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ABSTRACT 

An enhanced model based approach to monitor friction 

within Electromechanical Actuator (EMA) ballscrews using 

motor current is presented. The research was motivated by a 

drive in the aerospace sector to implement EMAs for safety 

critical applications to achieve a More Electric Aircraft 

(MEA). Concerns in reliability and mitigating the single of 

point of failure (ballscrew jamming) have resulted in 
consideration of Prognostics and Health Monitoring (PHM) 

techniques to identify the onset of jamming using motor 

current. A higher fidelity model based approach is generated 

for a true representation of ballscrew degradation, whereby 

the motor is modelled using ‘dq axis’ transformation theory 

to include a better representation of the motor dynamics. The 

ballscrew kinematics are to include the contact mechanics of 

the main sources of friction through the Stribeck model. The 

simulations demonstrated feature extraction of the dynamic 

behaviour in the system using Iq current signals. These 

included peak starting current features during acceleration 

and transient friction variation. The simulated data were 
processed to analyse peak Iq currents and classified to 

represent three health states (Healthy, Degrading and Faulty) 

using k-Nearest Neighbour (k-NN) algorithm. A 

classification accuracy of ~74% was achieved.  

 
Keywords— Prognostics; Health Monitoring; Aerospace; 

Electromechanical Actuators; Ballscrew; Fault Classification 

1. INTRODUCTION 

There is a move towards a MEA within the aerospace 

industry, which has prompted aircraft manufacturers to 

consider replacing traditional hydromechanical solutions for 

EMAs in actuation systems. This would fulfil the need for 

better maintainability, precision control and offer a weight 

saving advantage (Hoffman, Hansen, Beach, Plencner, 

Dengler, Jefferies & Frye, 1985). EMAs are being considered 
in safety critical applications of next generation fly-by-wire 

aircraft (Balaban, Saxena, Narasimhan, Roychoudhury & 

Goebel, 2011). This includes primary flight control systems 

and landing gear systems. The absence of reliable fail-safe 

mechanisms and adequate redundancy to mitigate the single 

point of failure (ballscrew jamming) has made it challenging 

to introduce EMAs in such safety critical systems (Balaban, 

Saxena, Bansal, Goebel, Curran & Stoelting, 2009). PHM of 

such systems could mitigate ballscrew jamming, however, 

research in this area has revealed that the issue is complex for 

PHM designers due to the limitations in sensing. Aircraft 

manufacturers are reluctant to add more sensors due to added 
weight implications (Donald, Garg, Hunter, Guo & Semega, 

2004) and reduced reliability, hence PHM designers have to 

rely on motor current alone to detect the onset of ballscrew 

jamming. Therefore, the purpose of this paper is to 

demonstrate a means to monitor friction build up within the 

ballscrew using motor current for feature extraction and fault 

diagnostics. 

1.1. Background 

One of the major concerns has been EMA jamming which is 

a single point of failure. The mitigation of this failure mode 

could lead to a fully compliant and airworthy implementation 
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for aircraft safety-critical systems. In view of this issue, 

significant research has been conducted by PHM designers in 

an attempt to detect and predict the onset of ballscrew 

jamming. EMAs consist of a motor, gearing and a ballscrew 

to provide incremental linear motion powered by the motor. 

Figure 1 shows a schematic of a typical EMA system. 
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Bearings

Bearings
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Assembly

Cluster Gear

Thrust Washer (both ends)

Output Rod

Motor

 

Figure 1. EMA System (Bodden, Clements, Schley & 

Jenney, 2007). 

 

It is known that EMAs can fail in many ways (Bennett, 
Mecrow, Atkinson & Atkinson, 2010) with significant 

research conducted to achieve a fault tolerant EMA system to 

mitigate single points of failure. Much of this research has 

been centred around achieving fault tolerant designs for 

motor related failures for general applications. Motor rotor 

failures and short circuits are classed as one of the most 

severe types of failure as they can lead to a complete loss of 

operation at a system level. Within aerospace, however, there 

is adequate motor redundancy and therefore such failures 

would not inhibit operation of an EMA system (Bennett et al. 

2010).   
 

Mitigating ballscrew jamming in aerospace is of high 

importance as failure can lead to complete loss of operation 

of the landing gear extension/retraction or flight control 

system mechanism. The build up of friction and wear is 

identified as a precursor for ballscrew jamming (Lee, Lee, 

Hong, Nam, Jeon & Lee, 2015). A reliable combination of 

sensing to monitor vibration, motor current, temperature and 

loads can be used to assess the condition of an EMA (Isturiz, 

Vinals, Manuel & Aitzol, 2012). However, there is no 

guarantee that state-of-the-art sensing would be able to 
isolate the occurrence of a single point of failure such as 

ballscrew jamming. There are further limitations in which 

maintenance engineers have only motor current and 

speed/position data for fault detection in real applications. In 

addition, the presence of noise and external loads (due to gust 

and aeroloads) can make it challenging to identify 

degradation within the EMA mechanical sub-system using 

motor current alone. Therefore, diagnostics engineers must 

design a robust PHM algorithm to detect the onset of EMA 

jamming. 

1.2. Previously Published Work 

Research in this area has considered many strategies and 

technologies using PHM. Whilst research has been conducted 
in terms of applying PHM to EMAs, an optimum solution  to 

mitigating jamming is still sought. This section reviews 

previously published work using a data-driven approach and 

a model based approach.  

1.2.1. Data-Driven Approach 

Research has been previously undertaken to isolate jamming 

failures by utilising test rig analysis for seeded failure tests 

and run-to-failure data. An example of this, is work 

undertaken by Balaban, Saxena, Goebel, Byington, Watson, 

Bharadwaj and Smith (2009) where jamming faults were 

injected into a custom made EMA test stand. The results 

showed good agreement with developed thermal and 
mechanical models. The issue, however, is the abrupt nature 

in which the failure occurs making it difficult to detect the 

onset of this failure. Bodden et al. (2007) also conducted 

seeded failure testing on an EMA test stand. The 

methodology evaluated actuator efficiency by monitoring 

overall power output against input. The analysis revealed that 

it was difficult to ascertain the origin of the fault at a local 

level.  

 

Therefore, the main challenges in employing a data-driven 

analysis include the difficulty to simulate naturally occuring 
faults as well as isolating a particular fault within the 

drivetrain.   

1.2.2. Model Based Approach 

Modelling an EMA system in detail can enable the 

prognostics design engineer to trace back failure modes to 

relatable physical system parameters thus providing the 

engineer with informative diagnostic information. Maggiore, 

Vedova, Pace and Desando (2014) developed a 

Matlab/Simulink model of an EMA system for fault analysis 

associated with mechanical failures due to progressive wear. 

