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ABSTRACT 

Falls are the leading cause of disability in older adults with a 

third of adults over the age of 65 falling every year. 

Quantitative fall risk assessments using inertial measurement 

units and local dynamics stability (LDS) have shown that it 

is possible to identify at-risk persons. However, there are 

inconsistencies in the literature on how to calculate LDS and 

how much data is required for a reliable result. This study 

investigates the reliability and minimum required strides for 

6 algorithm-normalization method combinations when 

computing LDS using young healthy and community 

dwelling elderly individuals. Participants wore an 

accelerometer at the lower lumbar while they walked for 

three minutes up and down a long hallway. This study 

concluded that the Rosenstein et al. algorithm was 

successfully and reliably able to differentiate between both 

populations using only 50 strides. It was also found 

normalizing the gait time series data by either truncating the 

data using a fixed number of strides or using a fixed number 

of strides and normalizing the entire time series to a fixed 

number of data points performed better when using the 

Rosenstein et al. algorithm.  

1. INTRODUCTION 

Falls are among the most common cause of decreased 

mobility and independence in older adults and rank as one of 

the most serious public health problems in the U.S., with 

costs exceeding $50 billion in 2015 (Ambrose, Paul, & 

Hausdorff, 2013; Bergen, Stevens, & Burns, 2016; Burns, 

Stevens, & Lee, 2016; Weisenfluh, Morrison, Fan, & Sen, 

2012). Analogous to this reduction in independence is the 

inherent decline in gait stability that impairs balance and 

predisposes older adults to falls and fall-related injuries. 

Dynamic stability, defined as the ability to maintain 

equilibrium despite the presence of small disturbances or 

control errors, is a fundamental motor task that must be 

rapidly adapted in the face of a dynamically varying 

environment (Dingwell & Cusumano, 2000; Dingwell, 

Cusumano, Cavanagh, & Sternad, 2001; Wurdeman, 2016). 

Evidence suggests that older adults experience a gradual 

deterioration in these balance mechanisms and may require 

more task-dependent rehabilitative and training 

interventions. Quantitative assessment of gait has been 

shown to identify age-related decrements, fall risk and 

pathology (Bruijn, Meijer, Beek, & Van Dieën, 2013; Daniel 

Hamacher, Singh, Van Dieën, Heller, & Taylor, 2011; 

Toebes, Hoozemans, Furrer, Dekker, & Van Dieën, 2012). In 

particular, gait measures derived from trunk acceleration 

signals can characterize trunk movement dynamics that 

regulate gait-related oscillations. However, aging may induce 

subtle impairments in gait without obvious detectable 

unsteadiness; therefore, nonlinear measures which are able to 

detect the hidden, subtle characteristics of aging in 

detrimental effects on locomotor control are used. In 

particular, calculating local dynamic stability (LDS) or the 

Lyapunov Exponent (LyE) during continuous walking has 

become a popular approach for quantifying gait stability 

(Mehdizadeh, 2018).  

Modern motion capture laboratories collect precise data 

during walking and postural stability tasks; however, they are 

prohibitively expensive, immobile, and require well trained 

technicians to collect and process experimental results. 

Inertial measurement units (IMUs) or accelerometers have 

become widely used in assessing and monitoring gait and 

other daily living activities as an alternative to traditional 

motion capture. These sensors more flexible, mobile, and 

inexpensive. They also have the advantage of unlimited 

measurement volume and the opportunity of recording gait in 

various environments – e.g. clinical offices, community 

centers, or outdoor tracks – with ease (Tao, Liu, Zheng, & 

Feng, 2012). Accelerometers and LDS have been used 
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together as biomarkers for differentiating between healthy 

controls and various ailments, e.g. patient with dementia 

(IJmker & Lamoth, 2012), multiple sclerosis (Huisinga, 

Mancini, St. George, & Horak, 2013), and concussions (Fino, 

2016). However, not all of these studies are comparable. 

Some studies use different data collection equipment, 

algorithms, and/or normalization methods. And even when 

publications research similar paradigms, some studies find 

significant differences while others do not. This could be due 

to sample and effect size within particular studies, but the 

inconsistency across publications could also be due to the 

lack of a universal methodology for calculating the LyE 

during gait.  

