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ABSTRACT 

The prediction of several failure modes of an industrial 
equipment requires the development of prediction systems 
with several interdependent parameters. The integration of 
future maintenance actions with this type of prediction 
system is a major asset for maintenance decision making. 
This is even more relevant in the event that after having 
predicted the future occurrence of several failure modes, the 
maintenance department does not have the necessary 
resources to correct all the predicted failure modes at once. In 
this case it becomes necessary to know how much longer the 
equipment will work if future partial maintenance actions that 
do not correct all failure modes are implemented. It is to 
contribute to the resolution of this problem that we propose 
an architecture integrating the future maintenance actions to 
the prediction of several interdependent parameters. This 
architecture is based on the association of Proportional 
Integral Derivative regulators to Neuro-Fuzzy systems taking 
into account the four previous instants to predict the next 
instant. An application is made with accuracies of the order 
of 70% for the prediction of the phenomena of fouling of the 
coolers and of the order of 90% for the prediction of the 
phenomena of clogging of the filters of the ATLAS COPCO 
compressor, this with Central Processing Unit values not 
exceeding one minute. 

 

1. INTRODUCTION 

Improving availability has established itself as one of the 
major challenges for industrial companies of our time 
(Elasha, Shanbr, Li, and Mba, 2019). The anticipation of 
failures (preventive maintenance), now at the heart of the 
maintenance activity allows a real improvement in the 
availability and reliability of systems (Sammouri, 2014; 
Soualhi, Nguyen, Soualhi, Medjaher, and Hemsas, 2019). 
Therefore, it is necessary for the industrialists to predict the 
ideal moment to intervene. This is known as the prognostic 
process (Daher, Hoblos, Khalil, and Chetouani, 2020). The 
industrial prognosis is based on the prediction of the 
evolution of the degradation of components according to past 
commitments but also future solicitations (Lemaitre 
González, 2019). 
 
In the field of industrial prognosis, several approaches have 
been implemented, the data-driven approach is widely used.  
Data-driven prognostic methods aim at transforming raw 
monitoring data into relevant information and behavior 
models (including the degradation) of the system. They take 
as inputs the current monitoring data and return as outputs 
predictions or trends about the health state of the system 
(Gouriveau & Medjaher, 2011). In terms of the failure 
prognosis via the data-driven approach, several mutations 
have been observed. We started with the use of Neural 
Networks (NN), at the looped NN of Zemouri (2003). To 
improve accuracy, Zemouri, Gouriveau, and Patic (2010) 
associate a PID (Proportional Integral Derivative) controller 
with the looped NN. These PID controllers have several 
parameters at different horizons of prediction, which seems 
tedious.  
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Today, data-driven prognostic is based on hybrid systems 
such as Neuro-Fuzzy networks and the most widely used in 
the literature is the Adaptive Neuro-Fuzzy Inference System 
(ANFIS) proposed by Jang (1993). The ANFIS model is still 
widely used in recent works. For example, Soualhi et al. 
(2019), Soualhi, Medjaher, Celrc, and Razik (2020) and 
Motahari-Nezhad and Jafari (2020) have shown that the 
ANFIS model is suitable for short-term prediction of bearing 
failures. Sparthan, Nzie, Soh Fotsing, Beda, and Garro (2020) 
also obtained satisfactory results when implementing several 
ANFIS models for the prediction of failures in a track 
breaking system. Daher et al. (2020) propose the combination 
of several ANFIS models in a new prognostic approach 
applied to a distillation column. 
 
Most of the ANFIS-type systems developed in the literature 
relate for some to the reduction of the prediction error, and 
for others to the control of this error (Dragomir, Dragomir, 
Stefan, and Minca, 2015; Wang, Hong, Chen, and Tang, 
2015; Auand & Priyanka, 2016; Syahputra, 2016; Zhuang, 
Yu, Sun, and Song, 2021). However, these works reveal the 
need to develop efficient and low-complexity prediction 
systems for the prediction of several parameters. Such 
prediction systems would be closer to the requirements of real 
industrial systems. It is in line with these requirements and 
inspired by the work of Jang, Suni, and Mizutani (1997) that 
the work of Tjahe, Mtopi Fotso, Djanna, and Fogue (2017a) 
led to the proposal of an uncomplicated MANFIS (Multi-
outputs Adaptive Neuro-Fuzzy System) for the efficient 
prediction of three interdependent parameters. To improve 
the prediction performance of this system, Tjahe, Mtopi 
Fotso, Djanna, and Fogue (2017b) combines constant 
parameter PID controllers with a MANFIS subsystem for the 
control of prediction error. The resulting MANFIS-PID 
system allows for a decrease in prediction error without 
increasing the complexity of the prediction algorithm.  
 
Besides the need to develop low-complexity, high-
performance prediction systems dedicated to the prediction 
of several parameters, it is necessary to integrate Future 
Maintenance Actions (FMA) into the prediction (Dragomir, 
2008; Adeline, Gouriveau, and Zerhouni, 2008). For this 
reason, Dragomir (2008) proposed a system that integrates 
future maintenance actions with the prediction of a single 
parameter. Considering that most industrial equipment have 
several parameters that are interdependent, and that are 
characteristic of several failure modes, it would be interesting 
to integrate the Future Maintenance Actions to the prediction 
of several parameters. This taking into account that, a partial 
FMA may not restore all the parameters of the industrial 
equipment to their ideal values. This eventuality is very 
frequent in the event that all the conditions and all the 
resources (material, human, etc.) are not gathered to totally 
remedy the failure. 

One of the most commonly used rotating equipment in 
industrial companies is the compressor for the production of 
compressed air (Perstedt & Tuhkanen, 2017). Although the 
causes of failure of rotating equipment are very often related 
to the phenomena of wear of the rotating elements and 
vibration (El Adraoui, Gziri, and Mousrij, 2020a), 
performances of the compressors deteriorates due to 
detrimental effects of fouling on the aerodynamic flow 
characteristic (Hanachi, Liu, Banerjee, and Chen, 2016; 
Jombo, Pecinka, Sampath, and Mba, 2018; Zagorowska, 
Spüntrup, Ditlefsen, Imsland, Lunde, and Thornhill, 2020). 
Faced with all its causes of degradation, predictive 
maintenance seems to be the most suitable solution to 
improve the availability of rotating machines (Hanachi et al., 
2016; El Adraoui, Gziri, and Mousrij, 2020b; Jeong, Son, 
Cho, Baik, and Lee, 2020). By implementing the data-driven 
approach for the prediction of rotating machine parameters, 
several works have been done. In this direction, Hanachi et 
al. (2016) implemented an ANFIS model to predict 
compressor fouling. They noted at the end of their study that 
filter quality and clogging can hinder compressor 
performance.  Hence, the need to predict both the phenomena 
of cooler fouling and filter clogging. 
 
