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ABSTRACT

This paper investigates the problem of condition monitoring
of complex dynamic systems, specifically the detection, lo-
calisation and quantification of transient faults. A data driven
approach is developed for fault detection where the multidi-
mensional data sequence is viewed as a stochastic process
whose behaviour can be described by a hidden Markov model
with two hidden states — i.e. ‘healthy / nominal’ and ‘un-
healthy / faulty’. The fault detection is performed by first
clustering in a multidimensional data space to define nor-
mal operating behaviour using a Gaussian-Uniform mixture
model. The health status of the system at each data point
is then determined by evaluating the posterior probabilities
of the hidden states of a hidden Markov model. This allows
the temporal relationship between sequential data points to be
incorporated into the fault detection scheme. The proposed
scheme is robust to noise and requires minimal tuning. A
real-world case study is performed based on the detection of
transient faults in the variable stator vane actuator of a gas tur-
bine engine to demonstrate the successful application of the
scheme. The results are used to demonstrate the generation
of simple and easily interpretable analytics that can be used
to monitor the evolution of the fault across time.

1. INTRODUCTION

As modern engineering systems become increasingly com-
plex, there has been a significant growth in the need for so-
phisticated condition monitoring procedures to ensure reli-
able operation. Condition monitoring can provide informa-
tion to support condition-based (rather than schedule-based)
maintenance so as to optimize operations and equipment up-
time, and maximize cost efficiency. This may involve a vari-
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ety of tasks such as fault detection and isolation, degradation
and anomaly identification, or prediction of impending fail-
ures.

The detection of incipient transient faults - faults that are ob-
served over a short time scale, the trend of which grow in
magnitude over time - is a particular challenge in condition
monitoring due to the short time scales and low magnitudes
by which a system deviates from its normal behaviour. Detec-
tion and monitoring of such faults is of great importance be-
cause they are often observed as a precursor to failure, which
may result in an unscheduled withdrawal from service to per-
form a maintenance action. Successful condition monitoring
can lead to pre-emptive fault diagnosis and accurate time to
failure estimates and hence reduce asset downtime by the op-
timisation of maintenance schedules.

Given the perfect analytical model of a system, detection
of abnormal transient behaviour can be easily performed by
residual analysis, see e.g. (Chen & Patton, 1999; Ping Li &
Kadirkamanathan, 2001; Ding, 2013; Isermann, 2011). In
practice, however, such systems often display complex non-
linear behaviour and it is often difficult, if not impossible,
to design a reliable analytical system model due to system
complexity, high dimensionality and multiple operating con-
ditions. In such a case, it may be more appropriate (or essen-
tial) to take a data-driven approach.

Data-driven techniques, often named as data mining or ma-
chine learning, make use of data collected during normal op-
eration, or specifically designed experiments, in order to build
statistical models of system behaviour. To detect anomalous
behaviour, many data-driven techniques require the existence
of target data - data known to contain faults - such techniques
are named supervised learning. However, it is often the case,
such as for safety critical systems (aero gas turbine engines
(GTEs), industrial power generation etc.) that a vast quan-
tity of data under nominal conditions is available but target
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data is very limited, or no such data exists. In this case we
must consider un-supervised/self-supervised learning. Under
this scenario the system’s normal behaviour is characterised,
deviation from which indicates a system fault, referred to as
novelty detection.

In recent years, data driven anomaly detection techniques
have become increasingly popular for transient fault detec-
tion (Chandola, Banerjee, & Kumar, 2009; Ge, Song, &
Gao, 2013; Pimentel, Clifton, Clifton, & Tarassenko, 2014).
A variety of schemes exist which can be broadly separated
into three categories: Reconstruction based, boundry based
and density based. Reconstruction based methods attempt to
model the underlying system behaviour. Fault detection is
achieved through monitoring the reconstruction error. Mod-
els can either be physics based or data-driven. Recently, much
interest has been seen in the use of deep neural networks (Yan
& Yu, 2015; Liao, Jin, & Pavel, 2016). The majority of DNN
methods require labelled training data, however, self super-
vised transient fault detection has been achieved using deep
auto-encoders (Suh, Chae, Kang, & Choi, 2016; Fan, Xiao,
Zhao, & Wang, 2018). Deep auto-encoders attempt to en-
code the input signals into a latent space which is then recon-
structed at the output. Reconstruction based methods suffer
from the presence of unmeasured disturbances and complex
system behaviours that may lead to residuals that are larger
than the magnitude of the fault behaviour to be detected, lim-
iting performance in many real world systems.

Boundary based methods construct a decision boundary to
classify normal/abnormal samples. These methods have been
dominated by sparse vector machines (SVMs) (Jena & Pan-
igrahi, 2014; Görnitz, Lima, Müller, Kloft, & Nakajima,
2017), where the boundary is constructed as the smallest hy-
persphere that contains the (majority) of the training data.
Density based methods test if a sample data point belongs
to the underlying data distribution in a probabilistic manner.
Simple aproaches are based on statistical outlier detection
(Barnett & Lewis, 1974). For more complex data distribu-
tions mixture models (McLachlan & Peel, 2004) and kernel
density estimators (Vincent & Bengio, 2003) can be used. In
both boundary and density based methods, the temporal char-
acteristics of anomalous data is not naturally incorporated. A
popular approach to include such time dependencies is the
hidden Markov model (HMM) (Bishop, 2006) where the sys-
tem is assumed to be a Markov pocess with hidden states. The
HMM has wide applicability and remains a topic of active re-
search (Görnitz, Braun, & Kloft, 2015; Li, Pedrycz, & Jamal,
2017).