The modelled EMA system was typical of an arrangement for 

a primary flight control system comprising of control and 
power drive electronics, a Brushless Direct Current (BLDC) 

motor, gearing and a ball/rollerscrew. Importance was given 

to monitor to the build up of friction as a pre-cursor to the 

onset of jamming. The results showed that useful information 

could be obtained in terms of evaluating friction torque at a 

system level. However, it was not clear whether friction 

monitoring at a local level (for contentious regions within the 

ball/rollerscrew) could be characterisable, therefore making 

it challenging to diagnose for jamming faults.  

Previous approaches have also generally used simple motor 

models. The investigation has therefore been limited to 
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analysing electromagnetic torque and motor current without 

considering the dynamic effects of the motor. The research 

conducted by Maggiore et al. (2014) provided an 

advancement by modelling a BLDC system with power drive 

electronics that evaluated the torque generated by the motor 
as a function of the voltages generated by a 3-phase electrical 

power generator.  

Therefore, identification ballscrew degradation within EMAs 

using motor current alone can be enhanced through 

modelling the magnetic behaviour of the motor to gain a more 

in-depth understanding of the motor dynamics. Detailed 

modelling of ballscrew kinematics should also be enhanced 

using a more accurate representation of the contact 

mechanics.  

1.3. Aims and Objectives 

 

This paper addresses the limitations of model based 
approaches that were described in Section 1.2.2 by providing 

an advancement to assessing ballscrew degradation through 

motor current signals. A high fidelity model of the EMA 

system is used to establish a link between motor current and 

ballscrew friction. It is proposed that such approach is used 

in conjunction with a data-driven approach, as part of a 

hybrid diagnostics approach. The primary objective of this 

paper is to determine the fidelity of friction monitoring within 

the ballscrew using motor current alone through feature 

extraction using a model based approach. 

2. METHODOLOGY 

The first part of the methodology consists of a series of 

procedures and equations for EMA modelling to develop an 

enhanced understanding of the baseline linear EMA system.  

Secondly, the methodology describes how motor current can 

be used to aid fault detection and diagnostics of the ballscrew. 

This is followed by a description of the test cases and 

conditions to be simulated for healthy, degrading and failure 

states of the ballscrew.  

Finally, the methodology describes the data analysis 

technique to be applied to the simulated data for each test case 

towards data training for classification. 

2.1. EMA Modelling 

The system being modelled is a baseline linear EMA system. 

The modelling was conducted using Matlab/Simulink where 

the key components consisted of the motor controller, the 

PMSM and the ballscrew. Figure 2 shows a high level view 

of the EMA system being modelled for speed and current 

control. 

Controller PMSM

Mechanical 

System 

(Ballscrew)ω

IDREF
VA, VB, VC

ωm

τ 

V

F

m/s to rad/sωm to ωr 

ωr

IA, IB, IC

  
Figure 2. EMA Block Diagram. 

PMSM’s use permanent magnets rather than windings in the 

rotor. Electronic excitation control with integrated power 

inverter and rectifier, sensor, and inverter electronics are 

required for practical operation (Vas, 1996). The PMSM was 

modelled using ‘dq-axis transformation’ theory, which 

involves Park’s transform. This reduces 3-phase AC 

quantities (Ia, Ib, Ic) to DC quantities (Id, Iq) (Park, 1929). The 

transform to DC quantities reduces the complexity of the 

system and therefore more understanding of the drivetrain 
system can be achieved by modelling the PMSM in this way. 

Figure 3 shows the equivalent electrical circuit for the PMSM 

whereby, RS is the resistance, Ld and Lq are the inductances in 

the d and q axis respectively, ωr is the angular velocity of the 

rotor, and λd and λq are the flux linkages in the d and q 

directions respectively. 
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Ld

ωrλq

+
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Vd

Id

Rs

Lq

ωrλd

+

-

Vq

Iq

 
 

Figure 3. PMSM Equivalent Electric Circuit in Rotating 

Reference Frame (DQ). 

The transformation converts vectors in the 3-phase reference 

frame to 2-phase and then a rotating 2-phase reference frame 

as shown in Figure 4.  
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Figure 4. 3-phase to 2-phase Stationary (top) and 2-phase 

Stationary to 2-phase Rotating Reference Frame (bottom). 

This enables simplified analysis of these DC quantities before 

performing the inverse transform to the 3-phase results. This 

will provide in-depth motor understanding for condition 

monitoring and fault detection. 

 

The PMSM was modelled in accordance to an industrial 

servomotor (Emerson) with parameters listed in Table 1.  

 

Table 1. PMSM Parameters. 

Parameter Value 

Resistance, Rs 1.1 ohm 

Motor Voltage Constant, Ke 98 V/Krpm 

Motor Torque Constant, Kt 1.6 Nm/A 

Peak Torque, τ 45.9 Nm 

Peak Current, I 28.7 A 

Poles, p 6 

Inductance on q-axis, Lq 7.4 mH 

Inductance on d-axis, Ld 7.4 mH 

Motor Inertia, Jm 0.0138 kg.m2 

 

The electrical and mechanical elements of the PMSM were 

modelled within the PMSM block shown in Figure 2 using 

the equations listed in Section (i) of the Appendix.  

The PMSM controller was modelled for speed and torque 

control. This enables real time control of torque variation 

demand, mechanical speed and regulation of the phase 

currents, which ultimately reduces the occurrence of current 

spikes during transient operation. Figure 5 shows a block 

diagram of the PMSM speed and current control system. 
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Figure 5. PMSM Speed and Current Controller. 

The ballscrew was modelled by taking the generated 

mechanical torque and rotor speed values and converting 

them in to end loads and linear speeds. The ballscrew 

specification is presented in Table 2. 

 

Table 2. Ballscrew Parameters. 

Parameter Value 

Lead, L 5 

Length, l 300 mm 

Screw Diameter, Ds 16 mm 

Ball Diameter, D 3.15 mm 

Ballscrew Lead Angle, α 7⁰ 

Density, ρ 7750 kg/m3 

Ballscrew coefficient of 

friction, μ 

0.01 

 

The equations used for ballscrew modelling are listed in 

Section (ii) of the Appendix. 

