
International Journal of Prognostics and Health Management, ISSN 2153-2648, 2018 021 

  
1 

Verification of Prognostic Algorithms to Predict Remaining Flying 

Time for Electric Unmanned Vehicles 

Edward F. Hogge 1, Brian M. Bole 2, Sixto L. Vazquez 3, Chetan S. Kulkarni4, Thomas H. Strom 5, Boyd L. Hill 6, 

Kyle M. Smalling 7, and Cuong C. Quach 8 

1,5,7National Institute of Aerospace, Hampton, Virginia 23666 

edward.f.hogge@nasa.gov 

thomas.h.strom@nasa.gov 

kyle.m.smalling@nasa.gov 

2ARMUS Corporation, San Mateo, California 94404 

4Stinger Ghaffarian Technologies, Inc., NASA Ames Research Center, Moffett Field, California 94035 

chetan.s.kulkarni@nasa.gov 

3,8NASA Langley Research Center, Hampton, Virginia 23681 

sixto.l.vazquez@nasa.gov 

cuong.c.quach@nasa.gov 

6Analytical Mechanics Associates, Inc., NASA Langley Research Center, Hampton, Virginia 23681 

boyd.l.hill@nasa.gov 

 
ABSTRACT 

This paper addresses the problem of building trust in the 

online prediction of a eUAV’s remaining available flying 

time powered by lithium-ion polymer batteries. A series of 

ground tests are described that make use of an electric 

unmanned aerial vehicle (eUAV) to verify the performance 

of remaining flying time predictions. The algorithm 

verification procedure described is implemented on a fully 

functional vehicle that is restrained to a platform for 

repeated run-to-functional-failure (charge depletion) 

experiments. The vehicle under test is commanded to follow 

a predefined propeller RPM profile in order to create battery 

demand profiles similar to those expected during flight. The 

eUAV is repeatedly operated until the charge stored in 

powertrain batteries falls below a specified limit threshold. 

The time at which the limit threshold on battery charge is 

crossed is then used to measure the accuracy of the 

remaining flying time prediction. In our earlier work battery 

aging was not included. In this work we take into account 

aging of the batteries where the parameters were updated to 

make predictions. Accuracy requirements are considered for 

an alarm that warns operators when remaining flying time is 

estimated to fall below the specified limit threshold. 

1. INTRODUCTION 

Improvements in battery storage capacity have made it 

possible for general aviation vehicle manufacturers to 

consider electrically-powered solutions. The development of 

trust in battery remaining operating time estimates, 

however, is currently a significant obstacle to be overcome 

when considering adoption of electrical propulsion systems 

in aircraft (Patterson, German & Moore, 2012). There are 

several ways in which predicting remaining operating time 

is more complicated for battery-powered vehicles than it is 

for vehicles with a conventionally-powered liquid-fueled 

combustion system. Unlike a liquid-fueled system, where 

the fuel tank’s volume remains unchanged over successive 

refueling procedures, a battery’s charge storage capacity 

will diminish over time. Another complicating feature of a 

battery system is the time-varying relationship between 

battery output power and battery current draw. Whereas a 

conventional liquid combustion system uses an 

approximately constant amount of liquid fuel to produce a 

given motive power, the power from a battery system is 

equal to the product of battery voltage and current. Thus, as 

batteries are discharged, their voltages drop lower, and they 

will lose charge at a faster rate. 

_____________________ 
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There are a number of methods used to model the voltage 

drop of batteries as they are discharged. A survey of the 

theoretical issues using the extended Kalman filter method 

for nonlinear state of charge estimation is found in Wang, 

Fang, Zhou and Wada (2017). For the small electric aircraft 

use case, our previous papers introduced several tools for 

battery discharge prediction onboard. One paper described a 

battery equivalent circuit model to simulate battery state 

(Bole, Teubert, Quach, Hogge, Vazquez & Goebel, 2013). 