Fleet level monitoring of asset condition poses a challenge
for all transient fault detection approaches. Each asset may
be designed to operate in the same manner, however, factors
such as ageing and environmental operating conditions lead
to significant variation in the statistics of collected data across

assets and through time. Defining nominal behaviour, from
which small transient deviations indicate a fault, hence be-
comes problematic. A further problem is that the collected
data is too large to be manually checked for faults and so can-
not be assumed to be healthy. In order to detect such faults,
data driven methods are required which do not depend on su-
pervised learning, can be tailored to represent each data set
individually, and do not rely on the existence of a healthy
data set.

This paper is concerned with the problem of developing meth-
ods for the detection and localisation of previously unseen
transient faults in unbalanced data sets, where normal be-
haviour can be well defined, but no a priori information about
fault modes is available. Training data may therefore con-
tain fault data samples. Significant variation in normal be-
haviour is observed across data sets, such that a global model
cannot be defined. The problem is addressed by the devel-
opment of a machine learning based method using Gaussian-
Uniform mixture models (G-UMMs) and HMMs. The pro-
posed scheme avoids the problems associated with time se-
ries models, either first principles or data driven, and unmea-
sured disturbances are characterised by the variance in the
G-UMM. Temporal information relating to anomalous be-
haviour is retained through the application of the HMM. The
method relies on the assumption that transient faults are ob-
served as outliers to the normal data distribution.

The developed condition monitoring scheme is demonstrated
using a case study based on the detection of transient faults
in the variable stator vane of an aero gas turbine engine. The
method is demonstrated to perform well for the detection of
synthetic faults incorporated into a real data set. Further re-
sults are presented showing the performance of the method
on a healthy data set as well as the detection of a real fault
event.

The rest of paper is organized as follows. In Section 2 the G-
UMM and HMM are introduced, and the transient detection
scheme is detailed. In Section 3 the variable stator vane sys-
tem is introduced and the relevant transient fault modes are
described. The results of the case study are given in Section
4. Finally, concluding remarks are made in Section 5.

2. METHODOLOGY

The method developed in this paper uses machine learning-
based techniques (Bishop, 2006) to perform transient fault
detection for complex systems. Specifically, Gaussian mix-
ture classification and HMMs are employed. In the remainder
of this section, these two techniques are introduced first, and
then the new fault detection method is presented.
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2.1. Gaussian mixture models (GMMs)

A mixture model is a statistical model for representing data
sets which display behaviour that cannot be well described by
a single standard distribution. It allows a complex probability
distribution to be built from a linear superposition of simpler
components. Gaussian distributions are the most common
choice as mixture components because of the mathematical
simplicity of parameter estimation as well as their ability to
perform well in many situations, particularly in the presense
of measurement noise (Dempster, Laird, & Rubin, 1977). A
GMM is a linear superposition of Gaussian densities of the
form (Bishop, 2006):

P (x) =

K∑
k=1

πkN (x|µk,Σk) (1)

where P (x) denotes the probability density function over the
data x, N (x|µk,Σk) denotes the k’th Gaussian distribution
with mean µk and covariance Σk. πk is a weighting on each
component named the mixing coefficient. K is the total num-
ber of Gaussian mixtures. The GMM can be interpreted in
terms of discrete hidden or latent variables where the discrete
hidden variables can be viewed as defining assignments of
data points to specific components of the mixture, and hence
can be used to classify data as belonging to each distribution
with a given probability or ’responsibility’ denoted ri,k for
the i’th data point in x belonging to the k’th component.

The GMM can represent an arbitrarily complex distribution
given a sufficient quantity of Gaussian components. How-
ever, care must be taken to avoid over-fitting to the training
data, such thatK should be kept sufficiently small (McKenzie
& Alder, 1994).

2.1.1. Robust classification with G-UMMs

Gaussian distributions and hence Gaussian mixture compo-
nents are well known to be non-robust (Mt, 2005). Outliers in
the data will skew the estimated distributions. Furthermore,
the transient behaviour to be detected will be observed as an
outlier to the normal data distribution by its very definition.
One method for enforcing robustness to outliers is to use a
mixture of Student-t distributions rather than Gaussians (Peel
& McLachlan, 2000), however, as shall be seen shortly, there
is a significant advantage in classifying outliers as separate
from the normal data distribution. On this basis a modifica-
tion is made to the mixture model by including a single uni-
form distribution component such that equation (1) becomes

P (x) =

K∑
k=1

πkN (x|µk,Σk) + πK+1U(x|a, b), (2)

where U(x|a, b) denotes the uniform distribution over the in-
terval [a, b]. The Gaussian-Uniform mixture model has the

flexibility to assign outlying data points to the uniform distri-
bution with a large probability. The statistics of the Gaussian
distributions can then be estimated with little influence from
the outlying data points. The addition of the uniform hence
makes the model robust to the presence of outliers as well as
correctly classifying them as such.