 

Friction is mostly prevalent between the ball and screw thread 

(Vahid-Araghi & Golnaraghi, 2011). Friction also occurs 

between the ball and nut and therefore the analysis focuses 

on these areas of interaction within the ballscrew. A 

kinematic analysis of this region was required in order to 
understand these contact areas in more detail and to evaluate 

friction as a function of sliding velocity. A schematic 

depicting the ballscrew kinematics is shown in Figure 6.  

 

A thorough mathematical model of ballscrew kinematics has 

been developed by Wei and Lin (2004), therefore this was 

utilised partially for this segment of the research.  
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Figure 6. Ballscrew Kinematics (Ismail, Balaban & 

Spangenberg, 2016). 

In order to calculate the relative angular velocities (ωBS and 

ωBN), ball linear velocity, Vb needs to be ascertained. 

Derivation of ballsrew relative angular velocities are shown 

in Section (ii) of the Appendix.  

 

The next step is to formulate a velocity dependent coefficient 

of friction model given the relative velocities between the ball 

and nut, and ball and screw. The Stribeck friction model 

(Bowden & Tabor, 1950) was used to evaluate friction 

between the interacting surfaces in the ballscrew. This was 

used previously by Vahid-Araghi and Golnaraghi (2011) for 

a lead screw drive system. The velocity depdendent  

coefficient of friction is generally composed of: 

 

(a) Coulomb friction, Fc – Constant friction force 

opposing motion. 

(b) Viscous friction, Fv - Friction force proportional to 

the sliding velocity. 

(c) Stribeck friction, Fs – Occurs at low sliding 

velocities and contains Coulomb and Viscous 

friction components as shown in Figure 7. 

Stribeck friction

Viscous friction

Coulomb friction

FS

FVFC

F

0 v

 
 

Figure 7. Velocity Dependent Coefficient of Friction. 

𝐹 = 𝐹𝑐 + 𝐹𝑠 (𝑒
−(

|𝑣𝑠|

𝑣0
)
− 1) + 𝐹𝑣|𝑣𝑠|                                        (1) 

where vs is the sliding velocity between interacting surfaces. 

This was treated as the relative speed between ball and nut, 

and ball and screw as described earlier in this section. v0 

controls the velocity range of the Stribeck effect.  

The overall friction is then added into the end load model, 

which is then converted back into the reflected torque to the 

motor.  

2.2. Test Cases and Conditions 

Using the model described in Section 2.1, a series of 

simulations were evaluated using different variables that 

include contact angles between ball and nut, and ball and 

screw, mechanical efficiencies and demand speeds. A typical 

landing gear extension/retraction cycle for a Boeing 757 is 

required to complete in ~20 seconds (Boeing, 1994) therefore 

a cycle time of 20 seconds was used for this analysis.  

One of the primary objectives of this paper is to identify the 

onset of ballscrew jamming using a model based approach 

therefore test cases for simulation were created with respect 

to 3 states of health: Healthy, Degrading and Faulty. 

Healthy State 

 

Contact angles between ball and nut, and ball and screw 

typically range between 38-40° (Ninomiya & Miyaguchi, 

1998). Therefore, these values were used to represent a 

healthy condition for the ballscrew and nut.  

 

Mechanical efficiency is the measure of effectiveness of the 

EMA’s input power over the output, which produces the end 
force and motion. Industry standard values were used for 
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ballscrew mechanical efficiency which is generally in the 

region of ~80-90% for healthy states (McNier, 2016).  

 

Degrading State 

 
Degrading states are conditions where the EMA is operable, 

but exhibits deteriorations in performance due to wear and 

build up of friction. Ballscrew and nut contact angles can vary 

upto 8% through deterioration, misalignment cases or 

incorrect selection (Xu, Yao, Sun & Shen, 2014). Therefore 

such instances were simulated by inducing variation in the 

contact angles  of up to 8%. 

 

Ballscrew mechanical efficiencies are also significantly 

lower therefore values between 35-65% were used  in this 

state. Mechanical efficiencies of 70-80% were also tested for 

such cases of variation in contact angles.  
 

Faulty State 

 

The analysis is focused on one type of EMA failure mode, 

ballscrew jamming. The onset of jamming is of interest and 

so lower mechanical efficiency values (15-35%) were 

modelled to evaluate the effect on motor current.   

 

The relative velocities (between ball and nut, and ball and 

screw) were set to zero to represent the jamming condition. 

 
Table 3 summarises the test cases and conditions that were 

simulated. 

 

Table 3. Test Cases and Conditions Summary. 

State Ball – Nut and Ball 

– Screw Angle of 

Contact (degrees) 

Mechanical 

Efficiency 

(%) 

Healthy 38-40 70-80 

Degrading 35-43 70-80 

35-65 

Faulted Relative velocity set 

close to 0 (onset of 

jamming) 

15-35 

 

The contact angles were modelled (see Appendix) using 

Equations (26) and (27) and were varied according to the 

values listed in Table 3 (in radians). The mechanical 

efficiencies were modelled using industry standard viscous 

friction coefficients. Figure 8 shows a graph by THK (2017) 

indicating typical ballscrew viscous coefficients 

corresponding to overall efficiency.   

 

Figure 8. Ballscrew Efficiency (THK, 2017). 

 

The ballscrew lead angle was calculated using Equation (22), 

from which subsequent values of viscous friction coefficients 

were deduced accordingly to represent each health state. The 

values of viscous friction coefficient were modelled in 

Equation (1).  

 

Simulations for each of the test cases for the different states 

were run for different motor command speeds: 500, 1500 and 

3000 RPM.  

In addition, external disturbances can occur in an EMA 

application, e.g. gust and aeroloads for a landing gear 

actuation system, which can induce uncertainty in 

ascertaining the true state of health. Therefore, instantaneous 

loads through a single cycle were modelled to replicate these 

disturbances. These loads were simulated by applying a load 

factor (×1.2) at a constant level throughout cycle. 

Following the simulations, peak Iq motor currents were 

generated for post analysis and training for classification. A 

total of 667 Iq current datasets were generated which included 

different contact angle combinations and mechanical 

efficiencies (as shown in Table 3) as well as variations due to 
external disturbances for each of the test cases. 

2.3. Data Classification 

Classification of all the data was necessary in order to train 

and learn from the parameter readings for new data.  

The classification of the simulated data was viewed as a 

process of ‘supervised learning’ from which the objective 
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was to take the known set of input data and known responses 

to the data, and build a prediction model for responses to new 

data.  

Various algorithms were considered for applying data 

classification techniques. These classification algorithms (for 
supervised learning) included decision trees, Support Vector 

Machine (SVM), Discriminant analysis, k-NN and Naïve 

Bayes. The selection of the classification algorithm was 

based on prediction accuracy, fitting and prediction speed and 

ease of interpretation.  