The model’s battery capacity, internal resistance and other 

parameters were identified through two laboratory 

experiments that used a programmable load. In the first 

experiment, batteries were slowly discharged at 1/50 C 

constant current to an open circuit voltage of 16V. (1C is the 

current necessary to completely discharge the battery in one 

hour). In the other experiment a repeated pulsed loading was 

done. Current and voltage profiles logged during flights of a 

small electric airplane further tuned the battery model 

(Quach, Bole, Hogge, Vazquez, Daigle, Celaya, Weber & 

Goebel, 2013). The use of a flight plan to define the energy 

required to complete the mission as well as upper and lower 

uncertainty bounds was presented along with an approach to 

identify additional parasitic battery loads (Bole, Daigle & 

Gorospe, 2014). Another paper introduced a verification 

testing procedure that is intended to build trust in 

predictions of remaining flying time prior to actual flight 

testing (Hogge, Bole, Vazquez, Celaya, Strom, Hill, 

Smalling & Quach, 2015). This article is a further 

discussion of the verification testing of remaining flying 

time prior to flight testing. The philosophy behind the 

testing procedure described here is to translate system 

performance and safety goals into requirements for an alarm 

that warns system operators when the estimated remaining 

flying time falls below a certain threshold. Ground testing of 

the actual vehicle provides the closest possible testing 

conditions short of actual flight and captures some of the 

variation that the powertrain hardware and that the pilot 

introduce while avoiding the risks inherent in flight. For 

instance, the batteries may be drained to a lower capacity 

during testing of the remaining flying time prediction 

without danger of vehicle loss. 

A large electric unmanned aerial vehicle (eUAV) was used 

in this study. The eUAV is a 33 percent sub-scale version of 

the Zivko Aeronautics Inc. Edge 540 T tandem seat 

aerobatic aircraft (Fig. 1). This vehicle has been actively 

used by researchers at NASA LaRC to facilitate the rapid 

deployment and evaluation of remaining flying time 

prediction algorithms for electric aircraft since 2010. 

Examples of prior works using this platform are found in the 

following papers: (Saha, Koshimoto, Quach, Hogge, Strom, 

Hill, Vazquez & Goebel, 2011), (Hogge, Quach, Vazquez & 

Hill, 2011), (Daigle, Saxena & Goebel, 2012), and (Bole et 

al., 2013).  

Remaining flying time prediction algorithms focus on the 

prediction of battery charge depletion over a eUAV flight. A 

lower-bound on the battery state of charge (SOC) that is 

considered safe for flight is set at 30 percent in this work. 

Flying the vehicle with batteries below 30 percent SOC is 

considered to be a high-risk mode of operation. Policy and 

guidelines are set according to the rulings and the 

engineering judgment of the NASA Langley UAS 

Operations Office and the NASA Langley Airworthiness 

and Safety Review Board. Such violations of operating 

guidelines are referred to here as a functional failure of the 

vehicle’s assigned mission. The primary use case for 

remaining flying time prediction is to warn system operators 

when landing procedures must be initiated to avoid aircraft 

batteries depleting below a set threshold limit. It was 

determined that initiating landing procedures when the 

eUAV batteries reach 30 percent SOC would provide a 

sufficient energy buffer for at least two “missed approach” 

maneuvers without risk of exceeding the battery current 

limits and any associated excessive heating. This was based 

upon operator’s experience and upon ground tests. The 

predictive element to be tested in this work is an alarm that 

warns system operators when the powertrain batteries are 

two minutes from reaching the 30 percent SOC threshold 

under normal operating conditions. This should allow the 

pilot sufficient time to prepare the eUAV for landing 

without exceeding a moderate work load. 