The probability that a point is assigned to the uniform dis-
tribution, PU = U(x|a, b), is determined by the parameter
πK+1, to be estimated, as well as the choice of the interval
[a, b]. However, it is simpler both mathematically and intu-
itively to directly assign a probability value. When working
with probability distributions within the exponential family,
it is often convenient to consider log probabilities in order to
simplify the computations. This is the case with expectation
maximisation (EM) for GMMs (discussed in the following
section), as such it is also convenient to consider a log prob-
ability for the uniform distribution, log(PU ), which acts as a
tuning parameter which, along with the weight πK+1, affects
how outlying data points are classified. Increasing log(PU )
may cause more points to be assigned to the K + 1’th mix-
ture, and hence as outliers, and vice-versa.

The addition of the uniform distribution to the GMM has the
further property of collecting all outlying data points into a
single cluster. This property is necessary for the particular
implementation of the HMM used here. The interaction of
the uniform component and the HMM is discussed in Section
2.2.

An example of a G-UMM applied to a complex distribution
formed by the linear superposition of three bivariate Gaus-
sians in the presence of outliers is shown in Figure 1. The
true distribution (Left panel) is formed by sampling from each
Gaussian distribution and outliers are drawn from a uniform
distribution, underlying distributions are represented by 95%
confidence intervals (Black line). 200 data points are drawn
from each Gaussian distribution and 60 outliers are drawn
from a uniform distribution leading to a toal of 660 train-
ing data points. Gaussian distributions estimated by the G-
UMM (middle panel) are consistent with the true distribution,
leading to accurate assignment of outliers. The GMM (right
panel) fails to identify one of the true distribution components
leading to an extra Gaussian distribution taking responsibility
for some of the outliers. The example serves to demonstrate
the robust estimation of the GMM in the presence of outliers.

2.1.2. Parameter estimation

Training the G-UMM requires estimating the model param-
eters πk, µk and Σk for k = 1, . . . ,K + 1. A popular, and
commonly used method, for finding the maximum likelihood
solution for the parameter estimates of a GMM is the EM al-
gorithm (Dempster et al., 1977). Although many alternative
techniques exist (Redner, Walker, Mathematics, & Review,
1984; Nasios & Bors, 2006), the EM algorithm has significant
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Figure 1. The Gaussian-Uniform mixture model can remove the influence of outliers from the estimation of the Gaussian
distributions. A complex distribution in the presence of outliers is well characterised by a G-UMM allowing outliers to be
detected. The GMM fails to identify part of the data distribution.

advantages in its simplicity, computational complexity and
convergence properties (Xu & Jordan, 1996). Furthermore
the EM algorithm can be simply extended to estimate the pa-
rameters of the Gaussian-Uniform mixture model (Coretto &
Hennig, 2009).

The EM algorithm is guaranteed to converge to a local max-
imum but not a global one. The choice of initialisation can
have an influence on which local maxima the algorithm con-
verges to. It is therefore important to either make a sensible
choice for the initial mixture component assignment — i.e.
one that is close to some local optimum — or to randomly
initialise and perform multiple runs over the algorithm. A
sensible choice for the initial mixture components may be
available from prior knowledge of the data, otherwise it is
common to use a K-means based clustering algorithm such
as the well known K-means++ (Arthur & Vassilvitskii, 2007).
A number of alternatives and their advantages, including op-
tions for random initialisation, are discussed in (Blömer &
Bujna, 2016). The optimality of the local maxima on conver-
gence can be assessed by observation of the log likelihood,
such that multiple runs over the same data set can be directly
compared.

Once the model has been trained by estimating the model pa-
rameters, the classification of each data point into the differ-
ent G-UMM clusters can be considered as the observed state
of the system.

2.2. Hidden Markov models (HMMs)

The HMM was first developed for speech recognition
(Rabiner, 1989), since then, it has been extended to a wide
variety of applications such as fault detection (Smyth, 1994),
pattern recognition (Baldi & Brunak, 2001; Bishop, 2006)
and health prognosis (Liu, Dong, & Peng, 2012). A HMM is
a statistical model for a doubly embedded stochastic process
with an underlying stochastic process (Markov chain) being

unobservable (i.e. hidden), and this underlying hidden pro-
cess can only be observed through another stochastic process
which produces a sequence of observations (Rabiner, 1989),
here referred to as classes. In the context of fault detection
and condition monitoring, the state sequence of the system to
be monitored is the assumed hidden process that needs to be
estimated for each data point, i.e. the health state of the sys-
tem - healthy or faulty. The classes may be some quantifiable
operating condition of the engine, or it could be the output of
some classification procedure (such as a mixture model).

The HMM is justified under the following two conditions /
assumptions on the system:

i The Markov property of the hidden states, i.e. the hidden
state Xi of the system at sample i depends only on the
hidden state Xi−1 of the system at the previous sample
i− 1.

ii The conditional independence of the class given the sys-
tem hidden state, i.e. the class Yi at current sample i de-
pends only on the hidden state Xi at the current sample i
and not on the past system hidden states or observations.

