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ABSTRACT

In the domain of predictive maintenance, when trying to repli-
cate and compare research in remaining useful life estimation
(RUL), several inconsistencies and errors were identified in
the experimental methodology used by various researchers.
This makes the replication and the comparison of results diffi-
cult, thus severely hindering both progress in this research do-
main and its practical application to industry. We survey the
literature to evaluate the experimental procedures that were
used, and identify the most common errors and omission in
both experimental procedures and reporting.

A total of 70 papers on RUL were audited. From this meta-
analysis we estimate that approximately 11% of the papers
present work that will allow for replication and comparison.
Surprisingly, only about 24.3% (17 of the 70 articles) com-
pared their results with previous work. Of the remaining
work, 41.4% generated and compared several models of their
own and, somewhat unsettling, 31.4% of the researchers made
no comparison whatsoever. The remaining 2.9% did not use
the same data set for comparisons. The results of this study
were also aggregated into 3 categories: problem class selec-
tion, model fitting best practices and evaluation best practices.
We conclude that model evaluation is the most problematic
one.

The main contribution of the article is a proposal of an ex-
perimental protocol and several recommendations that specif-
ically target model evaluation. Adherence to this protocol
should substantially facilitate the research and application of
RUL prediction models. The goals are to promote the collab-
oration between scholars and practitioners alike and advance
the research in this domain.

Hugo Ferreira et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

1. INTRODUCTION

When trying to replicate and compare research in remain-
ing useful life (RUL) estimation in the domain of predic-
tive maintenance, we found that the experimental protocol
used by various researchers varied significantly. Many details
were not provided making replication difficult or even impos-
sible. Most importantly, several problems in the experimental
methodology were detected, making valid comparisons with
existing work difficult if not impossible. Our goal is to estab-
lish a common baseline that will facilitate researchers’ work
in the future, allowing for consistent and reproducible com-
parison of existing work. This is of paramount importance
because without the ability to replicate and compare results,
it is not possible to make progress (Munafò et al., 2017).

We review the literature on RUL estimation of bearing fail-
ure due to wear and tear. The aim is to identify the main
domain specific characteristics that are relevant to generating
machine learning (ML) models. We study the general litera-
ture on ML in order to identify common pitfalls and establish
a correct procedure for data analysis and model comparison.
We also delve into the domain specific issues that determine
how model selection, evaluation and comparison should be
done. This includes details on how the signals are segmented,
if and how these signal segments are categorized into degra-
dation phases and how these signals are used for training and
evaluation.

2. BACKGROUND

Researchers have concluded that many experimental results
are unreliable (Shepperd et al., 2019; Ioannidis, 2005). Er-
rors have been found, some of which may be attributed to
simple transcription errors. This is in part due to the complex
and chaotic process that includes data pre-processing, feature
generation and selection, hyper-parameter tuning via cross-
validation, metric selection and model performance compari-
son (Shepperd et al., 2019).

Several researchers concerned with this issue have done meta-
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analysis on related work to try and identify what errors are
committed and how one may go about avoiding these. This
includes studying the validity of null hypothesis significance
testing (Colquhoun, 2018), checking simple integrity con-
straints (arithmetical and statistical errors) (Shepperd et al.,
2019) and examining the correctness of the experimental de-
sign and analysis (Ioannidis, 2005). In this work we will look
at the machine learning experimental design in RUL estima-
tion with an emphasis on the comparative analysis of the gen-
erated prediction models.

Prior work has already identified a lack of standard approaches
to comparing prognostics models (Saxena, Celaya, Saha, Saha,
& Goebel, 2010). The main goal was to establish a way of
rigorously evaluating the performance of prognostics systems
so that they can be certified for use in critical applications.
References to research are also provided that showed a lack
of standardized methodologies of model comparison or even
absence of model evaluation (Saxena et al., 2010). The fo-
cus was on the use of metrics for off-line RUL estimation
when run to failure data exists (Saxena, Celaya, Saha, Saha,
& Goebe, 2009).

We make the following observations. The first is that in our
work, we focus on the experimental methodology that in-
cludes problem selection, model fitting and model compar-
ison. Second, we propose a method for performance eval-
uation. Any formal metric that allows for rigorous compar-
isons can be used use within our proposed framework. Third,
our goal is to facilitate the comparison of researchers work
and so do not delve into issues of prognostics specifications
such as performance requirements (cost) and risk manage-
ment (safety, reliability) (Saxena et al., 2010). Finally, we
only consider RUL estimation based on run to failure data.
Our literature review of the more recent work shows that er-
rors and omissions still plague the research in this domain and
these problems are not limited to the use of metrics.

3. REVIEW AND ANALYSIS OF RUL LITERATURE

A systematic search of the literature in the domain of RUL
estimation was made. Specifically we selected articles that
analyze and compare the performance of various RUL mod-
els. Additional criteria were used in the initial selection of the
article (see Table 1).

The goal is to evaluate the level of adherence to proper proce-
dure, identify the most common problems and estimate how
prevalent these issues are. We have split the analysis into
two main group: general protocol issues that are applicable
to any domain (section 6) and protocol issues that are spe-
cific to the RUL estimation domain in predictive maintenance
(section 7). Next we describe the methodology use in this
meta-analysis.

3.1. Methodology

The initial sample of articles were identified, in May of 2020,
using the Scopus, Engineering Village and Web of Science
knowledge databases. The query included the key phrases
“RUL”, “remaining useful life”, “bearing”, “prognostics”,
“predictive maintenance” and “condition based maintenance”.
Additional criteria included the selection of articles written
in English published after the year 2000 (inclusive). This re-
sulted in a total of 585 article. Full details on the selection
criteria and the articles can be found in the supplementary
material1.

During a second phase, the digital object identifier (DOI,
when available) and the titles (which were converted to lower
case), were used to remove all duplicates. This resulted in
328 unique articles. A total of 177 of these articles were ran-
domly sampled and a cursory analysis removed any articles
that: did not have a DOI; were not applied research papers
on prognostics for bearings (excluded reviews and books);
did not make the data publicly available (excluded references
claiming that data is provided upon request) and the publisher
was not on Beall’s list. This produced a list of 70 articles that
were analyzed in detail (full details found in the supplemen-
tary material).

A set of 21 indicators (metrics) were used to record the avail-
ability of data, the type of RUL estimate performed (section
8.1), and the model fitting (section 8.2) and model evaluation
(section 8.3) procedures that were performed. The data is
available as a spreadsheet included in the supplementary ma-
terial. There are cases when certain features cannot be clearly
determined. When in doubt, we assumed that procedures did
not follow proper protocol. We therefore cautiously err on the
side of underestimating compliance. Nevertheless, the con-
servative estimates still allow us to evaluate the current state
of research.