An equivalent circuit model is used in our work. Equivalent 

circuit models are computationally efficient and are popular 

for engineering applications. Examples include Ceralo 

(2000) and Chen & Rincon-Mora (2008). They have the 

disadvantage of limited accuracy due to approximations to 

battery internal chemical mechanisms, and as a result do not 

account for changes due to aging. An analysis of accuracy 

issues in the battery capacity and internal resistance 

estimation process can be found in Lin & Stefanopoulou 

(2015). The accuracy of the onboard remaining flying time 

estimation algorithms is tested in this work. A series of 

controlled run-to-functional-failure (charge depletion) 

experiments were conducted. The vehicle under test was 

strapped down to a platform and commanded to follow an 

RPM profile that created battery demand profiles similar to 

 

Figure 1. The Edge 540 T Rapid Evaluation eUAV 
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those expected for flight while a ground station operator 

monitored the battery health parameters. 

The time it takes for powertrain batteries to reach 30 percent 

SOC establishes a truth value for the functional failure time. 

Unlike actual flight tests, powertrain batteries can be 

repeatedly run down to their lower-limits in the ground-

based testing described here. 

The defined performance requirements are then verified by 

repeating ground tests a specified number of times. The 

performance requirement testing procedure used here was 

originally introduced in Saxena, Roychoudhury, Lin and 

Goebel (2013). 

Section 2 of this paper provides an overview of the Edge 

540T powertrain. Algorithms used for onboard battery state 

estimation and remaining flying time predictions are 

summarized in Section 3. The process used to verify 

onboard remaining flying time predictions through ground 

testing and experimental results are described in Section 4. 

Finally, concluding remarks are given in Section 5. 

2. OVERVIEW OF EDGE 540T POWERTRAIN 

A wiring diagram for the vehicle powertrain is shown in 

Fig. 2. The aircraft has two 3-phase tandem motors that are 

mechanically coupled to the aircraft propeller. Powertrain 

batteries are arranged in two pairs of series connected 

battery packs. A switchable parasitic load Rp injects a fault 

to test the robustness of the remaining flying time 

estimation algorithms to changes in battery loading demand. 

Remaining flying time predictions are generated by 

propagating a number of estimates of the battery charge 

forward. Forward propagation of the present battery state 

estimate is performed using an estimate of the future 

powertrain demand that will occur over the known flight 

plan. These future loads include propeller loads and 

parasitic loads. The prognostic tools make use of the known 

flight plan to inform future load predictions, but no prior 

information is assumed to be available regarding when a 

parasitic load may be injected. 

3. REMAINING FLYING TIME PREDICTION 

Battery discharge prediction is described here in terms of 

the following components; (i) online battery state 

estimation; (ii) prediction of future battery power demand as 

a function of an aircraft flight plan; (iii) online estimation of 

additional parasitic battery loads; and (iv) prediction of 

battery discharge over the future flight plan. The 

assumptions and algorithms used for each of these steps are 

summarized in this section. 

3.1. Online Battery State Estimation 

Our previous papers (Quach et al., 2013) and (Bole et al., 

2014), described the use of an equivalent circuit model and 

an unscented Kalman filter (UKF) (Julier & Uhlmann, 1997, 

2004) to update battery state estimates based on 

observations of current and voltage at the battery output 

terminals. This approach is also summarized here for 

convenience. An equivalent circuit battery model in Fig. 3 is 

used to represent battery terminal voltage dynamics as a 

function of battery current. It is similar to models presented 

in (Chen & Rincon-Mora, 2006, and Ceralo, 2000). The 

model is based on Thevenin’s theorem to model the current 

and voltage profile of the battery as a black box input-output 

device. A first-approximation assumption is made such that 

the battery state can match a linear electrical network with 

voltage and current sources and only resistances. Thevenin 

states that the black box can be replaced at the input output 

terminals by an equivalent voltage source in series 

connection with an equivalent resistance. To better match 

standard battery phenomenon, such as internal resistance 

voltage drops and hysteresis effects, additional pairs of 

series connected RC parallel circuits are added to the model. 