Conceptually, this means that the current system hidden state
is linked to the previous hidden state by the conditional distri-
bution P (Xi|Xi−1), and hence to all previous hidden states.
The two properties can be expressed formally as follows:

P (Xi|Xi−1, · · · ,X1) = P (Xi|Xi−1) (3)

and

P (Yi|Xi, · · · ,X1,Yi−1, · · · ,Y1) = P (Yi|Xi) (4)

The HMM is illustrated by considering the pictorial represen-
tation given in Figure 2 within the context of fault detection.
The system’s hidden states to be estimated are shown by the
black circles. There are two hidden states: either ‘Nominal’
or ‘Faulty’. The coloured circles represent the classes.
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Figure 2. Pictorial representation of the Hidden Markov
Model in the context of fault detection

The black arrows between the hidden states represent the
probability of a transition between hidden states at any given
sample, conditional on the hidden state at the previous sam-
ple. These probabilities are collected into the transition ma-
trix, A, with elements

ajp = P (Xi = sp|Xi−1 = sj) j, p = 1, · · · , n. (5)

where n is the number of hidden states, in the current example
n = 2 with s1 = ‘Nominal’ and s2 = ‘Fault’.

The black arrows connecting the Hidden states to the classes
represent the emission probabilities - the probability that an
observation is made, conditional on the hidden state the sys-
tem is in at the current sample. These probabilities are col-
lected in the emission matrix B with elements

bjk = P (Yi = ok|Xi = sj)
j = 1, · · · , n and k = 1, · · · ,m (6)

where m is the number of the distinct observation symbols,
in the current example, m = 3 with o1 = ‘Class 1’, o2 =
‘Class 2’ and o3 = ‘Class 3’.

Finally, the probability of starting in any given hidden state
is represented by the black arrows connecting the initial state
labelled ’start’ and the hidden states. These probabilities are
given by the vector S0

For the example illustrated in Figure 2 the transition and
emission matrices and the initial state vector are given by

A =

[
0.99 0.01
0.5 0.5

]
, B =

[
0.6 0.399 0.001
0.1 0.2 0.7

]
,

(7)

S0 =

[
0.99
0.01

]
(8)

respectively.

A HMM is defined by these three matrices (A, B, S0) which
can be estimated from a training data set using, for example,
the EM algorithm among others. However, if there is no la-

belled training data available, an alternative method for the
choice of these matrices shall have to be used. This choice of
matrices is problem specific and is discussed below.

Given the required matrices and a sequence of classes the
hidden states can be estimated. Two common methods for
performing the state estimation are the forward backward al-
gorithm (Rabiner, 1989) and the max-sum algorithm, also
named the Viterbi algorithm in the context of HMMs (Viterbi,
1967).

2.3. G-UMM - HMM based fault detection

The G-UMM and the HMM are combined to form an effec-
tive method for the detection of transient faults. Although the
method could be applied in the case where labelled training
data is available, here it assumes that this is not the case and
all learning must be self-supervised (i.e. the HMM matrices
are set based on labels generated by the G-UMM). Further-
more, we assume that the process data originates from a va-
riety of different assets whose data characteristics may vary.
The variation may be due to different degradation levels, envi-
ronmental variables or operating conditions. Such a scenario
is a common one in the real world: for example, a fleet of air-
craft may be built to the same specifications but will operate
with varied temperatures, levels of maintenance and compo-
nent age.

Firstly, the number of Gaussian components, K, is chosen,
and the G-UMM is initialised and trained on an input data
set (that may or may not contain any transient faults) in the
space of the raw signals or in an appropriate feature space. K
should be chosen sufficiently large, such that the G-UMM
can accurately describe the distribution of the data, while
remaining small enough to avoid over-fitting (Kim & Seo,
2014; McKenzie & Alder, 1994) and produce physically in-
terpretable clusters where possible to aid the setting of the
parameters of the HMM in the following step. The HMM
is used in order to include the temporal relationship into the
fault detection scheme. The G-UMM responsibilities, rik,
are the observed state of the HMM. In order to estimate the
HMM hidden states, the emission, transition and initial states
must be determined. The transient nature of the faults to be
detected implies that they are infrequent and occur over small
time scales. Even in a data set containing faults, the assump-
tion has been made that a large amount of healthy training
data exists such that there is significantly more healthy data
than fault data. Based on this, is is assumed that the num-
ber of faulty data points is negligible in comparison to the
number of healthy data points. The emission matrix values
relating to the healthy state are then given by the proportion
of data points in each of the classes, given by the G-UMM
mixing coefficients πk.

The elements of the transition and emission matrices, A and
B respectively, act as tuning parameters for the algorithm.
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Increasing the probability of the transition between states af-
fects the flexibility of the algorithm to assign the fault state to
a data point and vice-versa. The sensitivity of the algorithm
to these parameters is limited by incorporating the probabilis-
tic state assignment of the G-UMM into the HMM such that,
if the G-UMM determines that a data point is highly likely
to be in a certain state, then this large probability outweighs
those in the transmission and emission matrices. To achieve
this, a probabilistic class observation is considered. The class
observation is used as past of the propagation through the
forwards-backwards algorithm. The probability that a given
class is observed at sample i is

P (oi = k) = P (Yi,k = 1|x) = ri,k, (9)

exactly the G-UMM responsibility.

