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ABSTRACT

The wheel-rail interface is regarded as the most important
factor for the dynamic behavior of a railway vehicle, affect-
ing the safety of the service, the passenger comfort, and the
life of the wheelset asset. The degradation of the wheels in
contact with the rail is visibly manifest on their treads in the
form of defects such as indentations, flats, cavities, etc. To
guarantee a reliable rail service and maximize the availability
of the rolling-stock assets, these defects need to be constantly
and periodically monitored as their severity evolves. This in-
spection task is usually conducted manually at the fleet level
and therefore it takes a lot of human resources. In order to
add value to this maintenance activity, this article presents an
automatic Deep Learning method to jointly detect and classify
wheel tread defects based on smartphone pictures taken by the
maintenance team. The architecture of this approach is based
on a framework of Convolutional Neural Networks, which is
applied to the different tasks of the diagnosis process including
the location of the defect area within the image, the prediction
of the defect size, and the identification of defect type. With
this information determined, the maintenance-criteria rules
can ultimately be applied to obtain the actionable results. The
presented neural approach has been evaluated with a set of
wheel defect pictures collected over the course of nearly two
years, concluding that it can reliably automate the condition
diagnosis of half of the current workload and thus reduce the
lead time to take maintenance action, significantly reducing
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engineering hours for verification and validation. Overall,
this creates a platform of significant progress in automated
predictive maintenance of rolling stock wheelsets.

1. INTRODUCTION

Wheel tread degradation is a common downtime cause for
rolling-stock which can significantly affect service availabil-
ity. Railway wheelsets are usually made of steel because of
the high load they must bear and the generally high speed of
this transport service. In this setting, it is in the wheel-rail
interface that the incipient degradation damage develops as
visible defects like cracks, spalls, shells, and skid flats (Magel,
E., and Kalousek, J., 1996). If the severity of these defects
compromises the safety operational considerations of the rail-
way service (among other additional criteria, like the comfort
of the passenger in high-speed rail), the trains are driven out
of commercial service to perform a reprofiling maintenance
action with the lathe in the depot. This activity is typically
scheduled on a periodic mileage basis, but due to the nature
of defect occurrence and its evolution, inspections are carried
out as part of the regular maintenance procedure to guarantee
the reliability of the service and extend the wheel life.

The inspections of wheel tread condition have been tradition-
ally approached by monitoring dynamic variables (i.e., time-
varying signals) such as the force and the strain, and also
by using static variables like the raster image provided by a
picture, which is rich in spatial information. And regarding
the data-driven algorithms of their diagnosis methods, most
of these strategies rely either on low-level/pixel-wise heuris-
tics (Zhang, W., Zhang, Y., Li, J., Gao, X., and Wang, L., 2014;
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Hyde, P., Ulianov, C., and Defossez, F., 2016; Zhang, J., Guo,
Z., Jiao, T., and Wang, M., 2018), or on maximum-margin
classifiers like the Support Vector Machines (SVM) (Ma, K.,
Vicente, T. F. Y., Samaras, D., Petrucci, M., and Magnus, D.
L., 2016; Guo, G., Peng, J., Yang, K., Xie, L., and Song, W.,
2017). However, these solutions seem to be complementary,
and neither clearly outstands its counterpart.

Out of the numerous endeavors to detect rail wheel defects,
this work underlines the study developed by Krummenacher
and colleagues, which compares an approach using wavelets
with SVM to a time-series embedding with a Convolutional
Neural Network (CNN), motivated by the recent success of
this widely-adopted deep neural Computer Vision technol-
ogy (Krummenacher, G., Ong, C. S., Koller, S., Kobayashi, S.,
and Buhmann, M., 2018). Their investigation concludes that
the CNN approach improves the classification performance
through its automatic representation learning ability. This re-
sult is much in line with the current popular Machine Learning
(and in particular Deep Learning) research trend driven by
CNN’s ability to spot surface degradation problems (Han, K.,
Sun, M., Zhou, X., Zhang, G., Dang, H., and Liu, Z., 2017;
Shang, L., Yang, Q., Wang, J., Li, S., and Lei, W., 2018;
Zhang, Y., Cui, X., Liu, Y., and Yu, B., 2018).

Following state of the art Deep Learning techniques for Prog-
nostics and Health Management (PHM) (Fink, O., Wang, Q.,
Svensén, M., Dersin, P., Lee, W.-J., and Ducoffe, M., 2020),
the present work is concerned with the design and implemen-
tation of a rail wheel tread defect diagnosis system based on
CNN applied to smartphone pictures that is able to cope with
the increasing productivity demand to maintain more assets
with the same resources and reduce the engineering lead time
to take maintenance action (Vickerstaff, A., Bevan, A., and
Boyacioglu, P., 2020). To attain this goal, this approach breaks
down the complexity of the whole value chain into modules
that may be developed in their own specific context, and it
blends the hands-on experience available on the shop floor
with the strong technical background available in the engineer-
ing office. In addition, an industrialized online web application
based on modern software development tools and practices is
also created to deploy this solution at the fleet level.

This article outlines the different steps involved in the develop-
ment of this project: from the research that statistically states
the feasibility of the proposed solution, to its industrializa-
tion through a minimum-viable product as a proof of concept.
Section 2 describes the design procedure, including the de-
scription of the data, the learning technique and its evaluation,
and the robust industrialized solution. Section 3 shows the
expected performance results. Section 4 discusses the overall
outcomes and the limitations of the approach, and Section 5
provides the conclusions of the work and reflects on its impact
on the current maintenance plan along with the future avenues
of improvement.

2. METHOD

This section describes process that has been followed to obtain
a robust wheel tread defect diagnosis method.

2.1. Defect Data Description

To merge the knowledge from both the depot workshop and
the engineering office, data from each environment needs to
be available for learning. This section describes the kind of
information that can be extracted from each perspective.

2.1.1. Maintenance Data

A collection of 4600 wheel tread defect pictures taken with
smartphones has been compiled over the course of two years
by the maintenance repair and overhaul (MRO) team in the Als-
tom’s Traincare Centre (i.e., the London Underground North-
ern Line fleet). The maintenance staff take pictures whenever
an incipient defect is detected on the shop floor. The accu-
mulated dataset depicts the presence of six different defects,
which are described as follows with increasing severity:

Indentation (INDT) Superficial dent caused by the wheels
running over a hard object on the track. This category also
includes the “pitting” defect, which displays a similar ef-
fect on the wheel tread but its root cause is the mechanical
strain.

Rolling Contact Fatigue (RCF) Cracks caused by repeated
contact stress during the rolling motion of the wheels.
RCF is a major wear issue in the London Underground
infrastructure and its monitoring is incredibly labor inten-
sive requiring precise visual inspection and detailed data
recording (Vickerstaff, A., Bevan, A., and Boyacioglu, P.,
2020).