The Rs, Cs pair are added for the internal resistance drop and 

the Rcp, Ccp pair are added for the concentration polarization 

effect. The correspondence of these RC circuits to actual 

 

Figure 2. Schematic of electric powertrain 

 

Figure 3. Lithium-Ion battery equivalent circuit model 
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battery chemical phenomena is only notional. Models that 

better account for the electrochemical behavior and aging 

effects are being considered for future work. (Daigle and 

Kulkarni, 2013). See section 4.4 for further discussion. In 

the equivalent circuit model, some of the components were 

made to vary according to the bulk charge stored in Cb as 

described in (Zhang and Chow, 2010). The State of Charge 

(SOC) is a battery charge estimate of the bulk charge. The 

battery input-output voltage dynamics will change as a 

function of this bulk charge estimate. Battery SOC is 

defined here as: 

max

max1
C

qq
SOC b



  (1) 

Where qb represents the charge stored in capacitor Cb, qmax 

is the maximum charge that the battery can hold, and Cmax is 

the maximum charge that can be drawn from the battery in 

practice. This battery model contains six electrical 

components that are tuned to recreate the observed current-

voltage dynamics of the Edge-540T battery packs. The 

following SOC parameterizations (Bole et al., 2014) were 

used to model the bulk charge influence on the Cb, Ccp, and 

Rcp circuit elements of Fig. 3: 

3

0

2

123 SOCCSOCCSOCCCC CbCbCbCbb   (2) 

))(exp( 210 SOCCCCC CpCpCpcp    (3) 

))(exp( 210 SOCRRRR CpCpCpcp    (4) 

These parameters (Cmax, Rs, RCp0, RCp1, RCp2, CCp0, CCp1, and 

CCp2) were identified by fitting a pulsed discharge laboratory 

experiment voltage profile shown in Fig. 4 with a Nelder-

Mead downhill simplex method solution search that 

minimizes the error between the modeled and actual voltage 

profile (Nelder & Mead, 1965). 

These identified parameters are associated with a selected 

battery from a batch of batteries of a given chemical 

formulation. These parameters are assumed to be unvaried 

across all similar battery packs of a given batch. Any 

differences in individual batteries due to manufacturing 

variation is accounted for by adaptation of the battery 

charge capacity term Cmax of the Cb capacitor in the 

equivalent circuit model. Cmax is identified by running a 

1/50 C discharge cycle for each battery pack as shown in 

Fig. 5. During this low current discharge cycle, the voltage 

across the Cb capacitor plays a dominant role. Thus, this 

experiment allows the Cmax parameter in the equivalent 

circuit model to be fitted in isolation, also through use of the 

Nelder-Mead simplex method (Bole et al., 2014). According 

to the SOC definition (equation 1) Cmax will always be less 

than qmax, due to electrochemical side-reactions that make 

some portion of a battery’s charge carriers unavailable. 

As the battery ages more of its internal charge will become 

unavailable because of these side reactions. The Cmax 

parameter must be refitted periodically to capture this effect 

(we use 10 recharge cycles between refits). The Cmax and Rs 

parameters obtained were used in a simulation run using the 

current profile from a chamber run. The SOC battery plots 

were examined to see if the SOC estimates remained 

constant while the battery voltage recovered in the recorded 

rest period after the run. If they remained nearly constant, 

they were used. If estimated SOC was seen to rise during 

the rest period, it indicated that Rs was too low and needed 

 

 

Figure 4. Comparison between measured and predicted 

battery voltage over a pulsed current discharge (Bole et al., 

2014) used by permission. 
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Figure 5. Comparison between measured and predicted 

battery voltage over a low current discharge. (Bole et al., 

2014) used by permission. 
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to be increased. Likewise, if SOC was seen to fall, then Rs 

was too high and needed to be decreased. This Rs selection 

was repeated until the SOC estimates remained constant 

after a run. This empirical process was necessary because 

the constant current discharge poorly identified Rs. An 

observability issue that may be the root-cause of this is 

suggested in Lin & Stefanopoulou, 2015. Their analysis 

indicates that the accuracy of the Rs measurement depends 

having a high current for the test condition. The initial 

characterization of a set of batteries at purchase used a 

relative high current spike discharge as shown in Fig. 4 for a 

representative sample. Use of Maccor 4000 battery cycling 

equipment made this high-current measurement easy. At the 

eUAV operations location all the batteries need routine 

refitting after 10 recharges, a logging battery charger which 

has an effective limit of only 4A for the high current logged 

discharge is available. A special bench setup would be a 

way to perform this Rs measurement. 

