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ABSTRACT

As more features are added to the heavy duty construction
equipment, its complexity increases and early fault detection
of certain components becomes more challenging due to too
many fault codes generated when a failure occurs. Hence,
there is a need to complement the present onboard diagnos-
tics method with a more reliable diagnostics method for ad-
equate condition monitoring of the heavy duty construction
equipment in order to improve uptime. Major components of
the driveline (such as the gearbox, torque converter, bearings
and axles) are components necessary to monitor. A failure
among any of these major components of the driveline may
result in the machine standing still until a repair is scheduled.

In this paper, vibration based condition monitoring methods
are presented with the purpose to provide a diagnostic frame-
work possible to implement onboard for monitoring of crit-
ical driveline parts in order to reduce service cost and im-
prove uptime. For the development of this diagnostic frame-
work, sensor data from the gearbox, torque converter, bear-
ings and axles are considered. Further, the feature extraction
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of the data collected has been carried out using adequate sig-
nal processing methods, which includes: Adaptive Line En-
hancer and Order Power Spectrum respectively. In addition,
Bayesian learning was utilized for adaptive learning of the
extracted features for deviation detection. Bayesian learning
is a powerful prediction method as it combines the prior in-
formation with knowledge measured to make updates. The
results indicate that the vibration properties of the gearbox,
torque converter, bearings and axle are relevant for early fault
detection of the driveline. Furthermore, vibration provides
information about the internal features of these components
for detecting deviations from normal behavior.

In this way, the developed methods may be implemented on-
board for the continuous monitoring of these critical driveline
parts of the heavy duty construction equipment. Thus, if their
health starts to degrade a service and/or repair may be sched-
uled well in advance of a potential failure and in that way the
downtime of a machine may be reduced and costly replace-
ments and repairs avoided.

1. INTRODUCTION

Being a competitive business, the construction equipment busi-
ness tries to find new ways to increase customer satisfac-
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tion. An important way to achieve this is by reducing un-
wanted stops due to failure of critical mechanical compo-
nents of the driveline, for instance the gearbox, the torque
converter, the bearings and the axles. In the last decade, mon-
itoring of machinery with changing rotational speed has at-
tracted a lot of research contributions. This section comprises
a review of some of the previous research carried out with
focus on the Gearbox, Bearings, Axles and the Torque Con-
verter. In Fig. 1, the Wheel Loader and its driveline parts
is illustrated. Randall (Randall, 2004a), discussed how dif-

Figure 1. The Wheel Loader and its Driveline Parts

ferent faults (shaft speed faults, electric machine faults, gear
faults, bearing faults and reciprocating machine faults) reveal
themselves in the vibration signature. Randall explained that
the signal produced by gear is deterministic and also gear
wear are often noticed at the gear meshing frequency and
its harmonics. Furthermore, gear wear are usually first seen
as an increase on the second harmonic of tooth meshing fre-
quency, whereas localized faults are seen at other harmon-
ics of the rotational speeds for the gear on which they are
located (Randall, 2004a). Further, Randall added that local-
ized faults such as cracks and spalls tend to give a wide range
of harmonics and sidebands throughout the spectrum, while
slow changing faults give stronger harmonics grouped around
zero frequency and as sidebands around the harmonics of
tooth mesh frequency (Randall, 2004a). Randall (Randall,
2004b) further discussed different analysis techniques that
have been proposed for diagnosing faults in rotating machin-
ery, such as synchronous averaging, order tracking, adaptive
noise cancellation, demodulation and envelope analysis. Fan
et al. (Fan & Zuo, 2006), proposed the use of Hilbert Trans-
form (HT) and Wavelet Packet Transform (WPT), an Enve-
lope time-frequency approach for the detection of gear faults.
They stated that WPT provided better frequency resolution
in the higher frequency region than the traditional Wavelet