To date, there has been several pivotal publications about the 

issues in calculating the LyE when using gait data and how 

various factors can impact the value of the LyE (Dingwell & 

Marin, 2006; Mehdizadeh, 2018; Raffalt, Kent, Wurdeman, 

& Stergiou, 2019; Stenum, Bruijn, & Jensen, 2014). In this 

study we will focus on the choice of algorithm and 

normalization methods used and examine their reliability and 

determine the minimum number of required strides for 

reliable computation in both young healthy and elderly 

adults. The most common algorithms for calculating LDS in 

gait are the Rosenstein et al. (R-algorithm) and Wolf et al. 

(W-algorithm) algorithms, refer to Figure 1 for a comparison 

flowchart.  

Both the R- and W-algorithms track the rate of exponential 

divergence of neighboring points on the attractor. Each 

method starts by reconstructing the phase space by using the 

method of delays (Broomhead & King, 1986; Takens, 1981). 

For an N-point time series 𝑥(𝑛) , the phase space can be 

reconstructed using the following equation, where 𝜏  is the 

time delay and 𝑑𝐸 is the embedding dimension. 

𝑦(𝑛) = [𝑥(𝑛), 𝑥(𝑛 + 𝜏), … , 𝑥(𝑛 + 𝑑𝐸 − 1)𝜏] (1) 

This creates a 𝑑𝐸  dimensional phase space as an 𝑀 × 𝑑𝐸 

matrix where 𝑀 = 𝑁 − (𝑑𝐸 − 1)𝜏. After creating the phase 

space these two algorithms diverge. For the R-algorithm, the 

nearest neighbor of every point on the reference trajectory is 

found. In this method, nearest neighbors are located by using 

the Euclidean norm and requiring that each point must be on 

a separate trajectory. The average divergence distance of all 

possible nearest neighbor pairs is tracked through time 

creating a mean divergence curve. The LyE is then calculated 

using a least-squares fit to the linear slope of the divergence 

curve, where ⟨   ⟩  denotes the average over all pairs of 

𝑗 (nearest neighbor pairs, 𝑗 = 1,2, … , 𝑀). 

𝑦(𝑖) =
1

∆𝑡
〈ln 𝑑𝑗(𝑖)〉 (2) 

The W-algorithm, after the phase space is reconstructed, uses 

the first point as a reference trajectory and follows a single 

nearest neighbor until the separation between the reference 

and neighbor is greater than a specific limit. The exponential 

growth in separation is then calculated and a new nearest 

neighbor is found. This procedure is repeated until the 

reference trajectory has gone through all of the data samples 

and LyE was estimated using: 

𝜆1 =
1

𝑡𝑀 − 𝑡0
∑ ln (

𝐿′(𝑡𝑘)

𝐿(𝑡𝑘−1
)

𝑀

𝑘=1

 (3) 

where 𝐿(𝑡𝑘−1)  and 𝐿′(𝑡𝑘)  are the distance between the 

vectors at the beginning and end of a replacement step, and 

M is the total number of replacements (Wolf, Swift, Swinney, 

& Vastano, 1985). Please note that this equation uses natural 

logarithm instead of the binary logarithm function that Wolf 

et al. originally presented. This was done to make the LyE 

more comparable between the two algorithms (Cignetti, 

Decker, & Stergiou, 2012). For more details on either the R- 

or W-algorithm calculation methods please refer to the 

following publications (Rosenstein, Collins, & De Luca, 

1993; Smith, 2019; Wolf et al., 1985).  

 

Figure 1. Flowchart for calculating the Lyapunov exponent 

summarizing both the Rosenstein (R-algorithms) and Wolf 

(W-algorithm) methods. 

We hypothesize that each algorithm will require significantly 

different number of strides for the calculation of LDS. 

Additionally, different time series normalization methods 

have also been shown to affect the LyE and that different 

normalization methods work better for different LyE 

algorithms (Raffalt et al., 2019; Stenum et al., 2014). 

Therefore, we will investigate three of the most common 
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normalization methods with both the R- and W-algorithm. 