3.2. Unscented Kalman Filter 

Once all battery parameters are fitted, the UKF is used to 

update model projections of the battery output voltage with 

past measurement data in a tracking mode. The UKF takes 

in the measured battery current and voltage, and gives 

probability distributions for the charge states of each of the 

three capacitors in the equivalent circuit model as 

components of a state vector. 

The UKF is a tool for computing probabilistic belief in 

system state estimates based on stochastic models of the 

system’s dynamics. The UKF assumes a general nonlinear 

form of the state and output equations, and efficiently 

propagates model and state uncertainties. The UKF employs 

an unscented transform (UT) using a minimal set of 

weighted samples, called sigma points, whose mean and 

covariance are preserved once transformed by the unscented 

transform and the nonlinear battery model function (Julier & 

Uhlmann, 1997, 2004). The UKF takes battery power 

demand (current) as a controlling input to the system, and 

the measured battery voltage from the previous time step. 

The UKF gives a probability distribution for charge state 

variables and the future voltage state output distribution. 

The SOC distribution can be directly derived from this. The 

number of sigma points required is minimal as compared to 

particle filters that require an order of magnitude more 

random variable sampling. The future system state must be 

simulated until a given cut-off threshold is reached for each 

sampled particle. (Daigle et al., 2012). Readers interested in 

the application of UKF to the estimation of battery SOC are 

referred to our previous papers (Bole et al., 2013; Daigle et 

al., 2012) and the references therein. The Bayesian use of 

actual past system behavior makes the model-based filtering 

approaches such as UKF much less susceptible to 

initialization and measurement errors than the coulomb 

counting method currently used in many battery monitoring 

systems (Dai et al., 2006). 

3.3. Prediction of Motor Power Demand as a Function of 

Aircraft Flight Plan 

After estimating battery state, the next step towards 

predicting remaining flying time is the estimation of motor 

power demand over the remainder of a given flight plan. 

The aircraft’s flight plan is assumed here to be specified in 

advance in terms of fixed airspeed segments. Each segment 

includes a desired vehicle airspeed along with an expected 

duration or other ending condition. An example flight plan 

is defined here as: 

1. Takeoff and climb to 200 m: 

Set airspeed to 25 m/s, hold for 1.0 min 

2. Maintain altitude, airspeed: 

Set airspeed to 23 m/s, hold for 3.0 min 

3. Maintain altitude, increase airspeed: 

Set airspeed to 25 m/s, hold for 2.0 min 

4. Maintain altitude, decrease airspeed: 

Set airspeed to 20 m/s, hold for 2.0 min 

5. Maintain altitude, increase airspeed: 

Set airspeed to 23 m/s, hold until landing is called by 

monitors on the ground. 

6. Remote control landing: airspeed and duration may 

vary widely depending on pilot behavior and 

environmental conditions. 

The energy required for an aircraft to fly the remainder of a 

given flight plan will necessarily be uncertain due to random 

variation in pilot behavior and environmental conditions. 

Data from previous flights of a similar vehicle was used to 

estimate the mean motor power (current) required for the 

flight plan. A plus or minus 30 percent variation about this 

mean value seemed to contain most of the flight plan 

maneuver power variation (Bole et al., 2014). 