The probability of the system being in the j’th hidden state is
then given by

P (Oi = j) =
∑
k

P (oi = k)P (Yi,k|Xi,j) (10)

=
∑
k

ri,kbj,k (11)

The i’th hidden state probabilities are represented in matrix
form by a diagonal observation matrix, Oi with diagonal ele-
ments P (Oi = j), given by

Oi(ri) = diag(BrTi ), (12)

where ri = [ri,1, ri,2, ..., ri,K+1]. The forward-backward al-
gorithm then proceeds as normal, as described in (Rabiner,
1989).

The elements of the emission matrix, B, for the faulty state
as well as those for the transition matrix, A, are chosen based
on the application. Typically, the probability of observing an
outlier when in the faulty state will be much higher, guiding
the choice of values. The initial state vector is simply chosen
so as to be almost certain that the state sequence will start in
the healthy state.

X

U-GMM

i Y1:NYi X ixi

hidden

States(classes

Figure 3. G-UMM -HMM based fault detection

2.4. Summary of the transient fault detection scheme

The proposed fault detection procedure is shown pictorially
in Figure 3 and is summarised as follow:

1. Select appropriate system signals that well define the op-
erating behaviour.

2. Initialise the G-UMM by assignment of each data point
to an initial cluster.

3. Train the G-UMM in order to characterise the operating
region in the space of the selected signals and estimate
the G-UMM responsibilities

4. Assign HMM transition, emission and initial sate matri-
ces

5. Apply the HMM algorithm to the set of classes found by
the G-UMM classification in step 3 to estimate healthy
and faulty hidden states

3. CASE STUDY: VSVA TRANSIENT FAULT DETECTION

The system of interest for this study is the variable stator vane
actuator (VSVA) used in aero GTEs. Transient faults have
been observed in test bed data for the VSVA system in the
presence of a build up of friction, providing an example of the
type of fault of interest in this work. The VSVA shares many
behavioural characteristics, and hence fault modes, with other
controlled actuation systems components giving a wider ap-
plicability to the current study.

3.1. VSVA operation

The VSVA controls the position of the variable stator vanes
(VSVs) in a GTE in order to manage the efficiency and sta-
bility of the compressor system. Figure 4 shows a block dia-
gram of a VSVA for VSV position control. The operation of
the VSVA can be summarised as follows:

1. The demanded position of the VSV is set by the elec-
tronic engine controller (EEC) control architecture ac-
cording to estimates of air mass flow.

2. The VSVA position is measured by a linear variable
displacement transformer (LVDT) inside the VSVA and
continuously transmitted to the EEC.

3. The error between the demanded and measured position
is calculated and fed into a PID controller that sets the
demanded torque motor current (TMC).

4. The VSV torque motor (TM) controls the servo valve
allowing pressurised fuel to be fed to either side of the
actuator ram, moving the position of the VSV.

5. When the VSV reaches the correct angle the TM is in-
structed, via the EEC, to set the spool valve into the null
position by producing a holding current, preventing fur-
ther movement of the actuator.

The actuator can be considered to have three distinct oper-
ating modes, extending (moving in the forward direction),

6
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TMC

Figure 4. Block diagram of a VSVA

retracting (backwards direction) and approximately station-
ary. Note that a current is still required when the actuator is
stationary and to reject disturbances. The actuator provides
a larger force when it is extending than when it is retracting
such that the actuator moves at different velocities when mov-
ing in different directions. The velocity of the VSVA is also
dependant on the high pressure (HP) shaft speed.

3.2. Problem statement

Faults can occur in the components of the VSVA shown in
Figure 4. One of the potential fault modes that has been iden-
tified by an industrial partner relates to a build up of mechan-
ical friction in the system causing intermittent sticking. A
transient deviation from normal behaviour is observed when
the VSV becomes temporarily ‘stuck’ and unresponsive to its
driving control signal. Such faults occur in the event of an
actuator jam, due to mechanical friction, or the VSV con-
trol valve sticking, due to the build up of sediment in the
valve. In both cases, the error between the demanded and
measured VSVA position increases causing a large tracking
error. This results in the feedback control architecture in-
creasing the TMC with no resultant change in the measured
VSVA position signal. The fault mode is of particular inter-
est because it is common to many components of a GTE that
involve position tracking. Low levels of sticking are expected
and are observed in the healthy system. The fault detection
task must quantify the magnitude of a transient fault in order
to differentiate a developing fault from the baseline.

An example of such a transient fault observed in test-bed data
is shown in Figure 5. At the onset of the sticking event, the
demanded and measured position signals diverge, which re-
sults in the TMC decreasing to its minimum value, as shown
in Figure 5.

The G-UMM HMM method developed in this work is em-
ployed in order to localise transient faults to achieve a high
detection resolution, such that low magnitude/developing
sticking events can be identified. Once the faults have been
localised in the time series data then analytics can be gener-
ated. The interpretability of these analytics is essential such

that they can be used as an aid in diagnosis.

3.3. Choice of engine signals

It is important to select signals that maximise the amount of
information relating to the fault of interest, while also keep-
ing the dimensionality as small as possible. Two of the sig-
nals that are highly sensitive to the fault are the tracking error
(difference in the demanded and measured position of the ac-
tuator) and the VSV velocity (estimated from the measured
VSV position). The final signal that is chosen is the VSV
Torque Motor Current which drives the actuator movement.