In line with the previously presented work, this work deals 
with the proposal of a new prediction architecture based on 
MANFIS-PID type systems for the integration of future 
maintenance actions with the prediction of several 
parameters. This architecture has the particularity of allowing 
the prediction of several parameters while integrating a future 
maintenance action that does not modify the values of all 
parameters. An application to the ATLAS COPCO 
compressor is made to predict both the fouling of the coolers 
and the clogging of the filters while integrating a future 
maintenance action that remedies the clogging of the oil and 
air filters, and the fouling of the oil cooler, without however 
remedying the fouling of the air coolers.  
 
We can therefore say that the major contributions of this work 
are firstly the simultaneous prediction of the phenomena of 
fouling of coolers and clogging of filters. In a second time, 
one of the contributions of this work is the proposal of a 
model allowing to integrate a partial future maintenance 
action to the prediction. These contributions are done with the 
achievement of good prediction performance with a reduced 
computation time.  
 
In this article, section 2 combines the study of the operation 
of the ATLAS COPCO compressor with an analysis of 
compressor failure modes coupled with that of the significant 
parameters of its degradation. The ANFIS, MANFIS and 
MANFIS-PID systems as well as the proposed model are 
presented. Section 3 entitled Results and Discussion presents 
the performance analysis of the proposed prediction model. 
The conclusion and perspectives associated with this work 
are presented in section 4. 
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2. MATERIALS AND METHODS 

This section presents in first, the ATLAS COPCO ZR 200 
series compressor and an analysis of the failure modes which 
combines the significant parameters of compressor 
degradation. Secondly, this section presents the Neuro-Fuzzy 
systems implemented for the prediction of compressor 
failures. 

2.1. ATLAS COPCO compressor ZR 200 series 

One of the ALTLAS COPCO ZR200 series compressors 
present at SOCAVER (Cameroonian Glass Company) in 
Douala-Cameroon allowed us to validate our prediction 
system. Indeed, the process implemented at SOCAVER for 
the manufacture of hollow glass enclosures is the blown-
blown process. This process requires an air supply in the so-
called blank mold for the formation of the blank and also an 
air supply in the so-called finisher mold for obtaining the 
final shape of the bottle. However, the production of 
compressed air is essential for the productivity of this 
company.   

As presented in Figure 1, the air sucked in via the air filter is 
compressed in the low pressure compressor element and is 
delivered to the intercooler Ci.  

 
Figure 1. ZR200 compressor flow diagram (Atlas Copco, 

2014) 

The cooled air is then further compressed in the high pressure 
compressor element and discharged through the silencer AS 
and the aftercooler Ca. Compressed air leaves the compressor 
via the air outlet. The cooling water flows through the oil 

cooler Co, the cooling jackets of the high pressure 
compressor element and the low pressure compressor 
element, the intercooler Ci and the aftercooler Ca. 

Two water separators are installed: one downstream of the 
intercooler to prevent the intrusion of condensates (water 
molecules from air condensation) into the high pressure 
compressor element and the other downstream of the chiller 
end to prevent the intrusion of condensate into the air outlet 
pipe. The OP oil pump conveys the oil from the gear case and 
through the CO cooler. The oil then passes through the OF 
oil filter, to the bearings and timing gears. The BV bypass 
valve opens if the oil pressure rises above a certain value. 

On ATLAS COPCO compressors, the parameters measured 
are as follows: 

x Charging and running hours 

x Oil temperature (Th) 

x Oil pressure (Ph) 

x Pressure difference at the outlet of the air filter (Pf)  

x Cooling water inlet temperature (Tee)  

x Cooling water outlet temperature (Tse)  

x Temperature at the low pressure compressor element 
(T1et)  

x Temperature at the inlet of the high pressure compressor 
element (Te2et)  

x Temperature at the outlet of the high pressure 
compressor element (Ts2et)  

x Inlet pressure on the high pressure compressor element 
(Pa2et) 

x Outlet pressure on the high pressure compressor element 
(Ps2et) 

x Pressure delivered by the compressor to the network  (Pr) 

x Air temperature at the compressor outlet (Tsc). 

2.1.1. Analysis of significant parameters of compressor 
degradation 

The analysis of failure modes and associated parameters is 
presented in Table 1. This analysis combines the failure mode 
analysis with an analysis of the parameters characterizing the 
evolution of a compressor element towards a failure mode. It 
allowed us to observe that the major parameters to take into 
account to implement our prediction models are: 
x Temperatures at the low and high pressure compressor 

element (T1et et Ts2et)  
x Oil temperature and Oil pressure (Th et Ph)  
x Pressure difference at the outlet of the air filter (Pf). 
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The abnormal evolution of these parameters reflects the 
appearance of fouling phenomena in the air and oil coolers, 
and clogging of the air and oil filters. The occurrence of these 
failure modes results in adverse effects such as: 

x Non-conformity of the air pressure and temperature at 
the outlet 

x Lubrication fault. 

Table 1. Analysis of failure modes and associated parameters 
 

Element Function Failure mode Effect on compressor Parameters 
Air filter Rid the air of impurities Clogged filter Non-compliance of the air pressure 

at the outlet 
Pf 

low pressure 
compressor 
element 

Compress the air at low 
pressure 

Abnormal heating Non-compliance of the air 
temperature at the outlet T1et and Te2et 

Non-compliance of the 
delivered pressure 

Non-compliance of the air pressure 
at the outlet 

Pa2et 

high pressure 
compressor 
element 

Compress air at high 
pressure 

Abnormal heating Non-compliance of the air 
temperature at the outlet Ts2et and Tsc 

Non-compliance of the 
delivered pressure 

Non-compliance of the air pressure 
at the outlet 

Ps2et 

Synchronization 
gears 

Drive the screws of the low 
and  high pressure 

compressor element 

Pinions sprockets - Abnormal vibration 
- Screw drive faults 

 

Water separators Clean the air of water 
particles 

The separator does not 
separate the air from the 
condensate 

Air non-compliance  

Intercooler Cool the air at the exit of the 
low pressure compressor 
element 

Fouled cooler Non-compliance of the air 
temperature at the entrance to the 
high pressure compressor element 