Karter (2016) reviewed the use of these algorithms. Decision 

trees for classification was considered binary and therefore 

have low predictive accuracy. SVMs have high predictive 

accuracy and the data would need to have exactly two classes. 

If many support vectors are used, prediction speed and 

memory become compromised. k-NNs have good predictive 

accuracy in low dimensions even with large datasets. 
Discriminant analysis can have varying predictive accuracies 

depending on the modeling assumptions.  

Therefore, given high predictive accuracy for large datasets 

with low dimensions, the datasets were trained and classified 

using the k-NN algorithm. This stores all trained cases and 

classifies new cases based on a measure of similarity 

(Murphy, 2012). By this, the k-NN algorithm measures the 

distance between a new scenario against the already set 

scenarios from the generated data sets which would enable an 

approximation for classification for a new query. Distance 

was evaluated using the Euclidean norm (Murphy, 2012): 

𝑑𝑠𝑡
2 = (𝑥𝑠 − 𝑦𝑡)(𝑥𝑠 − 𝑦𝑡)′                                                  (2) 

 

The datasets generated from Section 2.2 were organised and 

trained for all the different tests conditions and cases for 

classification using peak motor current values only. This was 
tested to evaluate the robustness and accuracy for new 

queries. New queries were selected for classification 

prediction using k-NN classifier. This was achieved using the 

built-in k-NN function in Matlab, the code for which can be 

found in the Appendix.  

3. SIMULATIONS 

This section is divided into two parts. The first shows the 

simulation results of the test cases described in Section 2.2. 

The second contains the analysis and classification of the 

trained data with new queries tested using k-NN 

classification algorithm. 

3.1. Simulation Results 

Simulations were run for three trapezoidal speed profiles – 

500, 1500 and 3000 RPM as shown in Figure 8. 

 

Figure 9. EMA Test Speed Profiles. 

The corresponding 3-phase currents for 500 RPM is shown 

in Figure 9.  

 

Figure 10. 3-Phase Currents at 500 RPM. 

As can be seen from the region labelled ‘a’ in Figure 9, the 

motor starts to turn after 1 second, which corresponds to the 

initial ramp up as indicated in the speed profiles and is 

followed by a peak starting current. After reaching steady 

state, the sinusoidal 3-phase alternating currents exhibit 

constant amplitudes as well as fixed width waveforms.  

The peak starting current occurs when an electrical motor is 

switched on in which the magnitude of the current drawn is 

dependent on the initial load on the motor (Park, 1929). Gao 

and Kang (2014) demonstrated this effect through the 

a C
u
rr

en
t 

(A
) 

Time (s) 

S
p

ee
d

 (
R

P
M

) 
S

p
ee

d
 (

R
P

M
) 

Time (s) 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 
 

8 

modeling of a PMSM using vector control, with results 

shown in Figure 11.  

 

Figure 11. Modelled Speed and Current Response of a 

PMSM during Start-up (Gao & Kang, 2014). 

 

Park’s transform was performed to generate the equivalent Iq 

currents. These are shown for all speeds in Figure 12. 

 

Figure 12. Iq Currents for All Speeds. 

The transient period (at the first peak of the starting current) 

increases with command speed due to acceleration before 

settling to steady state currents. The next set of simulations 

were conducted to evaluate the effects of the ballscrew 

kinematics. Figure 13 shows the time domain 3-phase and Iq 

current signals without any load torque at 500 RPM. 

 

Figure 13. 3-phase and Iq Currents at 500 RPM with 

Ballscrew. 

 

The zoomed views in Figure 13, in addition to the peak 

starting current show an additional current spike at the 

beginning of the starting current region. This is attributable 
to the Stribeck friction component of the ballscrew friction 

model. This occurs at low velocities at a transition between 

static and kinetic friction. This is further exemplified in 

Figure 14 when the Stribeck friction coefficient is increased.  

 

 
 

Figure 14. Iq Current with Increased Stribeck Effect in 

Ballscrew. 

 

This effect can be described further as stick and slip between 

two contact areas. With regards to Figure 14, region ‘a’ is the 

static region from which the interaction behaves like a spring 

with micro-displacement proportional to the force 

(Armstrong-Helouvry , Dupont, & De Wit, 1994). Region ‘b’ 

exhibits boundary lubrication whereby the velocity increases, 

however, it not enough to build a fluid film between the 
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surfaces. Region ‘c’ involves partial fluid lubrication and 

region ‘d’ includes full fluid lubrication whereby the 

relatively velocity is high enough for separation of the 

surfaces (Armstrong-Helouvry et al, 1994).  

 
Figure 15 shows a range of peak current values (from steady 

state behavior) against speed for the motor only as well as for 

the motor + ballscrew configurations (with Stribeck friction 

conditions as described above). 

 

 
 

Figure 15. Iq Current Speed Range with Stribeck Effect. 

 

For the ‘motor only’ configuration, the currents increase 

linearly due to the velocity dependent internal friction of the 

motor. This is also true for configurations with ballscrew 

included, however, there is a gradually increasing disparity in 

current with speed due to the presence of ballscrew viscous 

friction component. Furthermore, higher current is noticeable 

at lower speeds due to the Stribeck effect for the motor + 

ballscrew configurations. 

 
Jeong and Cho (2002) analysed these effects through an 

experimental study evaluating the cutting force of a ballscrew 

driven milling machine using motor current. Figure 16 shows 

the behaviour of the motor current due to the Stribeck effect 

at lower velocities. 

 

 
Figure 16. Relationship Between Angular Velocity and 

Motor Current – Stribeck Effect (Jeong & Cho, 2002). 

 

As inferred through the motor current, the transition to 

Coulomb friction occurred before transitioning to Viscous 

friction, whereby the friction force is proportional to velocity, 

as Jeong and Cho (2002) demonstrated in Figure 17.   

 

 
Figure 17. Relationship Between Angular Velocity and 

Motor Current – Linear Region (Jeong & Cho, 2002). 

 
Jeong and Cho (2002) also showed experimentally different 

cutting forces to evaluate the effects of load torque generation 

through motor current (Figure 18).  
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Figure 18. Relationship Between Angular Velocity and 

Motor Current for Different Cutting Forces (Jeong & Cho, 

2002). 

 

The effects of viscous friction through motor current signals 

were simulated. Figure 8 in Section 2.2 provided a guideline 

to use for representative viscous friction values as an 

indicative figure of ballscrew efficiency from industry 

standards. Progressively higher values of viscous friction 

were used to represent a degrading and faulty ballscrew 
system. Resulting peak Iq currents across a speed range are 

shown in Figure 19.  