Transform (Fan & Zuo, 2006). However, because the vi-
bration signal is not synchronized with the rotational speed
of the shaft, this may not be a suitable approach for a gear-
box with changing rotational speed due to spectral smearing
caused by speed fluctuation (Li & Ai, 2008). Li et al. (Li &
Ai, 2008), introduced and applied the Order Bi-Cepstrum to
gearbox fault diagnosis, a combination of order analysis and
bi-cepstrum technique. Even though, the order bi-ceptrum
revealed the bearing inner race fault, lots of other relevant in-
formation were lost (Li & Ai, 2008). Sawalhi et al. (Sawalhi
& Randall, 2008), presented a simulation model for a time-
varying gearbox test rig that allows different types of faults
to be implemented. They did this by modeling a complete
system of gears and shafts supported with time-varying, non-
linear stiffness bearing model (Sawalhi & Randall, 2008).
Furthermore, having compared the simulated faults with ex-
perimental localized fault signals using spectral comparisons,
Spectral Kurtosis (SK) and Envelope analysis where both sig-
nals gave similar results, they concluded that simulation mod-
els will be useful for producing fault signals from gearboxes
for testing new diagnostic algorithms (Sawalhi & Randall,
2008). He et al. (He & Li, 2011), presented a gearbox fault
detection method where they first filtered out periodic sig-
nal using an adaptive narrow-band interference cancellation
filter. They claimed that the gear periodic signal was an inter-
ference signal to the impulse signal of the damaged gear (He
& Li, 2011). However, since gear signals are periodic, fil-
tering out the periodic component removes the information
about which gear is damaged and thus information about gear
fault may be lost (Brandt, 2011; Randall, n.d.; Ho & Randall,
1997). Furthermore, bearing faults are stochastic and may be
extracted after removal of periodic component from the vibra-
tion signal but not gear faults (Ho & Randall, 1997; Randall
& Antoni, 2011). Hong et al. (Hong & Dhupia, 2014), com-
bined the Fast Dynamic Time Warping (Fast DTW) and Cor-
related Kurtosis (CK) techniques for time domain monitoring
of localized gear faults. Fast DTW extracts the periodic im-
pulse excitation caused by the faulty gear tooth and then the
extracted signal is resampled for further diagnostic analysis
using CK (Hong & Dhupia, 2014). Furthermore, CK iden-
tifies the local gear by taking advantage of the peridicity of
the gear faults. Further, this approach showed the degrada-
tion level of the gear mesh stiffness (Hong & Dhupia, 2014).
Guo et al. (Guo, Wu, Na, & Fung, 2016), proposed an enve-
lope synchronous average scheme for multi-axis gear faults
detection using fast kurtogram algorithm. Thereafter, the ex-
tracted envelope signal was resampled to the order domain
synchronously averaged to both avoid spectral smearing and
remove random components (Guo et al., 2016).

Immovili et al. (Immovilli, Bellini, Rubini, & C., 2010) com-
pared the capability of using electric current and vibration
signals for bearing fault detection in induction machines. They
concluded that vibration signals are a robust indicator for de-
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tecting faults in a bearing provided a suitable signal analysis
method is utilized (Immovilli et al., 2010). Abdusslam et al.
(Abdusslam, Gu, & Ball, 2009) analyzed vibration data for
bearing fault detection via a simple bearing test rig using Fast
Fourier Transform (FFT) of the signal and an envelop analysis
of the signal. Further, the bearing test rig comprised of a 3-
phase electrical induction motor, a dynamic break, four shafts
connected by three flexible couplings, two bearing housings
and an amplifier (Abdusslam et al., 2009). They concluded
that the envelope analysis was more reliable in revealing the
faults (Abdusslam et al., 2009). Randall et al. (Randall &
Antoni, 2011) stated that bearing frequency components are
cyclostationary due to random slip which is dependent on the
ratio of the axial load to the radial load. After a review of
different techniques, they recommended the envelope spec-
trum for bearing fault detection. Brkovic et al. (Brkovic et
al., 2017) utilized the wavelet transform for ball bearing fea-
ture extraction. They carried out this study using a simple
experiment setup which involved installing a ball bearing in a
motor driven mechanical system (Brkovic et al., 2017). The
setup comprised of a three-phase induction motor connected
to a dynamometer and a torque sensor, and an accelerometer
attached to the motor housing (Brkovic et al., 2017).