4. RUL ESTIMATION OF BEARINGS

In this section, we briefly describe several concepts and ideas
that are required to understand and fully appreciate the issues
that we discuss the in following sections. First is the use of
ML regression models for RUL estimation, which includes
data acquisition and feature engineering. The second is the
notion that bearings go through several stages of degradation
and how these are related to the RUL estimate. We refer to
these phases as health stages. Last, we consider the prob-
lem of RUL estimation of equipment that operate in multiple
regimes and the challenge this presents.

4.1. ML Models for RUL Estimation

Rotating machinery have shafts or axles that are supported
by rolling bearings. The bearing elements and the enclosing

1https://zenodo.org/record/3972767
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Table 1. Selection Criteria of relevant articles.

Criterion Description
Language English
Topic Data driven RUL estimation for predictive maintenance.
Availability All articles and their data sets must be available to the public.
Date January 2000 – May 2020

Reviewed All papers must go through a peer review process (at the very least they must not be in Beall’s List (Machacek &
Srholec, 2019) of potential predatory journals and publishers).

Duplicates Use only the latest peer reviewed version.
Reporting Sufficient detail to analyze the degree of adherence to proper computational experiment procedure in ML.

(inner and outer) race suffer wear and tear through use and
corrosion resulting in cracks, brinelling, spalling and fretting.

Generally, it is not possible to assess the damage of these
components by directly observing the degree of wear and tear
(Lei et al., 2018). This may be because: machines cannot be
shutdown for inspection, it is difficult to detect and measure
micro-scale defects at the incipient stage, or, to access and ob-
serve the damaged parts, may require that the full assembly
be destroyed (e.g. sealed roller bearings). As a result, one or
more sensors are used to indirectly measure the health status
of the components. Usually accelerometers are used to mea-
sure the vibration of rotating machinery. However tempera-
ture, audio and ultrasound signals may also be used. All the
articles we have analysed use the accelerometer data, how-
ever the protocol issues we discuss are independent of the
type and number of sensors used.

The sensor readings may be converted to an intermediate set
of features. Several features may be combined into a single
generic feature that reflects the health status of the compo-
nent. It is usually referred to as the health indicator. These
may be features from the time domain, frequency domain
(Xia et al., 2019; Li, Zhang, & Ding, 2019) or a combina-
tion of both (Benkedjouh, Medjaher, Zerhouni, & Rechak,
2013; Sutrisno, Oh, Vasan, & Pecht, 2012). Some researchers
forego feature engineering altogether and use the raw signal
directly (Khelif et al., 2017; C. Liu, Zhang, & Wu, 2019;
Verstraete, Droguett, & Modarres, 2019; Jiang, Lee, & Zeng,
2019; Zhang, Hutchinson, Lieven, & Nunez-Yanez, 2020;
B. Wang, Lei, Yan, Li, & Guo, 2020). Whether the signal
is converted or not, they are then used by a ML model to de-
tect or estimate the level of degradation. In the case of RUL
estimation we use a regression model that predicts how long
the components may still function properly. As with the type
of sensors, the protocol issues we study are independent of
the number and type of features used.

4.2. Bearing Health Stages

We assume that the degradation process is stochastic, noisy
and irreversible (Lei et al., 2018). One would therefore ex-
pect that the ML model generate a monotonically decreasing
RUL estimate. However, bearing wear and tear exhibit com-
plex patterns of degradation (Lei et al., 2018) due to the self-

healing phenomena (Duong et al., 2018). More concretely,
an incipient fault caused by cracks will result in vibrations of
small amplitudes. With time, the surface defect worsens re-
sulting in an increase in the vibration. However, the continued
friction of the bearing may end up smoothing the sharp edges
of the crack, thereby temporarily reducing the vibration. With
continued use, damage will eventually spread over a broader
area, and the vibration amplitude will rise again (Williams,
Ribadeneira, Billington, & Kurfess, 2001). We also refer to
these degradation phases as health stages.

A single health indicator may be used to represent several
health stages of several components (Lei et al., 2018). First
we note that, in general and depending on the type of faults
and features used, the number of health stages may differ.
Second, in many cases it is difficult to identify these stages
and determine exactly when they start and end (Sutrisno et
al., 2012). Consequently, a variety of solutions have been
proposed. Some authors suggest dividing the signal into a
fixed and constant number of stages. For example two stages
(T. Wang, 2012; Li et al., 2019; B. Wang, Lei, Li, & Li, 2020;
Mao, He, Tang, & Li, 2018) and three stages (Z. Liu, Zuo,
& Qin, 2015; Soualhi, Medjaher, & Zerhouni, 2015). Oth-
ers attempt to determine these automatically using, for exam-
ple, heuristics (Sutrisno et al., 2012), classification (Xia et al.,
2019) or the Minimum Description Length (MDL) principle
(Peng, Cheng, Liu, Li, & Peng, 2018).

This has proven to be a difficult issue when designing an ap-
propriate protocol. We must decide whether or not signals
should be divided into stages and if so how this should it
be done. Stage division has several important consequences.
The first issue is the incompatibility of model comparisons.
RUL estimations made only for a specific degradation stage
will naturally outperform a more general model trained on the
full length of the signals. In section 8.1 we will delve more
into this issue.

The second is model performance comparison. RUL esti-
mates vary significantly depending on the degradation stage
of the bearings. This means that models with the same aver-
age performance may incur very different errors at different
stages of the bearings’ life cycle. It is important that the mod-
els’ performance be compared at the various phases of the
components’ life-cycle. Model accuracy is especially critical
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toward the end-of-life (EoL) stage of the component. In fact
we question the usefulness of providing a RUL estimate be-
fore an initial fault event has been detected. These issues are
discussed further in section 7.1.

Lastly, we must consider the practical applicability of stage
division. We defend in later sections that stage division should
exist, should be done automatically and should only activate
the RUL estimation model after the initial failure event has
been detected (see section 8.3).

4.3. Multiple Operating Regimes

Rotating machinery may operate under different loads and
speeds. Ideally, the RUL estimation models should work for
all operating regimes. However, this may not be viable be-
cause intrinsic signal characteristics (such as noise), vary ac-
cording to the operating mode (T. Wang, 2012). Addition-
ally, changes in the frequency and amplitude of the signal,
caused by higher speeds or higher loads, may not be easily
distinguished from anomalies (Heng, Zhang, Tan, & Mathew,
2009; Lei et al., 2018).