 

 
Figure 19. Iq Current Variation with Viscous Friction. 

 

As can be observed, the Iq currents increase with viscous 

friction, which is speed dependent. Hence, disparities 

between each condition become larger with speed. 

 
The next step evaluated the effect of seeding a fault (change 

in ball and nut, and, ball and screw contact angle) on 3- phase 

and Iq current signals. A simulation was run at 500 RPM with 

a seeded fault in the form of a contact angle variation was 

modelled at 10 seconds. 

 

 
 

Figure 20. 3-phase Current (top) and Iq Current (bottom) 

Signals Following Seeded Fault. 

 

From Figure 20, a resulting spike is noticeable through 

evaluation of the Iq current. Such method can be used to 

determine variation in ballscrew geometry for fault detection.    

 

Simulations were then run for different contact angles and 

mechanical efficiencies added to evaluate the effect of Iq 

currents. The analysis considers the maximum Iq current from 

steady state period for each test case. Results are shown for 

Healthy, Degrading and Faulty conditions.  

Healthy State 

Firstly, the contact angles (between ball and nut, and ball and 

screw) were varied (as specified in Table 3). The resulting 

maximum Iq currents are shown in Table 4 for all speed 

demands with 80% mechanical system efficiency.  

Table 4. Maximum Iq Currents Under Varying Contact 

Angles for All Speeds (Healthy States). 

Test 

Case 
Demand 

Speed (RPM) 
Contact Angle 

(deg) 
Max. 

Current 

(Amps) BN BS 

1 3000 40 40 9.61 

2 3000 38 40 9.55 

3 3000 38 38 9.46 

4 1500 40 40 4.80 

5 1500 38 40 4.78 

6 1500 38 38 4.73 

7 500 40 40 1.61 

8 500 38 40 1.60 

9 500 38 38 1.58 
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Table 4 shows that more Iq current is drawn with increasing 

severity of B-N and B-S contact angles. However, the 

margins become increasingly smaller between the Iq currents 

(for respective contact angle cases) at lower speed demands.  

 

These cases were classified as being healthy although it could 

be challenging to diagnose against early stages of 

deterioration, especially when operating at low speeds. 

 

The mechanical system efficiency was changed to 70% with 

resulting maximum Iq currents shown in Table 5. Contact 

angles for B-N and B-S at 40 degrees are also presented 

alongside the previous results with 80% efficiency. As can be 

seen, the variation in peak Iq current becomes larger with 

speed due to the velocity dependent viscous friction 

coefficient. 

Table 5. Maximum Iq Currents Under Varying Mechanical 

System Efficiencies for All Speeds (Healthy States). 

Test 

Case 

Demand 

Speed 

(RPM) 

Mechanical 

System 

Efficiency (%) 

Max. 

Current (A) 

1 3000 70 10.97 

2 3000 80 9.61 

3 1500 70 5.49 

4 1500 80 4.80 

5 500 70 1.84 

6 500 80 1.61 

 

Degrading State 

Larger contact angle offsets were introduced (as specified in 

Table 3) to represent degrading cases to further analyse the 

effect on the Iq currents. A sample of these cases is presented 

in Table 6.  

Table 6. Maximum Iq Currents Under Varying Contact 

Angles for All Speeds (Degrading States), 

Test Case Demand 

Speed 

(RPM) 

Contact Angle 

(deg) 

Max. 

Current 

(A) BN BS 

1 3000 35 43 9.84 

2 3000 43 43 9.81 

3 3000 35 35 9.67 

4 3000 43 38 9.58 

5 1500 35 43 4.92 

6 1500 43 43 4.91 

7 1500 35 35 4.84 

8 1500 43 38 4.79 

Test Case Demand 

Speed 

(RPM) 

Contact Angle 

(deg) 

Max. 

Current 

(A) BN BS 

9 500 35 43 1.65 

10 500 43 43 1.64 

11 500 35 35 1.62 

12 500 43 38 1.60 

 

Table 6 shows the progressive nature of the ballscrew 

degradation where Iq currents are increasing with severity of 

contact angle offsets.  

Variations in mechanical system efficiencies (for degrading 

conditions) were introduced and compared with a couple of 

examples of contact angle offsets. Table 7 shows the results 

of this where simulations were run at 3000 RPM command 

speed. 

Table 7. Maximum Iq Currents Under Varying Mechanical 

System Efficiencies at 3000 RPM (Degrading States). 

Test 

Case 

Contact 

Angle (deg) 

Mechanical 

System 

Efficiency (%) 

Max. 

Current 

(A) BN BS 

1 35 43 35 22.48 

2 43 38 35 21.89 

3 35 43 55 14.31 

4 43 38 55 13.93 

5 35 43 70 11.24 

6 43 38 70 10.94 

 

Significantly higher current is drawn with reducing 

mechanical system efficiencies. Not only is this indicative of 

a severely degraded system, the risk of overcurrent becomes 

more probable (peak current of the PMSM rated at 28.7 A as 

specified in Table 1).  

Faulty State 

Lower values of mechanical system efficiencies were 

modelled to represent faulted states of the EMA. The results 

of which are shown in Table 8.  
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Table 8. Maximum Iq Currents Under Varying Contact 

Angles for All Speeds (Faulty) States). 

Test Case Demand 

Speed 

(RPM) 

Contact Angle 

(deg) 

Max. 

Current 

(A) BN BS 

1 3000 35 35 31.55 

2 3000 43 43 31.41 

3 3000 38 38 30.27 

4 1500 35 35 15.77 

5 1500 43 43 15.71 

6 1500 38 38 15.14 

7 500 35 35 5.26 

8 500 43 43 5.23 

9 500 38 38 5.04 

 

More specifically, the onset of ballscrew jamming was 

modelled by reducing the relative velocities between the ball 

and nut, and ball and screw. Table 9 shows the resulting 

maximum currents of such scenarios with simulations run at 

3000 RPM demand speed. 

Table 9. Maximum Iq Currents for Reducing Relative 

Velocities Between Ball-Nut and Ball-Screw. 

 

Test 

Case 
Conditions Max. 

Current 

(A) 

1 Relative velocities close to 0 in BN 
and BS 

61.40 

2 Relative velocities close to 0 in BS 52.68 

3 Relative velocities close to 0 in BN 45.98 

 

Table 9 shows that significantly more Iq currents are drawn 

when relative velocities (between B-N and B-S) are set close 

to zero. More Iq current is drawn for ball-screw interaction 

especially as this is the most contentious area of friction in a 

ballscrew (Vahid-Araghi & Golnaraghi, 2011).    

