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ABSTRACT

This paper presents a benchmark study in which three vi-
bration based bearing diagnostic algorithms are compared.
The three methods are a data driven approach developed by
the Linz Center of Mechatronics (LCM), an physics based
method of Flanders Make (FM) and an approach developed
by the Center for Intelligent Maintenance Systems (IMS).
Two experimental tests have been performed, an accelerated
life time test to degrade a bearing and introduce an oper-
ational bearing fault and a gearbox test containing various
faulty test bearings. The methods are compared based on
their diagnostic performance, practical applicability, training
and configuration requirements. Based on the accelerated life
time test, it is concluded that the method of IMS and FM,
employing bearing specific features, showed to be more sen-
sitive for early bearing fault detection than purely statistical
features used in the method of LCM. On the contrary, the
method of LCM does not require specific system knowledge
and is not limited to bearing monitoring only. The method
is more widely applicable to fault monitoring problems. The
methods of IMS and LCM seem to outperform the method of
FM in the gearbox test. However, the training and testing data
used by those methods were acquired for the same bearing
sample and for the same bearing assembly. This could lead to
a high correlation between the training and testing data and
hence a misleading classification accuracy. Therefore, atten-
tion should be paid to the quality of the training data. It is
concluded that the training data should comprise all relevant
system variations, including e.g. remounting of the bearing,
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to ensure that the classification is uniquely based on bearing
fault related effects. The methods of IMS and LCM require
validated training data of both healthy and faulty bearing sce-
narios, whereas the method of FM relies on training data of
healthy bearings only. In practice, the availability of train-
ing data of faulty bearings is often scarce and could make the
adoption more complicated. The findings presented in this
paper serve as a guideline to support the selection of an ap-
propriate method for practical applications.

1. INTRODUCTION

Manufacturing companies continuously try to increase their
productivity, among others by avoiding machine down times.
The latter involves considerable costs because of the resulting
loss of turnover. Monitoring the condition of, for instance,
bearings and gears, plays a vital role in the maintenance pro-
gram of rotating machines. Early fault detection could allow
to move from a time based preventive maintenance program
to a condition based predictive maintenance strategy and re-
duce unexpected machine downtime and cost.

Vibration based condition monitoring is an established ap-
proach that has been employed by industries for many years
in their maintenance program. However, up to this day, ma-
chine operators often still base their maintenance decisions
on data from the periodical and manual inspection of one sin-
gle machine, which does not always result in correct conclu-
sions. The common practice is that vibration measurements
are periodically recorded using portable vibration sensors and
measurement signals are analyzed by an expert to interpret
the machine’s health condition. This approach can, how-
ever, lead to serious misinterpretation, where rapidly growing
faults could be missed.
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A continuous condition monitoring approach enables an early
detection of machine faults. In this way, the machine condi-
tion is continuously tracked and total failures can be antic-
ipated in advance, hence allowing appropriate maintenance
actions. Despite its advantages, continuous monitoring pro-
gram is however still not well adopted by industry. Firstly,
because it often involves a high investment cost. Although
recent advancements in sensor, acquisition and processing
hardware have demonstrated cost-effective solutions (Albarbar,
Mekid, Starr, & Pietruszkiewicz, 2008; Ompusunggu, Ooije-
vaar, Kilundu, & Devos, 2018), the economical benefit of the
investment is still not clear and hard to quantify. Secondly,
because many of those systems still require an expert to inter-
pret the analysis results or are only partly automated. Finally,
also because it is not straight forward to select the most ap-
propriate method for a specific application.

Taking into account the bearing monitoring and analysis, a
wide range of vibration based bearing fault detection meth-
ods have been proposed in literature (Henriquez, Alonso, Fer-
rer, & Travieso, 2014; Sait & Sharaf-Eldeen, 2011; D. Wang,
Tsui, & Mia, 2017). Approaches that utilize time domain fea-
tures (e.g. crest factor, kurtosis), frequency and cepstral do-
main features (e.g. envelope analysis, cepstral coefficients)
usually assume stationary machine conditions. Other meth-
ods such as cyclo-stationary analysis (i.e. second order tech-
nique in the frequency domain) and time-frequency domain
analysis (e.g. Wigner-Ville distribution, Hilbert-Huang trans-
form and wavelet transform based features) are more appro-
priate for non-stationary processes. Some of those methods
are purely data driven, whereas others use the physical rela-
tion between the bearing geometry, the rotational shaft speed
and the bearing specific fault frequencies associated to the
impulse behavior introduced by bearing faults.

Once fault sensitive features have been extracted, learning ap-
proaches (i.e. supervised, semi-supervised or unsupervised)
can be used to distinguish between healthy and faulty states.
The machine should be forced to work in different conditions,
including all faulty states, to train a supervised machine learn-
ing model. Alternatively, semi-supervised anomaly detection
methods only require data from normal conditions, and hence
do not need data of a faulty machine. However, anomaly de-
tection can only distinguish between normal and faulty con-
ditions. Noise and changing environments should be taken
into account to avoid incorrect interpretations.

Typically, it is difficult to objectively compare the perfor-
mance and applicability of all those diagnostic methods. The
type of machine, the type of faults, the fault severity or the op-
erational conditions are often different between studies. There-
fore, we have performed a benchmark study to compare the
performance of three state-of-the-art condition monitoring meth-
ods for bearing fault diagnostics. This study aims to gain
knowledge about the applicability, strengths and weaknesses

of each individual approach. The findings presented in this
paper can serve as a guideline for the selection of an appro-
priate method for practical applications.

Three methods are considered in this study: a purely data
driven feature extraction and classification method developed
by Linz Center of Mechatronics (LCM), a physical model
based diagnostic method of Flanders Make (FM) and an ap-
proach developed by the Center for Intelligent Maintenance
Systems of the University of Cincinnati (IMS) utilizing bear-
ing specific fault features in combination with supervised learn-
ing approach based on self-organizing maps.

This paper starts with a detailed description of the three di-
agnostic algorithms that are evaluated in this study. Two dif-
ferent experimental tests, i.e. an accelerated life time test of
a ball bearing and a gearbox test containing various bearing
faults, have been performed and are described in section 3.
This is followed by a detailed description of the results that
have been obtained by each method. In section 5 the results
are compared and discussed in detail. The paper is finalized
with a set of guidelines on the applicability of the three meth-
ods for machine condition monitoring.