We hypothesize that normalization methods will affect the 

reliability of the calculated LDS. These findings augment 

wearable sensors’ potential as an ambulatory fall risk 

identification tool in community-dwelling settings. 

Furthermore, they highlight the importance of gait features 

that rely less on step-detection methods, and more on time 

series analysis techniques in the community-dwelling elderly 

population.   

2. METHODS 

Seventeen young healthy adults participated in this study and 

eleven community dwelling older adult’s data from an 

ongoing fall risk assessment study was used. All subjects 

reported no cardiovascular issues, neurological diseases, nor 

lower extremity surgeries in the last 3 months. Additionally, 

the elderly participants were required to be able to perform a 

2-3-minute walk without the aid of a cane or walker and had 

no history of falls.  

Table 1 summarized each groups’ subject characteristics. All 

subjects gave written informed consent before participating 

in this study, which was approved by the Institutional Review 

Board of Arizona State University.  

Table 1. Subject characteristics 

 

Young healthy participants wore three tri-axial acceleration 

sensors (APDM, Mobility Lab, APDM, Inc., Portland, OR) 

with a sampling frequency of 128 Hz. The accelerometers 

were fitted with elastic bands and Velcro straps and placed at 

each ankle and the lower lumbar, around vertebrae L5. 

Elderly participants wore a single accelerometer (DynaPort, 

McRoberts, Den Haag, the Netherlands) at the lower lumbar 

attached to elastic bands with a sampling frequency of 100 

Hz. All participants were asked to walk for 3 minutes on a 

makeshift walking track at their preferred walking speed. 

This track was secluded so no outside factors could interfere 

with or interrupt the data collection. Ten seconds were 

removed from the beginning and end of the acceleration 

measurements to avoid non-stationary periods. The trials 

from young healthy participants were down sampled to 100 

Hz to match the elderly community dwelling data collection. 

2.1. Data Analysis 

The following three preprocessing normalization methods 

were applied before calculating the LyE:  

1. Raw Gait Cycle data (gc): The time series is truncated to 

keep a fixed number of strides regardless of the total 

number of data points. This maintains the original 

distance between points in the phase space but allows for 

individuals with a faster pace to have fewer data point 

available over all for the calculation. 

2. Gait Cycle Normalized (gcNorm): As in the first method 

the time series is segmented to a include a fixed number 

of strides. Then each stride is resampled to have a fixed 

number of data points, usually 100. Therefore, all strides 

in this method will contain the same number of data 

points regardless of an individual’s stride time.  

3. Data Point Normalized (dpNorm): The time series is first 

truncated to include a fixed number of strides. Then the 

data is resampled to a specific number of total samples 

for the time series. This allows for fluctuations in data 

length for individual strides.  

For method (3), the total number of data points in the series 

was allocated 100 samples for every stride used. A time delay 

of 10 samples was used for all directions and all 

preprocessing methods. An embedding dimension of 5 was 

used when the LyE is calculated using the Rosenstein et al. 

algorithm and a dimension of 7 was used for the Wolf et al. 

algorithm (Bruijn, van Dieën, Meijer, & Beek, 2009; 

Huisinga, Mancini, George, & Horak, 2013; Smith, 2019). 

The LyE was calculated for all 6 algorithm-normalization 

method combination since neither the Rosenstein et al. 

algorithm nor  the Wolf et al. algorithm have been proven to 

outperform the other and both widely used with gait data. 

(Mehdizadeh, 2018; Rosenstein et al., 1993; Wolf et al., 

1985)  The LyE was taken from 0 to 0.5 strides using the 

Rosenstein algorithm. Additionally, a time evolution of 7 was 

found to be appropriate for calculating the LyE with the W-

algorithm. All calculations were performed using custom 

MATLAB programs (version 2018b, Mathworks Inc., 

Natwick). 