Te2et 
 

Aftercooler Cool the air at the exit of the 
high pressure compressor 
element 

Fouled cooler Non-compliance of the air 
temperature at the outlet of the high 
pressure compressor element 

Tsc 

Silencer Reduce noise Silencer not tight Abnormal noise  
Non-return valve Prevent air circulation in 

two directions 
The valve does not prevent 
the return of the fluid 

Non-compliant pressure Pr 

Oil pump Converting mechanical 
energy into hydraulic 
energy 

The pump does not deliver or 
delivers little oil 

 
Lubrication fault 

Ph 

Oil filter Rid the oil of impurities Clogged filter Lubrication fault  Ph 
Oil cooler Cool the oil Fouled cooler Lubrication fault  Th 

  

The analysis of the ATLAS COPCO compressor parameters 
aims at establishing the interdependence relations between 
the parameters to be predicted. To establish the 
interdependence relationships between the significant 
parameters of the ATLAS COPCO compressor degradation, 
we have first calculated and observed the correlation 
coefficients. In a second step, we based ourselves on the 
analysis of the compressor operation. 

The rank Spearman correlation (Lobo & Guntur, 2018), is 
calculated by applying the Eq. (1): 

S = 1 −
6�𝑑𝑖2

n(𝑛2 − 1)
 (1) 

With: 
S: Spearman rank correlation value 

d: Margin of each pair value 
n: Spearman rank pair values. 

Table 2 presents the Spearman correlation coefficients of the 
characteristic parameters of the phenomena of fouling of the 
coolers, and clogging of the filters of the ATLAS COPCO 
compressor. It is from the analysis of the values of these 
coefficients, completed by the analysis of the compressor 
operation, that we establish the interdependence relations 
between the parameters to be predicted as described in Eq. 
(2). For the parameter T1et, we are interested in the parameters 
so the correlation coefficients are greater than or equal to 
0.48.  For the parameters Ph and Ts2et, we have taken into 
account parameters so the correlation coefficients are greater 
than or equal to 0.42.  For the parameter Th, we chose the 
parameters so the correlation coefficients are higher or equal 
to 0.63. Finally for the parameter Pf, we have taken into 
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account the parameter whose correlation coefficient is equal 
to 1. 
  

Table 2. Spearman correlation coefficients 
 𝑻𝟏𝒆𝒕 𝑻𝒔𝟐𝒆𝒕 𝑻𝒉 𝑷𝒉 𝑷𝒇 
𝑇1𝑒𝑡 1 0.42 0.63 0.11 0.45 
𝑇𝑠2𝑒𝑡 0.42 1 0.67 0.15 0.23 
𝑇ℎ 0.63 0.67 1 0.42 0.01 
𝑃ℎ 0.11 0.15 0.42 1 0.02 
𝑃𝑓 0.45 0.23 0.01 0.02 1 
𝑇𝑒𝑒 0.66 0.62 0.50 0.22 0.04 

 

{
 
 
 
 
 

 
 
 
 
 
𝑑𝑇1𝑒𝑡
𝑑𝑡

= 𝑓1(𝑇1𝑒𝑡, 𝑃𝑓, 𝑇𝑒𝑒, 𝑇ℎ)

𝑑𝑇𝑠2𝑒𝑡
𝑑𝑡

= 𝑓2(𝑇𝑠2𝑒𝑡, 𝑇𝑒𝑒, 𝑇1𝑒𝑡, 𝑇ℎ)

𝑑𝑇ℎ
𝑑𝑡

= 𝑓3(𝑇ℎ, 𝑇𝑒𝑒, 𝑇1𝑒𝑡, 𝑇𝑠2𝑒𝑡)

𝑑𝑃ℎ
𝑑𝑡

= 𝑓4(𝑃ℎ, 𝑇ℎ)

𝑑𝑃𝑓
𝑑𝑡

= 𝑓5(𝑃𝑓)

 

 

 

 

(2) 

 
2.2. Adaptive Neuro Fuzzy Inference System (ANFIS) 

The ANFIS system presented in Figure 2, proposed by Jang 
et al. (1997), is a multilayer adaptive network-based fuzzy 
inference that maps relations between inputs and outputs. 
ANFIS is useful for solving complex problems with large 
uncertainties by creating a fuzzy inference system with 
adjusted parameters of the membership function (Zid, 
Ahmed, and Turki, 2018; Elbaz, Shen, Sun, Yin, and Zhou, 
2020). 
In this work, ANFIS model is used for the following reasons: 
x ANFIS allows reduced computation time (Cao, 

Babanezhad, Rezakazemi, and Shirazian, 2020) 
x Neuro-fuzzy systems are promising in cases where 

limited data are available (Adeline et al., 2008; Hanachi 
et al., 2018; Atsalakis, Atsalaki, and Zopounidis, 2018) 

x The function fitting degree can be controlled in the 
membership functions regarding the sensitivity to each 
input, and it shows high repeatability for parameter 
setting when it is trained with the training data set 
(Hanachi, Jie, and Mechefske, 2018) 

x ANFIS requires fewer adjustable parameters than those 
required in other Neural Network structures (Atsalakis et 
al., 2018; Naphon, Arisariyawong, Wiriyasart, and 
Srichat, 2020). 

 

Figure 2.   Network structure of ANFIS model (Jang et al., 
1997) 

An ANFIS system implements a linear approximation of the 
output variable by decomposing the input space into different 
fuzzy spaces. An ANFIS system is composed of five layers. 

Layer 1. Generates the membership grades: 

𝑂𝑖1 = 𝜇𝐴𝑖(𝑥),  i=1, 2     (3) 

 
𝑂𝑖1 = 𝜇𝐵𝑖(𝑦), i=1, 2                                                                  (4) 

Where µAi and µBi can be any membership functions. 

Layer 2. Generates the firing strengths.                

Layer 3. Normalizes the firing strengths.             

𝑂𝑖3 = 𝑤𝑖̅̅̅ =
𝑤𝑖

𝑤1+𝑤2
, i=1, 2                                                        (6) 

Layer 4. Calculates rule outputs based on the consequent 
parameters. 

𝑂𝑖4 = 𝑤𝑖̅̅̅𝑓𝑖 = �̅�(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖), i=1, 2                                      (7) 

Where pi, qi and ri are the so-called consequential parameters. 
 