2. DESCRIPTION OF THE BEARING FAULT DIAGNOSTIC
ALGORITHMS

2.1. Method LCM

The fault diagnosis approach adopted here is purely data driven,
i.e. it incorporates no physical knowledge about the moni-
tored system. That makes it on one hand more flexible and
applicable to many kinds of systems, machines or compo-
nents. On the other hand, incorporating extra knowledge usu-
ally improves the diagnostic ability of a condition monitoring
system.

In a first step, a big number of features is extracted from the
vibration signals. Feature extraction for vibration analysis
has been discussed in numerous publications, extensive re-
views can be found for instance in (D. Wang et al., 2017;
Singh & Vishwakarma, 2015). The extraction of typical sta-
tistical features in time domain is described in (Sharma &
Parey, 2016; Lei, He, Zi, & Hu, 2007; Shen, Wang, Kong,
& Tse, 2013; Decker & Lewicki, 2003; Alattas & Basaleem,
2007; Boldt, Rauber, & Varejão, 2013; Jalil, Butt, & Malik,
2013; Suma & Gurumurthy, 2010; Kollialil, Gopan, Harsha,
& Joseph, 2013). Features in time-frequency and frequency
domain are proposed and investigated in (Sharma & Parey,
2016; Lei et al., 2007; Alattas & Basaleem, 2007; Boldt et
al., 2013). Typical symptom parameters in frequency domain
for rotating machinery are extracted in (H. Wang & Chen,
2007). Adopting the spectral kurtosis for vibration monitor-
ing is examined in (Rao, 2015; Antoni & Randall, 2006). In
(McClintic, Lebold, Maynard, Byington, & Campbell, 2000;
Assaad, Eltabach, & Antoni, 2014) features of residual and
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difference signal are extracted by using for instance auto-
regressive models. Features in wavelet domain are introduced
in (Heidari Bafroui & Ohadi, 2014; Jafarizadeh, Hassannejad,
Ettefagh, & Chitsaz, 2008; Bajric, Zuber, Skrimpas, & Mija-
tovic, 2016; Kollialil et al., 2013). (Satyam, Sudhakara, &
Devy, 1994; Konstantin-Hansen & Herlufsen, 2010) exam-
ine vibration analysis in cepstral domain. The application of
synchronous time averaging is demonstrated for instance in
(McFadden & Toozhy, 2000). We implemented a broad se-
lection of the proposed features to analyze the bearing data.
Overall, 83 features were extracted.

In the next step of the supervised learning approach, the di-
mensionality of the feature space is reduced to avoid the curse
of dimensionality. Therefore, the significant features are iden-
tified by feature selection procedures as described in (Guyon
& Elisseeff, 2003). In particular, a standard forward selection
filter algorithm selecting one feature per step was applied.
As selection criterion in each step we use robust distance
measures like Dy-Brodley measure (Dy & Brodley, 2004)
or Mahalanobis distance (McLachlan, 1999). Feature selec-
tion is stopped when the relative gain of the selection cri-
terion falls below 1%. Both distance measures selected the
same features in the first few steps of forward selection until
the stopping criterion was reached. Amongst the finally se-
lected features were the short-time energy (Jalil et al., 2013),
average magnitude difference (Suma & Gurumurthy, 2010),
interquartile-range (Kollialil et al., 2013), symptom parame-
ters in frequency domain (H. Wang & Chen, 2007) and energy
values for certain wavelet bands (Heidari Bafroui & Ohadi,
2014).

Once the features are extracted and selected, a classifier in
the feature space is trained. For that purpose we use a linear
or quadratic normal Bayes classifier (de Ridder et al., 2017).
This classifier assumes normally distributed classes and ap-
plies Bayes decision rule to those classes. In the linear case,
the co-variances of the classes are assumed to be equal. The
validity of using normally distributed classifiers was checked
by normal probability plots of the feature vectors.

The supervised learning approach implies of course that the
method depends on having a sufficient amount of annotated
training data for all states (failure modes) to be monitored.
There are also classifiers for one-class classification (also re-
ferred to as novelty detection) available (Tax, 2001). How-
ever, those techniques detect only deviation from a nominal
state, without giving any conclusion about the type of the
fault. Furthermore, the feature selection process depends on
having an annotated data set.

The process of evaluating a new data sample is straightfor-
ward: the selected features are extracted from the raw signals,
and the classifier is applied to those features. Since many
classifiers are able to deliver class membership probabilities,
it is generally possible to determine instances lying between

Vibration data

Feature extraction

Training features
(healthy)

Testing features
(unknown)

Baseline Model
building by SOM

Model Testing by
SOM-MQE

Assessment results

Vibration data

Filter gear influence

Training features
(healthy & faulty)

Testing features
(unknown)

Classification Model
build by SOM

Model Testing by
SOM

Diagnosis results

from the signal

Feature extraction

(b)(a)

Figure 1. Framework of IMS’s bearing health monitoring ap-
proaches: (a) health assessment; (b) fault diagnosis

two distinct states. However, here we restrict the evaluation
to crisp class decisions.

Given the data, the whole process of feature extraction, fea-
ture selection and classification can be fully automated. The
more useful information the training data contain, the bet-
ter the resulting feature subset and classifier will be. In this
context, information means different states, rotation speed,
repeated measurements with different samples of the same
bearing type, and so on.

2.2. Method IMS

The framework of the bearing monitoring approaches are il-
lustrated in Figure 1. Figure 1 (a) shows the method for bear-
ing health assessment while the fault diagnosis flowchart is
depicted in Figure 1 (b). The measured vibration data will
go through two major steps, which are the feature extraction
and the model training/testing. The monitoring results are ob-
tained by the model testing. Both the system domain knowl-
edge and the data-driven techniques will be applied in these
steps.