2.2. Statistical Analysis 

To determine the minimum number of strides, we use the 

same procedure as Riva et al. (2014b) using interquartile 

range/median ratio (imr). Briefly the LyE was calculated 

using decreasing windows of strides, from 120 to 10 strides 

with a resolution of 1 stride. The imr is calculated starting 

from the largest window (which gives the smallest ratio) and 

proceeds to the smallest window. The minimum number of 

strides was calculated per index and per subject at an imr 

threshold of 10%. Then the largest number of strides required 

across all subjects was chosen.  Percent imr is an indication 

of the variation around the median. When variations of the 

  Young Adults Elderly Adults 

Gender (M/F) 11/7 2/9 

Age (years) 23.9 ± 3.5 79.4 ± 7.9 

Height (cm) 171.8 ± 11.4 169.7 ± 10.4 

Weight (kg) 74.1 ± 18.6 77.3 ± 16.5 

BMI 24.9 ± 4.4 26.9 ± 5.5 
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measure around the median value are small, imr percentage 

will be low. This is indicative of a steady state being reached.  

Additionally, statistical differences between population 

groups were compared to test the effectiveness of algorithm 

and normalization method combinations. The groups were 

compared based on the found sufficient number of strides 

when using imr. A one-way ANCOVA was used for each 

directional signal –anteroposterior (AP), vertical (VT), and 

mediolateral (ML) – with respect to both algorithms, while 

population and normalization methods were used as model 

effects. A post-hoc Tukey was then used to determine 

differences between each of the model effects. All statistical 

analyses were performed using JMP version 13 (SAS 

Institute Inc., Cary, NC) and a p-value of 0.05 or lower was 

considered significant.  

3. RESULTS 

Algorithm and preprocessing method choice affected the 

number of strides required to reach a steady state using the 

10% threshold. The minimum required strides for calculating 

the LyE are summarized in Table 2 by subject group. 

For Rosenstein et al. algorithm, generally 50 strides were 

sufficient for the young healthy adults to calculate the LyE 

with any method. The minimum number of strides for gc and 

dpNorm methods did not vary greatly when different 

acceleration directions were used. While the number of 

required strides for gcNorm method heavily depended on the 

acceleration direction. The elderly adults usually required 

less than 50 strides to calculate the LyE. Acceleration 

direction had more of an effect on the number of strides than 

any of the preprocessing methods.  The required number of 

strides increased from the AP to the VT and then to ML 

direction, respectively. 

The Wolf et al. algorithm required twice the number of strides 

compared to the Rosenstein algorithm. For the young healthy, 

gcNorm and dpNorm methods required approximately 110 

strides for all directions, while gc required 98 strides for VT 

and AP directions and 117 for the ML direction. The required 

number of strides for the elderly were less consistent than the 

young healthy and heavily depended on the normalization 

method.  

The reliability results are shown in Table 4. The maximum 

inter-subject imr was less than 20% for both young healthy 

and elderly adults when using the Rosenstein et al algorithm. 

The Wolf et al algorithm ranged from 29% to 51% for young 

healthy subjects and 20% to 43% for elderly adults. The 

median inter-subject value of the LyE is also provided as a 

reference for both young and community dwelling elderly 

adults. 

 

 

 Table 2. Number of required strides for calculating the LyE 

using different normalization methods (gc - gait cycles; 

gcNorm - gait cycles normalized; dpNorm - data point 

normalized) using both algorithms (R-Rosenstein; W-Wolf). 

Values used a 10% imr threshold for both young health 

(YH) and elderly adults (EA).  

 

Lastly, the two populations were compared when 50 and 75 

strides were used with the R-algorithm and when 110 strides 

were used with the W-algorithm, shown in Table 3. 

Significant differences between the two population groups 

were found using the AP signal when both data lengths were 

used with the gc and dpNorm normalization methods 

( 𝑝  = 0.001). The normalization methods also found 

significant differences in the VT signal when 75 strides were 

used in the calculation. No significant differences between 

young healthy and community dwelling elderly adults were 

found when using the Wolf algorithm and any of the 

normalization methods. 

Table 3. Significant differences between young health and 

elderly community dwelling adults. Having a p-value < 0.05 

was considered significant. In this table, NS represents “no 

significance” and having a p > 0.5. 

  

Norm. 

Methods VT AP ML 

R-alg. 

50 strides 

gc 0.0942 0.0001 NS 

gcNorm NS NS NS 

dpNorm 0.1025 0.0001 NS 

R-alg. 