One simplification is to use a single model for each operat-
ing mode (T. Wang, 2012). However this may not be feasible
in practice, especially if the number of operating regimes is
large or continuous. An alternate solution is to provide infor-
mation on the operating mode to the RUL model. But this in-
formation may not always be available (Kan, Tan, & Mathew,
2015). These issues pose problems for both the practical ap-
plication of theses solution in real-life settings, as well as the
general evaluation and comparison of RUL models.

In section 7.3 we have a more general discussion related to
these issue. In section 8.1 we present a set of RUL model
classes and detail how these may be compared. Ultimately
we leave it to the researcher to decide what type of model
to use, but impose certain restriction on how models may be
compared.

5. BENCHMARK DATA SETS

In this section we review the data sets that are used to com-
pare the ML models that make the RUL estimate of bearings.
As per the selection criteria, we only analyze research that
use public data sets that contain real sensor data (no synthetic
data). This ensures that in the future, researchers are free to
replicate prior work and compare results. Obviously we want
real sensor data only, because the goal is to produce results
that are applicable to real world scenarios.

To better understand how the data sets are used as bench-
marks, the following was done: for each article, we identified
which data sets were used. We count the number of times a
data set is used by itself and the number of times it is used in
conjunction with another data set. The sum of these 2 values
allow us to estimate the distribution of these data set. This

Table 2. Distribution of Benchmarks.

Data set Sampled (%) Filtered (%)
Pronostia 27.7 67.1

IMS 10.7 24.3
GPMS 1.7 4.3
XJTU 0.6 1.4

IMS+Pronostia 2.3 1.4
XJTU+Pronostia 0.6 1.4

Private 21.5 0
Others 35.0 0

was done for the initial sample of 177 articles (referred to as
sampled) and then again for the final 70 articles that respected
all selection criteria described in Section 3.1 (referred to as
filtered). The results are shown in Table 2 (data available in
the supplementary material). Note that the category others
includes all articles that did not pass all filtering criteria.

We found the bearing data sets are limited to the following
4 public benchmarks: Pronostia (Nectoux et al., 2012), IMS
(Qiu, Lee, Lin, & Yu, 2006), GPMS (Ben Ali, Saidi, Harrath,
Bechhoefer, & Benbouzid, 2018) and XJTU-SY (Shan et al.,
2019). More importantly the Pronostia and IMS data sets are
used in the majority of the work. This is true for both the sam-
pled (41.2%) and filtered (94.3%) cases. The reduced number
of data sets is an issue because it does not allow researchers
to thoroughly test the applicability of their RUL models to
many real world scenarios. This lack of diversity is specifi-
cally problematic if we consider that the Pronostia, IMS and
XJTU-SY data sets were generated in laboratory, under ideal
accelerated degradation conditions.

We also looked at the characteristics of the Pronostia, IMS,
GPMS and XJTU-SY data sets in order to identify any is-
sues that need to be considered when performing RUL es-
timation. All of these data sets contain accelerometer data
that are collected from bearings until a failure occurs. How-
ever, we found that only the GPMS data set, was acquired in
a real world setting - from shaft bearings installed in a wind
turbine generator. Unfortunately this data set consists of a
single failure instance - so a test set is not available for model
evaluation.

Another characteristic, is the rate of degradation (see Table
3). The GPMS, with 50 days, reflects the expected rates in a
real, albeit harsh, world setting. However, in all other cases
the laboratory experiments induced accelerated degradation.
In particular, Pronostia, which is the most popular data set,
has signals with a duration that vary from as little as 38 min-
utes to 7 hours and 45 minutes. The XJTU also exhibits very
short run-to-failure experiments in the same order of mag-
nitude (see Table 3). This raises issues of whether or not
the models will still perform well when applied to very dif-
ferent degradation profiles. It also makes model evaluation
problematic. The reason is that the RUL estimation error de-
creases towards the EoL event (see for example (Li et al.,
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Table 3. Duration of Benchmark Signals.

Data set Minimum Maximum Median
Pronostia 38 min 7 hours 47 min 3 hours 10 min

XJTU 42 min 42 hours 18 min 2 hours 41 min
IMS 6 days 9 hours 44 days 17 hours 34 days 12 hours

GPMS 50 days 50 days 50 days

Table 4. Number of Instances in Benchmarks.

Data (#Modes)
∑

Train
∑

Test Train Med Test Med
Pronostia (3) 6 11 2 5

XJTU (3) 15 0 5 0
IMS (1) 3 0 1 0

GPMS (∞) 1 1 0 0

2019; Y. Wang, Peng, Zi, Jin, & Tsui, 2015; Li, Zhang, Ma,
Luo, & Li, 2020; Xia et al., 2019)). So longer signals usually
result in larger errors. Depending on the time-series that are
used for the testing data set, significant differences in error
will occur. To avoid this problem, in this work we defend that
the signal should be divided into health stages. Model perfor-
mance should be evaluated separately in each stage using a
fixed number of residuals. Additionally, we question whether
or not it makes sense to perform RUL estimation in the initial
stage when no degradation has occurred.

The size of the data set - the number of time-series in the
data set - is an important feature. For the best results one
would have enough data for the training, cross-validation and
test data sets. Table 4 shows the number of time-series in
the training and test data sets (

∑
) and the corresponding me-

dians (Med) per operating mode (different load and rotation
speed). The Pronostia and XJTU data sets have 3 operating
modes, the IMS data set has 1 and the GPMS’s load and ro-
tation speed vary continuously. We see that in all cases we
have a limited number of examples (a maximum total of 15
irrespective of operating mode). Due to the lack of data, none
of it has been reserved for model fine-tuning, which makes
cross-validation impossible (see Section 6.1). We can also
expect that, because of the very low number of instances per
operating mode (maximum 5), training and evaluating models
for each operating mode is susceptible to over-fitting. Finally,
we note the Pronostia test data sets are truncated (because it
was used for a competition, nevertheless the RUL times are
available). This makes model evaluation at the later life-cycle
stage impossible.

It is imperative that much larger real-world data sets, with
several hundreds of complete run-to-failure instances, be made
available for future research efforts. We also believe that such
data sets should have a much larger range of operating modes
(similar to GPMS). And finally, we should have enough data
sets to cover several classes of machinery (lathes, drilling,
generators, motors) in order to determine the effectiveness of
RUL estimation in different scenarios.

In regards to the reduced number of operating modes (#Modes
in Table 4), care must also be taken when evaluating the mod-
els. Models that are trained for a single or multiple operating
modes should not be compared indiscriminately. Details on
what constitute valid comparisons are detailed in section 7.