Both approaches share the same feature extraction step, which
processes the raw signal and extracts representations which
indicate incipient defects of the bearing. There are two types
of features that are extracted. Firstly, we extract these fea-
tures which represent the whole vibration level of the sig-
nal since the fault will bring extra vibrations to the system.
They contain summaries of statistics, such as kurtosis and
root mean squares (RMS), and the energy variations in fre-
quency domain (spectral kurtosis) (Jia, Zhao, Di, Jin, & Lee,
2017; Jia, Zhao, Di, Li, & Lee, 2018). The second group of
features come from the bearing signatures (i.e. BPFI, BPFO,
FTF, BSF, BDF), which are amplitudes at specific bearing
signature frequencies (Randall & Antoni, 2011). In practice,
however, these signatures might be disturbed by other com-
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ponents including gears and shafts. Thus, an advanced signal
processing technique is applied to isolate such bearing related
information from the signal. Through a time synchronous
averaging method (Bechhoefer & Kingsley, 2009; Jia et al.,
2017), a spectrum unifying approach (Sawalhi, Randall, &
Forrester, 2014), and the Hilbert Transform, shaft rotating re-
lated components are filtered and the bearing signature com-
ponents are demodulated. Applying FFT on the filtered sig-
nal, the bearing specific features are then extracted. Finally,
the features used for both approaches include kurtosis, RMS,
RMS after spectrual kurtosis filtering, kurtosis after spectral
kurtosis filtering, BPFI, BPFO, FTF, BSF, and BDF.

In the second step, a machine learning model is constructed
based on the extracted features in each approach respectively.
In health assessment, a clustering or distribution estimation
method is applied to recognize the normal behavior as the
baseline. The monitoring data are then compared with the
baseline and the distance, which can be denoted as the assess-
ment score, is utilized to estimate the current health state. The
larger the score indicates the more severe the degradation. In
fault diagnosis, a classification model is applied to memorize
the faulty patterns with various bearing failure modes. In this
comparative study, self-organizing map (SOM) (Kohonen, 1998)
is utilized to achieve the model training and testing. For bear-
ing health assessment, a SOM model is built by the healthy
feature sets and the assessment score is calculated by the min-
imum quantization error (MQE) (Di et al., 2018). For fault
diagnosis, the SOM model is trained by both the normal data
and faulty examples and the diagnosis is performed by the
evaluate the corresponding best matching unit (BMU) of the
testing feature.

Once the model has been constructed, the monitoring pro-
cess can be employed automatically. An assessment score, or
a possible bearing failure mode, is generated as the final re-
sult by inputting the vibration measurement. The monitoring
prerequisites include the rotating speed of the bearing shaft,
the bearing geometric information, the sampling rate of the
signal, healthy data (health assessment) and faulty examples
(diagnosis).

2.3. Method FM

The number of potential faults in bearings is diverse and ranges
from surface fatigue to lubrication-related faults. A large part
of the bearing faults occur locally and result in periodic im-
pulsive vibrations (Halme & Andersson, 2009). Other vibra-
tion sources in machines such as gears, shafts and noise can
mask the effects of bearing faults. The algorithm employed
is used to isolate the desired bearing fault-related information
from the vibration signal and is summarized in Figure 2.

In the first step the raw vibration signal is angularly re-sampled
if the shaft speed variation is significant. This step is not
needed when the shaft speed is stationary. Vibrations caused

Angular resampling

Vibration signal

Discrete component removal
by zero-cepstrum editing

Spectral subtraction (SS)

Minimum entropy
deconvolution (MED)

Squared Envelope Spectrum
(SES) estimation

Feature extraction
(equation 1 and 2)

Optional

Speed signal

Bearing fault
frequencies at

given shaft speed

Feature threshold
exceeded?

Healthy
state

Faulty
state

No Yes

Threshold
definition

Figure 2. Overview of Flanders Make’s vibration based bear-
ing fault detection algorithm.

by gears, screws, shafts are often dominant in the vibration
signal of rotating machines. These vibrations are removed
from the raw signal in the second step by the zero-cepstrum
editing method described in (Barbini, Ompusunggu, Hillis,
du Bois, & Bartic, 2017; Borghesani, Pennacchi, Randall,
Sawalhi, & Ricci, 2013). The filtered signal containing bearing-
related information is then subsequently enhanced by the spec-
tral subtraction and minimum entropy deconvolution (MED).
The spectral subtraction is crucial in suppressing random noise,
while the MED filtering aims at mainly reducing the transfer
path effect such that the impulsiveness of the bearing fault-
related signal is further enhanced if present. The combined
processing steps are described in detail in (Ompusunggu et
al., 2018). The enhanced signal is used to calculate the squared
envelope signal. The spectrum of this envelope signal, which
is called squared envelope spectrum (SES), is then estimated
(Randall & Antoni, 2011).

Features corresponding to different bearing faults (e.g. ex-
cessive clearance, inner-race fault, outer-race fault, rolling-
element fault, cage fault) are extracted from the SES. The
bearing fault frequency characteristics (i.e. BPFI, BPFO, BDF,
FTF) at given shaft speed must be known. The bearing fault
feature F is defined as the summation of the normalized SES
magnitude SES of the first four harmonics of a bearing fault
frequency of interest vb:

F =

4∑
k=1

SES[kvb] (1)

The normalized SES magnitude SES is expressed in the fol-
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lowing equation:

SES[k] =
SES[k]

SES[0]
(2)

with SES[0] denoting the magnitude of SES at frequency
zero.

Finally, a diagnostic decision is made automatically by com-
paring the feature value with a predetermined threshold. The
threshold is defined by a statistical approach using only healthy
vibration data, i.e. no fault-state data is required for train-
ing. According to (Jablonski, Barszcz, Bielecka, & Breuhaus,
2013), vibration data can be well fitted by a generalized ex-
treme value distribution due to their one-sided distribution,
with probability distribution function y:

y =
1

σ
t(x)k+1e−t(x)

with t(x) =
(
1 + k

(x− µ

σ

))−1/k
(3)

This distribution has 3 parameters: shape parameter k, scale
parameter σ, location parameter µ. The threshold is set us-
ing a high percentile value of the fitted cumulative probability
density of the healthy values. In this paper the 96% value was
used as a baseline. The warning threshold is set 3 db above
this baseline. The alarm threshold is set 6 db above the base-
line (i.e. double of the baseline value) to minimize potential
false positive alarms. The bearing is reported to be healthy if
the feature value is smaller than the alarm threshold, while a
bearing is classified as faulty if the feature value is larger than
the alarm threshold.

The entire signal processing and analysis is performed auto-
matically. The information that is required in the algorithm
is limited to (1) the shaft rotational speed, (2) the bearing
type or geometry to calculate the bearing fault frequencies at
the given speed, (3) acceleration data of a healthy bearing for
training and (4) acceleration data for testing.

3. EXPERIMENTAL SET-UPS AND TESTS

Two types of experiments have been performed: (i) an accel-
erated life time test (ALT) of a ball bearing on a single shaft
drive train set-up and (ii) a test on a more complex gearbox
set-up including bearings with various faults. Both tests are
described in the next two sections.