Huibin et al. (Huibin, Mengxi, Chengxia, & Bo, 2012) per-
formed an experimental study concerning noise identification
of the rear driving axle using theories and methods for acous-
tic array measurements. They observed that the dominating
frequencies in the measured signal are related to the gear
meshing vibration (Huibin et al., 2012). Shao et al. (Shao,
Liang, Gu, Chen, & Ball, 2011) proposed a Radial and Ba-
sis Function (RBF) and Back Propagation (BP) neural net-
works as a fault and diagnosis procedure for rear axle gear
utilizing Root Mean Square (RMS) and Kurtosis features of
the measured vibration signals. Santacruz et al. (Santacruz
& Félix, 2014) described an optimization process for real-
time vibration and frequency monitoring system on a dif-
ferential axle fixed rig using a field-programmable gate ar-
ray (FPGA), an online analysis data storage unit which lo-
cated the strongest frequency components by computing fre-
quency spectrum. In addition to the FPGA, an offline pro-
gram which calculated the RMS and variance of the vibra-
tion in time domain and computation of an histogram from
the series with the strongest frequency component was also
utilized (Santacruz & Félix, 2014). They reached the conclu-
sion that the execution of the test under a controlled platform
yielded acceptable performance with the axle shaft having
the most intense vibration based on the RMS value. How-
ever, they stated that the methods needs to be further vali-
dated (Santacruz & Félix, 2014).

Although, a lot of research has been conducted in the area of
condition monitoring of rotating machinery, an onboard vi-
bration based monitoring for Heavy duty construction equip-
ment major driveline parts (such as the torque converter, bear-

ings, gearbox and axles) seems to have been overlooked. In
this paper, an onboard vibration-based monitoring approach
is presented for the monitoring of major components of the
driveline in an heavy duty construction to enable early fault
detection. An Adaptive Line Enhancer (ALE) filter which is
steered with a Recursive-Least-Squares (RLS) algorithm was
utilized to separate the deterministic and stochastic vibration
signals before further signal analysis is performed using the
Order Power Spectrum and Bayesian Learning. The RLS
can adapt to changing input statistics and converges faster
(Haykin, 2014). On the other hand, the Bayesian Learning
approach gives a narrower confidence interval bound since it
utilizes prior knowledge and measured knowledge (Hamada,
Wilson, Reese, & Martz, 2008; Gelman et al., 2014). In ad-
dition, the presented method is robust and easy to implement.
To summarize, the approach presented in this paper will im-
prove uptime, increase customer satisfaction, reduce warranty
cost and generate money for the company as this can be sold
as an added feature.

2. MATERIALS AND METHODS
2.1. Experimental Setup

A Volvo Construction Equipment L180H Wheel Loader was
used in the experiments. The machine was warmed-up before
the test cycles and the bucket was loaded with 8 tonnes of
gravel. The Volvo CE test track in Eskilstuna, Sweden, was
used in the experiments as driving track, using one driver and
similar driving style in all measurements. The measured pa-
rameters used in the investigation are the engine speed and the
torque converter vibration. The experiment was controlled
and an adequate number of recordings were made.

Figure 2. L180H Wheel Loader with accelerometer attached
close to the Output Shaft of automatic transmission housing.

2.2. Measurement Equipment and Setup

The vibration signals were recorded using a LMS Scadas
SCRO5 Data Acquisition system, sampling frequency 6400Hz,
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connected to a triaxial accelerometers attached on the top side
of the torque converter housing as in Figure 5, two triaxial ac-
celerometers attached around the structure around the pinion
of the rear and front axle as in Figures 3 and 4 and one tri-
axial accelerometer attached around the output shaft from the
gearbox as in Figure 2.

In order to adequately measure vibrations of the torque con-
verter, triaxial accelerometers were mounted as close as pos-
sible to the torque converter as in Figure 5. The accelerometer
on the left side of the torque converter housing was mounted
using instant adhesive- Loctite 454 and the one on the top side
was mounted using a magnet. The engine speed from the ma-
chine CAN-bus was logged synchronously with the vibration
data.

Figure 3. L180H Wheel Loader with accelerometer mounted
on the structure around the pinion of the rear axle.

2.3. Evaluation of the vibration of Driveline parts

The vibration properties of the drive-line may be investigated
with the aid of order analysis techniques, frequency domain,
time-frequency domain analysis, etc. (Brandt, 2011). Order
analysis techniques, usually referred to as order-tracking, are
generally utilized in rotating machinery analysis where the
rotational speed changes over time. Furthermore, order anal-
ysis techniques transform a non-stationary signal in the time
domain into a stationary signal in an angular domain provid-
ing information about the vibration related to the changing ro-
tational speed (Li & Ai, 2008; Junsheng, Yu, & Dejie, 2010).