The motor power demand is estimated for each flight plan 

segment using a previously developed reduced order 

powertrain and aerodynamic drag model, discussed in Bole 

et al. (2013) and in Bole et al. (2014). The motor power 

demand was assumed to be distributed uniformly between 

30 percent variation limits. Future motor power (current 

demand) can be described by a parameterized family of 

functions based upon the future flight plan, drawn from the 

uniform distribution about the mean power value. The 

equivalent circuit model, the powertrain and aerodynamic 

drag model, and UKF are used to simulate the flight plan 

demand for each input function into the future until an 

assumed SOC cut-off threshold is reached (Daigle et al., 

2012). As an alternative to exhaustive sampling or random 

sampling, the UT can also be used to sample the input 

power distribution random variable u ∈ ℝ𝑛𝑢 that has mean 

of u̅ and covariance Puu. If the UT is used to sample the 

input power demand trajectories, the sigma points computed 

happen to coincide with the input power distribution’s 
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maximum and minimum bounds and its mean value. Since 

the most likely value of remaining flying time and its 

bounds are of primary interest for this application, this is a 

significant saving in computation. The UT uses a minimal 

set of weighted samples, sigma points Ui whose mean and 

covariance are preserved once transformed. Daigle et al., 

2012, states that there is no guidance for choosing a value 

for the sigma point free parameter κ when the distribution is 

uniform. The κ for a Gaussian distribution was used for this 

one-dimensional input space of parameterized flight plan 

power train input functions ℝ𝑛𝑢  which is a κ of 2. The 

symmetric unscented transform method is used in our case 

(Daigle & Goebel, 2010), (Julier & Uhlmann, 2004). In the 

symmetric unscented transform, the 2nu + 1 sigma points are 

selected about the mean in the following way: 

𝑤𝑖=

{
 

 
κ

nu +κ
 ,             i = 0             

     

  
κ

2(nu +κ)
,            i = 1, …,2nu      

                     (5)  

 

 𝑼𝒊 =

{
 
 

 
 

u̅ ,                                         𝑖 =  0                    

u̅ + (√(𝑛𝑢  + κ)𝐏𝒖𝒖  )
𝑖

,   𝑖 =   1, … ,  𝑛𝑢      

  u̅ − (√(𝑛𝑢  + κ)𝐏𝒖𝒖  )
𝑖

,   𝑖 = 𝑛 + 1,… ,2𝑛𝑢  

    (6) 

Where (√(𝑛𝑢  + κ)𝐏𝒖𝒖  )
𝑖
 refers to the ith column of the 

matrix square root of (nu + κ) Puu. In addition, Daigle et al. 

2012 states in the equivalent circuit battery model case 

study considered, the model was more sensitive to changes 

in the input than to changes in the process noise, concluding 

that the process noise could be assumed to be zero without 

significant effect. This method was used to generate the 

minimum, maximum, and mean power demand predictions 

shown in Fig. 6. These three power estimates can then be 

integrated to form predictions of the minimum, maximum, 

and mean motor energy consumption over the remaining 

flight plan. Figure 6 shows sample predictions of future 

motor power and energy demand over segments 1-5 of the 

given flight plan. Here, segment 5 of the flight plan is 

shown to extend out indefinitely (20 min.), representing the 

intent to continue flying until the ground team calls for a 

landing. 

 

Figure 6. Uncertain predictions of motor power and energy draw over the sample flight plan 
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The minimum battery SOC required to safely land the 

aircraft with adequate reserve energy remaining is 

considered to limit the aircraft’s maximum safe flying time. 

Prediction of available flying time remaining can thus be 

considered as the time until the battery SOC reaches 30 

percent, assuming that a landing will not be called until the 

last possible moment. A triplet of minimum, maximum, and 

median remaining flying time estimates will ultimately be 

produced by estimating when the battery SOC threshold 

would be reached for each of the minimum, maximum, and 

mean motor power profiles. 