3.1. Accelerate life time test

The accelerated life time test allows to create an operational
fault in a bearing. This test differentiates from other studies
on the fact that they are often limited to artificially induced
faults. Moreover, the fact that the fault evolution and accu-
mulation can be monitored during the accelerated life time.
The experimental set-up used to perform the accelerated life

Hydraulic cylinder to

apply a radial load Motor

Test bearingAccelerometer

Figure 3. The drive train set-up used to reduce the life time
of a bearing to less than a day, allowing to generate vibration
data during the accumulation of a operational bearing fault.

time test is shown in Figure 3. The set-up comprises of a sin-
gle shaft with a test bearing. The shaft is supported with the
help of a support bearing on each side. A hydraulic cylin-
der is used to apply a radial load to the test bearing up to a
maximum of 10 kN. The test bearing is oil lubricated by an
internal oil bath. Two air fans were installed to cool the set-up
and avoid overheating of the bearing. The set-up is driven by
a motor at a fixed rotation speed of 1500 rpm.

The test procedure is schematically illustrated in Figure 4. Vi-
bration measurements were performed under a nominal radial
load of 1.5 kN (i.e. 10% of the dynamic load rating). The ra-
dial load was temporarily increased to 9.0 kN (i.e. 65% of the
dynamic load rating) to accelerate the life time of the bearing.
In the beginning the interval was 20 minutes, but this has been
reduced as soon as the first indication of an incipient fault was
noticed in the measured vibration responses. In total 30 vi-
bration measurements were performed at the nominal 1.5 kN
loading condition and 29 vibration measurements at the high
9.0 kN radial load. The accelerated life time test was stopped

1.5 kN

9.0 kN
Load

Time

Vibration measurement
at high load

Vibration measurement
at nominal load

20 min 5 min

Figure 4. The load was temporarily increased from 1.5 kN to
9 kN to accelerate the life time of the bearing.
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t = 0 hours

End condition

t = 8.1 hours

Zoom Zoom

Indent
diameter
ø230 µm

Faulth
width
4 mm

Figure 5. The indentation at the bearing inner race used as the
start condition and the surface fatigue fault at the inner race
introduced by the accelerated life time test.

when a vibration peak level of +/- 50 g was reached.

The applied radial load, the radial vibrations in the loading di-
rection and the temperature of the bearing housing were mea-
sured during the test. The machine vibrations were measured
for using a piezo film ACH-01-03 accelerometer and digitized
at 12.8 kHz by an embedded acquisition platform. In each
measurement 20 seconds of data was acquired. The acqui-
sition platform consists of a Beaglebone Black single board
computer with a Linux operating system, supplemented with
a customized 6 channel interface. This embedded platform
is used as a compact, open, scalable and cost-effective data
acquisition system.

The accelerated life time test was performed on a FAG 6205
ball bearing. Before the start of the test a small indentation
with a diameter of 230 µm was created in the inner race us-
ing a Rockwell C hardness tester. This indentation is used
as a local stress riser and represents a local plastic deforma-
tion caused by, for instance, a contamination particle. Subse-
quently, the accelerated life time test was performed for sev-
eral hours. Although bearings can fail in many different ways,
the indentation triggers the bearing to fail in a more repeat-
able way. The test was stopped when severe rolling contact
surface fatigue occurred at the inner race (Halme & Anders-
son, 2009). The start and the end condition of the inner race
of the test bearing are shown in Figure 5.

Only a single dataset has been used in this paper for the pur-
pose of comparing the three methods. However, the acceler-
ated lifetime test has been performed several times as part of
other research by authors. They have all resulted in similar
surface fatigue faults at the inner race of the test bearing.

36

90

100

29 MB ER-10K

MB ER-16K

MB ER-10K

MB ER-16K

MB ER-16K

Test bearing

FAG 6205-C-TVH

Topview gearbox

Gearbox, 3 shaftsTacho

Motor Accelerometer

Brake

Accelerometer

Figure 6. Gearbox set-up comprising a motor, 3-shaft gear-
box and brake to introduce a load.

3.2. Gearbox test

The second test performed in this benchmark study was an
industrially representative gearbox setup. Figure 6 shows a
photograph and a schematic top-view of the gearbox setup.
The test setup consists of (i) an induction electric motor, (ii)
a gearbox and (iii) a magnetic brake. The motor is controlled
by a variable-frequency-drive (VFD) with either a station-
ary mode or a transient mode (run-up/run-down). The motor
speed can be controlled from 0 to 3000 rpm. The gearbox
input shaft is connected to the motor through a flexible cou-
pling, while the gearbox output shaft is directly coupled to
the brake. The torque applied to the brake can be adjusted by
the controller from 0 to 50 Nm.

As illustrated in Figure 6, the gearbox comprises of three-
parallel shafts connected through contacting spur gear pairs.
Note that the number of gear teeth is indicated in the figure.
Hence the total reduction factor from the input to the output
shaft is equal to (100/29) × (90/36) = 8.62. The input shaft is
supported by deep groove ball bearings MB ER-10K, while
the other shafts are supported by deep groove ball bearings
MB ER-16K. For simulating a healthy or faulty state on the
gearbox, the right-side bearing housing that supports the sec-
ond shaft is equipped either with a healthy or a damaged ball
bearing of type FAG 6205-C-TVH. The theoretical fault fre-
quencies of this bearing of interest are listed in Table 1.

Two healthy bearings and three faulty bearings with different
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Abbreviation Fault Frequency
[Hz]

SHFT Shaft speed 1.000
BPFI Inner race defect 5.415
BPFO Outer race 3.585
FTF Cage defect 0.398
BSF Ball spin 2.358
BDF Rolling element defect 4.715

Table 1. Theoretical bearing fault frequencies of a 6205-C-
TVH ball bearing at a shaft speed of 60 rpm.

inner race faults were tested. An indentation fault with a di-
ameter of 490 µm was created using an Rockwell C hardness
tester. Two other bearings with operational faults were cre-
ated using the accelerated life time test setup as described in
Section 3.1. The healthy bearings are referred as ’Healthy1’
and ’Healthy2’, while the faulty bearings are referred as ’In-
dent’, ’Faulty1’, ’Faulty2’, in the order of increasing severity
and are illustrated in Figure 7.