3.4. G-UMM initialisation

The G-UMM is initialised by selecting the number of clus-
ters, K, and the initial assignment of data points to each clus-
ter. Here, the choice of initialisation is made using domain
knowledge. It is clear from a preliminary study of the data
that there are approximately three different underlying distri-
butions in the signal space chosen in Section 3.3, correspond-
ing to the three operating modes discussed in section 3.1. The
vast majority of the data is in the stationary mode; centred
around zero velocity, zero tracking error and the holding cur-
rent (approx. 16mA). The rest of the data falls into the extend-
ing and retracting modes depending on whether the velocity is
positive or negative. For this reason, the G-UMM algorithm
is initialised by assigning each data point into K = 3 clus-
ters defined by the following thresholds on the VSV veloc-
ity: VSV velocity < −0.01, −0.01 ≤ VSV velocity ≤ 0.01
and VSV velocity > 0.01, see Figure 6: Middle Panels. The
velocity thresholds are simply chosen by observation of the
VSVA velocity signal, such that positive, negative and near
zero velocities are separated into different clusters. It should
be noted that it is not necessary to fine tune this value, as it
has been found that a range of values within this region will
converge to the same local maxima. A random selection of
100 data points are assigned to the outlier distribution to en-
sure algorithmic stability.

The log probability level of the uniform distribution is set to
log(PU ) = −20, the value is chosen by trial and error for
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Figure 5. True ‘Sticking’ event - TMC (Red line) reaches its minimum value for over 3 seconds due to the large error in the
demanded (Pink line) and measured (Blue line) position signals.

one data set and then validated by observation on additional
data sets. It was found that values in this region (±10) led
to almost identical results. The weighting of the data points
performed by the algorithm is observed to have a large effect
on the distribution assignment, such that the algorithm is not
sensitive to small changes in the uniform probability distribu-
tion parameters.

3.5. Choice of HMM matrices

The matrices that define the HMM are chosen so that they
reflect the fault detection scenario as discussed in Section 2.3.
The matrices were chosen as follows

Transition matrix:

A =

[
0.99 0.01
0.5 0.5

]
(13)

Emission matrix:

B =

[
π1 π2 π3 π4

0.00001 0.05 0.05 0.89999

]
(14)

Initial state matrix:

S0 =

[
0.9999
0.0001

]
(15)

The choices are justified as follows: The transition matrix re-
flects a system in the healthy state is likely to remain in that
state, by choosing A11 � A12, and has equal probability
of remaining or leaving the unhealthy state with A21 = A22.
The elements of the emission matrix in the fault state are cho-

sen from knowledge of the system. The probability of a data
point in the fault state being in the outlier cluster (B2,4) is
large because transient faults are observed as outliers to the
nominal distribution of the data. There is a smaller chance
that the fault will be found in the clusters at negative/positive
speeds (B2,2 and B2,3) and very little chance it will be in the
stationary cluster (B2,1, because these data points have a low
TMC and are not being commanded to move). It is assumed
that the system starts in the healthy state with large probabil-
ity (S0,(1,1) � S0,(1,2)).

4. RESULTS OF VSVA TRANSIENT FAULT DETECTION

In this section results of a transient fault detection study are
given. Results are first given for a synthetically generated
fault and then a healthy data set. A simple analytic is chosen
to quantify the severity of the fault. The results of the initial
studies provide a threshold value for the analytic and assess
the ability to reject false positives. The threshold is then used
in order to detect a sticking event in real data. Training of the
G-UMM is performed in the space of the raw signals.

4.1. Synthetic fault study

In this section, results and discussion are given for the de-
veloped fault detection scheme applied to a real data set into
which synthetic faults have been injected.

4.1.1. Synthetic fault generation

Synthetic faults are injected into a time series data set con-
taining 15498 data points for a single real flight, see Figure 7
- Lower panels. A visual comparison to the true fault event
observed in Figure 5 shows that a good match is found be-
tween the synthetic faults and the true scenario

8
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Figure 6. Initialisation and training of the G-UMM - Clustering nominal data

Four faults of increasing duration are injected into the healthy
data set with a length of 1, 2, 4 and 5 seconds (4, 8, 16 and 20
data points respectively). Two example of the generated syn-
thetic faults are given in Figure 7. The magnitude of the fault
is dependent on the true behaviour of the demanded signal at
the fault location. It can be seen from Figure 8 that the faults
generate data points that fall outside of the normal operating
region of the engine in the space of the signals. The short-
est synthetic sticking event (1s) causes a divergence from ex-
pected behaviour that is of similar magnitude to observations
in real, healthy data and is not expected to be differentiable.
Note that some of the data points do fall inside this normal op-
erating region. In order to accurately compute the length of
the sticking event it is necessary to be able to identify these
data points.