Wheel Flat (FLT) Rash that appears on both wheels caused
by the wheelset skidding on the rail.

Clustering (CLUS) Also known as multiple cavities, it has
to do with the appearance of several bruises along the
tread due to uneven contact issues.

Spalling (SPALL) Also known as single cavity or shelling,
it is the critical development of one of the multiple cavities
described before.

Crazing (CRAZ) Also known as thermal cracking, it is a
fracture that occurs with repeated heating and cooling of
the wheel tread surface caused by traction and braking
actions.

As an example, Figure 1 shows a wheel tread picture with
spall and RCF defects. In this dataset, though, there is a strong
bias toward the RCF type (with over 80% of the instances).
Such a major defect type imbalance may pose an adverse
situation for Machine Learning (Yang, Y., and Xu, Z., 2020).
Therefore, this work downsamples the RCF subset of data so
that the resulting defect type distribution is more amenable to
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Figure 1. Wheel tread showing SPALL and RCF defects.

Table 1. Wheel tread defect dataset properties, including the
number of instances, the defect type distribution, the contex-
tual information (i.e., location and physical size of the defect),
and the diagnosis assessment.

Attribute MRO Data ENG Data
Size 1200 118
INDT 23% 16%
RCF 36% 52%
FLT 21% 7%
CLUS 8% 11%
SPALL 11% 4%
CRAZ 1% 0%
(None) 0% 10%
Location 3 7
Physical size 3 7

Go 7 15%
Warning 7 51%
Stop 7 34%

direct supervised learning. The reduced working maintenance
dataset comprises 1200 picture instances, and its new defect
type distribution is shown in Table 1. It can be seen that the
crazing defect type is the underrepresented minority with only
1% of the instances. This skew is likely to cause some learning
trouble, but that’s an inherent difficulty in this environment
that the proposed system will evaluate.

In addition to the graphical content of the picture, the mainte-
nance staff also provides additional information in the form of
textual data, identifying the inspected train unit, the physical
size of the defect, etc. This unstructured context is processed
with regular expressions to deal with the uneven spacing, the
letter casing, etc., in order to complement the description of
the spotted defects. Nevertheless, the dependability in this
supplementary material may be questionable, and the picture
remains to be the most reliable datum that the engineering
team reviews for the definitive diagnostic. Therefore, the
MRO context must only be used as an informative indication.

2.1.2. Engineering Data

In a similar vein, the engineering (ENG) team has curated a
collection of 118 defects, see Table 1 for details. Note that
this dataset is an order of magnitude smaller, and also exhibits
a strong bias toward the RCF defect type. In addition, this
set misses the “crazing” type, and it contains the absence of
defect (i.e., images without a problem).

Although contextual data such as the location and the physical
size of the defect are not available here, what is especially im-
portant is the condition assessment from the expertise, which
also displays strong bias toward the “warning” statement. This
is the engineering advice that drives the maintenance actions.
In sight of the characteristics of the MRO and ENG datasets,
which are both partially overlapping and complementary, there
may exist some potential criteria transfer issues that need to
be observed.

2.2. Image Processing

The collection of raster images that depict the wheel tread
defects poses challenging issues due to the variability of the
hand-held smartphone-based capture process. Depending on
who is taking the picture and when, there is inconsistency in
the focus, distance to the defect, lighting, etc. To address these
concerns, a pixel-level Image Processing module is created.

2.2.1. Preprocessing

First, the three color channels (i.e., RGB) are conflated into
one single intensity channel. The steel of the wheel treads
is mostly blue-grayish, and any decoloration in the metal is
equally visible with a shade on the resulting black-and-white
picture, so the useful information is expected to be retained
with this transformation. The image is now computationally
lighter and therefore more tractable for further analysis.

Then, the edges of the picture, which may be taken vertically
or horizontally, are trimmed so that the resulting image is
standardized with a squared shape. Note that the area of
interest containing the defect is always located around the
center. With this operation, the size of the image is reduced
to three quarters of its original size, which adds yet another
time-computational advantage as less data needs be processed.

Finally, the histogram of the image is equalized to enhance its
contrast (Pizer, S. M., Amburn, E. P., Austin, J. D., Cromartie,
R., Geselowitz, A., Greer, T., Romeny, B. t. H., Zimmerman,
J. B., and Zuiderveld, K., 1987). Figure 1 illustrates the appli-
cation of these preprocessing steps to a defective wheel tread
picture.

2.2.2. Data Augmentation

The abundance of data is required to design a Computer Vi-
sion solution based on Deep Learning, and the current defect
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data collections are insufficient for use according to modern
dataset size standards. In this situation, the system is likely
to overfit and memorize the data, thus lacking the capacity
to generalize. Therefore, a series of affine transformations
(i.e., modifications that preserve the collinearity and the ra-
tios of distances) are applied to these instances in order to
augment their amount while retaining the salient degradation
information (Simard, P. Y., Steinkraus, D., and Platt, J. C.,
2003). Specifically, 4 translations (north, south, east, and west
shifts), 2 rotations (clockwise and counterclockwise), and 4
mirrorings (horizontal, vertical, and the combined flipping) are
performed. Additionally, 2 levels of additive white Gaussian
noise are also applied. Eventually, the size of the dataset is
increased 64-fold, yielding a working collection of over 80k
instances (original and manufactured), which now enables
exploring the data-driven solution. What is more, it is known
that even small input perturbations like these are sufficient to
considerably degrade the system’s performance (Engstrom,
L., Tran, B., Tsipras, D., Schmidt, L., and Madry, A., 2019).
Therefore, by taking them into account during the training
procedure, the final system is expected to increase its overall
robustness against these potentially adverse effects (Hermann,
K. L., Chen, T., and Kornblith, S., 2020).

2.3. Multitask System Architecture

To tackle the complexity of the wheel tread defect diagnosis
problem, this work suggests a divide-and-conquer approach,
where the main task is divided into five specialized data-driven
modules:

Defect Detection - Location (DD-Loc) Identifies the cen-
tral point of the defect area in the preprocessed image.
This task is addressed as regression problem (i.e., land-
mark detection) where the coordinates of the defect loca-
tion are predicted in pixel space.

Defect Detection - Physical size (DD-Phy) Predicts the size
of the defect (width and length) in a given physical mea-
sure (e.g., millimeters). This task is also addressed as a
regression problem.

Defect Classification (DC) Discriminates the different types
of defects present in the defect area of the input picture.
This task is addressed as a multi-label classification prob-
lem where the defects are not mutually exclusive, and the
outputs represent defect membership probabilities. Ulti-
mately, these probabilities are rated against a threshold
✓DC and a discrete vector of potential defects is issued.

Engineering Assessment (EA) Determines the diagnostic
based on the type of defect, its physical size, and a set
of embedded logical rules that guarantee the minimum
acceptance criteria. The output complies with a kind of
traffic lights interface: go, warning, and stop.