For each healthy or faulty state, 3 operating conditions were
imposed on the gearbox setup, namely three different motor
speeds of 600, 1500 and 3000 rpm. The brake torque was
kept constant at 50 Nm. Because of the transmission ratio, the
rotational speed of the second shaft is 29/100 lower than that
of the motor speed, while the torque applied on the second
shaft is 36/90 lower than that of the brake torque. Hence,
for the imposed operating conditions, the rotational speeds
of the second shaft were 174, 435 and 870 rpm, while the
torque applied to the second shaft was 20 Nm. A high-end
PCB accelerometer was mounted on the gearbox housing as
shown in Figure 6. The vibration signals were sampled at
50 kHz using a Dewesoft data acquisition system. For each
operating condition, 10 × 20 seconds were repeated. The
data are then processed using scripts written in Matlab.

4. RESULTS

The results obtained by the three methods are presented in
this section. The accelerated life time test results are ad-
dressed first. This is followed by the results for gearbox test.

Indentation

490 µm  
Fatigue fault

1.5 x 3.0 mm

Fatigue fault

3 x 4 mm

IndentHealthy1 Fault1 Fault2 Healthy2

 

Figure 7. Five bearing states tested on the gearbox setup com-
prising two healthy bearings and three faulty bearings with
different severities.

1 2 3 4 5 6 7
0

2

4

6

F
e
a
tu

re
v
a
lu

e

10-5 Feature: 1, 9.0 kN

1 2 3 4 5 6 7

Time [h]

-10

0

10

20

30

C
u
m

u
la

ti
v
e
 S

u
m

s

CUSUM control chart

Upper Sum

Lower Sum

Threshold

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

F
e
a
tu

re
v
a
lu

e

10-5 Feature: 1, 1.5 kN

1 2 3 4 5 6 7 8

Time [h]

-10

0

10

20

30

40

C
u
m

u
la

ti
v
e
 S

u
m

s

CUSUM control chart

Upper Sum

Lower Sum

Threshold

Figure 8. Feature values and CUSUM control charts for fea-
ture 1 in the ALT test for load 9.0 kN (left) and 1.5 kN (right).

4.1. Accelerated life time test

4.1.1. Results method LCM

Based on the raw sensor signals, the features were extracted
in an overlapping sliding window approach. Using a window
length of 0.2 seconds and an overlap of 0.1 seconds, we ex-
tracted 199 observations out of each 20 second data batch.
However, for final evaluation, we observed only the mean
value of those 199 observations for a data batch. Unlike the
gearbox setup, we had no data of different health states avail-
able for feature selection and classifier training in the accel-
erated life time test. Therefore we were restricted to detect
significant changes in the feature values. For that purpose, cu-
mulative sum (CUSUM) control charts (Hawkins & Olwell,
1998) were applied to the features.

Due to the missing feature selection step, we evaluated the top
ranked features of the 3000 rpm motor speed gearbox test (see
Section 4.2.1). All of those features increased significantly
towards the end of the test run for the 9.0 kN as well as for
the 1.5 kN load conditions. For example, feature 1 is depicted
in Figure 8. Due to the increasing feature value, the upper
threshold of the CUSUM control chart was exceeded after
approximately 7.3 hours in the 9.0 kN case and 7.9 hours in
the 1.5 kN case, indicating a failure of the bearing.

For control reasons, we also show an arbitrarily chosen fea-
tures here (feature 57 in Figure 9). The features showed no
significant trend, and the CUSUM control charts didn’t ex-
ceed the thresholds.

4.1.2. Results method IMS

In the accelerated life time test, only healthy data were avail-
able at the beginning. Thus the health assessment approach
was applied to estimate the health state of the bearing during
the whole testing process (see Section 2.2). Since the ALT
was employed under two loads, the health model was con-
structed for 9.0 kN and 1.5 kN respectively. Vibration data
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Figure 9. Feature values and CUSUM control charts for fea-
ture 57 in the ALT test for load 9.0 kN (left) and 1.5 kN (right)

were processed for each observation and the first 10 samples
were utilized to train the baseline model. The health state was
then represented by the assessment score, which was denoted
by the MQE value, in the testing stage.

The health assessment results are shown in Figure 10 and
Figure 11. Figure 10 depicts the assessment scores for the
bearing under 9.0 kN while Figure 11 represents the assess-
ment scores under 1.5 kN. For the case of 9.0 kN, the as-
sessment score varies at a low level for approximate 6 hours
and then it increases significantly until the end of the bearing
life. Since larger assessment score indicates farther distance
between the current behavior and the baseline model, it is
demonstrated that the health assessment approach is able to
estimate the degradation process during the accelerated life
time test. Further, we calculated the contribution of each fea-
ture to the MQE assessment score, which is illustrated in Fig-
ure 10 right. The feature with the largest contribution to as-
sessment result is the ball pass frequency inner (BPFI), which
is an inner race fault related signature. Since the accelerated
life time test resulted in an inner race fault, it demonstrates
that the method could also detect the location of the bearing
fault.

Similar to the 9.0 kN load case, the MQE assessment score
also gradually increases after approximately 6.5 hour for the
1.5 kN load case. However, the increase is slightly slower
than that for the 9.0 kN load case. The feature contribution
(see Figure 11 right) again shows that the degradation was
mainly driven by the inner race fault. The contribution of the
inner race fault feature (i.e. BPFI) loses its weight although
it is still dominant among all features. It reveals that under a
lower load, it is more difficult to detect the degradation at an
early stage.

4.1.3. Results method FM

The algorithm described in Section 2.3 was applied to the
raw acceleration signal acquired at the 1.5 kN and 9.0 kN
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Figure 10. Health assessment results for load 9.0 kN, with
the evolution of the MQE assessment score on the left and an
overview of the contribution of the individual features on the
right.
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Figure 11. Health assessment results for load 1.5 kN, with
the evolution of the MQE assessment score on the left and an
overview of the contribution of the individual features on the
right.

radial load condition. For each measurement 5 seconds of the
acceleration signal was processed.

Figure 12 shows the evolution of five bearing features as func-
tion of the test time for the 1.5 kN case. The features are
defined in correspondence to Table 1. During the first few
hours, no significant change in any of the feature value is ob-
served. The inner race fault bearing feature (i.e. BPFI) starts
to increase after approximately 6.7 hours in the test and sig-
nificantly increases towards the end of the test. The other
features are barely affected by the degradation process. This
indicates the unique detection of an inner race fault at the test
bearing.