6. GENERAL PROTOCOL ISSUES

In ML, the goal is to achieve good generalization performance,
i.e. incur low prediction errors on previously unseen data
(Bishop, 2006; Hastie, Tibshirani, & Friedman, 2009; Rus-
sell & Norvig, 2010; P. Murphy, 2012; Goodfellow, Bengio,
& Courville, 2016). In the following subsections, we discuss
some methodological errors in experiment execution and per-
formance evaluation that lead to overly optimistic generaliza-
tion errors being reported (errors are much higher on real-
world unseen data than on the test data). In addition to de-
scribing the most common errors in ML experimental pro-
cedures, we also provide a number of recommendations that
may help avoid or at least mitigate these problems.

6.1. Underfitting and Overfitting

The performance of a machine learning algorithm is mea-
sured by its ability to simultaneously minimize the training
and test errors. We say that there is underfitting when the
model is not able to yield a low training error, and there is
overfitting when the training error is low but the test error is
large (Goodfellow et al., 2016). We control the propensity
to either overfit or underfit by adjusting the model capacity
or complexity (Hastie et al., 2009; Goodfellow et al., 2016).
This is known as the bias-variance trade-off and is the central
challenge of ML (Goodfellow et al., 2016).

Hyper-parameters control model complexity. They are opti-
mized using a validation set (Bishop, 2006; Russell & Norvig,
2010; Goodfellow et al., 2016), on which we aim to find a
good trade-off between model complexity and goodness of
fit (Russell & Norvig, 2010). If we were to optimize the
hyper-parameters using the training set, it would always re-
sult in maximum possible model capacity, i.e. overfitting
(Goodfellow et al., 2016). As such, we use the validation set
to estimate the generalization error according to the selected
hyper-parameter values (Goodfellow et al., 2016). It provides
a reasonable estimate of the expected test error (Hastie et al.,
2009). Because the test data set can only be used in the final
model evaluation, the validation set is built by partitioning the
training set (Bishop, 2006; Russell & Norvig, 2010; P. Mur-
phy, 2012; Goodfellow et al., 2016). Note that if the model
design requires many iterations to tune the hyper-parameters,
it may also overfit to the validation set (Bishop, 2006).

Recommendations:

1. Use cross-validation as a way of making a reasonable
trade-off between model bias and complexity (Bishop,
2006; Hastie et al., 2009; Russell & Norvig, 2010; Good-
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fellow et al., 2016).

2. Create a validation set by partitioning the training dataset
only (Bishop, 2006; Russell & Norvig, 2010; P. Murphy,
2012; Goodfellow et al., 2016). Make sure the data labels
are balanced by using for example stratified data parti-
tioning (see (Moreno-Torres, Saez, & Herrera, 2012) for
details).

3. If overfitting is a problem, increase the size of the dataset
in order to promote model generalization and robustness
(Bishop, 2006).

6.2. Data leaking

Data leaking occurs when information contained in the test
or validation sets are used to train the model, thereby inval-
idating the results (Russell & Norvig, 2010). In these cases
the model will overfit, and as such, the best model will under-
estimate the true prediction error, sometimes by a substantial
amount (Hastie et al., 2009; P. Murphy, 2012)

In the worst case scenario, part or all of the test and validation
data records may be directly introduced into the training set.
However, information may also be inadvertently leaked into
the training set during the initial phases of data preparation
(Kaufman, Rosset, & Perlich, 2011). We next describe how
information may be indirectly leaked in the various phases of
model fitting and evaluation (Kaufman et al., 2011).

During data collection, data may be leaked by providing time-
dependent information during model training and evaluation
that will not be available during the prediction time in a real
system. Another issue is when seemingly unrelated features
may be used to infer the dependent variable’s outcome. For
example, a feature may consistently encode or re-scale values
of the dependent variable.

Feature engineering may also result in information leaked if
not applied correctly. For example scaling must be done inde-
pendently on the validation and test sets using the same mean
and standard deviation obtained from the training data set.
All calculated features must be recomputed for the validation
and test data sets.

Partitioning data must be done with care. When data is sam-
pled or augmented prior to data splitting data leakage may
occur. This will result in closely related data being shared
among training and test data sets. This is particularly tricky
when dealing with time-dependent data. For example, signals
of the same entity at different states (instances) may be placed
in both training and test data sets.

Recommendations:

1. Split the data sets (train, validation and test) before model
training and evaluation. Make sure no data is shared
among the partitioned data sets. (Hastie et al., 2009; Rus-
sell & Norvig, 2010; P. Murphy, 2012; Goodfellow et al.,

2016).

2. Check if any co-linearity exists between features and the
dependent variable. Make sure no feature can be calcu-
lated using one or more of the other features.

3. Make sure that all features in the training data set are
available at prediction time only.

4. Do not use any external data to indirectly infer the de-
pendent variable.

5. Determine all pre-processing parameters using only the
training data set. Apply those when pre-processing the
validation and test data sets.

6.3. Data snooping

Data snooping (data dredging) is the deliberate selection
(cherry-picking) of samples to produce the expected results.
It results in assigning meaning to spurious patterns (Giles &
Lawrence, 1997), or letting the test set directly influence the
training process (England & Cheng, 2019). It may also indi-
rectly bias the hypothesis (hypothesizing after results)
(Murphy, 2017).

This process involves testing multiple hypothesis using the
same data by means of exhaustive search - what some call
“oversearching” (Jensen, 2000). Over-searching has a par-
allel to p-hacking in statistical significance testing, i.e. run
a sufficiently large amount of experiments and report only
the best results (Giles & Lawrence, 1997; Russell & Norvig,
2010; England & Cheng, 2019). Due to the large search
space, finding a model with good performance may be at-
tributed solely to chance (Giles & Lawrence, 1997). The use
of the expression “we optimized the learning rate”, used to
summarize research results, may be indicative of data snoop-
ing (Giles & Lawrence, 1997).

By the same token, the effects of data snooping might re-
sult from the collective efforts of a research community at
large. By using the same test data repeatedly to evaluate the
performance of different techniques over many experiments
(e.g. the use of common benchmark datasets), we end up with
overly optimistic evaluations. Collectively “over-searching”
makes benchmarks stale, and the reported results do not re-
flect the true performance in the field of study (Goodfellow et
al., 2016).

Recommendations:

1. Provide information on the experimental process (Giles
& Lawrence, 1997; England & Cheng, 2019), namely the
hypothesis and model selection criteria should be made
explicit (England & Cheng, 2019). Be aware of potential
data snooping biases when formulating the experimental
procedures (Giles & Lawrence, 1997).

2. If model fine-tuning is required or desired, optimization
must be performed by using the validation set only (sec-
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tion 6.1) (England & Cheng, 2019). Use cross-validation
to algorithmically identify the “best” model (Jensen, 2000).