Layer 5. Output calculation 

𝑂𝑖5 = ∑ 𝑤𝑖̅̅̅𝑓𝑖2
𝑖=1 = ∑ 𝑤𝑖𝑓𝑖

2
𝑖=1
𝑤1+𝑤2

, i=1, 2                                         (8) 

 
After this phase, the optimal values of these membership 
function parameters and consequential parameters are set by 
a hybrid learning algorithm that combines the method of least 
squares with the backpropagation learning algorithm 
(Abdulshahed, Longstaff, Fletcher, and Myers, 2013). 
Finally, the ANFIS output is calculated by means of 
consequential parameters (Jang, 1993). Different learning 
techniques, such as a hybrid-learning algorithm (Kar, Das, 
and Ghosh, 2014) or Genetic Algorithm (Martínez-Soto, 
Castillo, and Castro, 2014), can be adopted to solve this 
training problem. Better performance of ANFIS models has 
been shown by adopting a rapid hybrid learning method, 
which integrates the gradient descent method and the least-
squares method optimize parameters (Karahoca, & Karahoca, 

𝑂𝑖2 = 𝑤𝑖 = 𝜇𝐴𝑖(𝑥)𝜇𝐵𝑖(𝑦), i=1, 2                                            (5) 
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2011).Thus in this paper, the hybrid learning method is used 
for constructing the proposed models. 
The “Fuzzy C-Means clustering” (FCM) method is based on 
the principle that each data point belongs to a “cluster” to 
some extent which is specified by a membership category. 
This method offers better partitioning compared to other 
methods. It allows a set of points belonging to a 
multidimensional space to be grouped into a specific number 
of different clusters. FCM uses fuzzy partitioning allowing a 
data point to belong to all groups with different membership 
degrees between 0 and 1. Suganya & Shanthi (2012) provide 
a synthetic algorithm for this method. 
The implementation of FCM begins with the calculation of 
the vector of the centers of the “clusters”. For each of the k 
iterations, the following expression makes it possible to 
calculate the centers of the "clusters".    

𝐶𝑖 =
∑ 𝑢𝑖𝑗𝑚𝑥𝑗𝑛
𝑗=1

∑ 𝑢𝑖𝑗𝑚𝑛
𝑗=1

 

                                                              

(9) 

xi is the ith datum measured in d-dimensional space. The 
degree to which xi belongs to the "cluster" j is denoted by uij. 
The centers thus calculated allow the degrees of membership 
to be corrected via the expressions below: 
 

𝑢𝑖𝑗 =
1

∑ (
𝑑𝑖𝑗
𝑑𝑘𝑗

)
2
(𝑚−1)⁄

𝑐
𝑘=1

  
(10) 

  
𝑑𝑖𝑗 = √∑ (𝑥𝑖 − 𝑐𝑖)𝑛

𝑖=1   (11) 

                            
The membership degrees are corrected until: 

‖𝑈(𝑘 + 1) − 𝑈(𝑘)‖ < 𝜖  (12) 

 

2.3. Multi-outputs Adaptive Neuro-Fuzzy Inference 
System (MANFIS) 

The MANFIS architecture presented in Figure 3 is seen as an 
aggregation of several ANFIS. The first MANFIS 
architecture was proposed by Jang & Sun (1995). 

 
Figure 3. MANFIS proposed by Jang & Sun (1995) 

It is among other things to improve the performance of this 
prediction architecture that Tjahe et al. (2017a) proposed a 

new MANFIS system (shown in Figure 4), that takes into 
account the four previous instants to predict the next instant 
for the prediction of three interrelated parameters. 

 
Figure 4. MANFIS for the prediction of three 

interdependent parameters proposed by Tjahe et al. (2017a) 

In figure 4 input variables Xint, Yint and Zint are vectors defined 
as follows: 

𝑋𝑖𝑛𝑡 = [𝑥(𝑡 − 3)    𝑥(𝑡 − 2)    𝑥(𝑡 − 1)   𝑥(𝑡)]𝑇 (13) 
 
𝑌𝑖𝑛𝑡 = [𝑦(𝑡 − 3)   𝑦(𝑡 − 2)   𝑦(𝑡 − 1)   𝑦(𝑡)]𝑇                                (14) 

 
𝑍𝑖𝑛𝑡 = [𝑧(𝑡 − 3)   𝑧(𝑡 − 2)   𝑧(𝑡 − 1)   𝑧(𝑡)]𝑇    (15) 

 
2.4. MANFIS-PID 

 
Figure 5. MANFIS-PID system (Tjahe et al. 2017b) 

The MANFIS-PID system shown in Figure 5 consists of a 
MANFIS system that takes into account the four previous 
instants to predict the next instant (Tjahe et al. 2017a). PID 
controllers are associated with this system, with the aim of 
reducing the prediction error (Tjahe et al. 2017b). Unlike the 
PID controller proposed by Zemouri et al. (2010), the 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

International Journal of Prognostics and Health Management, ISSN 2153-2648, 2021                                                                            7 

particularity of the PID controllers proposed here is that they 
keep constant, parameter values Kp, Ki and Kd in the medium 
term. 
For the MANFIS-PID system, the prediction errors �x1(t), 
�y1(t) and �z1(t) are respectively calculated between the 
values �̂�’(t), �̂�’(t) and �̂�’(t) predicted by the MANFIS 
subsystem and the real values x(t), y(t) and z(t). The 
controllers PID1, PID2 and PID3 respectively deliver the 
commands com11, com21 and com31 capable of adjusting the 
predictions of the MANFIS subsystem. The control of the 
prediction error thus performed allows us to obtain �̂�(t+1), 
�̂�(t+1) and �̂�(t+1). 

2.4.1. Determination of the optimal parameters of PID 
controllers 

The method for calculating the parameters Kp, Ki and Kd of 
PID controllers is described below. 