Similarly, the acceleration signals acquired during the mea-
surements at 9.0 kN have also been analyzed separately. The
evolution of the feature values are shown in 13. In contrast
to the measurements at 1.5 kN, an increased inner race fault
feature has been observed after only 6.1 hours. The increased
loading condition has resulted into a slightly earlier detection
of the bearing degradation.
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Figure 12. The evolution of five bearing fault features during
the accelerated life time test of the ball bearing for all mea-
surements at 1.5 kN radial load.
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Figure 13. Evolution of five bearing fault features during the
accelerated life time test of the ball bearing for all measure-
ments at 9.0 kN radial load.

4.2. Gearbox test

The results obtained by the three algorithms applied to the
gearbox data are described in this section.

4.2.1. Results method LCM

Just like in the accelerated life time test, the features were
extracted from the raw acceleration signals in an overlapping
sliding window approach with a window length of 0.2 sec-
onds and an overlap of 0.1 seconds. This procedure resulted
again in 199 observations for each 20 second data batch. Af-
ter extracting all features, the feature selection algorithm was
applied to the 3000 rpm, 1500 rpm and 600 rpm motor speed
data independently. Furthermore, we did not use all avail-
able states for feature selection. We used only the datasets
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Figure 14. Scatter plot of top 2 features for the 3000 rpm
dataset.
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Figure 15. Scatter plot of top 2 features for the 1500 rpm
dataset.

of the states Healthy1, Healthy2 and Faulty2, but not Indent
and Faulty1. For the 3000 rpm motor speed data, the algo-
rithm selected 3 top ranked features, for the 1500 rpm data
it selected 4 top ranked features, and for the 600 rpm data
it selected 2 top ranked features. However, for a first visual
impression we show only the top 2 features for all recorded
rotation speeds and all recorded states in a scatter plot in Fig-
ure 14 (3000 rpm motor speed), Figure 15 (1500 rpm) and
Figure 16 (600 rpm).

We can already notice a few things by just looking at those
scatter plots:

• Different top features were selected for the different ro-
tation speeds.

• The 3000 rpm dataset revealed the best separability.
• Faulty1 and Faulty2 produced similar features.
• In the 3000 rpm dataset, the Indent-class lies somewhere

in-between the healthy and the faulty states.

For classification accuracy estimation, we trained a classi-
fier only with the states Healthy1, Indent and Faulty2 (using
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Figure 16. Scatter plot of top 2 features for the 600 rpm
dataset.

Estimated State
Healthy Indent Faulty

True State

Healthy1 177 22 0
Healthy2 199 0 0
Indent 0 199 0
Faulty1 0 0 199
Faulty2 0 0 199

Table 2. Confusion matrix for 3000 rpm data.

two 20 second data batches each). After training, validation
was performed with another 20 second data batch of all 5
bearing states. However, as target class of the classifier we
did not use those five states, but only the simplified states
Healthy (Healthy1 and Healthy2), Indent and Faulty (Faulty1
and Faulty2). According to the feature selection step, the
3000 rpm data were validated with the top 3 features, the 1500
rpm data were validated with the top 4 features and the 600
rpm data were validated with the top 2 features. The classifi-
cation accuracy for the 3000 rpm data was 97.7% (confusion
matrix in Table 2), for the 1500 rpm data 77.3% (confusion
matrix in Table 3) and for the 600 rpm data 79.8% (confusion
matrix in Table 4). That confirms the first visual impression:
in the 3000 rpm case, the separability of the states Healthy,
Indent and Faulty in the feature space is satisfying, while the
separability is worse in the 1500 rpm and in the 600 rpm case.
Especially the state Healthy2 is misclassified in the 1500 rpm
and 600 rpm case. As can be seen in the according scatter
plots, the state Healthy2 overlaps with the states Indent and
Faulty. Since Healthy2 was not used to train the classifier it
is obvious that it will be misclassified.

4.2.2. Results method IMS

The fault diagnosis approach was applied to all gearbox data
sets including 3 rotating speeds: 600 rpm, 1500 rpm, and
3000 rpm. In the feature extraction step, instead of calcu-
lating features by a sliding window, which was mentioned in

Estimated State
Healthy Indent Faulty

True State

Healthy1 173 26 0
Healthy2 0 102 97
Indent 0 198 1
Faulty1 0 0 199
Faulty2 0 0 199

Table 3. Confusion matrix for 1500 rpm data.

Estimated State
Healthy Indent Faulty

True State

Healthy1 199 0 0
Healthy2 2 86 111
Indent 1 195 3
Faulty1 0 0 199
Faulty2 0 0 199

Table 4. Confusion matrix for 600 rpm data.

section 4.2.1, fault signatures were extracted from the whole
vibration signal for each observation. Once the feature matrix
were prepared, 15 samples for each health state were selected
respectively to train the classification model. The other sam-
ples were utilized to test it. In the training stage, we trained
two types of healthy data separately since they were measured
temporally differently. The confusion matrix was selected as
the evaluation metric. The diagnostic results generated by the
machine learning model were compared with the ground truth
from the experiments.

The fault diagnosis results were summarized in Figure 17,
Figure 18, and Figure 19. In these figures, ’Target Class’
denotes the ground truth while ’Output Class’ represents the
diagnosis results from the SOM model. Number 1 to 5 rep-
resent the five health conditions: Healthy1, Healthy2, Indent,
Faulty1, and Faulty2. In 600 rpm rotating speed case, which
is shown in Figure 17, almost all testing data are diagnosed
correctly. Only one Healthy2 sample is misclassified as Healthy1.
The overall accuracy (96.2%) validates that even under rela-
tively low rotating speed the proposed method enables sat-
isfied classification capabilities. In addition, similar diagno-
sis results are obtained in 1500 rpm case (90.6% accuracy)
and 3000 rpm case (93.9% accuracy), which are illustrated
in Figure 18 and Figure 19 respectively. Compared with 600
rpm case, however, there are misclassified samples for Indent,
Faulty1, and Faulty2 failure modes in 1500 rpm and 3000 rpm
cases.