Confidence Index (CI) Indicates the degree of trustworthi-
ness in the provided diagnosis. Its output operates as a

binary variable.

Figure 2 shows the end to end diagnosis chain. Note that
in addition to these five main data-driven modules, there is
also the Image Processing (IP) block (already explained in
Section 2.2), the defect cropping block, and the circumference
calculation (CC) block. The latter two auxiliary blocks are
self-explanatory.

2.4. Convolutional Neural Networks

The task division approach ensures that the multiple sources
of learning signals do not get scrambled, so that each module
can specialize. However, all these detection and classification
problems operating on image data can be solved effectively
with a convolutional neural architecture, mimicking the hier-
archical feature learning strategy that occurs with the visual
system’s compositional structure (Bengio, Y., 2009), where
the initial layers learn basic forms and the subsequent layers
combine them to create complex patterns. CNN’s are excep-
tionally successful at dealing with the high dimensionality of
an image because they inherently reduce the solution search
space (i.e., amount of learnable parameters) with a weight
sharing strategy: they use a series of trainable filters that ex-
ploit the local surface statistical regularities of the pictures (Jo,
J., and Bengio, Y., 2017), making the whole neural system less
prone to overfit the data. In turn, this approach also makes
these networks especially robust to location, detecting the
same pattern in different parts of the photographs as the same
filter kernel is reused throughout the image, which exhibits a
translationally invariant structure.

Given all this common framework, this section describes a
single flexible unified CNN to be applied to each task inde-
pendently. For computational purposes there is an implicit
image rescaling to 75 px that does not compromise the details
of the defects, as the spatial aggregation of lower dimensional
embeddings can be done without much or any loss in represen-
tational power (Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens,
J., and Wojna, Z., 2016).

2.4.1. Framework Layout

Discovering neural network architectures remains a laborious
but crucial task (Real, E., Moore, S., Selle, A., Saxena, S.,
Suematsu, Y. L., Tan, J., Le, Q. V., and Kurakin, A., 2017),
because carefully balancing network depth, width, and reso-
lution can lead to better performance (Tan, M., and Quoc, V.
L., 2019). In the aim of taking advantage of the many years
of focused investigation in neural layouts, the proposed CNN
framework is fundamentally based on the classic LeNet-5 ar-
chitecture (Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P.,
1998), which defines two convolutional stages and three fully
connected stages, and the AlexNet architecture (Krizhevsky,
A., Sutskever, I., and Hinton, G. E., 2012), which includes
some Deep Learning improvements like the Rectified Lin-
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Figure 2. Wheel tread defect diagnosis framework. The main data-driven modules are: Defect Detection (DD-Loc and DD-Phy),
Defect Classification (DC and ✓DC ), Engineering Assessment (EA), and Confidence Index (CI). These are highlighted in shade.
The auxiliary modules are: Image Processing (IP), Cropping, and the Circumference Calculation (CC). These are shown in white.

Block 1
Convolutional

+ ReLU +
Max-Pooling

Block 2
Convolutional

+ ReLU +
Max-Pooling

Block 3
Fully Connected

+ ReLU +
Dropout

Block 4
Fully Connected

+ ReLU +
Dropout

Block 5
Fully Connected

+ Logistic +
Output

Feature Learning

Task Learning

Figure 3. Functional blocks of the proposed versatile unified CNN, each of them containing a layer of learnable weights, an
element-wise non-linearity with the ReLU activation function, and a layer of regularization. The Feature Learning blocks are
displayed with a white background, whereas the Task Learning blocks have a light shade, showing the transition from the input
data to the desired output result.

ear Unit (ReLU) as the non-linear activation function to train
faster (Nair, V., and Hinton, G. E., 2010) and avoid the van-
ishing gradient problem (Glorot, X., Bordes, A., and Bengio.
Y, 2011), and Dropout (i.e., random neuron deactivation) to
preclude the co-adaptation of the feature detectors (Hinton, G.
E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhut-
dinov, R. R., 2012) and prevent overfitting (Srivastava, N.,
Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov,
R., 2014). Additionally, a subsampling overlap with a min-
imum stride of 1 px in a max-pooling step is considered to
merge features, increase the robustness to noise, and improve
the generalization. In summary, the basic building block of
the proposed CNN combines a layer of adjustable weights
like the convolutional filters or the fully dense connections, a
non-linear rectification transformation (i.e., always positive
neuron output values), and a layer of regularization with max-
pooling or dropout. The idea of using a block of layers as
a structural unit is gaining popularity (Khan, A., Sohail, A.,

Zahoora, U., and Qureshi, A. S., 2020), and therefore this
approach is aligned with the latest trends in CNN architecture
design. Figure 3 shows this layout, clearly identifying the two
learning stages: the features and the task, which are described
as follows.

2.4.2. Feature Learning

The Feature Learning stage discovers the degradation-relevant
traits in the pictures through a chain of non-linear convolu-
tional and pooling operations, which initially learns simple
shapes like curves and straight lines, and then combines these
motifs to progressively create more complex and invariant
compositions in a higher level of abstraction (Mahendran, A.,
and Vedaldi, A., 2015), just like many natural signals in vi-
sual neuroscience (LeCun, Y. and Bengio, Y., and Hinton, G.
E., 2015). It is to note that in the proposed CNN design, no
padding is used because there is no useful information in the
borders of these images, which always display the defects
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in the central region. Once the system has been trained, the
adjusted weights of the initial layers (i.e., the image filters)
may then be reused throughout the tasks (Donahue, J., Jia,
Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., and Dar-
rell, T., 2013; Razavian, A. S., Azizpour, H., Sullivan, J., and
Carlsson, S., 2014), which are learned in the following fully-
connected layers. The next section delves into the details of
this upcoming step.

2.4.3. Task Learning

The Task Learning step is acquired with the remaining fully-
connected layer blocks that follow the convolutional blocks,
see Figure3. The non-linear learning capacity is guaranteed
with this multilayer structure and the ReLU activation function.
It is to note, though, that the last fully-connected block fea-
tures a logistic sigmoid function, bounding the task dependent
variable outputs between 0 and 1.

For the Defect Detection regression tasks (DD-Loc and DD-
Phy), a maximum-value normalization step is performed tak-
ing into account the picture pixel size for the location task,
and a reasonably large physical size for the measurement task.
For these targets, a minimum squared error (MSE) training
cost is used, which aims to reduce the real-valued prediction
residuals.

For the Defect Classification task (DC), a binary class vector
is used because the target degradation picture may have many
labels (i.e., multiple defects on the same wheel tread). In this
case, the cost function of use is the binary cross-entropy, so
that each dimension of the output represents the posterior prob-
ability of the defect-class membership. This corresponds to the
effective deployment of many logistic regressions following
the one-vs-all multiclass strategy. Given that the defects are
not mutually exclusive, the learning feedback will be shared
among the intermediate layers. Finally, a heuristic decision
rule based on a threshold is used to discretize the output: a
defect class is selected if its predicted probability is over this
minimum probability limit.