3. Consider the size of the model space searched to support
the research hypothesis, namely by correcting for the sta-
tistical effects of the search (Jensen, 2000).

4. Use the same model on different data sets and report all
results. Good performance on a variety of data sets is
indicative of a robust model that is not overfitting.

6.4. Model Performance Averaging

Data averaging is the presentation of the results of the mul-
tiple experiments using descriptive statistics instead of pre-
senting the results individually. This practice, in itself, is not
incorrect. However, usually defaulting to reporting a single
mean and standard deviation value can be misleading or lead
to incorrect conclusions (Giles & Lawrence, 1997).

When comparing models, the use of descriptive statistics may
not be enough. More concretely a single aggregate may hide
important information regarding the model’s performance un-
der various conditions. For example, it is difficult to convey
information of a RUL model’s performance in the various
health stages using a single value. In these cases performance
values should be provided for the various health stages.

Recommendations:

1. In addition to the mean and standard deviation, report
more informative statistics regarding the distribution -
e.g. median, inter-quartile range, minimum and maxi-
mum (Giles & Lawrence, 1997).

2. Plot the results. For example, the box-whisker plot is
suitable for comparing models and identifying outliers.
Plots may be used to show how robust predictions are.
Plots can also be used to show time or state dependent
performance.

3. If experiments are executed in significantly different con-
ditions, report all the results. Use aggregates, statistics
(such as Skewnes and Kurtosis) and plots to facilitate
comparisons.

7. DOMAIN PROTOCOL ISSUES

In this section we analyse some of the methodological issues
that are specific to the RUL estimation domain. We look at
the potential problems that may occur during model fitting,
model evaluation and with the use of data generated under
different experimental conditions.

7.1. Model Fitting and Prediction

Many research papers report on the use of novel models for
RUL estimation. In their work, not only do the models dif-
fer, but so do the conditions under which these models are
trained and evaluated. Concretely, several researchers use a

model to estimate the RUL throughout the components full
lifetime. Others, only fit and estimate the RUL during the last
phase of the bearings’ life-cycle - usually after an initial fault
event has occurred (Z. Liu et al., 2015; Lei et al., 2018). The
time at which this event occurs is defined as the First Predict-
ing Time (FPT) (Lei et al., 2018; Li et al., 2019) and marks
the start of second stage of bearings life-cycle (section 4.2).
In addition to this, the identification of the fault event may be
done manually, based on some criteria (such as a sensor read-
ing threshold) or even automatically using anomaly detection
methods (Lei et al., 2018; Li et al., 2019).

Initial RUL estimates will incur larger errors (section 4.3,
(Saxena et al., 2010)); so comparing against models that only
make predictions at later FPTs, is unfair. Researchers must
provide details on how models are trained and evaluated. When
comparing results, the conditions under which model fitting
and evaluation is done, must be the same. Alternatively au-
tomatic FPT detection can be combined with metrics that are
designed to set the comparisons on an equal footing. The
advantage of this solution is that the FPT may be determined
automatically, which is important when deploying RUL mod-
els in a real-world setting (section 7.2).

Recommendations:

1. Researchers should clearly state if the training and evalu-
ation is performed for the full length of the signal. If sig-
nal evaluation is done after the FPT, then for each train,
evaluation and test signal, the FPT timestamp must be
provided.

2. If the FPT is selected manually, then the comparison must
only be with models that are trained and evaluated after
that FPT.

3. If an anomaly detection task is used to identify the FPT,
then for the comparison, an anomaly detection model
(not necessarily the same one used by the work that is
being compared to), must first identify and flag the FPT.
The RUL model must only be trained and then evaluated
after that FPT (section 7.2).

7.2. Evaluation Metrics

There is no standardized methodology for the evaluation of
prognostic performance (Saxena et al., 2010). This signifi-
cantly hinders comparison efforts among researchers. RUL
estimation is specifically challenging because the accuracy of
the predictions become critical as the system nears its EoL
(Saxena et al., 2010). Additionally, RUL estimates are inac-
curate at the start of life of a component and tend to converge
towards the EoL. These issues must be taken into account
when comparing RUL performance. This includes penaliz-
ing models that initiate predictions late (for example weigh-
ing the RUL estimates according to the health stages or FPT),
reporting on the model’s performance for each health stage
and providing aggregate performance values using additional
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statistics such a deviation and plots (section 6.4).

Recommendations:

1. Penalize RUL predictions differently according to the ac-
tual true EoL time (Nectoux et al., 2012). Weigh under-
estimates less than overestimates relative to the EoL. Use
the same weights in all comparisons.

2. Measure the error relative to the EoL (Saxena et al., 2010)
because the life-span of the same type of ball bearings
vary widely (Vlcek, Hendricks, & Zaretsky, 2003).

3. Measure performance for a fixed number of timestamps
or at fixed intervals of time before the EoL(Saxena et al.,
2010).

7.3. Dealing with Different Experimental Set-ups

Experiments have different set-ups, which include: type and
geometry of component to be analyzed, the means of accel-
erating the degradation, the operating modes of the equip-
ment under test, the sensor location, sampling rates used and
data collection methodology. Additionally, sensors and data
equipment with different characteristics are used (sensor range,
sensor sensitivity, analog to digital conversion resolution, ac-
curacy and sampling rate).

Assuming that experiments have been set-up correctly and
that their are no issues with low sampling rates (Taylor, 1997;
Measurement Computing Corporation, 2004) or spurious noise
(Bozchalooi & Liang, 2008; Dong & Chen, 2012; Soualhi et
al., 2015) (which complicates the early detection of incipient
faults (Bozchalooi & Liang, 2008; Dong & Chen, 2012)), the
differences referred to above must be taken into account when
comparing models. More specifically, different RUL estima-
tion methods have various advantages depending on the sig-
nal characteristics and data acquisition conditions. So models
should be trained and evaluated separately for each data set.

We have seen that several data sets include sensor data for
one or more operating regimes (section 4.3). Models trained
and evaluated on a single operating mode will usually outper-
form a more general (biased) model. As such, one must only
compare the more general (multi-mode) models against their
more specific counterparts.

Recommendations:

1. Train, evaluate and compare the proposed technique on
each experiment’s data separately. If different failure
modes (for example inner race outer race and ball bear-
ing damage in bearings) and/or multiple operation modes
(load and velocity) are available, evaluate these sepa-
rately also. We refer to these as single-mode models.

2. Additionally, if different failure modes and/or multiple
operation modes are available, one can also train and
evaluate the RUL estimation models using all multiple

failure and operation modes. We refer to these as multi-
mode models.