Further, the contribution of each feature to the diagnosis re-
sult was investigated. Two examples are illustrated in Figure
20 and Figure 21. Figure 20 shows the feature contributions
for the 600 rpm case with the indent fault, while Figure 21
indicates the feature contribution for the 3000 rpm case with
the most severe fault, i.e. Faulty2. When the rotating speed is
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Figure 17. Confusion matrix for 600 rpm data. The target
class indicates the true bearing state, the output class refers to
the estimated bearing state.

low, the feature representing the overall vibration level rather
than bearing specific features contribute to the diagnosis re-
sults. While bearing specific features (i.e. BPFI) demonstrate
to have more dominant contributions under higher rotating
speed. Therefore, as the rotating speed increases and the bear-
ing fault propagates, the proposed method by IMS is able to
better perform the fault diagnosis.

Summarizing, under various rotating speeds, the proposed
fault diagnosis approach was demonstrated to identify bear-
ing faults and classify them based on different degradation
levels.

4.2.3. Results method FM

The acquired data were processed using the algorithm de-
scribed in section 2.3. For each bearing state and for each mo-
tor speed, 20 acceleration signals with a length of 5 seconds
were analyzed. The feature values were computed and the
threshold was defined using only the data of the ’Healthy1’
measurement.

The distributions of the BPFI feature in case of a 3000 rpm,
1500 rpm and 600 rpm motor speed are respectively shown in
Figure 22, 23 and 24. The central mark indicates the median,
the bottom and top edges of the box indicate the 25th and the
75th percentiles, respectively. The distances between the top
and bottom are the interquartile ranges. Observations that are
more than 1.5 times the interquartile range away from the top
or bottom of the box are considered as an outlier and are in-
dicated by a ’+’ sign. The whiskers are lines extending above
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Figure 18. Confusion matrix for 1500 rpm data. The target
class indicates the true bearing state, the output class refers to
the estimated bearing state.

and below each box to the most extreme data points that are
not considered as outliers.

The results show that the algorithm can clearly discriminate
between the Healthy1 and the Faulty2 state for the 3000 rpm
and 1500 rpm case. The difference in the extracted squared
envelope spectra between Healthy1 and Faulty2 is also shown
in Figure 25 for the 1500 rpm case. It is also observed that the
degree of separation between Healthy1 and Faulty2 is larger
for the 1500 rpm than for the 3000 rpm case. This is caused
by a system resonance frequency at around 1200 rpm (20 Hz).
The Indent and Faulty1 state are not detectable for either of
the motor speeds. In case of the 600 rpm, none of the faulty
states are detected.

It was expected that Healthy1 and Healthy2 would reveal sim-
ilar feature values. However, the Healthy2 bearing shows
slightly higher feature values for all three rotational speeds,
resulting in false positive classification. This effect is also
shown in the associated squared envelope spectra. It is ex-
pected that those slightly higher values for Healthy2 are caused
by reported assembling issues of the test bearing in its gear-
box housing during the benchmark test campaign.

5. DISCUSSION

The three bearing diagnostic algorithms are compared based
on their diagnostic performance, applicability, training and
configuration requirements, level of automation in this sec-
tion. The computational cost of each methods has not been
compared since different computing hardware were used to
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Figure 19. Confusion matrix for 3000 rpm data. The target
class indicates the true bearing state, the output class refers to
the estimated bearing state.

calculate the results. Finally, the most important pros and
cons of each individual method are summarized in Table 5 at
the end of this section.

5.1. Diagnostic performance

All three methods were able to describe the evolution of the
inner race bearing fault during the accelerated life time test.
The methods developed by IMS and FM were able to detect
the presence of the bearing degradation earlier, i.e. 6.7 hours,
than the purely data driven method of LCM, i.e. 7.3 hours,
under the 1.5 kN nominal load condition. It reveals a slightly
higher sensitivity of the methods of IMS and FM to detect
incipient inner race bearing fault for this test. They were also
able to determine the location of the bearing fault (i.e. in-
ner race), using unique bearing fault features for each type of
fault.

The differences are explained by the fact that each method
made use of a different set of features that are sensitive to
bearing faults. The method of IMS used a combination of a
few statistical time domain features and bearing fault specific
features. The method of LCM used a very wide set of statis-
tical features. The method of FM only relies on the bearing
fault specific features.

Although this paper is limited to the evaluation of the bear-
ing current health condition, the accelerated life time test as
described in section 3.1 can form a basis for prognostics and
health management. Constructing the right health indicators
is key in predicting the remaining useful life (D. Wang et al.,
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Figure 20. Contribution of all features for the diagnosis (600
rpm, Indent).
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Figure 21. Contribution of all features for the diagnosis (3000
rpm, Faulty2).

2017). The accelerated life time test can be used to evaluate
and validate remaining useful life estimation techniques. Ul-
timately this could serve planning the optimal maintenance
strategy according to the systems current and future health
condition and the costs.

In the gearbox test, different classification classes have been
used in each method. The method of IMS used 4 classes, the
method of LCM used 3 classes, the method of FM used a sin-
gle threshold based on only healthy data to classify between
the healthy and the faulty state.

Based on the classification results, the method of IMS and
LCM seem to outperform the method of FM in the gearbox
test, in particular for the smaller faults. The method of IMS
and LCM were able to classify all the bearing faults with dif-
ferent levels of accuracy, whereas the method of FM only de-
tected the most severe fault, i.e. Faulty2. By the contribu-
tion matrix in Figure 20 and Figure 21 IMS showed that the
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Figure 22. BPFI feature as function of the different bearing
states at a motor speed of 3000 rpm, a shaft rotation speed of
870 rpm of the test bearing.
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Figure 23. BPFI feature as function of the different bearing
states at a motor speed of 1500 rpm, a shaft rotation speed of
435 rpm of the test bearing.

smallest faults were to a large extend detected based on a sta-
tistical time domain feature rather than bearing fault specific
features. While the bigger faults were primarily detected by
the bearing specific features. This matches with the observa-
tions for the method of FM, which relies purely on bearing
specific features.

The high classification accuracy obtained for the method of
IMS and LCM can be explained by a high correlation between
the training and testing data. Although the training and test-
ing data were acquired in different measurements, they were
collected in the same measurement campaign, for the same
bearing sample and for the same bearing assembly. As a re-
sult, this could lead to a misleading classification accuracy.
Firstly, because the training and testing data of one test bear-
ing can be correlated not only in terms of the bearing faults,
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Figure 24. BPFI feature as function of the different bearing
states at a motor speed of 600 rpm, a shaft rotation speed of
174 rpm of the test bearing.

but also by other e.g. bearing assembly related effects. Sec-
ondly, the classification differences between various healthy
and faulty states are not uniquely caused by the bearing fault,
but could also be caused by e.g. bearing assembly differ-
ences. The classification results are therefore lacking in a
setup wide validation. Attention should be paid to the qual-
ity of the training data. The training data should comprise all
possible system variations, including for instance new instal-
lations of bearings and other bearing samples.