75 strides 

gc 0.0344 0.0001 0.4890 

gcNorm NS NS NS 

dpNorm 0.0273 0.0001 0.4867 

W-alg. 

110 strides 

gc NS NS NS 

gcNorm NS NS NS 

dpNorm NS NS NS 

      Min. Number of Strides 

Group Alg. Dir. gc gcNorm dpNorm 

Young 

Healthy 

R 

VT 47 72 41 

AP 44 40 45 

ML 41 26 46 

W 

VT 96 109 99 

AP 98 112 108 

ML 117 113 113 

Elderly 

Adult 

R 

VT 41 43 36 

AP 31 36 24 

ML 60 46 55 

W 

VT 92 105 89 

AP 101 75 81 

ML 98 114 120 
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Table 4. Reliability of LyE calculated for young healthy (YH) and community dwelling elderly adults (EA). Reliability is 

based on the maximum inter-subject imr. The median values of inter-subjects’ medians have been included for reference 

values.  

 

4. DISCUSSION 

Gait stability is directly quantified through local dynamic 

stability, specifically, the LyE value. However, the 

implementation parameters are ill-defined and lack 

standardization procedures. Therefore, the aim of the present 

study was to investigate the reliability of the LyE and 

determine the minimum number of strides for its calculation 

using 6 algorithm-normalization method combinations. The 

Rosenstein et al. and the Wolf et al. algorithms were used 

along with three preprocessing methods: gc. gcNorm, and 

dpNorm. The R-algorithm required a significantly smaller 

number of steps with good reliability compared to the W-

algorithm which only achieved average to poor reliability. 

And only the R-algorithm was able to differentiate the young 

healthy and elderly community-dwelling adults.  

The minimum number of strides required for the R-algorithm 

were found to be much smaller than previously reported (F. 

Riva et al., 2014a); this may be due to differences in 

methodology. The present study calculated the LyE using a 

single step, while Riva et al. (2014a) calculated it from a 

stride. Even though our method requires less strides, it was 

deemed more reliable based on the maximum inter-subject 

imr values -- imr values rank reliability scores accordingly: 

excellent (imr < 10%), good (imr =10-20%), average (imr 

=20-30%), poor (imr =30-40%), and very poor (imr > 40%). 

The R-algorithm had good reliability in this study for both 

young healthy and community-dwelling older adults, while 

Riva et al. (2014b) reported only average reliability for its 

young healthy subjects. This is the first paper, to the authors’ 

knowledge, that has investigated the required minimum 

number of strides and reliability using imr with the W-

algorithm. The W-algorithm required between 100 and 110 

strides for all normalization methods and population groups 

which is almost double the number of strides required for the 

R-algorithm. Additionally, the W-algorithm had average to 

poor reliability across both populations with gc normalization 

method performing better for young healthy adults and 

dpNorm performing better for elderly adults. 

The results of the present study also show that the R-

algorithm was able to differentiate between both populations 

while the W-algorithm was unable. Significant differences 

between elderly and young healthy adults were found in the 

AP direction (𝑝 = 0.0001, shown in Table 4) when using the 

R-algorithm, which is consistent with the literature (Liu, 

Zhang, & Lockhart, 2012; Lockhart & Liu, 2008). But 

interestingly, no significant differences were found in the ML 

direction, which is more commonly reported as significant 

(Dennis Hamacher, Hamacher, Singh, Taylor, & Schega, 

2015; Terrier & Reynard, 2015). This could be due to 

different data lengths and normalization methods used in 

those publications or even differences between over-ground 

and treadmill walking studies. It is also important to note that 

not all studies find significant differences between these 

populations like Bizovska et al. (2018). They found no 

differences in their young and elderly populations in both 

over-ground and treadmill walking trials.  