3. Aggregate the results to provide a summary of the perfor-
mance so that one can determine if the method has, on
average, better performance for a specific single-mode
or multi-mode problem. Use formal methods to compare
the result (Shepperd et al., 2019) (for example the Bon-
ferroni correction, Benjamini-Hochberg false discovery
rate estimate and Nemenyi post hoc procedure).

8. PROPOSED PROTOCOL

According to the discussion in the previous sections, we pro-
pose a set of protocols that should allow researchers to make
valid comparison with prior work. We select a subset of the
recommendations above and present them as a single consis-
tent process. We also consider issues such as reproducibility
and evaluation fairness. However, we do not look into the
more general issues of methods, reporting, dissemination and
incentives (Munafò et al., 2017).

8.1. Problem classes

Different prediction problems present very different challenges
(section 7.3). As we have seen, it is easier to generate models
that estimate the RUL for a single operating regime than it
is for the case of multiple operating conditions. It is there-
fore imperative that we only compare against models that
work under the same or more restricted conditions. Under
no circumstances can a set of single-mode RUL models be
favourably compared against a multi-mode model.

The same rational applies to models that are trained and eval-
uated after a FPT (section 7.1). The more specific models
that estimated the RUL for the last phase of the components’
lifespan cannot be favourably compared against a model that
estimates the RUL for the full duration of the experiment.

Several researchers establish the FPT manually according to
a subjective criterion (Zheng, 2019; Cheng, 2017). Determin-
ing the first fault event manually has several important disad-
vantages. First, it makes comparisons with new benchmarks
difficult and arbitrary. Second, it makes the use of the model
impractical in a real world scenario. Finally this form of es-
tablishing a FPT is prone to data snooping. We believe the
FPT must always be identified automatically. The proposed
protocol ensures that such an FPT is used correctly for model
training and evaluation.

According to the review and the analysis above, a list of com-
patible experimental types has been identified according to
the RUL estimation time-span (full signal or after an FPT),
whether the FPT is detected automatically and if the RUL
predictions are made for single or multiple operating regimes
(see Table 5):

Experiments that use manual FPT (class ID 3 and 5) should
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Table 5. RUL model classes.

ID Lifetime Lifetime Op. Regimes Comparable To
1 full - all 2,4,6
2 full - single 6
3 partial manual all -
4 partial automatic all 6
5 partial manual single -
6 partial automatic single -

never be used. Model classes 1, 2, 4 and 6 are valid. The
most general model class 1 can be compared against all oth-
ers. Model classes 2 and 4 can only be compared to the
more specific model classes 6. Finally, models classes that
are trained and predict only after a FPT, must establish this
event automatically. For example, using anomaly detection
techniques. Evaluation will require conditionally performing
the RUL estimation only after the FPT event has been auto-
matically detected.

It is important to note that we have adhered to the standard
practice in this domain of generating and evaluating one model
per benchmark (section 8.2) irrespective of the failure types
(bearing, inner or outer race).

8.2. Model fitting

Correct protocol requires that the problem class be selected
and clearly stated (see section 8.1). Each model must be
trained under the exact same conditions. A model may only
be trained on data sets that were generated under the same
conditions (sampling rate, sensor characteristics, degrading
component). If one model is trained for each benchmark,
then the models and corresponding training and test bench-
marks must be identified. Same applies if a model is gener-
ated for each of the operational condition - the model’s train-
ing and test data instances must also be indicated. To avoid
leakage, test data set instances must not, under any circum-
stance, be used for training (see sections 8.3 and 6.2). If many
models are generated during hyper-parameter tweaking, then
an appropriate method must be used to select the best model
(Shepperd et al., 2019) (section 7.3), or alternately, report on
the robustness of the models (using for example sensitivity
analysis (Cortez & Embrechts, 2013) or at the very least sim-
ple aggregates such as median, inter-quartile range, minimum
and maximum (Giles & Lawrence, 1997). This avoids a form
of data snooping where the selected model has a particularly
high performance that is due to chance alone (6.3).

The conditions above apply to any machine learning mod-
elling effort. In the case of the RUL estimation domain how-
ever, additional care must be taken when generating the mod-
els. The sensor signals are divided into segments of shorter
duration (for example windows of 0.1 seconds). First, re-
searcher must ensure that different segments of the same sig-
nal never appear in both training and test data sets, thus avoid-

ing data leakage (section 6.2). Second, because we are deal-
ing with time-series data, we cannot assume that the seg-
ments are independent and identically distributed (i.i.d). If
during model fitting i.i.d is assumed, then the signal segments
must be randomly shuffled. Several models should be trained
and evaluated with different random orderings. Finally, many
models do not require nor use all of the measurements. For
example, for tri-axial accelerometers, only data from a single
axis may be used. In these cases, to avoid snooping (section
6.3), researchers must either justify the selection of a specific
axis/sensor (ex.: automated selection based on some criteria)
or show that any axis can be used arbitrarily (ex.: repeat the
experiment for all measurements).

8.3. Model Evaluation

Each model must be evaluated under the exact same condi-
tions it was trained. Models should be evaluated with the
same error metric that was used for model fitting and cross-
validation. Researchers have to use an independent test data
set to avoid data leaking (section 6.2). If hyper-parameter
tuning is performed, then use cross-validation with a valida-
tion data set. All results must be reported, not just a select
few (avoid data snooping, section 6.3). Aggregates of results
must provide additional statistics (see data averaging 6.4 such
as median, inter-quartile range, minimum, maximum (Giles
& Lawrence, 1997; Saxena et al., 2010). Formal methods
(Shepperd et al., 2019) (Bonferroni correction, Benjamini-
Hochberg false discovery rate and Nemenyi post hoc proce-
dure) should be used to compare model performance. Cross-
validation (see Section 6.1) has proven to be one of the greater
challenges using current benchmarks due to the lack of data.

The most important issue is using an error metric that can
fairly and correctly reflect the performance of a model for
the full lifetime of a component. Components’ life-cycle, and
ball bearings in particular, go through various stages of degra-
dation (section 4.2). It is highly non-linear (Kan et al., 2015)
and has very high variability (Vlcek et al., 2003). Model ac-
curacy also varies significantly during a component’s lifespan
(Saxena et al., 2010) - it is low at the start and increases to-
wards the EoL (see for example (Li et al., 2019; Y. Wang et
al., 2015; Li et al., 2020; Xia et al., 2019)). Finally, the error
of an early or late RUL should reflect the higher cost associ-
ated with delayed maintenance interventions.