Given the simulated data presented so far, further challenges 

become apparent which may lead to a misclassification of a 

health state. This can arise from data analysis of motor 

current signals where information relating to loads, operating 

speeds and quantification of system efficiency are unknown.  

A misclassification can occur during an external disturbance 

such as gust or aeroloads.  

 

 

Table 10. Example Misclassification Between Healthy and 

Degrading Iq Currents at 500 RPM. 

 

Test 

Case 

Mechanical 

System 

Efficiency 

(%) 

External 

Load 

Max. 

Current 

(A) 

Health 

State 

1 70 Yes 2.20 Healthy 

2 65 No 1.95 Degrading 

Table 10 shows an example of where, for the same demand 

speed, a misclassification can occur where the healthy signal 

experiences a higher Iq current than the degrading one due to 

external load disturbances. 

3.2. Data Classification 

A total of 667 Iq current datasets were generated with each 

set processed to obtain peak current values (from steady state 

~ 2 to 20 seconds cycle time) for training towards data 

classification. 

 

The datasets were ‘supervised’ as the response to each set of 

variables are known i.e. Healthy, Degrading or Faulty. A 

sample set of peak Iq currents at 3000 RPM were plotted 

against their respective health state. The results are shown in 

Figure 15.  

 

Figure 21. Sample Peak Iq Currents at 3000 RPM. 

Here it can be seen that the risk of misclassification is much 

higher between healthy and degrading datasets (as can be 

seen from the region labelled 1) due to the overlap in 

observations. False results are also possible for data 

generated in the lower bounds of the faulty data and higher 

bounds of the degrading data where the observations are 

3 

2 

1 
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overlapping (as can be seen from the region labelled 2). 

Despite the possibility of a misclassification, the actual health 

state of the EMA can be distinguishable outside regions 1 and 

2. In particular, the onset of jamming can be predictable with 

such cases highlighted as shown in the region labelled 3.  

In the context of aircraft maintenance of such systems, motor 

current and speed may be the only parameters available for 

diagnosis and fault detection during scheduled checks (Isturiz 

et al. 2012). Therefore, all peak Iq currents and speeds were 

classified and plotted against their respective health state in a 

Confusion Matrix.  The Confusion Matrix (Figure 22) was 

generated after training the data using k-NN classification 

algorithm to show the classification accuracy of these 

datasets given the conditions.  

344 

51.7%  

18 

2.7% 

70 

10.5% 

32 

4.8% 

76 

11.4% 
 

56 

8.4% 
 

70 

10.5% 

 

 

Figure 22. Confusion Matrix for Classifications with 

Knowledge of Iq Currents and Demand Speeds. 

An overall classification accuracy of 73.6% was obtained. 

The red squares highlight instances of classification 

uncertainty from the simulated datasets. As can be seen, false 

results are most prevalent in cases where there is 

misclassification in data between Healthy and Degrading, 

and Degrading and Faulty states. It can also be seen that there 

are no misclassifications between Healthy and Faulted states. 

The final step was to predict a classification (health state) 

based on the k-NN classifier for a new query. The queries to 

be evaluated were mainly based on situations where the data 

lies within a region of uncertainty of the trained 

classification. The queries to be tested are listed in Table 11. 

Table 11. Queries to be Tested. 

Query Demand Speed 

(RPM) 

Iq current (A) 

1 500 2.1 

2 500 2.8 

3 500 4.2 

4 1500 5.1 

5 1500 12.3 

6 1500 12.7 

7 3000 10.1 

8 3000 23 

9 1000 10 

10 1850 21 

11 2600 9 

 

The first set of predictions were generated based on a k-NN 

classifier with a neighbourhood size of 1. The results of this 

are presented in Table 12.   

Table 12. Predicted Classifications Using 1 NN. 

Query Demand 

Speed 

(RPM) 

Iq current 

(A) 

Predicted 

Classification 

(NN = 1) 

1 500 2.1 Degrading 

2 500 2.8 Degrading 

3 500 4.2 Faulty 

4 1500 5.1 Healthy 

5 1500 12.3 Faulty 

6 1500 12.7 Degrading 

7 3000 10.1 Degrading 

8 3000 23 Faulty 

9 1000 10 Degrading 

10 1850 21 Faulty 

11 2600 9 Healthy 

 

A classifier can be more robust with more neighbours 

(Murphy, 2012) so a new set of predictions was generated for 

the same queries with increasing neighbourhood size. The 

results of this are shown in Table 13. Classifications 

highlighted in bold indicate a change in classification through 

each change in neighbourhood size value. 
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Table 13. Predicted Classifications Using Different NN Values. 

 

 

As can be deduced from Table 13, some queries exhibited 

consistency in terms of predicted classification result i.e. 

queries 1, 2, 4, 6, 10 and 11.  

Inconsistency in predicted classification was evident for 

queries 3 and 8 in particular where ascertaining the true state 

of health was difficult given the variation in classification of 

the nearest respective neighbours. Due to the uncertainty of 
these queries, such classifications can be deemed 

inconclusive as they can give rise to false predictions. 

4. DISCUSSION 

Based on the simulations, the findings of this investigation 

indicate that certain features of ballscrew degradation could 

be identified through analyzing Iq currents from high fidelity 

modelling of dynamic behaviour of the motor and non-

linearities in the ballscrew.  

 

The PMSM peak starting current was predicted and shown to 

be a feature that will vary with speed and load from which 
could be identifiable through 3-phase and Iq currents. Gao 

and Kang (2014) conducted modelling and simulation of a 

PMSM through vector control techniques and also 

demonstrated this peak starting current behaviour as was 

illustrated in Figure 11.  

The Stribeck friction effect was also modelled in the 

ballscrew. Through simulation, an additional peak current 

(due to the Stribeck effect) was identifiable during the 

acceleration. This condition is indicative of the transition 

between static and kinetic friction. Degrading features could 

be ascertained from analyzing this peak current which could 

then be attributed to the presence of static friction within the 
contact zones in the ballscrew. Figures 13 and 14 

demonstrated this effect. Experimental work previously 

conducted by Jeong and Cho (2002) also highlighted these 

frictional effects at low velocities as was shown in Figures 16 

and 18. Therefore, the level of ballscrew stiction could be 

monitored through analysis of Iq currents during acceleration. 