4.2. Fault quantification and thresholding

Two analytic are used to describe the potential fault events
detected by the G-UMM HMM algorithm. The first analytic
is the length of the detected event, defined as the number of
consecutive samples for which the system is in the fault state
for each potential fault instance. The second is the cumu-
lative sum (CUSUM), over a potential fault location, which
quantifies the magnitude of a sticking event. The CUSUM
analytic is designed to provide an interpretable measure of
the magnitude of the individual sticking event such that it can
be monitored over time. The CUSUM is used to remove po-
tential sticking events of low magnitude, that are considered
to be part of the normal operating behaviour of the system.
A simple thresholding procedure is applied to both analytics,
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Figure 7. Two examples of a synthetic fault injected into a
flight test time series. The measured signal is held constant
over the region of ‘stick’ and the TMC increases/decreases in
response to the increased tracking error.

the thresholds are chosen based on observation of the data.

4.2.1. Synthetic fault results

The G-UMM is trained on the real data set with injected syn-
thetic faults using initialisation based on the VSVA velocity,
as described in Section 3.4. The elements of the HMM ini-
tial state, transition and emission matrices are assigned as in
Section 3.5 such that they are given by equations (13)-(15),
where the upper row of the emission matrix, B, relating to
the emission probabilities in the healthy state is calculated as
part of the G-UMM training phase.

The HMM is then applied to the series of classes estimated by
the G-UMM and the hidden states are estimated. The result
is shown in the space of the signals in Figure 10.

In total, 12 potential fault locations are detected by the al-
gorithm. The analytics calculated over these locations are
shown in Table 1. Of the 12 potential events that are de-
tected, four are related to the synthetic faults injected into the
system. The analytics relating to the true synthetic faults are
highlighted in bold.

4.2.2. Discussion of synthetic fault results

The G-UMM training in the presence of fault events assigns
clusters in the same operating regions as for the healthy data

Table 1. Generated analytics for the synthetic fault data set

Length CUSUM Threshold Alert
1 1 0.0282 7
2 2 0.0966 7
3 7 1.1730 3
4 13 1.5117 3
5 17 7.0798 3
6 1 0.0548 7
7 1 0.0586 7
8 1 0.0508 7
9 2 0.1037 7

10 1 0.0008 7
11 1 0.0358 7
12 1 0.0265 7

set, see Figure 9 in comparison with Figure 6. As before the
algorithm assigns the vast majority of the data to a cluster
in a small region of the signal space where the actuator is
approximately stationary.

This can be seen as the ‘elbow’ of the data distribution in Fig-
ure 9. There are two other branches of the data distribution
which can be attributed to the behaviour of the VSV when it
is moving in positive and negate directions. These two areas
contain significantly fewer data points in comparison. The
implication of this is that many clustering/classification algo-
rithms see the ‘elbow’ of the data distribution as containing
all the useful information and will see the remaining data as
unimportant for describing the data. For example, the SVM
is an alternative and very popular method for the classifica-
tion/clustering step. Experimentation has shown that due to
the described problem, the SVM must assign an extremely
large amount of support vectors (essentially all of the data
that is not in the ‘elbow’) causing the SVM to predict the out-
liers extremely poorly. In comparison, the G-UMM is able to
put a distribution over the main mass of the data set and fur-
ther distributions over the positive and negative VSV velocity
areas. This allows the whole data set to be characterised well.
The uniform distribution then facilitates the detection of out-
liers. A further advantage is the simplicity (both mathemati-
cally and computationally) of the algorithm.

A threshold on the length analytic is chosen as TL = 1
such that potential faults of length 1 are not considered. The
choice helps to reject any outliers that have been misclassi-
fied by the G-UMM HMM algorithm and which might have a
large CUSUM value despite having a short length. A thresh-
old value for the CUSUM analytic is chosen based on the
CUSUM values given in Table 1. The threshold, TCS , is cho-
sen by observation as TCS = 0.5, such that any CUSUM
value observed above this is considered to be a true fault
event caused by sticking in the actuator. As may be ex-
pected, more than the four synthetic sticking events are de-
tected. Of the four synthetic faults, all but the shortest (1s
stick) have a CUSUM of magnitude greater than the threshold
of TCS = 0.5, simply differentiating them from those that are
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Figure 8. Visualising synthetic faults in the space of the parameters

Figure 9. G-UMM Classification of outliers in faulty data.
The data distribution has been classified into three areas; Pos-
itive velocity (Green dots), negative velocity (Blue dots) and
near zero velocity (Red dots). Outliers have been assigned to
the uniform distribution (Pink dots).

Figure 10. Fault detection using HMMs: Detected faults in
the space of the input signals.

part of normal operation. The origin of these potential false
positives is the large probability that the producing data point
is in the outlier cluster. If the outlier has negligible proba-

bility of belonging to the normal distribution of the data, the
HMM may misclassify it as faulty. The length of the sticking
events is significantly longer for the synthetic faults than for
the falsely identified data points. Three of the four synthetic
sticking events can be detected wi th no false positives, as in-
dicated in Table 1. As expected, for the 1s synthetic sticking
event, the tracking error displayed over the duration of the
fault, and hence the CUSUM, is less than the threshold TCS

as well as at another detected event in the data that is part of
normal operation. This event is hence not differentiable from
behaviour considered as healthy. Investigating the competing
section of data, it is found that a significant tracking error and
large current is found at this point, indicating that the control
architecture is struggling to match the demanded position.