2.4.4. Feature/Task Embedding

This contribution states that the first two convolutional blocks
are mainly meant to deal with the feature learning phase, and
the three fully connected blocks that follow mostly learn the
task at hand, see Figure 3 for the design diagram that shows
the transition between the two stages. This feature/task inte-
gration is motivated by the local feature transfer aspect in the
convolutional filters (Oquab, M., Bottou, L., Laptev, I., and
Sivic, J., 2014), which can detect a particular pattern all over
the picture, a characteristic that dense layers do not exhibit
due to their rigidity. As it is, the proposed system learns a
non-linear but rather shallow set of features, and a deep set of
functional task operations. Nonetheless, the boundary between
these two objectives in the network is not clear. The same

solution could have been equally described as a profoundly
intricate feature learner with four blocks — two convolutional
and two fully-connected — and a very shallow linear task
learner with only one dense block, which is perhaps the gen-
erally adopted CNN functional interpretation. The obtained
results would have been the same, especially if the different
CNN’s are freshly trained or the parameters are reused only
for initialization pretraining purposes, but their interpretation
would be different.

This work puts forward the contention that the task-specific
learned knowledge is effectively embedded in the intermediate
fully-connected hidden layers, as their large expressiveness
supports this capacity (over 8 million tunable weights for
this approach), see Table 2 for a detailed description of the
system parameters. Although it has been pointed out that the
hidden units may learn similar representations that converge
to analogous features across the tasks (Kornblith, S., Norouzi,
M., Lee, H., and Hinton, G., 2019), these layers may also
experience some optimization difficulties (Yosinski, J., Clune,
J., Bengio, Y., and Lipson, H., 2014) (i.e., layers FC3 and
FC4). In this last cited reference it is documented that the
transferability of features decreases as the distance between
the base task and target task increases, thus supporting the
rigid task-specific learned knowledge, and limiting the extent
of their parameter reuse. This work suggests that only the first
two convolutional blocks may be inherited in a different task
and all the intermediate dense layers are to be retrained for
each different objective.

2.5. Performance Evaluation

Different key performance indicators are used to evaluate the
operation of the task-driven CNN approaches. The regression
objectives are assessed with the variability of the resulting
error distribution for a given confidence interval. This fig-
ure is indicative of the amount of epistemic uncertainty. For
the classification task, the overall system performance is ob-
tained with the macro-averaged accuracy, precision, and recall
metrics (Duda, R. O., Hart, P. E., and Stork, D. G., 2001).
These values represent the rate of good classifications, and the
penalties that false alarms and missed defects introduce.

In the scenarios where the same dataset is used for learning
and evaluation, the performance values are generally estimated
with Monte Carlo cross-validation (Dubitzky, W., Granzow,
M., and Berrar, D., 2007). Specifically, four rounds of re-
peated random subsampling are applied on a stratified set of
defect types with a train/test split rate of 80/20 (%), which
should yields an error sample size over 1k instances that is
sufficient to reliably conduct the statistical calculations. In the
scenarios where the working dataset is too small for applying
this approach, then a leave-one-out cross-validation strategy
is pursued. Finally, in the scenarios where both datasets are
used, the MRO data is used for training, and the ENG data is
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Table 2. CNN parameter chart. The Dropout layers feature a probability of 0.1, and the OR or OC represent the regression or the
classification output.

Block Layer ID Type Filter Stride Amount Units Activation Parameters
1 C1 Conv2D (5,5,1) (1,1) 6 (71,71,6) ReLU 156
1 P1 Max Pool (2,2) (1,1) (70,70,6) Linear 0
2 C2 Conv2D (5,5,6) (1,1) 16 (66,66,16) ReLU 2416
2 P2 Max Pool (2,2) (1,1) (65,65,16) Linear 0
3 FC3 Dense 120 ReLU 8112120
3 D3 Dropout 120 Linear 0
4 FC4 Dense 84 ReLU 10164
4 D4 Dropout 84 Linear 0
5 OR Dense 2 Logistic 170
5 OC Dense 6 Logistic 510

held out for testing.

2.6. Development and Industrialization

The Machine Learning research is entirely conducted with the
Python3 programming language and its data science ecosys-
tem environment for PHM (Rezaeianjouybari & Shang, 2020),
mainly led by NumPy, Scikit-learn and SciPy. For the image
processing tasks, OpenCV and scikit-image are also used. Fi-
nally, the intensive computations that Deep Learning entails
are carried out by TensorFlow2 (Guo, Q., Chen, S., Xie, X.,
Ma, L., Hu, Q., Liu, H., Liu, Y., Zhao, J., and Li, X., 2019).

The industrialization of the proposed solution for creating a
minimum-viable product leverages the latest developments of
the open-source big data ecosystem (Cui, Y., Kara, S., and
Chan, K. C., 2020). The full architecture stack is running on
top of a cluster of machines managed by Kubernetes, a well-
proven system to automate, scale and ensure high availability
of computer applications. Kubernetes has been increasingly
used in the field of machine learning over the past years (Aji,
I. P., and Kusuma, G. P., 2020; Wu, C., Haihong, E., and
Song, M., 2020). It is divided into four layers: (A) the data
layer stores all the data used by the product; (B) the flow layer
orchestrates and schedules the “hand-to-hand” transfer of data
between the different applications; (C) the application layer
centralizes all the “business-value” functions performed by
the wheel tread defect diagnosis framework presented in this
paper, and (D) the presentation layer contains the user app.
The technologies used for each layer, illustrated in Figure 4,
are described as follows:

Data Layer PostgreSQL (Juba, S., and Volkov, A., 2019)
is used to store the application data such as users, pass-
words and computation results. It is a well-proven tool
with a very powerful query engine. It is used jointly with
PostgREST application that creates a REST API on top of
PostgreSQL and avoids direct connections which are risky
in terms of cybersecurity. MinIO cloud storage (Johnston,
C., 2020) is used to upload, store and download the im-
ages. It is based on Amazon S3 technology which is

able to handle multiple large binary files downloads and
uploads simultaneously without any loss of performance.

Flow Layer Apache NiFi (Chanthakit, S., Keeratiwintakorn,
P., and Rattanapoka, C., 2019) is used to orchestrate back
and forth the delivery of data between the application and
the data layers. It provides a very user-friendly web inter-
face with multiple types of functional blocks (so-called
processors) that one can organize and connect together
to create more complex flows. One can then follow the
traces of the processing path directly in the web inter-
face, which is very practical to monitor the progress. The
underlying Kubernetes allows NiFi to run a single flow
in a cluster of multiple machines at the same time, thus
ensuring the availability of the product.