Order analysis is carried out by first, synchronously resam-
pling the measured vibration based on the rotational speed
measured on an reference shaft (Brandt, 2011). In other words,
synchronous sampling adapts the sample rate of the vibra-
tion signal with the changing rotational speed of the refer-
ence shaft, ensuring that the vibration is sampled at an equal

Figure 4. L180H Wheel Loader with accelerometer mounted
on the structure around the pinion of the front axle.

Figure 5. L180H Wheel Loader with accelerometer attached
on the top side of the torque converter housing.

angle increment (Junsheng et al., 2010). Furthermore, the
order analysis technique transforms a signals non-stationary
components whose vibration frequencies are related to the ro-
tation speed in the time domain into stationary signal compo-
nents in the angular domain and thus provides information
about the vibration components related to the changing rota-
tional speed (Junsheng et al., 2010). In addition, this prevents
spectral smearing (Li & Ai, 2008). The synchronously resam-
pled samples of the vibration data are said to be in the order
or angle domain (Brandt, 2011). Thus, the synchronous sam-
pled vibration originating from rotating parts will basically
have a fixed number of samples per cycle and this number
is related to the rotational speed measure of the shaft. Syn-
chronously resampled signals may be analyzed using differ-
ent signal processing techniques.

In this paper, an Adaptive Line Enhancer (ALE) filter which
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is steered with a Recursive-Least-Squares (RLS) algorithm
was utilized to make this separation before further signal anal-

It is important to note that bearings in an actual transmission
exhibits stochastic behavior with low frequencies (Randall

ysis was performed using the Order Power Spectrum and Bayesian& Antoni, 2011; Giannakis, 1999). The measured vibration

Learning. Fig. 6 shows the vibration-based condition moni-
toring framework presented in this paper.
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Figure 6. The proposed onboard vibration-based condition
monitoring framework for transmission and axles

2.4. Vibration Analysis of the Bearing

The frequencies of the inner and outer race, the cage fre-
quency and the ball/roller spin frequency reveal defects in
the respective parts of a bearing and they are produced as
(Randall & Antoni, 2011; Tuma, 2014; Killstom, Lindstrom,
Hakansson, Karlberg, & Oberg, 2017).

n a
finner = ifsh {1 b i } (l)
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pztch

f S Dpitch {1 B
spin —

Dy 9 }
cos 4
2Dyt ®) 4

(Dpitch

where finer 18 the inner race frequency, foyter- i the outer

race frequency, feqqe is the cage frequency, fopin is the ball/roller

spin frequency n is the number of balls/roller, f, is the shaft
speed, Dy is the ball/roller diameter, D;;.p, is the pitch
circle diameter and ¢ is the contact angle.

data is a combination of the deterministic signal (gears, tur-
bine, impeller, stator, etc) and the stochastic signal (Randall,
Sawalhi, & Coats, 2011).The deterministic part of the signal
tends to mask the bearing signal, hence the need to separate
the stochastic part from the deterministic part after the vi-
bration signal has been synchronously resampled to the order
domain (Brandt, 2011; Randall et al., 2011). An ALE steered
with a RLS adaptive algorithm was utilized to make this sep-
aration before further signal analysis is performed (Widrow
& Stearns, 1985; Haykin, 2014). For adequate signal separa-
tion the time delay, filter order and the convergence must be
carefully selected (Widrow & Stearns, 1985; Haykin, 2014).
The delay of the ALE should be longer than the correlation
length of the random part of the signal (Widrow & Stearns,
1985; Haykin, 2014; Ho & Randall, 1997).