Work has already been done in this area (Saxena et al., 2010).
Here we will present and justify additional recommendations
of our own. We first look at the general case where the RUL is
estimated during the components’ full lifetime (section 8.1).
This procedure is then slightly modified for the case of the
partial lifetime RUL estimates (only after an FPT).

Note that lifespans differ significantly (in time and number
of samples) and the magnitude of the error is much higher at
the start of the lifespan (higher uncertainty). This has 2 con-
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sequences. The first is that final mean error estimate using
all samples depends on the data-series’ lengths, and may ulti-
mately, be under or over estimated depending on the lengths
of the time-series used in the test data set. The second is that
the more conservative models may end up with better overall
performance even at a cost of larger errors at the EoL stage.
To avoid these issues the error should be calculated as fol-
lows:

• Include time-series with large differences in lifetime in
the test data set.

• Divide each time-series into 3 sections: the time-series
should be divided in the following (arbitrary) propor-
tions: 1/2, 1/3 and 1/6. The goal here is to evaluate
how well the model performs during the various stages
of degradation.

• For each section select a fixed number of equidistant sam-
ples (Saxena et al., 2010) starting from the first segment.
We suggest 100 segments to facilitate calculations, but
any value will do.

• Calculate the residuals or any other compatible error mea-
surement for each of these 3 sections of the each time-
series. The positive error measurements should multi-
plied by 2 and then used to calculate the error (ex.: square
the residual). The constant is an arbitrary value that pe-
nalizes late RUL estimates, as is the norm in the do-
main of predictive maintenance (akin to a much sim-
pler weighing scheme that was used in (Nectoux et al.,
2012)). The error must also be weighted by increasing
values as a function of the section (ex.: {1.0, 2.0, 3.0}).
These values are arbitrary and reflect the importance of
accurate predictions near the EoL.

• Calculate and report the aggregates per section (mean,
median, deviations, inter-quartile range, etc.). Provide
plots such as the error distribution per section.

• Calculate and report the aggregates for all the bench-
mark, irrespective of the time-series sections.

The protocol above should provide us with an understanding
of the expected behaviour of the model during the degrada-
tion phases. The smaller proportions of the later sections re-
flect the rapid degradation that occurs in the later stages of the
component’s life-cycle. The expected error (total or per sec-
tion) will then be independent of the time-series length. As
per the recommendation of (Saxena et al., 2010), weighing
and ranking of the performance of the algorithm in each sec-
tion, can be used to compare algorithms. Any of the standard
ML metrics (such as mean squared error and standard devi-
ation) or domain specific metrics (such as relative accuracy
and convergence in (Saxena et al., 2010)), can be used within
this framework.

We have not delved into issues regarding the optimal value
of penalty weights, number of sections, proportions of each

section, nor the number of samples to take in each section.
We assume that this will be set on a per benchmark basis and
will most probably depend on domain knowledge and exper-
imental conditions. What is important is that the researchers
report on model performance in a more consistent and trans-
parent way.

For the case of the partial lifetime RUL estimates, we assume
that FPT will be identified automatically (section 8.1). Fol-
lowing the protocol and evaluation reporting described above,
the RUL model will only be triggered (learned and evaluated)
after the FPT. So the question is, what RUL estimate should
be assigned to the segments that occur before the FPT? Note
that delaying the FPT as much as possible will facilitate RUL
estimation and thereby reduce the error. So a large constant
RUL estimate should be assigned to all samples prior to the
FPT to penalize late FPTs (equivalent to (Li et al., 2019)).
This value must be pretty high - for example using a RUL
equal the time duration of the longest time-series. Several
other proposals have also been made in the literature (for ex-
ample (T. Wang, 2012)). The efficacy of the identification of
the FPT will indirectly influence the RUL model’s error rate.
However, with such a large cost, early FPT’s (longer predic-
tion periods) will be rewarded.

9. RESULTS

A total of 21 metrics were identified and 19 were used to
quantify adherence to proper protocol (section 3.1). For each
article, these indicators were evaluated and conformity to best
practices was recorded. For each metric a total was tallied and
simple statistics were calculated. The data and calculations
are available in a spreadsheet included with the supplemen-
tary material.

It is important to note that evaluating the correctness of the
methodology is difficult because not all of the information is
available and no attempt was made to replicate the experi-
ments to check if anything was missing. Replicating exper-
iments is infeasible but, in a few cases, attempts were made
to contact authors and obtain additional information. Conse-
quently, when in doubt, we assume proper procedures are not
being followed and err on the side of underestimating compli-
ance. Nevertheless, we believe that even so these conservative
estimates still allow us to gauge the current status of research
in the RUL estimation domain.

In this section we present a summary of the results and high-
light several interesting outcomes that supports our hypothe-
sis - that research in the RUL estimation domain do not al-
ways follow best practices and that significant improvements
are possible.
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9.1. General ML best practices

In regards to data leakage, we endeavoured to determine if
the researchers performed data splitting correctly using the
test set for the final evaluation only (online algorithms must
use prequential error estimation (Gama, 2010)). The estimate
of around 64% (metric “mf sep train test” in the supplemen-
tary spreadsheet) shows that even the most basic requirement,
such as having an independent test set, may not always be
satisfied. The research results in the RUL domain are there-
fore most likely overestimating model performance, making
future comparative work invalid.

Our analysis points to problems in data snooping, both at the
individual and research community level. We found that only
around 26% (metric “mf experiment” in the supplementary
spreadsheet) of the references used all the available data for
training and testing. Although we cannot claim this for the
almost 3/4 of the remaining work, it is a clue that data sets
were potentially cherry-picked for reporting.

We also see that a significant proportion of research effort
(over 91%) use the same 2 public data sets (see table 2). In
other words, we may be witnessing “oversearching” at the
community level. Other researchers have already pointed out
the need for more data (for example (T. Wang, 2012)).

9.2. Domain Specific best practices

On a more technical note, we have found that of those re-
search articles that use data sets with multiple accelerome-
ter measurements (measured for different directions), about
70% (metric “mf accel” in the supplementary spreadsheet)
of those only use one of the accelerometer readings. In these
cases no justification is given for the selection. It is important
this be done in future research, so that data snooping is ruled
out.

To evaluate the effectiveness of a proposed model, researchers
must compare results to prior work using the same data sets.
We counted the number of valid comparisons that were made
per article (see comparisons variables in the worksheet in the
supplementary material). Surprisingly, only 24.3% of the
sampled articles made such comparisons. On average only
1.82 articles were used for comparison (maximum was 4 ar-
ticles).