 

The effects of viscous friction within the ballscrew were also 

modelled as was shown in Figures 19.  The ballscrew 
mechanical efficiency could be ascertained through motor 

current. As evident in Figure 19, this is a velocity dependent 

friction component, therefore, more current was drawn at 

higher speeds. Evaluation of these features can provide 

information regarding the overall ballscrew condition with 

respect to wear and degradation through service life.  

The effects of load were considered to simulate the effects of 

external loads such as aeroloads from a real application. 

Given the knowledge about operating speed, load torque 

could also be inferred through motor current. Jeong and Cho 

(2002) also demonstrated this feature for a ballscrew driven 

milling machine as a function of varying cutting forces.  

Through simulation, it was also found that analysing a time 

domain Iq current signal could reveal information regarding 

ballscrew geometry which may otherwise be challenging to 

detect in a 3-phase current signal (as was shown in Figure 

20). Following this, data classification techniques were 

applied to classify simulated data of peak Iq currents in steady 

state conditions (after peak starting current) for different 

ballscrew contact angles and mechanical efficiencies using k-

NN classification algorithm. A classification of ~74% was 

achieved following simulations of 667 peak Iq currents. The 

performance of this was also tested with new queries.  
Misclassifications were apparent and increasing the 

dimensionality of the classifier by including peak starting 

current information may improve the predictive accuracy.  

 

This can be achieved through characterisation and a deeper 

analysis of losses within the motor. For gear-driven systems, 

high-fidelity modelling of the gearbox should also be 

considered. The analysis involved evaluating dynamic 

behaviour during transient and steady state operation for a 

Query Predicted Classification 

NN=1 NN=2 NN=3 NN=5 NN=10 

1 Degrading Degrading Degrading Degrading Degrading 

2 Degrading Degrading Degrading Degrading Degrading 

3 Faulty Degrading Faulty Degrading Degrading 

4 Healthy Healthy Healthy Healthy Healthy 

5 Faulty Degrading Degrading Degrading Degrading 

6 Degrading Degrading Degrading Degrading Degrading 

7 Degrading Degrading Degrading Healthy Degrading 

8 Faulty Degrading Faulty Degrading Degrading 

9 Degrading Degrading Faulty Degrading Degrading 

10 Faulty Faulty Faulty Faulty Faulty 

11 Healthy Healthy Healthy Healthy Healthy 
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trapezoidal speed profile. It is therefore recommended to 

consider a load profile from a real system i.e. a landing gear 

extension/retraction system and pursue a similar approach. 

5. CONCLUSIONS 

Simulated data were generated from a detailed 
Matlab/Simulink EMA model and used for data classification 

using the k-NN algorithm. The EMA was modelled for speed 

and current control with the PMSM modelled using dq axis 

transform theory, which enabled analysis using Iq currents. 

The Stribeck model was included as a means to evaluate 

friction at a local level of the ballscrew as a function of 

relative velocities between the ball and nut, and the ball and 

screw.  

The EMA model was able to detect changes to the ballscrew 

contact angles and geometry as well as variation in 

mechanical system efficiencies using Iq currents. The risk of 

misclassification was greater when simulations were run with 
external load disturbances added in. This can make it difficult 

to detect variations in contact geometry and efficiencies. 

The simulated data was trained and classified using the k-NN 

algorithm. A classification accuracy of ~74% was obtained 

using knowledge of Iq currents and demand speeds alone.  

The model could be further improved by considering a 

tribology-based approach to the friction analysis by 

evaluating contact pressures between the contact zones in the 

ballscrew. This can be viewed as a follow-on to the detailed 

kinematic analysis and a validation step to the velocity 

dependent friction model. New queries may be predicted 
from real-time data as a means to further assess the 

performance of the k-NN classifier presented. 

It is proposed that the approach outlined in this paper can be 

utilised in conjunction with a test stand. By this, 3-phase 

current signals could be obtained to analyse through Park’s 

transform which could then enable one to estimate friction 

parameters for the motor and ballscrew. Ballscrew dynamic 

behaviour could then be characterized through analyzing 

static friction at low velocities, ballscrew wear as well as load 

torque through motor current alone.  A hybrid approach to 

diagnostics could also be satisfied by capturing any 

discrepancy between model based results and actual data, 
which can also help to isolate faults within the EMA 

drivetrain. 
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APPENDIX 

i. Motor Modelling Equations 

 

Firstly, the 3-phase supply voltages were converted to 2-

phase quantities using Park’s transform: 
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The PMSM electrical model consists of the stator resistance, 

inductances (d and q axes), number of poles as well as the 
flux induced by the rotor permanent magnets in the stator 

phases to get the Iq and Id currents: 

𝑉𝑑 = 𝑅𝑠𝐼𝑑 + 𝑝𝜆𝑑 − 𝜔𝑟𝜆𝑞                                                   (4) 

 

𝑉𝑞 = 𝑅𝑠𝐼𝑞 + 𝑝𝜆𝑞 + 𝜔𝑟𝜆𝑑                                                    (5) 

 

Where 

𝜆𝑑 = 𝐿𝑑𝐼𝑑 + 𝜆𝑎𝑓                                                                 (6) 

and   

𝜆𝑞 = 𝐿𝑞𝐼𝑞                                                                            (7) 

 
The electromagnetic torque of the PMSM is derived from: 
 

𝑇𝑒 =
3𝑝

4
(𝜆𝑑𝐼𝑞 − 𝜆𝑞𝐼𝑑) =  

3𝑝

4
(𝜆𝑎𝑓𝐼𝑞 + (𝐿𝑑 − 𝐿𝑞)𝐼𝑑𝐼𝑞)                               (8) 

The mechanical subsystem of the PMSM model to calculate 

mechanical torque and rotor mechanical speed is given by 

𝑇𝑒 = 𝑇𝐿 + 𝐵𝜔𝑚 + 𝐽
𝑑𝜔𝑚

𝑑𝑡
                                                      (9) 

 

Equation (9û) can be rearranged for rotor mechanical speed: 

 

𝜔𝑚 = ∫ (
𝑇𝑒−𝑇𝐿−𝐵𝜔𝑚

𝐽
)𝑑𝑡                                                      (10) 

 

whereby the relationship between the electrical speed (ωr) 
and the rotor mechanical speed (ωm) is given by 

 

𝜔𝑚 = 𝜔𝑟 (
2

𝑝
)                                                                       (11) 

 

Given the modelled PMSM electrical and mechanical 

properties, the d and q axis currents are transformed back into 

3-phase quantities and subsequently fed back in to the PMSM 

controller block (as shown in Figure 2). The inverse Park 

transform was used to return the 3-phase currents:  