2.4.1. Adaptive Line Enhancer

Adaptive filtering is based on a step by step adjustment of the
filter coefficients during the filtering operation, allowing the
tracking of slowly changing statistics of the input data (Proakis
& Manolakis, 2006; Haykin, 2014). To separate deterministic
and stochastic vibration signal, an ALE may be utilized (Ho
& Randall, 1997; Widrow & Stearns, 1985). An ALE is an
adaptive self-tuning filter where the input signal is a mixture
of a deterministic signal and an uncorrelated stochastic signal
from one sensor (Widrow & Stearns, 1985; Haykin, 2014;
Ramli, Noor, & Samad, 2012). Furthermore, an ALE is capa-

ble of detecting extremely low-level sine waves in noise (Widrow

& Stearns, 1985). The RLS adaptive algorithm is used in this
paper to steer the ALE filter. For adequate signal separation
the time delay, filter order and the convergence must be care-
fully selected based on the given signal (Randall et al., 2011;
Ho & Randall, 1997). The delay of the ALE filter should be
longer than the correlation length of the random part of the
signal (Randall et al., 2011; Ho & Randall, 1997). The ALE
is illustrated in figure 7 (Ho & Randall, 1997; Widrow &
Stearns, 1985).

When vibration is measured on a rotating machinery, the mea-
sured vibration data is a combination of the deterministic sig-
nal (gears, turbine, impeller, stator etc.) and the stochastic
signal (bearings) (Randall et al., 2011).The deterministic part
of the signal tends to mask the bearing signal, hence the need
to separate the stochastic part from the deterministic part af-
ter the vibration signal has been synchronously resampled to
the order domain (Brandt, 2011; Randall et al., 2011).

2.5. Power Spectrum

When estimating spectral properties of a signal, it is impor-
tant to select an appropriate scaling of the spectrum estima-
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Figure 7. Adaptive Line Enhancer (ALE)

tor (Harris, 1978; Bendat & Piersol, 2000). The spectrum
estimates may be scaled for either the tonal components of a
signal: Power Spectrum (PS) estimates, or the random part
of a signal: Power Spectral Density (PSD) estimates (Harris,
1978).

The PS of a periodic sampled signal 2(n) is usually computed
using the Welchs$ spectrum estimator

(Andren, Hakansson, Brandt, & Claesson, 1978). The Welch
spectrum estimate is obtained by averaging a number of peri-
odograms. Each periodogram is based on segments of a time

sequence x(n), each segment consisting of N samples (Welch,

1967). Thus, the original time sequence of data must be di-
vided into data segments (Welch, 1967). The WelchS power
spectrum estimator is given by (Welch, 1967):

2

L—1|N-1
PPS —j2nnk/N
()= Tt 2| 2 miwin)e ,
k
fk: = NFS
&)
where k = 0, ..., N/2, L is the number of periodograms, N is

the length of the periodogram, [ is related to the overlapping
increment (usually 0 — 50% of the periodogram length), F
the sampling frequency, w(n) is a suitable window and

Ups = (3 w(n))? ©)

n=0
is the window-dependent magnitude normalisation factor.

Further, a one-sided PS contains the total power of the pe-

riodic components of a signal in the frequency interval from
Direct Current (DC) to half of the Nyquist rate whereas a two-
sided PS contains the total power of the periodic components
in the frequency interval from -Nyquist rate to the Nyquist
rate.

2.6. Bayesian Learning

Bayes’ rule uses a prior belief of the evidence based on sub-
jective probabaility to make inference and decision (Hamada
et al., 2008; Gelman et al., 2014). Bayesian Learning is a
powerful tool for making prediction as it combines prior in-
formation of a parameter available with knowledge measured
during an experiment in order to update the belief regard-
ing the value of the parameter producing a result with a nar-
rower confidence bound (Hamada et al., 2008; Gelman et al.,
2014). Furthermore, Bayesian Learning utilize probability
density to summarize the uncertainty of the value of a param-
eter (Hamada et al., 2008). In Bayesian Learning, a probabil-
ity model is fitted to a set of data and a summarized result of
a probability distribution on the parameters in the model and
on the unobserved quantities is produced (Kruschke, 2015).
Bayes’ theorem utilizes the method of updating the probabil-
ity density function which represents the uncertainty about
the value of a parameter (Hamada et al., 2008). Bayes’ theo-
rem may be produced as (Hamada et al., 2008):

~ fl0)p(9)
p(oly) = S EEE, )
where
- [ swiorw)as, ®)

and where p(f|y) is known as the posterior density, p(6) the
prior density, m(y) the marginal density of the data and f(y|6)
the sampling density of the data which represents the likeli-
hood function.