Consider the variable x, the control of the prediction error can 
be written: 

�̂�(𝑡 + 1) = �̂�′(𝑡 + 1) + 𝐾𝑃𝜀𝑥1(𝑡)

+ 𝐾𝑖 ∫ 𝜀𝑥1(𝜏)𝑑𝜏
𝑡

0

+ 𝐾𝑑
𝜕𝜀𝑥1(𝑡)
𝜕𝑡

 

  

(16) 

              
With �x1(t) the prediction error for the horizon t+1. 
By induction, at the horizon t + d we can also write: 
�̂�(𝑡 + 𝑑) = �̂�′(𝑡 + 𝑑) + 𝐾𝑃𝜀𝑥𝑑(𝑡)

+ 𝐾𝑖 ∫ 𝜀𝑥𝑑(𝜏)𝑑𝜏
𝑡

0

+ 𝐾𝑑
𝜕𝜀𝑥𝑑(𝑡)
𝜕𝑡

 

  

(17) 

With �xd(t) the prediction error for the horizon t+d. 
The command com11 delivered by the PID1 controller to 
predict the state of the variable X at instant t+1 can be written 
as: 

𝑐𝑜𝑚11 = 𝐾𝑃𝜀𝑥1(𝑡) + 𝐾𝑖 ∫ 𝜀𝑥1(𝜏)𝑑𝜏 + 𝐾𝑑
𝜕𝜀𝑥1(𝑡)
𝜕𝑡

𝑡
0               (18) 

The ideal being that :  

𝑐𝑜𝑚11 = �̂�(𝑡 + 1) − �̂�′(𝑡 + 1)                                             (19) 

Similarly, the command com1d delivered by the PID1 
controller at time t+d can be written: 

𝑐𝑜𝑚1𝑑 = �̂�(𝑡 + 𝑑) − �̂�′(𝑡 + 𝑑) (20) 

 
Ideally, 

�̂�(𝑡 + 𝑑) = 𝑥(𝑡 + 𝑑) (21) 

This implies that: 
                         

𝑐𝑜𝑚1𝑑 = �̂�(𝑡 + 𝑑) − �̂�′(𝑡 + 𝑑) (22) 

 
Considering the previous expressions, there are constant and 
optimal values Kp, Ki and Kd satisfying the following equation 
system: 
 

{
 
 
 
 
 

 
 
 
 
 𝑐𝑜𝑚11 = 𝐾𝑃𝜀𝑥1(𝑡) + 𝐾𝑖 ∫ 𝜀𝑥1(𝜏)𝑑𝜏

𝑡

0

+𝐾𝑑
𝜕𝜀𝑥1(𝑡)
𝜕𝑡.
.
.

𝑐𝑜𝑚1𝑑 = 𝐾𝑃𝜀𝑥𝑑(𝑡) + 𝐾𝑖 ∫ 𝜀𝑥𝑑(𝜏)𝑑𝜏
𝑡

0

+𝐾𝑑
𝜕𝜀𝑥𝑑(𝑡)
𝜕𝑡

 

   

 

 

 

(23) 

 
The same approach is applied to the variables y and z. 

2.5. Architecture for integrating future maintenance 
actions into the prediction 

The prediction architecture integrating future maintenance 
actions consists of three systems of the MANFIS-PID type 
(Figure 6).  

 
Figure 6. Architecture for integration of future maintenance 

action 
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The MANFIS-PID1 system is that proposed by Tjahe et al. 
(2017b). The MANFIS-PID2 and MANFIS-PID3 systems 
constitute the System for Integrating Maintenance Action 
(SIMA). 

In this architecture, the new constraint integrated into the 
prediction by the SIMA is considered as a modification of the 
evolution profile due to a scheduled maintenance action. The 
Future Maintenance Action (FMA) shown in Figure 6 
consists in remedying the problems related to water 
overheating, oil cooler fouling and air and oil filter clogging. 
Therefore, the FMA initializes the parameters Th, Ph, Pf and 
Tee. 

We therefore assume that the MANFIS-PID1 system is able 
to predict the evolution of the compressor parameters T1et, 
Ts2et, Th, Ph and Pf until all failure thresholds are reached. That 
is to say, until both air and oil cooler fouling and air and oil 
filter clogging are observed. In this case, the SIMA allows to 
know how long the compressor could continue to operate 
after a possible modification of the parameters Th, Ph, Pf and 
Tee by the execution of the FMA. 

The input parameters of the MANFIS-PID1 system are 
vectors presented as follows:  

𝑇1𝑒𝑡 = [𝑇1𝑒𝑡(𝑡 − 3)   𝑇1𝑒𝑡(𝑡 − 2)   𝑇1𝑒𝑡(𝑡 −
1)   𝑇1𝑒𝑡(𝑡)]𝑇  (24) 

 
𝑇𝑠2𝑒𝑡 = [𝑇𝑠2𝑒𝑡(𝑡 − 3)   𝑇𝑠2𝑒𝑡(𝑡 − 2)   𝑇𝑠2𝑒𝑡(𝑡

− 1)   𝑇𝑠2𝑒𝑡(𝑡)]𝑇 
 (25) 

 
𝑇ℎ = [𝑇ℎ(𝑡 − 3)   𝑇ℎ(𝑡 − 2)   𝑇ℎ(𝑡 − 1)   𝑇ℎ(𝑡)]𝑇 (26) 

 

𝑃ℎ = [𝑃ℎ(𝑡 − 3)   𝑃ℎ(𝑡 − 2)   𝑃ℎ(𝑡 − 1)   𝑃ℎ(𝑡)]𝑇 (27) 

  
𝑃𝑓 = [𝑃𝑓(𝑡 − 3)   𝑃𝑓(𝑡 − 2)   𝑃𝑓(𝑡

− 1)   𝑃𝑓(𝑡)]𝑇 (28) 

 
𝑇𝑒𝑒 = [𝑇𝑒𝑒(𝑡 − 3)   𝑇𝑒𝑒(𝑡 − 2)   𝑇𝑒𝑒(𝑡

− 1)   𝑇𝑒𝑒(𝑡)]𝑇 (29) 

From instant t, if MANFIS-PID1 predicts the simultaneous 
attainment of critical thresholds of the parameters T1et, Ts2et, 
Th, Ph and Pf at time t+d, SIMA can be used to incorporate a 
FMA into the prediction. In this case to integrate Future 
Maintenance Actions (FMA) into the prediction by SIMA, 
we consider the possibility that the compressor has the 
following failures: 
x Fouling of the oil cooler detectable by Th  
x Clogged air filter detectable by Pf 
x Clogged oil filter detectable by Ph 
x Air cooler fouling detectable by T1et and Ts2et. 

We include in the prediction the possibility of FMA that 
correct all faults except the clogging of the air cooler. These 
FMA only modify Th, Ph, Pf and Tee, at time t+d. The time 
t+d is therefore the time from which we would like to know 
how long the equipment could still function despite the partial 
correction of its failures.   

The inputs of the MANFIS-PID2 system are those obtained 
after the execution of the FMA at time t+d (Th, Ph, Pf and 
Tee), and the four respective previous states of T1et and Ts2et 
because fouling in the air cooler has not been corrected. 