Application Layer OpenFaaS (Balla, D., Maliosz, M., and
Simon, C., 2020) is used to expose the Python scripts
for the wheel tread defect diagnosis as a web service
executable through a HTTPS request. First the Python
scripts and models are encapsulated into a Docker image
that is pushed to the OpenFaaS registry. Then OpenFaaS
manages the deployment of the Docker image and the
routing of requests. OpenFaaS is also increasingly used
in the field of Machine Learning (Jang, R-Y., Lee, R.,
Park, M.-W., and Lee, S.-H., 2020). The underlying
Kubernetes allows OpenFaaS to automatically scale up
the number of deployed Docker images to smartly adapt
the computational power to the actual quantity of requests.

Presentation Layer The Ionic (Yusuf, S., 2016) software
development kit is used to develop the user app. The user
interface is built as a Progressive Web App (PWA) using
the Angular framework jointly with web technologies
such as CSS and HTML5. The use of PWA technology
allows the mobile app to run both on mobile and web
devices (Biørn-Hansen, A., Majchrzak, T. A., and Grønli,
T.-M., 2017). The app communicates through classical
HTTPS GET and POST requests: with MinIO to post the
images and with PostgREST API to get app parameters
and computation results.

The main use-case scenario, presented Figure 4, is the follow-
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PostgreSQL

PostgREST API
MinIO cloud

storage

Apache NiFi

OpenFaaS Ionic app

Figure 4. Industrialized architecture of the wheel tread diagno-
sis framework: four-layer stack with main use-case scenario.

ing: (1) a new image is posted by the maintainer from the user
app to MinIO, (2) NiFi takes the image from MinIO, (3) NiFi
posts the image to the OpenFaaS gateway to execute the wheel
tread defect diagnosis function on its content, (4) OpenFaaS
responds to the request with the results of the computation, (5)
NiFi inserts the results into the PostgreSQL database through
the PostgREST API, and (6) computation results are retrieved
by the app and presented to the maintainer (and to the en-
gineer) in the user interface according to the usage profile.
The impact of these results on the maintenance business are
presented in the following section.

3. RESULTS

This section details the results of the proposed CNN approach
to the different specialized tasks to diagnose wheel tread de-
fects and estimates their expected performance.

3.1. Defect Location Performance (DD-Loc)

The defect location module is developed with the MRO dataset.
Figure 5 shows the location prediction error distribution scored
as the difference between the X and Y coordinates indistinctly.
This result shows that the prediction error is centered around
the target because there is no bias toward the left/right or
up/down. The uncertainty is of 9.5 px, which corresponds to
12.66% of the image size.

3.2. Physical Size Performance (DD-Phy)

The physical size prediction module is also developed with
the MRO dataset. Figure 6 shows the error distribution scored
as the difference between the width and the height indistinctly.
This result shows that the error is sharply centered around the
target. The uncertainty of the prediction is of 6.2 mm.

Figure 5. Histogram of the defect location prediction error.
The 68% confidence interval SD (i.e., 1 standard deviation
under the normality assumption) indicates the uncertainty.

Figure 6. Histogram of the physical size prediction error. The
68% confidence interval SD (i.e., 1 standard deviation under
the normality assumption) indicates the uncertainty.

3.3. Defect Classification Performance (DC, ✓DC)

The classification module that scores the defect type mem-
bership probabilities (DC) is trained with the MRO dataset,
and the threshold module that discretizes the result (✓DC) is
adjusted with the ENG dataset. Figure 7 shows the resulting
classification metrics. Note that two potential work points
can be identified in the diagram. Their characteristics are
described as follows:

• Conservative work point (CWP, ✓DC = 0.35): minimize
false negatives. With a lower threshold the system yields
many potential failure candidates so that the risk of miss-
ing a problem is kept low, which is especially important
from a safety perspective. The accuracy is higher (0.75)
for this configuration.

• Eager work point (EWP, ✓DC = 0.7): minimize false
alarms. With a higher threshold the system yields fewer
potential failure candidates so the system increases its pre-
cision (around 0.3). In this configuration, the system is-
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Figure 7. Macro-averaged Defect Classification metrics: accu-
racy, precision, and recall. Results are shown along with the
probability discretization threshold ✓DC . Two potential work
points are identified.

sues “defect absence” labels whenever all the defect-type
probabilities are low, thus enabling it to detect anoma-
lies in compliance with the ISO 13374 international stan-
dard (ISO, 2003), i.e., operating as a dichotomic function.

Figure 7 is a kind of Receiver-Operating Characteristic curve,
showing more than two key performance indicators. Note that
if the threshold ✓DC that operates on the vector of defect type
probabilities is raised even further (beyond the Eager Work
Point), the system is unable to raise any alarm as the required
minimum probability values get close to 1.0, and therefore the
precision and recall classification metrics drop because they
both depend directly on the True Positives of the confusion
matrix. Their expected “inverse” behavior is clearly observed
at ✓DC = 0.45, when the two curves cross. At that point, the
system weighs equally the effect of False Positives and False
Negatives. In terms of business impact, the priority criteria of
the customer ultimately lead the performance tuning process.

Also note that the accuracy performance indicator is not reli-
able in this imbalanced data scenario, as the system might be
biased toward the majority defect type (i.e., RCF), so further
operational context is necessary for the evaluation. In the next
section, these additional criteria are considered to give a better
view of the actual expectations that this proposal provides.

3.4. Engineering Assessment Performance (EA)

This is probably the most decisive module of the system be-
cause it provides the actionable feedback in the form of “go -
warning - stop” label statements. It is a purely task learning
block developed with the ENG dataset. It is built with two of
the fully-connected layers of the CNN, yielding a multilayer
perceptron architecture. The resulting hidden embedding is
arbitrarily set to 10 units (slightly greater than the input di-
mensionality built with the outputs of the former modules)
with Dropout, which will prevent overfitting and ensure that

Table 3. Engineering Assessment performance focused on
potential SAF according to different work scenarios: MAC
logic rules and conservative/eager work points (CWP/EWP).

Probability No MAC MAC + CWP MAC + EWP
p(SAF |stop) 0.5 0.34 0.36
p(SAF |warn) 0.32 0.4 0.32
p(stop) 0.08 0.96 0.47
p(warn) 0.92 0.04 0.53
p(SAF ) 0.33 0.34 0.34
p(SAF ;ENG) 0.37 0.98 0.64

the network automatically finds its optimum expressiveness.
In addition, this EA module may eventually apply a series
of logical rules known as the minimum acceptance criteria
(MAC), which are conservative in nature, to guarantee that
certain critical limits are never exceeded.

For the design of this module, its performance in the following
three configurations is taken into consideration: no MAC rules,
MAC rules with the conservative work point, and MAC rules
with the eager work point. Table 3 shows the performance
results in probabilistic terms derived from the confusion ma-
trices, and focusing on the potential service-affecting failures
(SAF), which are the critical situations identified by the engi-
neering office (i.e., a “stop” label in the ground truth).

