the fault inception as not to exceed the total simulation 

time. 

5.1.2.  Fault Isolation and Identification 

Table 6 lists the confusion matrix for the MC simulation 

where "A→" denotes for actual scenario and "I ↓" the 

identified scenario from all possible scenarios in Table 2. 

 𝑞𝑖 𝜔𝑖 (rad/s) 𝑇𝐹𝑠 (s) 𝑇𝐹𝑑 (s) 𝛼𝑖 

Min -1 -0.5 0 0 0 

Max 1 0.5 199 199-𝑇𝐹𝑠 1 

Table 5. Parameters range for MC simulations 

 

A→  

I ↓  
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 93 0 0 1 0 0 1 0 1 0 0 1 0 0 1 
2 0 93 0 1 1 1 1 1 1 1 0 1 1 1 1 
3 0 0 91 1 0 0 1 0 1 0 1 1 1 1 1 
4 1 1 1 88 1 1 1 0 0 1 1 1 0 1 1 
5 1 0 1 1 90 0 1 1 0 0 0 1 0 1 0 
6 1 1 1 1 1 92 0 1 0 0 1 1 0 1 1 
7 0 0 1 1 1 1 89 1 1 1 1 1 1 1 1 
8 0 1 1 1 1 1 1 93 1 0 1 1 1 0 1 
9 1 1 1 1 1 0 1 1 91 1 1 1 0 1 1 
10 1 1 0 1 1 1 1 0 1 94 0 1 1 1 0 
11 1 1 1 1 1 1 1 0 1 1 93 0 0 1 0 
12 0 0 0 0 1 1 1 0 1 1 1 87 1 1 1 
13 1 0 1 1 0 1 1 1 1 0 0 1 93 1 1 
14 0 0 0 1 0 0 0 1 0 0 0 1 0 88 1 

15 0 1 1 0 1 0 0 0 0 0 0 1 1 1 89 

Table 6. Confusion matrix results using SGAUKF 
 

The average accuracy for the confusion matrix is defined as: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 % =
𝑡𝑟𝑎𝑐𝑒(𝐶𝑀)

𝑁𝐶𝑀

 (24)  

where the 𝑡𝑟𝑎𝑐𝑒(∙)  outputs summation of the matrix 

diagonal elements and 𝑁𝐶𝑀  is the total CM diagonal 

elements. The results shown in Table 7 compare the 

accuracy of different methods by Rahimi et al. as discussed 

earlier, using the definition provided in Eq. (24). 

Table 7 shows the inferior CAUKF accuracy in a closed-

loop controlled system and the superior performance of the 

SGAUKF compared to both the CAUKF and GAUKF. The 

inferior accuracy of the CAUKF in such a system setting is 

owed to its inability to adapt as quickly to unknown system 

changes as compared to the other two methods GAUKF and 

SGAUKF. 

Table 8 provides the MC simulations’ average execution 

time for each method. The results show that the CAUKF has 

the highest execution time since it must loop through 

extensive grids. GAUKF, however, demands less time than 

CAUKF since it is only doing a binary grid search; 

nevertheless, SGAUKF has further decreased the 

computation time by cutting the loops required for the 

posterior covariance from 2𝒟  to 2𝒟/2 while also improving 

the accuracy. Therefore, SGAUKF improves accuracy and 

reduces computation time compared to others. The 

reduction in execution time is not extreme due to the 

processing power allocation required by other parts of the 

algorithm that still take time and are more dominant. 