The input parameters of the MANFIS-PID2 system are 
vectors presented in Eq. (30) to Eq. (35): 

𝑇1𝑒𝑡 = [�̂�1𝑒𝑡(𝑡 + 𝑑 − 3)   �̂�1𝑒𝑡(𝑡 + 𝑑 − 2)  �̂�1𝑒𝑡(𝑡
+ 𝑑 − 1)  �̂�1𝑒𝑡(𝑡 + 𝑑)]

𝑇
 

(30) 

 
𝑇𝑠2𝑒𝑡 = [�̂�𝑠2𝑒𝑡(𝑡 + 𝑑 − 3)   �̂�𝑠2𝑒𝑡(𝑡 + 𝑑

− 2)  �̂�𝑠2𝑒𝑡(𝑡 + 𝑑 − 1)  �̂�𝑠2𝑒𝑡(𝑡
+ 𝑑)]𝑇 

(31) 

 
The values of the parameters Th, Ph, Pf and Tee at the input of 
the MANFIS-PID2 system are those modified by the FMA, 
and are considered as the real values at time t+d, as described 
by Eq. (32), Eq. (33), Eq. (34) and Eq. (35). 
 

𝑇ℎ =  [𝑇ℎ(𝑡 + 𝑑)]𝑇 (32) 

 
𝑃ℎ =  [𝑃ℎ(𝑡 + 𝑑)]𝑇 (33) 

 
𝑃𝑓 =  [𝑃𝑓(𝑡 + 𝑑)]𝑇  (34) 

 
𝑇𝑒𝑒 =  [𝑇𝑒𝑒(𝑡 + 𝑑)]𝑇 (35) 

                                                                                                                                                                                                                       
For the parameters Th, Ph, Pf and Tee, the MANFIS-PID3 
system values the values obtained after the maintenance 
action and those predicted by the MANFIS-PID2 system as 
well as the four respective previous states of T1et and Ts2et. 

The cascading of MANFIS-PID2 and MANFIS-PID3 in 
SIMA is done for two main reasons: 

x To increment the prediction horizon 

x To improve the prediction performance, because 
MANFIS-PID3 takes into account more previous 
instants than MANFIS-PID2 for the parameters Th, Ph, 
Pf and Tee as presented from Eq. (38) to Eq. (41) 

The input parameters of the MANFIS PID3 system are 
vectors presented as follows: 
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𝑇1𝑒𝑡 = [�̂�1𝑒𝑡(𝑡 + 𝑑 − 2)   �̂�1𝑒𝑡(𝑡 + 𝑑 − 1)   �̂�1𝑒𝑡(𝑡
+ 𝑑)   �̂�1𝑒𝑡(𝑡 + 𝑑 + 1)]

𝑇
 

(36) 

 
𝑇𝑠2𝑒𝑡 = [�̂�𝑠2𝑒𝑡(𝑡 + 𝑑 − 2)   �̂�𝑠2𝑒𝑡(𝑡 + 𝑑 −
1)   �̂�𝑠2𝑒𝑡(𝑡 + 𝑑)   �̂�𝑠2𝑒𝑡(𝑡 + 𝑑 + 1)]

𝑇
  

(37) 

 
𝑇ℎ =  [𝑇ℎ(𝑡 + 𝑑)   �̂�ℎ(𝑡 + 𝑑 + 1)]

𝑇
 (38) 

 
𝑃ℎ =  [𝑃ℎ(𝑡 + 𝑑)   �̂�ℎ(𝑡 + 𝑑 + 1)]

𝑇
 (39) 

 
𝑃𝑓 =  [𝑃𝑓(𝑡 + 𝑑)  �̂�𝑓(𝑡 + 𝑑 + 1)]𝑇  (40) 

 
𝑃𝑓 =  [𝑃𝑓(𝑡 + 𝑑)  �̂�𝑓(𝑡 + 𝑑 + 1)]𝑇 (41) 

 
From time t, the prediction architecture proposed in Figure 6 
allows to predict the evolution of the compressor parameters 
until time t+h knowing that a partial FMA could be 
performed at time t+d. 

The variables d and h are prediction horizons, with: 

ℎ > 𝑑 + 1 (42) 

3.      RESULTS AND DISCUSSION 

The objective of this study was to analyze and evaluate in a 
first step the capacity of a MANFID-PID type architecture 
based on the consideration of the four previous instants and 
the control of the prediction error, to predict in the short term 
the fouling of the air and oil coolers and the clogging of the 
air and oil filters using the parameters considered significant 
of the degradation of the ATLAS COPCO compressor. In a 
second step, the performance of prediction of this architecture 
was evaluated and analyzed in the event that an initial 
prediction would have revealed that the compressor will have 
both fouling of the air and oil coolers and clogging of the air 
and oil filters.  In this eventuality the particularity is that we 
integrate to the prediction a future partial maintenance action 
that corrects the fouling of the oil coolers and the clogging of 
the air and oil filters, but does not correct the fouling of the 
air coolers.  To achieve this goal, this study was performed 
with a sample of 30 training data and 47 test data. These data 
are collected at daily time step. We tested the ability of the 
MANFIS-PID1 and SIMA systems to predict the values of 
the significant compressor degradation parameters (T1et, Ts2et, 
Th, Ph and Pf) at different prediction horizons. These 
prediction horizons range from one to four days.         

3.1. Performance measures used in this study                         

Four performance indicators are assessed here. We evaluate 
mean squared error (RMSE), Accuracy (Acc) and R2 (Chai & 
Draxler 2014; Bayatzadeh, Ghadimi and Fattahi, 2017; 
Hyndman & Koehler 2006; Wong, Arumugasamy, Chung, 
Selvarajoo, and Sethu, 2020). The last indicator is the 
computational time, CPU (Central Processing Unit) in 
seconds (s). 

𝑅𝑀𝑆𝐸 =  √
1
𝑛
∑(𝑥𝑖 − 𝑥�̂�)2
𝑛

𝑖=1

 (43) 

                                
With xi the actual measured data and ˆix the predicted data. 

𝑅2 = 1 −
∑ (𝑥𝑖 − 𝑥�̂�)2𝑛
𝑖=1

∑ 𝑥𝑖2 −
∑ 𝑥�̂�

2𝑛
𝑖=1
𝑛

𝑛
𝑖=1

 (44) 

                      
 

𝐴𝑐𝑐 = 1 −
1
𝑛
∑

|𝑥𝑖 − 𝑥�̂�|
(|𝑥𝑖| + |𝑥�̂�|) 2⁄

𝑛

𝑖=1

 (45) 

                                                          
Table 3 and Table 4 respectively present the prediction 
performance of the MANFIS-PID1 and SIMA system at four 
different prediction horizons. These results are obtained with 
a computer with a 64-bit configuration, 4 GB of Intel (R) dual 
Core RAM. 
 