This analysis clearly shows the different operating modes:
the purely data-driven scenario (i.e., no MAC) is strongly
biased toward issuing warning results (just like the majority
of the dataset), the conservative scenario is strongly biased
toward raising alarms, and the eager scenario is balanced.
However, the probability of actually detecting the SAF, which
is calculated with the law of total probability, see Eq. (1), is
almost the same in all scenarios. Note that the system does
not report any “go” result, which may be reasonable because
the maintenance staff only take pictures if they suspect the
presence of an incipient defect.

p(SAF ) =
X

p(SAF |diagnosis) · p(diagnosis)

p(SAF |stop) · p(stop) + (SAF |warn) · p(warn)
(1)

In the light of this inconclusive result where all the approaches
yield a probability around 0.34 to detect the potential SAF, the
contribution of the engineering team will be determining to
break the tie.

3.4.1. Engineering Verification and Validation

Whenever the engineering team checks a picture, it always
detects the potential SAF. At present, the engineers manually
review the whole stream of images, which takes a lot of person-
hour resources and this workload may hinder the completion
of other activities. To add value to the overall maintenance pro-
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cedure reducing the weight of this engineering validation task,
this work proposes that only the pictures automatically rated
with the “stop” diagnosis are to be manually checked by the en-
gineering office. In consequence, p(SAF |stop;ENG) = 1,
and the probability of detecting the SAF increases in different
degrees according to the given design strategy. The bottom
row of Table 3 shows the impact of this new criterion. These
results indicate that with the eager approach (along with the
MAC rules) the engineering team can reduce its current work-
load more than 50%, and retain a SAF detection rate of 64%.
This is regarded as the optimum trade-off between the com-
plete manual workload and the complete automated approach,
potentially resulting in the best pay off for the adoption of the
proposed system.

3.5. Confidence Index Performance (CI)

The Confidence Index informs that the system is self aware of
the reliability of its predictions. This indicator is developed
with the ENG dataset trough a heuristic function that deter-
mines the result of this quality test. This function operates
on the vector of probabilities of the preceding DC module,
and applies an Active Learning approach known as an “acqui-
sition function” that determines the degree of uncertainty in
the classification (for all the defect types D) through its en-
tropy (Settles, B., 2010). The resulting value is finally scored
against a maximum threshold ✓CI to obtain the binary-valued
CI, shown in Eq. (2).

CI =

 
�
X

8d2D

p(d) · log (p(d))
!

< ✓CI (2)

Figure 8 displays the distribution of the DC entropy for the
ENG data, related to their diagnosis labels. Note that for all
the instances that display an entropy lower than ✓CI = 1.2,
the rate of the “stop” diagnostic (i.e., the potential SAF) over
the other labels in each bin is considerably greater than the
rate over the entropy value of 1.2. Thus, this leads to the
conclusion that ✓CI = 1.2 is the adequate threshold for the
Confidence Index.

The engineering office capitalizes the maintenance expertise,
understands the limitations of the proposed CNN system, and
the CI indicator can be used to drive their decisions, among
other functional criteria. The following section is dedicated to
this latter point.

4. DISCUSSION

This section elaborates upon the contextual behavior of the
wheel tread defect diagnosis system described in this work.

Figure 8. Histogram of the DC entropy for the ENG data with
respect to their diagnosis labels.

4.1. Understanding the Learned CNN System

In this multi-label setting where many defects may be rep-
resented in the same image, learning the templates for ar-
rangements of objects becomes rapidly intractable because of
the combinatorial explosion in the number of features to be
stored (Ricci, M., Kim, J., and Serre, T., 2018). One of the
main criticisms generally attributed to neural networks, and
thus to CNN’s in particular, is their lack of interpretability or
explainability, what is also known as a “black box” interface
behavior (Fong, R., and Vedaldi, A., 2017). The following
two sections delve into the internal working details of the
learned CNN system in order to shed some light into their
cumbersome operations, revealing the desirable properties
of compositionality and class discrimination that CNN’s are
expected to exhibit (Zeiler, M. D., and Fergus, R., 2014).

4.1.1. Image Filters

A CNN is fundamentally characterized by the adapted design
of its filters, which get convoluted with the input image in order
to highlight interesting patterns, just like the human visual
system (Eickenberg, M., Gramfort, A., Varoquaux, G., and
Thirion, B., 2017). In a sense, these filters are like templates
that match specific motifs in the pictures, especially the ones
found in the first layer of a vision system (Erhan, D., Bengio,
Y., Courville, A., and Vincent, P., 2009), where the receptive
field, i.e., the size of the region in the input that produces
the feature, is minimum and corresponds to the size of the
filter (Le, H., and Borji, A., 2017). It is widely accepted
that these first functions learn edge-detecting Gabor filters,
i.e., linear functions used for texture analysis that highlight
a specific frequency content in a specific selective direction.
Therefore, analyzing them at the pixel level reveals relevant
information about the captured knowledge (Bach, S., Binder,
A., Montavon, G., Klauschen, F., Müller, K.-R., and Samek,
W., 2015).

The outputs of the filters correspond to specific locations of
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Table 4. First layer of learned image filters (C1) and their impact on a sample image showing two defects (SPALL and RCF).

Filter

Output

Function Up curve (None) Down curve Up/down curve Vertical line,
right curve

Vertical line,
right/left curve

Defect SPALL (None) SPALL SPALL SPALL, RCF SPALL, RCF

interest whenever their activation is high, thus creating a spa-
tial feature detector (Zeiler, M. D., and Fergus, R., 2014).
And given that these patterns can be observed in any place
around the picture, their dependence on individual units is
reduced, thereby improving the network generalization per-
formance (Morcos, A. S., Barrett, D. G., Rabinowitz, N. C.,
and Botvinick, M., 2018). Table 4 shows the first filters that
the system has learned (i.e., layer C1) and the impact of their
design on a sample image that contains two tread defects
(SPALL and RCF). As it can be seen, each of the six input
filters learns a particular detail of the degradation: some filters
learn curves, others learn straight lines, and even two of them
learn both features, illustrating the multifaceted character of
the related neurons (Nguyen, A., Yosinski, J., and Clune, J.,
2016). In most cases, their output can then be directly related
to a specific type of defect, which gives them a kind of latent
representation aligned with human-interpretable semantic con-
cepts (Bau, D., Zhou, B., Khosla, A., Oliva, A., and Torralba,
A., 2017). However, it is the entire space of activations, rather
than the individual units, that contains the bulk of the semantic
information (Szegedy, C., Zaremba, W., Sutskever, I., Bruna,
J., Erhan, D., Goodfellow, I., and Fergus, R., 2013). Finally,
all these features get blended into the layers that follow to
accomplish some task-driven goal.