Recent research has reported that raw gait (gc) data is ideal 

for the W-algorithm, i.e. just signal truncation, while both 

gcNorm and dpNorm normalization methods should be used 

for the R-algorithm (Raffalt et al., 2019). When the R-

algorithm is used, dpNorm and the gc method had the lowest 

number of required strides and had good measurement 

reliability, as interpreted from percent imr. Both young 

healthy and elderly community dwelling participants 

    Maximum inter-subject imr Median inter-subject value of LyE 

 Group Algorithm   Dir. gc gcNorm dpNorm gc gcNorm dpNorm 

Young 

Healthy 

Rosenstein 

VT 17% 19% 16% 1.04 1.00 1.09 

AP 16% 15% 15% 0.89 1.06 0.93 

ML 19% 16% 18% 1.06 0.88 1.10 

Wolf 

VT 36% 41% 35% 1.48 1.56 1.59 

AP 29% 51% 32% 2.04 2.08 2.20 

ML 35% 33% 39% 1.83 2.29 2.14 

Elderly 

Adults 

Rosenstein 

VT 19% 19% 19% 1.29 1.12 1.31 

AP 12% 19% 13% 1.13 1.05 1.18 

ML 20% 16% 19% 1.19 1.12 1.21 

Wolf 

VT 32% 32% 32% 1.70 1.49 1.78 

AP 27% 28% 20% 2.64 2.44 2.60 

ML 23% 43% 21% 1.94 1.77 2.21 
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required less than 60 strides to calculate the LyE. We 

recommend either the dpNorm or gc method of normalization 

over the gcNorm method for young healthy subject studies. 

The Wolf algorithm was more reliable for young healthy 

adults when raw gait (gc) was used than gcNorm or dpNorm 

methods. The gc method also required less strides for this 

group. For the community dwelling elderly adults, gc method 

was slightly less reliable compared to dpNorm method. 

Additionally, dpNorm required the least amount of data 

except for in the ML range. However, there isn’t a large 

enough difference between gc and dpNorm to definitively 

state one normalization method is more advantageous than 

the other when using the W-algorithm.  

The present study has a few key limitations. First, we only 

calculated the LyE starting from 120 gait cycles. This has 

been deemed a sufficient data length with limited gains in 

precision if more strides could have been included (Bruijn et 

al., 2009; Raffalt, Vallabhajosula, Renz, Mukherjee, & 

Stergiou, 2018; Reynard & Terrier, 2014; F. Riva et al., 2014; 

Terrier & Reynard, 2014). However, not all of these studies 

used accelerometers for data collection and there are a limited 

number of studies on the required number of strides for the 

W-algorithm. Secondly, there was a much larger proportion 

of females in the community dwelling elderly participants. 

This is largely due to participation in ongoing fall risk 

assessments that meet the criteria of this paper. In theory, the 

minimum number of strides is not gender based but this was 

out of scope to be tested in this paper. It should also be noted 

that the findings of this study were derived from a fairly small 

sample size, although similar studies have used as many or 

fewer subjects (Dennis Hamacher et al., 2015; Federico Riva, 

Grimpampi, Mazzà, & Stagni, 2014b) than the present study. 

And finally, two different sensor systems have been used in 

this study however all of the data was taken from the lumbar 

position and all data was down-sampled to 100Hz to ensure 

data length would be equal across both groups. Therefore, the 

use of two IMU systems should not have an effect on the 

results presented in this paper.  

5. CONCLUSION 

The present study investigated the reliability and minimum 

required number of strides to using to calculate LDS in young 

healthy and elderly community dwelling adults. As there is 

no universally accepted standard methodology for this 

calculation, 6 algorithm-normalization method combinations 

were used in order to help work towards creating a 

standardized process for accelerometers. We found that the 

Rosenstein et al. algorithm requires less strides for reliably 

calculating the LyE compared to the Wolf et al. algorithm. 

And the R-algorithm was able to differentiate between young 

healthy and elderly community-dwelling adults in the AP and 

VT direction using only 75 strides, while the W-algorithm 

was unable to differentiate these groups when using 110 

strides. Our results show that either truncating the gait signal 

to a fixed number of strides or normalizing the signal to a 

fixed number of strides with a fixed number of total data 

points will compute a more reliable LyE when using the R-

algorithm.   

NOMENCLATURE 

AP  anteroposterior 

dpNorm  data point normalization method 

gc  raw gait data with fixed number of strides 

gcNorm  gait cycle normalization method 

LyE  Lyapunov Exponent 

ML  mediolateral  

R-algorithm Rosenstein et al. algorithm 

VT  vertical 

W-algorithm Wolf et al. algorithm 
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