3. RESULT

The result outlined are ALE, Order Power Spectrum and Bayesian

Learning of the measured vibration signal on the torque con-
verter, gearbox and axle. The stochastic part of the vibration
is related to the Gearbox bearings and the deterministic part is
related to the gears. The deterministic part of the signal tends
to mask the bearing signal, hence the need to separate the
stochastic part from the deterministic part after the vibration
signal has been synchronously resampled to the order domain
(Killstom et al., 2017). The Order Power Spectrum better
reveals the orders of the gears and bearings of the gearbox.
With Bayesian Learning the extracted features are learned so
as to identity a potential failure. In addition, the Bayesian
Learning is updated for incoming vibration feature. The like-
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lihood is a measure of the Order Power Spectrum from mea-
sured vibration and the prior, which is also an Order Power

Spectrum estimate updated with in coming vibration.

3.1. Torque Converter

The results outlined below are a Order Power Spectrum es-
timation and a Bayesian Learning estimate of the measured
vibration signal around the torque converter of the L18OH
Wheel Loader.
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The orders 29, 27 and 13 and their harmonics correspond to
the torque converter’s impeller, turbine and stator respectively
in Figure 10. In addition, harmonics of the order 29, which

correspond to the impeller, are more pronounced around or-
der 87 on the order power spectrum.
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Figure 10. Order Power Spectrum of the Torque Converter
Deterministic Signal.
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Figure 11. Bayesian Learning of Torque Converter Determin-
istic Signal.

Monitoring the orders of the torque converter’s stochastic and
deterministic vibration onboard via Bayesian Learnings is shown
in Figures 9 and 11 respectively This may enable early fault
detection of transmission gears and bearings.

3.2. Gearbox

The stochastic part of the vibration is related to the gearbox
bearings and the deterministic part is related to the gears. In-
formation related to the gearbox bearings are revealed in the
orders of the Order Power Spectrum of the stochastic part of
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the gearbox vibration as shown in Figure 12.

| [ Istochastic Signal

o]
Fa

da
oy
|

n
2]

Order Power Spectrum (dB)
8
|

40 —
.......... — 2
42
44 | i i i i 1
i 20 100 150 200 280 300
Order

Figure 12. Order Power Spectrum of the Gearbox Stochastic
Signal (Bearings).

1t Bayesian Inference
25 . . . . . ; ;
~\ —— = Likelihood
’J 1 — == Prior
c ] “ == = FPaosterior
= T l' v |
e Y
S i
e H [l
- 15 H [} 1
= \
[%]
5 A
I
Q | [V IR VIRN |
> 1 i
= [ S
= L A S
© P for \
O ) 1 L1 kY
e i f 7 il 5
0a} 1
o i 7 \\\ %
ifr \\\ 1
4 v
” AN ~
0 T . N .
0s 1 15 2 25 3 a5 4 45 5
Gearbox Order Power Spectrum w10t

Figure 13. Bayesian Learning of of the Gearbox Stochastic
Signal.

The Order Spectrum of the deterministic part provide infor-
mation related to the engaged gears in the gearbox as shown
in Fig. 14. The Order Power Spectrum reveals the orders
of the gears and bearings of the gearbox. Monitoring the or-
ders of the stochastic and deterministic vibration onboard via
Bayesian Learnings as shown in Figures 13 and 15 respec-
tively, may enable early fault detection of transmission gears

and bearings.
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Figure 14. Order Power Spectrum of the Gearbox Determin-
istic Signal.
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tic Signal.

3.3. Axle

The Order Power Spectrum estimates of the measured vibra-
tion signal of the rear axles of the L180H Wheel Loader are
presented.The deterministic signal shows that the orders 9
and its harmonics correspond to the order of the pinion of
the axle. The Order Power Spectrum of the rear axle vibra-
tion from the accelerometer mounted on the x-direction as in
Figure 18 shows that the order of the pinion may be observed
around 9, and its harmonics around 27, 45, 54, 81 and 108.



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

:Stochastic Signal

—_

m 35—

z

£

S :

6 _40_ ............ 1'1

@

&

h 3

1]

2 45

n- .......... 2

.