Table 3. MANFIS-PID1 system performance 

Parameter Performances t+1 
days 

t+2 
days 

t+3 
days 

t+4 
days 

T1et R2 0.73 0.73 0.72 0.72 
RMSE (°C) 1.57 1.87 2.10 2.36 
ACC 0.76 0.76 0.75 0.75 
CPU Time (s) 35.5 40.21 40.35 40.30 

Ts2et R2 0.72 0.72 0.71 0.68 
RMSE (°C) 1.65 1.97 2.4 2.5 
ACC 0.76 0.75 0.73 0.73 
CPU Time (s) 40.15 41.57 40.82 42.56 

Th  R2 0.85 0.82 0.82 0.81 
RMSE (°C) 0.54 0.62 0.78 0.84 
ACC 0.95 0.94 0.84 0.84 
CPU Time (s) 28.88 30.14 30.56 32.58 

Ph R2 0.89 0.87 0.87 0.85 
RMSE (bar) 0.16 0.25 0.29 0.34 
ACC 0.96 0.95 0.95 0.93 
CPU Time (s) 27.29 27.12 27.58 28.56 

Pf 
R2 0.93 0.93 0.90 0.90 
RMSE (bar) 0.01 0.02 0.03 0.03 
ACC 0.98 0.98 0.98 0.98 

 CPU Time (s) 28.69 28.75 28.36 29.16 
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Table 3 shows that until horizon t + 4 days, the RMSE is of 
the order of 2.3 (°C) for the parameter T1et, and of 2.5 (°C) 
for the parameter Ts2et. Regarding the temperature of the oil 
Th, at the horizon t + 4 days we obtained an RMSE of the 
order of 0.84 (°C) which is satisfactory taking into account 
the order of magnitude of the temperature of the oil. On the 
other hand, the prediction of the oil pressure Ph at the horizon 
t + 4 days is of the order of 0.34 (bar). The MANFIS-PID 
system offers good predictions of the evolution of Pf.  The 
CPU time values do not exceed 45 seconds for the predictions 
of T1et and Ts2et for the prediction of Th, Ph and Pf the CPU 
time values do not exceed 30 seconds. 

As shown in Table 4, SIMA has a relatively poorer prediction 
performance than MANFIS-PID1.  

Table 4. SIMA performance 

Parameter Performances t+1 
days 

t+2 
days 

t+3 
days 

t+4 
days 

T1et R2 0.71 0.71 0.68 0.68 
RMSE (°C) 1.63 1.90 2.13 2.54 
ACC 0.75 0.74 0.73 0.73 
CPU Time (s) 40.71 41.52 41.6 41.58 

Ts2et R2 0.71 0.71 0.71 0.68 
RMSE (°C) 1.81 2.11 2.62 2.81 
ACC 0.76 0.75 0.73 0.73 
CPU Time (s) 40.46 40.51 40.45 40.62 

Th R2 0.75 0.71 0.70 0.70 
RMSE (°C) 0.61 0.72 0.81 0.92 
ACC 0.73 0.73 0.70 0.70 
CPU Time (s) 39.89 39.86 40.20 40.52 

Ph R2 0.88 0.88 0.87 0.87 
RMSE (bar) 0.18 0.27 0.31 0.42 
ACC 0.92 0.91 0.90 0.90 
CPU Time (s) 39.71 39.53 40.22 40.30 

Pf 
R2 0.90 0.90 0.90 0.90 
RMSE (bar) 0.01 0.02 0.03 0.04 
ACC 0.95 0.95 0.94 0.94 

 CPU Time (s) 38.12 38.58 38.25 39.12 

This decrease in performance is due to the fact that the SIMA 
is based on the consideration of a future maintenance action 
that modifies the values of the parameters Th, Ph, Pf  and Tee, 
contrary to the MANFIS-PID1, the SIMA does not integrate 
the four previous instants of these parameters during the 
prediction.  

Table 4 shows that up to horizon t+4, SIMA presents RMSE 
values of 2.54 (°C) and 2.81 (°C) respectively for the 
predictions of T1et and Ts2et. Regarding Th, at t + 4 days we 
obtained a RMSE of the order of 0.92 (°C) which remains 
satisfactory considering the order of magnitude of the oil 
temperature. The CPU time values obtained after prediction 
with SIMA are of the order of 40 seconds. 

3.2. MANFIS-PID1 system performance 

Table 5 shows the parameters Kp, Ki and Kd of the MANFIS-
PID1 system determined by solving Eq. (23). Since the 
parameter Kp are zero, the controllers are of the PD type. 

Table 5. Combinations of Kp, Ki and Kd parameters for the 
MANFIS-PID1 system 

     
Parameter 

Significant Parameters of the Degradation 
T1et Ts2et Th Ph Pf 

Kp 0.90   0.90 0.81    1.00   -0.21     
Ki 0 0 0 0 0 
kd 0.69 0.59 0.07 0.59 -0.21 

 
Figure 7 shows the predictions for T1et at t+4 days horizon of 
prediction. At the level of data 22, we notice a peak in the real 
temperature value. This peak is unknown to the MANFIS-
PID model. This means that we observe that the predicted 
value at data 22 is considerably lower than the real value. The 
observed prediction error is used in the calculation of the PID 
controller command for the prediction of data 23.   

 
Figure 7. Results of the prediction of T1et via the MANFIS-

PID1 

 
Figure 8. Results of the prediction of Ts2et via the MANFIS-

PID1 
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Figure 8 shows the predictions of the Ts2et parameter made by 
the MANFIS-PID1 system. The difference between the real 
data and the predicted data is around 2. 

Figure 9 shows the predictions of Th at horizon t+4. We note 
that the differences between the predicted and actual data are 
on the order of 1 (°C). 

 
Figure 9. Results of Th prediction via MANFIS-PID1 

 

 
Figure 10. Results of the prediction of Ph via the MANFIS-

PID1 
Figure 10 and Figure 11 shows that for the prediction of Ph, 
the curve of the data predicted by the MANFIS-PID1 system 
is quite similar to that of the real data.   