The method of IMS and FM both allows to indicate the lo-
cation of the bearing fault based on a unique bearing feature
for each fault. This requires prior knowledge of the setup and
hence bearing specific fault frequencies, which is not required
for the method of LCM.

5.2. Practical applicability

The method of IMS and FM are bearing specific monitoring
solutions. They are not directly applicable to other type of
monitoring problems. The method of LCM is on the other
hand a widely applicable method for fault monitoring prob-
lems. It can be trained for most kind of mechanical failures,
including bearing faults, as long as representative training
data is available.

For the gearbox test, all methods show a reduced performance
for the lowest rotational speed and have different levels of
success for 1500 rpm and 3000 rpm cases. The method of
IMS showed a high classification accuracy for 600 rpm case
due to a high contribution of statistical time domain features
to the assessment score. The method of LCM showed the best
separation between the classes for high rotation speeds. The
method of FM performs slightly better for 1500 rpm than for
3000 rpm due to a system resonance frequency that is close
to the rotational shaft speed leading to amplified vibration re-
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Figure 25. A comparison of the square envelop spectra of
Healthy1 and Faulty2 test bearing at a 1500 rpm motor speed,
showing the clear presence of BPFI related harmonics. The
summed normalized magnitude of the first four harmonics in-
dicated by the blue circles is used as a bearing faulty feature.

sponses.

The three methods have different levels of automation. The
method of IMS is currently a semi-automated algorithm. Man-
ual intervention is needed during the feature extraction pro-
cess. The method can be fully automated further. The method
of LCM is not yet automated. An automatic supervision by
pre-defined feature sets is however possible. The feature set
has to be selected manually in reference to the scenario. The
method of FM is a fully automated algorithm and provides
feature value in relation to the threshold value based on raw
acceleration signals.

5.3. Training and configuration requirements

The method of LCM does not require any system knowledge,
while the methods of IMS and FM do need system informa-
tion. The information that is required in those algorithms
comprise the (i) shaft rotational speed, (ii) bearing type or
bearing geometry to calculate the bearing fault frequencies at
the given speed and (iii) training data.

The performance of each method highly relies on the avail-
ability of validated training data. The methods of IMS and
LCM need validated training data of both healthy and faulty
bearing scenarios. The method of FM only relies on train-
ing data of healthy bearings. In practice the availability of
training data of faulty bearings is typically scarce and could
therefore make the adoption more complicated. Moreover,
the type of bearing faults that can occur are very diverse, in-
creasing the chances of misclassification in case of bearing
monitoring. Once a fault occurs that is not part of training
data, a proper detection and classification is not guaranteed.

The method of IMS used 7 minutes of training data for each

fault state to train the SOM model. The method of LCM re-
lied on 2 measurements of 20 seconds of each state to select
the features and train the classifiers. The method of FM used
20 measurements of 5 seconds of vibration data at 50 kHz to
determine the detection threshold.

6. CONCLUSION AND GUIDELINES

Three vibration based condition monitoring algorithms for
bearing fault detection have been compared based on their
diagnostic performance, practical applicability (e.g. level of
automation), training and configuration requirements.

Based on the accelerated life time test it is concluded that the
method of IMS and FM, employing bearing specific features,
showed to be more sensitive for early bearing fault detection
than purely statistical features used in the method of LCM. In
contrary, the method of LCM does not require specific system
knowledge and is not limited to bearing condition monitoring
only. The method is more generally and widely applicable to
fault monitoring problems.

The methods of IMS and LCM seem to outperform the method
of FM in the gearbox test, in particular for the smaller faults.
However, the training and testing data used by those meth-
ods were acquired for the same bearing sample and for the
same bearing assembly. This could lead to a high correlation
between the training and testing data and hence a mislead-
ing classification accuracy. Therefore, attention should be
paid to the quality of the training data. It is concluded that
the training data should comprise all relevant system varia-
tions, including for instance remounting of the bearing. Oth-
erwise, the training and testing data can be correlated not only
in terms of bearing faults, but also due to other effects. More-
over, the classification differences between various healthy
and faulty states is in that case not uniquely caused by the
bearing fault, but could also be caused by those other effects.

The methods of IMS and LCM need validated training data
of both healthy and all faulty bearing scenarios, whereas the
method of FM relies on training data of healthy bearings only.
In practice, the type of bearing faults that can occur is very di-
verse and the availability of training data of faulty bearings is
typically scarce and could therefore make the adoption more
complicated.

The findings of the benchmark study presented in this paper
serve as a guideline for the selection of an appropriate method
for bearing fault diagnosis.
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Pros Cons

Method IMS

• Method uses bearing specific features which
showed to be more sensitive to early fault
detection than purely statistical features.

• Allows for multi-class classification.
• Can identify the fault location (e.g. inner

race, outer race).
• Combines a set of features to enhance detec-

tion performance.
• Semi-automated method.

• Requires training data of both healthy and
faulty bearings for all scenarios.

• Requires specific system knowledge (e.g.
bearing geometry, rotational speed).

• Requires significant amount of training data
to train the self-organizing map (SOM).

• Limited to bearing monitoring only.

Method LCM

• Does not require specific system knowledge
(e.g. bearing type, rotational speed).

• Allows for multi-class classification.
• Method is widely applicable to fault detec-

tion problems, not limited to bearing moni-
toring.

• Requires training data of both healthy and
faulty bearings for all scenarios.

• Lack of physical understanding of the se-
lected features.

• Not yet automated, requires to manually se-
lect the feature set.

Method FM

• Method uses bearing specific features which
showed to be more sensitive to early fault
detection than purely statistical features.

• Can identify the fault location (e.g. inner
race, outer race).

• Algorithm is fully automated.
• Requires only healthy data to define the clas-

sification threshold.

• Requires specific system knowledge (e.g.
bearing geometry, rotational speed).

• Limited to binary classification, no fault
severity estimation.

• Limited to bearing monitoring only.

Table 5. A summary of the most important pros and cons observed for each individual bearing faulty diagnostic method.
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