 

[
𝐼𝑎
𝐼𝑏
𝐼𝑐

] = [

𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 1

𝑐𝑜𝑠 (𝜃 −
2𝜋

3
) −𝑠𝑖𝑛(𝜃 −

2𝜋

3
) 1

𝑐𝑜𝑠 (𝜃 +
2𝜋

3
) −𝑠𝑖𝑛(𝜃 +

2𝜋

3
) 1

] [

𝐼𝑑
𝐼𝑞
𝐼0

]                     (12) 

 

ii. Ballscrew Modelling Equations 
 

For this analysis, the total system inertia is given the 

summation of motor, ballscrew and load inertia: 

 

𝐽 = 𝐽𝑚 + 𝐽𝐵𝑆 + 𝐽𝑙                                                              (13) 

 

Jm is known from the motor manufacturer specification as 

given in Table 1. JBS was modelled as a cylinder based on 

density, radius and length: 

 

𝐽𝐵𝑆 =
𝜋𝑙𝜌𝐷𝑠

4

32
                                                                        (14) 

Jl is the load inertia reflected back to the motor: 

 

𝐽𝑙 =
𝑚𝐿2

2𝜋
× 10−6                                                                (15) 

 

The load torque reflected to the motor is composed by the 

load force, Fl and pre-load force, Fpf: 

 

𝜏𝑟 = 
𝐹𝑙𝐿

2𝜋𝜂
+ 𝜇

𝐹𝑝𝑓𝐿

2𝜋𝜂
                                                             (16) 

 

The relative velocities between ball and screw, VBS and ball 

and nut VBN, needed to be factored in. Relative speeds of these 

regions are critical for this study as they largely dictate the 

magnitude of instability when the ballscrew experiences a 
fault (Jiang, Song, Xu, Tang, Zhang & Han, 2010). The 

corresponding relative angular velocities are given by 

 

𝜔𝐵𝑆 = 
𝑉𝐵𝑆

0.5(𝑑𝑠−𝐷)
                                                                (17) 

 

𝜔𝐵𝑁 =
𝑉𝐵𝑁

0.5𝑑𝑛
                                                                      (18) 

 

Information regarding the rotor mechanical speed, (ωm) is 

known therefore the angular velocities were calculated using 

a detailed kinematic analysis. Wei and Lin (2004) determined 

the relationship between the angular velocities, ωBS and ωBN 

as  

 
𝜔𝐵𝑆

𝜔𝐵𝑁
=

(1+𝛿𝑐𝑜𝑠𝛼𝑛)(𝑐𝑜𝑠𝛼𝑠+𝑡𝑎𝑛𝛽𝑠𝑖𝑛𝛼𝑠)

(1−𝛿𝑐𝑜𝑠𝛼𝑠)(𝑐𝑜𝑠𝛼𝑛+𝑡𝑎𝑛𝛽𝑠𝑖𝑛𝛼𝑛)
                                    (19) 

 

β is the lead angle and δ is a relationship between ball 
diameter and screw pitch given by 

 

𝛿 =
𝐷

𝑑𝑠
                                                                                  (20) 

 

The contact angles (between ball and nut, αn, and ball and 

screw, αs) are depicted in Figure 6. 

 

In order to calculate the relative angular velocities (ωBS and 

ωBN), ball linear velocity, Vb needs to be ascertained. 
Assuming the relative slip speed between ball and nut is 

negligible, Vb can be calculated as follows (Song, Jian, Zhao-

tan, Xian-yin & Bao-min 2005):  

 

𝑉𝑏 = 
𝜔𝑚(𝐷𝑠−𝐷𝑠𝑖𝑛𝛼)𝑐𝑜𝑠𝛽

2
                                                           (21) 

 

Where the lead angle, β is determined from 
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𝑡𝑎𝑛𝛽 =  
𝐿

𝜋𝐷
                                                                                                                 (22) 

 
Given equation (21), the corresponding ball angular velocity, 

ωb is given by: 

    

𝜔𝑏 = 
𝑉𝑏

0.5𝑑𝑠
                                                                              (23) 

 

The relative angular velocity between ball and screw, ωBS 

depends on ball angular velocity, ωb and ballscrew angular 
velocity, ωm (Wei & Lin, 2004), hence 

 

𝜔𝐵𝑆 = (𝜔𝑚 − 𝜔𝑏)𝑐𝑜𝑠𝛼                                                        (24) 

 

The relative angular velocity between ball and nut, ωBN 

depends only on the ball angular velocity, ωb (Wei & Lin, 

2004) therefore: 

 

𝜔𝐵𝑁 = −𝜔𝑏𝑐𝑜𝑠𝛼                                                                     (25) 

 
Given that ωBS and ωBN can now be calculated as a function 

of ball angular velocity, ωb, equations (24) and (25) can be 

substitued into equation (19) and rearranged to obtain 

 

𝜔𝐵𝑆 = 𝜔𝐵𝑁
(1+𝛿𝑐𝑜𝑠𝛼𝑛)(𝑐𝑜𝑠𝛼𝑠+𝑡𝑎𝑛𝛽𝑠𝑖𝑛𝛼𝑠)

(1−𝛿𝑐𝑜𝑠𝛼𝑠)(𝑐𝑜𝑠𝛼𝑛+𝑡𝑎𝑛𝛽𝑠𝑖𝑛𝛼𝑛)
                                  (26) 

 

𝜔𝐵𝑁 = 𝜔𝐵𝑆
(1−𝛿𝑐𝑜𝑠𝛼𝑠)(𝑐𝑜𝑠𝛼𝑛+𝑡𝑎𝑛𝛽𝑠𝑖𝑛𝛼𝑛)

(1+𝛿𝑐𝑜𝑠𝛼𝑛)(𝑐𝑜𝑠𝛼𝑠+𝑡𝑎𝑛𝛽𝑠𝑖𝑛𝛼𝑠)
                                (27) 

 
 

iii. Matlab Code for k-NN Classifier. 

 
load simulateddata 
X = meas; %all motor current and speed 

data 
Y = responses %corresponding state of 

health of each simulation 
mdl = ClassificationKNN.fit(X,Y); %k-NN 

classification 
mdl.NumNeighbours = 1; %set number of 

nearest neighours, default value is 1 
% Predict the classification for a new 

query  
query1 = [500 2.2]; %example query for 

500 RPM and 2.2A 
query1Class= predict(mdl,query1); %class 

prediction 

 