4.1.2. Defect Manifold

This section evaluates the separability of the spatial distribu-
tion of the defects in the latent space (Chen, Z., Bei, Y., and
Rudin, C., 2020). To see how the CNN architecture internally
discriminates the data and manages the inter-defect knowl-
edge (Mahendran, A., and Vedaldi, A., 2015; Simonyan, K.,
Vedaldi, A., and Zisserman, A., 2013; Zhou, B., Khosla, A.,
Lapedriza, A., Oliva, A., and Torralba, A., 2015) as well as the
intra-defect knowledge through a hierarchical and composi-
tional pipeline (Wei, D., Zhou, B., Torralba, A., and Freeman,
W. T., 2015), Figure 9 shows the scattering of the instances on

Figure 9. Self Organizing Map of the FC4 layer embedding
for the defect classification task showing the main defect types:
flat, spall, and RCF.

the penultimate adjustable layer FC4 for the defect classifica-
tion task using a Self Organizing Map (SOM) (Kohonen, T.,
1990). The SOM is an unsupervised non-linear transformation
technique based on competitive learning that produces a dis-
cretized representation of the data preserving its topological
properties, i.e., its similarity clusters. In PHM it has been used
for anomaly detection and fault location purposes (Tian, J.,
Azarian, M. H., and Pecht, M., 2014; Zhao, W., Siegel, D.,
Lee, J., and Su, L., 2013), also in railway systems (Alessi, A.,
La-Cascia, P., Lamoureux, B., Pugnaloni, M., and Dersin, P.,
2016).

In the scenario presented in this work, the SOM shows how
the CNN learns to separate the three major defect prototypes:
RCF, flat, and spall. In particular, it can be observed that
the system learns to differentiate straight-line patterns (e.g.,
RCF), which are clustered to the right, from rounded patters
(i.e., spall and flat), which are clustered to the left. In this
latter categorization, the overlap illustrates that the curvy-type
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Figure 10. Engineering Assessment sensitivity analysis
through the profile method for the “stop” diagnosis statement.
The inputs have been standardized.

patterns seem to follow a hierarchical structure over the de-
fects (Alsallakh, B., Jourabloo, A., Ye, M., Liu, X., and Ren,
L., 2018). Note that only the last layer of the CNN deals
with this manifold representation, and the eventual classifica-
tion thus needs to be attained with linear discriminators, which
seems to be adequate based on the lower-dimensional represen-
tation provided by the SOM. However, a proper expressiveness
analysis with an additional hidden layer, thus creating a multi-
layer perceptron, could be a more general solution (Simard, P.
Y., Steinkraus, D., and Platt, J. C., 2003), following the univer-
sal approximation theorem for neural networks (Cybenko, G.,
1989; Pinkus, A., 1999).

4.2. Engineering Assessment Sensitivity

The Engineering Assessment module is arguably the most
critical point in the system because it provides the actionable
feedback to the maintainer. To understand its inner working
mechanism through the impact of the input variables (i.e., the
defect type probabilities and the physical size of the defect)
on the output diagnosis, Figure 10 displays the result of a
sensitivity analysis based on the profile method (Shojaeefard,
M. H., Akbari, M. Tahani, M., and Farhani, F., 2013) for the
critical “stop” diagnostic.

Assuming that the importance of a variable is driven by the
dynamic range of the output, it is shown that the physical size,
the RCF, and the CLUS probabilities lead this ranking. In
addition, the physical size and the RCF probability variables
are strongly negatively correlated with the “stop” probability
diagnosis. The RCF is a type of defect that by itself does not
directly halt the railway service, so this negative relationship
makes sense. The physical defect, however, does not reason-
ably follow this criterion, but its impact is highly correlated
with the RCF and this is what the EA module has ultimately
learned. Finally, the CLUS probability is strongly positively
correlated with the diagnosis, which makes perfect sense be-

Figure 11. Examples of image modifications: normal picture,
blur, glare, noise, pixelation, and shine.

cause this is a critical defect type.

4.3. Robustness to Feature Corruption

Machine learning solutions, including neural networks and
Deep Learning, may exhibit unexpected instability on sim-
ple perturbations. Therefore, they are at risk of being tricked
by adversarial instances, which are intentionally corrupted
data that lead the system to output incorrect results with high
confidence (Goodfellow, I. J., Shlens, J., and Szegedy, C.,
2015). Moreover, image processing applications are especially
targeted by these attacks because some of these small perturba-
tions are difficult to detect as they exploit edge cases. Methods
such as histogram equalization, see Section 2.2.1, are helpful
to prevent them (Hendrycks, D., and Dietterich, T., 2019), but
careful attention is needed because cybersecurity in railways
is an area that has attracted a lot of interest recently due to an
increasing number of denial-of-service attacks (Masson, É.,
and Gransart, C., 2017).

A useful approach to build a defense against these adversarial
attacks is to construct a predictor that is robust to the deletion
of features at test time (Globerson & Roweis, 2009). In this
sense, the Engineering Assessment module already features
a Dropout layer after the embedding, see Section 3.4. In the
defect diagnosis scenario based on smartphone pictures pre-
sented in this work, the proposed system should be robust
to artificial image modifications that could be used in an ad-
versarial attack, including effects like blurring, flash glare,
etc. Figure 11 shows some typical examples of these kind
of tweaks, and Table 5 evaluates their impact on the final
diagnosis.

This analysis of feature perturbations shows that the proposed
system exhibits a fairly good overall robustness to potential im-
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Table 5. Image modifications and their impact to the proposed
defect diagnosis system.

Filter/Effect Size (mm) Defects Diagnosis CI
Normal 55 FLT Stop 1
Blur 54 None Warning 0
Glare 61 FLT Stop 1
Noise 53 None Warning 1
Pixelation 68 FLT Stop 0
Shine 53 FLT Stop 1

age corruptions, including the common shine and glare effects
produced by the flash. Robustness to pixelation also indicates
that the resolution of the smartphone camera is sufficient. Nev-
ertheless, the blur and noise perturbations cause the system to
fail, as a warning signal is issued instead of the expected “stop”
statement. These situations thus need to be avoided through
the recommendation of taking still photographs in a dust-free
environment.

4.4. Pragmatic Project Management

The development of an industrial Deep Learning solution en-
tails having to deal with many different components, and this
leaves the door open to many different potential approaches.
On the data acquisition stage, a Computer Vision engineer
will probably argue that the system improvement lies on the
quality of the pictures, and these smartphone images do have
focus issues, uneven lighting conditions, different distances to
the wheelset defect of interest, etc. However, when the input
pictures are taken at different scales, the CNN will extract fea-
tures at different scales (He, K., Zhang, X., Ren, S., and Sun,
J., 2015), so these variations should not be the primary point
of concern. Moreover, it has been shown that the resolution of
the camera (leading to a pixelation effect) does not critically
impact the diagnosis.