The length analytics does not match the length of the gener-
ated faults. This is because at the start of the faults the track-
ing error is indistinguishable from the noise in the healthy
signal and so the start point cannot be detected accurately.
Overall the method is found to work well for this synthetic
case study. The method detects a suitable level of potential
fault events from which a baseline level of health can be es-
tablished. Within these all of the synthetic faults under test
are located, although as expected the lowest level is not dis-
tinguishable from the base line.

4.3. Healthy data set study

The method is now employed over a data set containing 14
real test flights that are consecutive in time. The average num-
ber of training data points across all data sets is 36663. The
data set is not expected to show any sticking behaviour and
so is considered as normal for the purpose of this study.

4.4. Healthy data set study results

The G-UMM is trained individually for each flight, using only
the data from that flight data set, parameters are initialised as
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before. The HMM is then applied with matrices set as before.

The results show a reasonably uniform level of magnitude in
each of the analytics as can be seen in Figure 11. The number
of detected events fluctuates between 2 and 6 with flight 14
detecting a largest amount (6 events). The average length of
the sticking events is low, with no events with length greater
than 4. Recalling that the sampling frequency is 4Hz for this
data set, there are therefore no detected events lasting longer
than one second. The CUSUM analytic is also low for all
flights, with the maximum being less than 0.4. This gives us
confidence in the choice of threshold chosen in Section 4.2
since, as expected, all of the detected event are considered as
part of normal system behaviour based on the threshold.

Figure 11. Analytics for the fault detection applied scheme
applied to a set of 14 healthy flights.

4.4.1. Discussion of healthy data set results

In comparison to the synthetic faults in the previous exam-
ple the baseline level detected events for the healthy flights is
significantly less than all but the shortest (1s) synthetic fault.
This result gives us confidence in the ability to detect true
sticking events using a simple threshold on the CUSUM. Note
that the 1s synthetic fault in the previous example is compa-
rable to tracking delays found during normal operation.

4.5. Real sticking event results

The method is applied to the task of detecting a real stick-
ing event, pictured in Figure 5. G-UMM and HMM pa-
rameters/matrices are initialised as before. The threshold on
the CUSUM is set as determined in Section 4.2.2, namely
TCS = 0.5. The generated analytics are given in Table 2.
The true sticking event has been detected by the algorithm,
see Figure 12, and has been assigned a large CUSUM value
of 4.7161, see Table 2. All other potential events are assigned
a CUSUM value much less than the threshold and are hence
rejected.

Figure 12. Detected faults for the reall sticking event.

Table 2. Generated analytics for the real sticking event.

Length CUSUM Threshold Alert
1 1 0.0232 7
2 1 0.0212 7
3 1 0.0244 7
4 5 0.0907 7
5 1 0.0111 7
6 1 0.0233 7
7 1 0.0202 7
8 1 0.0197 7
9 1 0.0019 7

10 30 4.7161 3

4.5.1. Discussion of real sticking event results

The algorithm is successful in detecting the real sticking event
in the data. The assigned length and CUSUM analyics are
significantly larger than the respective thresholds. The true
sticking event. as well as the potential events that are de-
tected by the algorithm are of comparable magnitude to those
calculated in the synthetic data set study, see Table 1. The re-
sult gives further confidence in the algorithms ability to detect
transient sticking.

5. CONCLUSION

In this work a new fault detection scheme has been developed
for the detection of transient faults in time series data. The
scheme characterises the data using a G-UMM which in turn
provides the observed classes a HMM that has the ability to
predict the hidden state of the system, either healthy or faulty.
The G-UMM HMM fault detection scheme is shown to be
well suited to the task of condition monitoring in the case of
the detection of transient faults by application to a real world
case study. The case study considers the detection of transient
faults in the VSV of a GTE. Results are given for synthetic
faults, normal healthy data and a real fault event.

The results of the synthetic data study show that the devel-
oped method performs well at detecting transient faults of the
type investigated in this study. The data is relatively low fre-
quency (4Hz), limiting the detectability of faults over a very
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short time scale. Given a higher sampling frequency it is ex-
pected that much shorter time scale transients will be able to
be detected. The CUSUM of the synthetic faults given in Ta-
bles 1 and 2 indicate that the detected transient faults are eas-
ily differentiable from the base level of detection. This can
be seen by comparison of both the potential false positives,
also shown in Tables 1 and 2, and the study performed over
multiple real data sets, shown in Figure 11. For the case of a
real fault, the fault event is detected by the proposed scheme.

The developed method relies on the assumption that the data
is representative of the healthy behaviour of the system. How-
ever, it is possible that anomalous data is observed at normal
operation (due to, for example, unusual changes in operating
condition or large unmeasured disturbances), although such
examples are not observed in the given case study. In this
case post processing, via pattern recognition algorithms or
expert knowledge, is required to determine the cause of the
anomaly. The diagnosis should be fed back in to the process
in order to inform future decisions, and indicates a future di-
rection of this work.

The developed condition monitoring approach therefore
achieves a step change in capability for the presented VSVA
case study. The new approach provides capability in both
early detection of developing faults as well as in the ability to
generate interpretable analytics to quantify the health of the
system. The approach can be readily applied to a wider range
of applications in which normal operating behaviour can be
well defined by a G-UMM.
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