Figure 3 illustrates the fault identification results where the 

SGAUKF estimates follow the true values for the system 

parameters most closely, among other methods that visually 

prove the superiority of the SGAUKF. To further examine 

the numerical performance, the root mean squared error 

(RMSE) for these estimates are calculated using  

𝑅𝑀𝑆𝐸 = √
∑ (𝑓𝑝𝑖,𝑡

− 𝑓𝑝𝑖,𝑡
)

2𝑡𝑒𝑛𝑑
𝑡=𝑡𝑠𝑡𝑎𝑟𝑡

𝑡𝑒𝑛𝑑 − 𝑡𝑠𝑡𝑎𝑟𝑡

 
(25)  

 

Noise level  

(SNR) 

CAUKF % GAUKF % SGAUKF % 

75dB 77.13 97.13 98.25 

55dB 72.33 92.33 93.41 

45dB 79.60 89.60 90.93 

Average 75.27 93.02 94.20 

Table 7. Fault isolation accuracy comparison 
 

Method CAUKF GAUKF SGAUKF 

Execution Time (sec) 9.69 8.74 6.36 

Table 8. Execution time comparison 
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Method Noise 

level  
(SNR) 

Pre-fault 

(× 10−2) 

Faulty 

(× 10−2) 

Post-fault 

(× 10−2) 

CAUKF 

75dB 3.12 4.45 3.24 
55dB 3.54 4.87 3.76 

45dB 3.87 5.45 3.41 

GAUKF 

75dB 1.74 2.15 1.83 

55dB 1.98 2.44 2.06 

45dB 2.10 3.14 2.16 

SGAUKF 

75dB 1.44 2.03 1.71 

55dB 1.36 2.27 1.95 

45dB 1.98 2.89 2.76 

Table 9. 𝒇𝒑𝒊
 RSME comparison 

where 𝑓𝑝𝑖
 and 𝑓𝑝𝑖

 are the estimated and true parameter 

values, respectively. 𝑛  is the number of parameters, and 

𝑡𝑠𝑡𝑎𝑟𝑡 and 𝑡𝑒𝑛𝑑 denote the start and end time for the RMSE 

calculation in the simulation, respectively. 

The 𝑡𝑠𝑡𝑎𝑟𝑡 and 𝑡𝑒𝑛𝑑 are introduced to form the period before 

a fault occurs (pre-fault), during fault (faulty), and after the 

fault recovery (post-fault) and calculate RSMEs for these 

periods and list them in Table 9. Table 9 values are 

calculated for each parameter 𝑓𝑝𝑖
 and averaged over the 

range of pre-fault, faulty, and post-fault periods. It can be 

seen from the results in Table 9 that the SGAUKF has a 

superior performance in comparison to other methods. It is 

evident that during the fault, RSMEs are larger, and the 

difference is directly proportional to the noise level. 

Table 10 summarizes the computation time for the FII, 

where most allocation is in the isolation module given the 

iterative composition. The computation time increases with 

the noise level as more iterations are required to complete 

the adaptation in the posterior covariance matrix. 

6.  CONCLUSIONS 

A modified adaption method (SGAUKF) was proposed in 

this paper to adjust the elements of the UKF posterior 

matrix so that abrupt changes in system parameters can be 

isolated promptly.  

Noise level 

(SNR) 

Limit Isolation and Identification 

(sec) 

  CAUKF GAUKF SGAUKF 

75dB 
Min 0.02 0.02 0.01 

Max 0.36 0.02 0.02 

55dB 
Min 0.03 0.03 0.02 

Max 0.49 0.03 0.03 

45dB 
Min 0.05 0.05 0.03 

Max 0.53 0.05 0.05 

Table 10. FII computation time comparison 

The proposed method was tested on a 4SGCMG to control 

the satellite attitude. Simulations included out-of-phase 

abrupt faults with extensive Monte Carlo investigations. 

Confusion matrices were employed along with RMSE and 

computation times to compare isolation results. Results 

showed 94% accuracy in isolation results compared to 93% 

for GAUKF and 75% for CAUKF. Despite insignificant 

accuracy improvement, computation time was decreased 

from 8.74 to 6.36 sec, i.e., ~27%, compared to GAUKF, 

proving the SGAUKF as a promising option for FII of 

nonlinear systems with comparable accuracy to GAUKF 

and less computation time simpler structure requirements. 
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