What has been observed is the tight dependence on labeled
data to develop such a system. The annotation process is te-
dious, and fatigue builds up after some time. In this work,
a standalone computer application has been developed to it-
erate the dataset and record the expertise, which has been
provided by one single expert per instance. A minimum inter-
annotator agreement rate is not strictly necessary for a fea-
sible tagging of maintenance data (Hastings, E. M., Sexton,
T., Brundage, M. P., and Hodkiewicz, M., 2019). However,
further progress in this line should be provided by unsuper-
vised or semi-supervised approaches, which reduce the amount
of repetitive human effort (Bengio, Y., 2009), like the Meta
Pseudo Labels approach (Pham, H., Dai, Z., Xie, Q., Luong,
M.-T., and Le, Q. V., 2020), where a teacher network is trained
to generate pseudo labels on unlabeled data to train a student
network, and adapts with the performance of the student net-
work on the labeled dataset. Additionally, a strategy to reduce
the bias in the data (Kim, B., Kim, H., Kim, K., Kim, S., and
Kim, J., 2019) and the noise in the labels (Lee, K.-H., He, X.,

Zhang, L., and Yang, L., 2018) should also be explored.

On the learning stage, the proposed CNN design displays zero
bias error throughout the different modules, and any tweak
beyond this neural design has led to the appearance of some
average loss (keeping the same uncertainty). Therefore, as
it is, the described approach shows an optimum complexity
for this defect diagnosis problem, despite the obtained results
are far from perfect. However, it is not clear how a different
architecture might be of help in this scenario. There are some
approaches that suggest using smaller convolutional filters
(3x3) along with a network depth of 16 to 19 layers (Simonyan,
K., and Zisserman, A., 2015), keeping a constant computa-
tional budget for the industrialization (Szegedy, C., Liu, W.,
Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Van-
houcke, V., and Rabinovich, A., 2015), using kernels within
the convolution function (Ammann, O., Michau, G., and Fink,
O., 2020), or dropping the pooling layers due to their seldom
attributed destructive role (Springenberg, J. T., Dosovitskiy,
A., Brox, T., and Riedmiller, M., 2015). The Deep Learning
field is in full blossom at present, and potentially many differ-
ent solution approaches to the problem will be developed, so
further research is required to get an optimal solution and to
settle into the plateau of general productivity. Ultimately, the
obtained solution as it is could be used to train a new genera-
tion of networks in a self-distillation manner and push the test
performance a bit further (Zhang, L., Song, J., Gao, A., Chen,
J., Bao, J., and Ma, K., 2019).

Alternatively, the current technology may also be used with
a different perspective: instead of the proposed modular ap-
proach, a truly multitask environment could also be explored,
because a single network can manage to do classification and
regression tasks concurrently (Zhou, B., Khosla, A., Lapedriza,
A., Oliva, A., and Torralba, A., 2015; Sermanet, P., Eigen, D.,
Zhang, X., Mathieu, M., Fergus, R., and LeCun, Y., 2013).
What is more, the application of a CNN at multiple locations
in a sliding window fashion (instead of the full image input)
has also been reported to be successful (Sermanet, P., Eigen,
D., Zhang, X., Mathieu, M., Fergus, R., and LeCun, Y., 2013;
Oquab, M., Bottou, L., Laptev, I., and Sivic, J., 2014). In
addition, the domain transfer between a rich image environ-
ment like ImageNet and the defect problem at hand may also
be of help to learn better feature representations and improve
the system generalization (Salman, H., Ilyas, A., Engstrom,
L., Kapoor, A., and Madry, A., 2020; Kornblith, S., Shlens,
J., and Le, Q. V., 2019). Furthermore, the consideration of
synthetic data including adversarial images (Ilyas, A., San-
turkar, S., Tsipras, D., Engstrom, L., Tran, B., and Madry, A.,
2019), which is a popular approach to train Deep Learning
models for Computer Vision (Nikolenko, S. I., 2019), is a
useful resource to enhance the robustness of the system. And
in the line of continuous improvement, if the user feedback is
included with respect to the presented diagnosis results, the
system can also exhibit some sort of enhanced evolution as
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new data is processed.

Finally, regarding the industrialization, the main limitation of
the proposed architecture is that the Python models used for
the whole machine learning process are included in a Docker
container image that is almost immutable, hence dynamic
updates of the models are cumbersome. An upgrade to the
proposed solution could include a kind of model registry that
is periodically called to download new versions of the models,
which would be developed by the data scientist in the loop
following a continuous improvement procedure driven by the
Return on Experience of the product, including new features,
bug fixes, patches motivated by incorrect predictions, etc.

5. CONCLUSION

The detection of railway wheel tread defects on raster picture
data is a daunting task that involves many different levels of
analysis. This paper presents an integrated solution based on
many Convolutional Neural Networks that locate the dam-
aged areas in the images, estimate the physical size of the
shown defects, and assess their type and severity. This pro-
posal describes a task-division approach that helps understand
the caveats and pitfalls of the predictive value chain. The
results indicate that almost half the current engineering effort
dedicated to manually checking the potential issues can now
be automated, thus reducing the lead time to take a timely
maintenance action, and ultimately optimizing the activities
of the workforce.

The future work that is currently envisaged may further deal
with the following topics:

• The explicit consideration of a “good” condition class
to better understand the whole image degradation spec-
trum of the wheel tread defects. Although in the current
scenario this is not strictly necessary because the mainte-
nance staff already applies their criteria to take a picture,
if this additional assessment was managed as a separate
anomaly detection step prior to the described analysis, the
whole pipeline would introduce a kind of double-check
procedure.

• The collection of actual feedback from the field and the
evaluation of the value added by the diagnosis. The Ap-
pendix shows some additional examples obtained with
the minimum-viable product that is derived from the in-
dustrialization of the proposed solution. System interface
feedback is also included in the continuous improvement
of this online tool.

• The utility expansion to other types of wheels. Despite the
proposed solution is tailored to steel railway wheelsets,
the same technology can be applied to other types of
wheels because CNNs ultimately tend to focus on their
texture (Hermann, K. L., Chen, T., and Kornblith, S.,
2020). For example, rubber-based tires would display
patterns of deflation, punctures, tears or bulges on the

sidewalls, etc.
• In terms of safety, the proposed modular system is ad-

vantageous because the EN 50126-1 international railway
standard specifies that such systemic hierarchy enables
the assessment of subsystem interactions (CENELEC,
2017), and this is a prerequisite to understanding its over-
all limitations.

• In terms of security in a Deep Learning environment for
Computer Vision, further robustness to adversarial images
should also be studied, in addition to other cybersecurity
considerations. In this sense, technologies like the Digital
Twin enables virtual representations of components and
systems (Moyne, J., Balta, E. C., Kovalenko, I., Faris, J.,
Barton, K., and Tilbury, D. M., 2020), which can help
detect the presence of anomalous behaviors driven by
attacks.
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APPENDIX

Additional examples of actual wheel tread defects along with
their diagnostics are shown in Figure 12 and Figure 13.

Figure 12. Picture of a mild spall defect.
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Figure 13. Picture of a critical flat defect.
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