We further analyzed the 17 cases that did compare results
to prior work. First, we counted how many of these cases
used models that performed RUL estimation for the same
lifetime (see Table 5). We found that 88.2% made equiva-
lent comparisons (2 of the 17 were possibly incorrect). Sec-
ond, we counted how many of the 17 cases used models that
performed RUL estimation for the same operating regimes
(see Table 5). Only 47.1% made equivalent comparisons (9
of the 17 were possibly incorrect). This means that at best
only 11.4% (8 of the total 70) of all the research efforts made

equivalent comparisons.

As described in section 8.1 on problem classes, it is still cor-
rect to compare the performance of general models with their
more specific counterparts (see Table 5). We therefore ex-
tended the previous analysis to include these cases. For com-
patible lifetime comparisons, we only found 1 more article re-
sulting in a total of 94.1% valid comparisons (1 of the 17 was
incorrect). For compatible operating regimes we found an
additional 7 articles resulting in a total of 88.2% valid com-
parisons (2 of the 17 were incorrect). This means that at best
only 21.4% (15 of the total 70) of all the research efforts made
valid comparisons.

We then investigated what type of analysis was made by the
majority of the articles that did not compare to prior work.
We found that a total 41.4% of the researchers developed and
compared several models of their own. Surprisingly, 31.4%
made no comparisons whatsoever. The remaining 2.9% com-
pare to research that used different data sets (we assume they
replicated the research with the correct data set).

9.3. Best practices by category

For an overview of the results, we estimated the % of adher-
ence to proper protocol according to 3 categories of best prac-
tices. We used the median of the metrics that were grouped
into those categories to aggregate the values (see the “by cat-
egory” table in the supplementary worksheet). We obtained
the following results:

• Problem class selection: 26%
• Model Fitting best practices: 30%
• Evaluation best practices: 14%

The number of variables in each category varies from 3 to 7
(see supplementary material). We opted to use the median
because it is more robust to the extreme values found in cat-
egories with a small number of variables. Some caution is
therefore required when interpreting these results. Notwith-
standing the limitation, we believe the results are informative,
and several conclusions may be drawn.

First, the “evaluation best practices” category has the poorest
performance of all. Both the evaluation procedure and met-
rics are neither standardized nor used consistently. This issue
was already identified several years ago (Saxena et al., 2010),
but is still observed in the most recent research. We see for ex-
ample that only a little more than 18% (metric “ev weighted”
in the supplementary spreadsheet) of researchers weigh dif-
ferently early and late predictions. And even in these cases,
the weighing is not always fully specified (for example (Duong
et al., 2018)). More importantly only 11% (metric “ev nstep”
in the supplementary spreadsheet) of the researchers use a
fixed number of samples for error estimation in order to avoid
issue related to the time-series length. Finally, we have yet to
find reports that show how the model performs in the vari-
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ous stages of degradation (metric “ev per hs” in the supple-
mentary spreadsheet) - only a single metric is provided for
the full signal duration. In the cases where aggregates on
model performance are provided (test data sets with multiple
instances), only 17% (metric “ev aggregates” in the supple-
mentary spreadsheet) provide additional statistical informa-
tion, such as a confidence interval.

Second, all categories show that adherence to good practices
is very low (all well below 50%). This indicates that replica-
tion and comparison of the results is severely impaired. With
the already mentioned caveat that these are only rough esti-
mates, we may conclude that no more than 11% (ev nstep)
of the research in RUL estimation can be replicated without
additional work on the original models.

10. CONCLUSION

The difficulty of replicating and comparing research in the
domain of RUL estimation of ball bearing failures, has moti-
vated this meta-analysis on experimental protocol. We have
found that the procedures vary significantly among researchers
and in many cases are incomplete or incorrect. As a result we
have made a general review on machine learning literature
to determine which are the most common pitfalls. We then
use that information to establish metrics that measure adher-
ence to correct experimental procedures for data analysis and
model comparison. We also studied a number of research ar-
ticle on RUL estimation with the aim of identifying the best
practices in this specific domain. With this information we
proposed a general protocol that should be used when com-
paring RUL estimation models.

A total of 70 papers on RUL were audited in order to identify
the extent to which errors and omission in both experimen-
tal procedures and reporting inhibit progress in this domain.
The survey showed that roughly 11% of the papers present
work that will allow for replication and comparison. Of these,
no article follows correct procedure without some error. The
most common issue that was identified is in the category of
the “evaluation best practices”.

We believe the sample is large enough that it represents the
true extent of these issues. However, it is a challenge to ascer-
tain whether or not we have all of the information required to
replicate experiments and compare models without attempt-
ing to do so. Quite possibly the estimates of adherence to
correct protocol we have are underestimated.

We think that making a platform or workframe available that
automates and systematizes the procedure described in our
protocol, will go a long way in avoiding many of the prob-
lems that were identified. The emphasis should be on enforc-
ing the domain specific procedures that take into account the
detection of the FPT and evaluating compatible RUL models
(problem classes). It should allow researchers to quickly add

new data sets and easily compare results with existing work.
This has the potential of advancing research in this domain.
Such a platform could also contribute to other related areas of
RUL estimation.

Although establishing correct protocol is of paramount im-
portance, another serious issue is the lack of data. Almost
all of the research effort (over 91%) use the same 2 public
data sets (see table 2). These data sets also present addi-
tional problems. First, all but the GPMS (Ben Ali et al., 2018)
data set, were obtained under laboratory conditions, making
model evaluation sub-optimal. Second, they consist of a very
limited number of instances (Table 4), which potentially in-
troduces problem with data snooping. And finally, the du-
ration of the time-series are very different (Table 3), which
make model evaluation difficult. The models’ good perfor-
mance on these benchmarks are therefore overly optimistic.
These results may inadvertently create high expectations of
good performance. However, try as they might, practition-
ers training these same models on new unseen data, will be
unable to reach the same level of performance.

Although it is an expensive and time-consuming endeavour
(Saxena et al., 2010), it is imperative that an extensive set
of benchmarks be made available to researchers. More con-
cretely, data sets obtained from factory settings are urgently
needed.

In addition to this we have found that a total of 21.5% (Ta-
ble 2) of the articles do not make any of their data avail-
able and none of the articles we audited made their source
code available. We urge researchers to adopt the principles of
Open Science as a means of disseminating their results. Re-
producible experiments provide opportunities for identifying
and correcting errors, thereby facilitating progress (Shepperd
et al., 2019).

We have, by no means, exhausted the subject of RUL estima-
tion best practices. For example, issues regarding the appli-
cability of model fitting and evaluation procedures using in-
finite time-series, imposes additional restrictions. However,
we hope the details and recommendations herein will facili-
tate researchers’ work in the future.
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