(1]

'

o 1 I I I T 1
u] a0 100 1580 200 250 300

Order

Figure 16. Order Power Spectrum of the Rear Axle Stochastic
Signal (Bearings) from the accelerometer mounted on the x-
direction

10 Bayesian Inference
4 = .
,‘ ‘1 — — = Likelihoad
35+ [ —— — Prior
17 | = = = Puasterior
5 i i
= 3} ¥ ]
2 P
3 I 1 v
W oos] T .
= oL
2 Vo
2r ! -~ T
o 1 X
a) Voo FARY
5] b Y 1
¥ I y ! i \
[} I 1 ] ! 1
2 9t i 1y 1
o (] A
a ,' v/ \
1 ! \
05 i Y X i
;’ \(A\ \\
] - L T ey, L —
0 1 2 3
Rear Axle Order Power Spectrum <10

Figure 17. Bayesian Learning of the Rear Axle Stochastic
Signal

However, high peaks appear around orders 86, 114, 143, 169
and 254. The stochastic signal of the vibration presented in
Fig. 16 is related to the bearings close to the rear axle pin-
ion. Further, the Bayesian Learning estimate of the rear axle
stochastic and deterministic signal is presented in Figures 17
and 19 respectively. Thus, the onboard monitoring of the or-
ders concerning the stochastic and deterministic vibration of
the axle would enable early deviation detection of the rear
axle pinion and bearings close to it.
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Figure 18. Order Power Spectrum of the Rear Axle Deter-
ministic Signal from the accelerometer mounted on the x-
direction.
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Figure 19. Bayesian Learning of the Rear Axle deterministic
Signal

The individual results presented in sections 3.1-3.3 can be
combined into a unified framework for vibration-based on-
board monitoring of the torque converter, gearbox, bearings
and axles as shown in Fig.6. The measured vibration data is
a combination of the deterministic signal (gears, turbine, im-
peller, stator etc) and stochastic signal (bearings) (Killstom
et al., 2017). In this way, a combination of the feature ex-
traction method and Bayesian Learning provides an adaptive
learning method for the monitoring of driveline parts given
the respective vibration signals and engine rotational speed.

The developed vibration-based monitoring approach devel-
oped is generic for automatic transmission and axles of heavy
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duty construction equipment. Thus, it can be extended to
other machine variants of heavy duty equipment other than
the L180H Wheel Loader. In addition, the developed method
is easy to implement. The Volvo CE CoPilot, an andriod
tablet computer was utilized.

4. DISCUSSIONS AND CONCLUSIONS

A vibration based diagnosis framework for the monitoring
of major components of the driveline of the L180H Wheel
Loader have been presented. The driveline components stud-
ied include the gearbox, the torque converter, the bearings and
the axles. The developed framework comprises pre-processing
of the measured vibration signal by synchronous resampling
to the order domain and a further separation of it into deter-
ministic and stochastic parts respectively using an ALE filter.
Further analysis is carried out using Order Power Spectrum
for feature extraction. In addition, Bayesian Learning is used
to adaptively learn the extracted features for deviation detec-
tion.

The above results demonstrate that the vibration measured on
an actual heavy duty construction equipment contains infor-
mation related to deviation detection and degradation of crit-
ical components of the driveline such as the gearbox, torque
converter, bearings and axles.

Furthermore, continuous monitoring of these features onboard
gives information about deviations from normal behavior. With
such deviation flags, service and maintenance can be sched-
uled well in advance before a major problem occurs. In ad-
dition, the on-board condition monitoring approach, which
has been developed, is generic for automatic transmission and
axles of heavy duty construction equipment and can be ex-
tended to other variants of Volvo CE heavy duty equipment.

In future work, onboard monitoring of the oil may also pro-
vide an indication of the gradual degradation of the respec-
tive driveline parts. In addition, it would be of interest to
consider monitoring of the cardan shaft via vibration sensors
onboard as this may enable early fault detection of a cardan
shaft. Practically, early fault detection and prediction may
save both money and time for the customer and thus increase
customer satisfaction. Being able to monitor, preferably on-
line, critical parts and components, such as the torque con-
verter, is a pre-requisite for using result- or availability-based
business models such as Industrial Product-Service Systems
or Functional Products (Meier, Roy, & Seliger, 2008; Lind-
strom, Plankina, Parida, & Karlsson, 2013). These business
models are becoming more interesting as additional services,
software, knowledge and know-how are added to product of-
fers (Lindstrom et al., 2013).
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