Within the framework of the prediction of Ph the 
implemented PID controller delivers a command calculated 
from the absolute value of the error between the predicted 
values and the real values. This explains the observation of a 
peak in the opposite direction. 
 

 
 

 
Figure 11. Results of Pf prediction via MANFIS-PID1 

 
3.3. Performances of SIMA 

Table 6 shows the values of the parameters Kp, Ki and Kd of 
the MANFIS-PID2 and MANFIS-PID3 systems of SIMA. 
We also notice that the optimal Ki parameters of MANFIS-
PID2 and MANFIS-PID3 systems are zero. We have PD type 
controllers. 

Table 6. Combinations of Kp, Ki and Kd parameters for 
MANFIS-PID2 and MANFIS-PID3 systems 

 PID 
Parameter 

Significant Parameters of the 
Degradation 

T1et Ts2et Th Ph Pf 
 
MANFIS-

PID2 

Kp 0.90 0.91 0.82 0.80 -0.7 
Ki 0 0 0 0 0 
Kd 0.59 0.41 0.11 0.44 -0.4 

 
 

MANFIS-
PID3 

Kp 1.10 1.11 1.00 0.92 -0.9 

Ki 0 0 0 0 0 

Kd 0.45 0.50 0.19 0.45 -0.1 

 
The comparative analysis of the curves of the real data and 
the data predicted by SIMA is presented by Figure 12, Figure 
13, Figure 14 Figure 15 and Figure 16. The real data set is the 
same as the one used for the MANFIS-PID1 performance 
analysis. 

Despite the fact that in SIMA, the MANFIS-PID2 and 
MANFIS-PID3 systems do not take into account the four 
previous instants to predict the next instant, because of the 
FMA, the curves of the predicted data remain close to the real 
data. 

Figure 12 and Figure 13 show respectively the predictions of 
the parameters T1et and Ts2et at the horizon t+4 days, after a 
FMA which modified essentially the parameters Tee, Th, Ph 
and Pf. The analysis of these figures shows that SIMA makes 
it possible to predict the evolution of the fouling of the air 
coolers after a FMA which corrected only the fouling of the 
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oil cooler and the clogging of the air and oil filters. The 
difference between the predicted data and the data remains 
generally close to 5°C. SIMA shows the same behavior in 
front of the peaks of values. 

 
Figure 12. Results of the prediction of T1et via the SIMA 

 

 
Figure 13. Ts2et prediction results via the SIMA 

Figure 14 shows the predictions of Th after an FMA that 
corrects the oil cooler fouling without correcting the air 
cooler fouling. 

 
Figure 14. Results of the prediction of Th via the SIMA 

The difference between the real data and the predicted data 
remains close to 1°C. 

Figure 15 shows the predictions of Ph by SIMA at time t+4. 
The observation of a peak in the opposite direction is justified 
by the fact that the PID controllers deliver commands 
calculated from the absolute values of the error. 

 
Figure 15. Results of the prediction of Ph via the SIMA 

Figure 16 shows that the curve of values predicted by SIMA 
remains close to the curve of real values. 

 

 
Figure 16. Results of the Pf prediction via the SIMA 

3.4. Proposed prognosis framework for integration of 
futures maintenance actions 

Figure 17 illustrates the general analytical framework of 
predictive maintenance presented by Wang, Zhang, Duan, 
and Gao, (2017). The aim of predictive maintenance is to 
provide decision support for maintenance scheduling by 
diagnosing the defects and predicting the remaining service 
life of equipment. A prognosis framework typically 
incorporates data acquisition, data manipulation (feature 
extraction and feature selection), fault detection, fault 
diagnosis, prognosis and decision support in sequential order 
(Zhang, Lin, Liu, Zhang, Yan, and Wei, 2019). 
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Figure 17. Analytical framework for predictive maintenance 

(Wang et al., 2017) 
 

Based on the analysis of the prognostic framework proposed 
in the literature, we propose in Figure 18, a new prognostic 
framework for the integration of future maintenance actions 
with prediction. 

 

Figure 18. Implementation process of the proposed 
prognosis framework 

In the proposed prognosis framework, after the faults 
diagnosis, the prognosis starts by implementing the 
MANFIS-PID method for a first prediction. If MANFIS-PID 
predicts the occurrence of failures, and the resources (human, 
material...) of the company are limited to completely remedy 
the failure, the maintenance department defines a scheduled 
FMA to be integrated into the prediction. This FMA defined 
from the maintenance schedule is partial because it is 
implemented while waiting for the necessary means to be 
available for a definitive maintenance action.  The FMA thus 
defined will initialize certain parameters for a new prediction, 
this time carried out by the SIMA. The prognostic action is 
completed after the implementation of the SIMA which 
allows to predict how long the equipment could still work if 
a partial maintenance action is executed. The process 
continues with maintenance scheduling. 

4. CONCLUSION 

In this paper, we propose a model for integrating future 
maintenance actions with the prediction of coolers fouling 
and filter clogging phenomena of the ATLAS COPCO 
compressor.  We start from the combined analysis of the 
failure modes and the significant parameters of the 
compressor degradation, to establish the interdependence 
relations between the parameters whose evolution is 
characteristic of the phenomena of cooler fouling and filter 
clogging.  

The combination of Proportional Integral Derivative 
controllers whose parameters remain constant, with a Neuro-
Fuzzy system has allowed to form a MANFIS-PID type 
system.  It allowed to successfully predict the evolution of the 
compressor parameters in the short term. The analysis of the 
first results obtained already shows that the control of the 
prediction error, and the taking into account of the four 
previous instants allow to obtain good precision and 
satisfactory values of the error without increasing the 
complexity of the algorithm.     

In a second step, we assume that the MANFIS-PID system 
has predicts the simultaneous occurrence in the near future of 
fouling of air and oil coolers and clogging of air and oil 
filters. In this eventuality we propose the SIMA (made up of 
two MANFIS-PID type systems), which allows to integrate a 
partial Future Maintenance Action (FMA) to the prediction 
of the compressor failures. In the case of our study we 
simulated the integration of a partial FMA that corrects the 
oil cooler fouling and air and oil filter clogging phenomena, 
without correcting the air cooler fouling phenomenon. The 
new system of integrating Future Maintenance Actions 
(FMA) into the prediction offers good performance with low 
computation time.  

We have proposed a prediction model to integrate a partial 
FMA with the prediction of the phenomena of cooler fouling 
and filter clogging. However, the prediction of wear 
phenomena of mechanical components from vibration and 
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pressure data seems relevant to us and will be the subject of 
our future work. 
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