3.4. Online Estimation of Additional Parasitic Battery 

Loads 

Parasitic demands on the battery system that cannot be 

known in advance are simulated with a resistive load that 

may be injected in parallel with the aircraft batteries at any 

time during flight. Let Rp be the unknown parasitic load. 

The parasitic current, ip, is the difference in the current i 

measured at the battery and the current im measured at the 

motor controller. The locations of the battery current sensors 

iB1 and iB2 for battery current i and the motor current sensors 

iM1 and iM2 for motor current im are found in Fig. 2. A 

residual, defined as the difference between an observed 

signal and its model-predicted value, can be defined for the 

parasitic fault detection based on the measured values of i 

and im. In the nominal case, our model for i is i = im. We can 

then define a residual, ri, as 𝑟𝑖 = 𝑖
∗ − 𝑖𝑚

∗ , where the 

∗superscript indicates a measured value. Nominally, ri = 0, 

and we can define a simple threshold-based fault detector 

that triggers when ri = 0 for some threshold T. Once a fault 

is detected, we can estimate the parasitic current at time k 

using 

𝑖�̂�(𝑘) = 𝑖
∗(𝑘) − 𝑖𝑚

∗ (𝑘).   (7) 

The parasitic resistance can then be estimated with Ohm’s 

Law 

𝑅�̂�(𝑘) =
𝑉𝑏
∗(𝑘)

𝑖�̂�
.     (8) 

The estimate 𝑅�̂�(k) will be noisy, since it is computed based 

on measured values. Assuming that Rp is constant, we take 

the median of all computed values to provide a robust 

estimate of Rp, i.e. 

𝑅𝑝(𝑘) = median({𝑅�̂�(𝑘𝑗) : 𝑘𝑑 ≥ 𝑘𝑗 ≥ k }) ,   (9) 

where 𝑘𝑑 is the time of fault detection (and the time that 

fault identification begins). This online filtering routine is 

described further in Bole et al. (2014). 

A battery current profile and parasitic load estimates from a 

sample aircraft data set is shown in Fig. 7. Here, a 5.5 Ω 

parasitic load is injected in parallel with the aircraft batteries 

at 5 minutes into the run. The time at which the parasitic 

load is injected is shown with a dashed line on the third 

column of plots in Fig. 8. At the time the load is injected, 

the battery current is seen to become notably higher than the 

motor current. The estimated parasitic load is then seen to 

rapidly converge to approximately 5.5 Ω. Online parasitic 

load estimates are directly incorporated into battery 

discharge predictions. This results in an immediate shift in 

battery discharge predictions each time the parasitic load 

estimate is updated. This immediate shift in discharge 

predictions is demonstrated in the following subsection. 

3.5. Prediction of Battery Discharge Over a Flight Plan 

Figure 8 shows plots of measured and predicted battery 

current, voltage, and SOC at three sample times over the 

battery discharge run. The minimum, median, and 

maximum predictions are plotted from each sample time 

until the predicted SOC reaches 30 percent. The predictions 

made at the first two sample times occur prior to injection of 

the parasitic load. These predictions are seen to over-

estimate the future battery current loads, resulting in under-

estimation of future battery voltage and SOC. The parasitic 

load has been detected by the third sample time, and the 

predictions at that time are seen to increase the degree of 

over-estimation of current demand which the model uses to 

underestimate the battery voltage, and SOC. 

Figure 9 shows predictions of remaining flying time for the 

example run shown in Fig. 8. The solid line in Fig. 9 

indicates the true flying time remaining from ground truth 

done after the run. The dashed line in Fig. 9 represents the 

median remaining time prediction. A median rather than 

mean is used to estimate the remaining flying time in order 

to be consistent with assessment when there is an ensemble 

of many simulated estimates. When distributions containing 

outliers are used, the median is a more robust predictor than 

the mean (Hoaglin, Mosteller and Tukey, 1983). The 

Figure 7. Sample motor and battery current profiles (top), 

along with parasitic load estimates (bottom) 
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vertical solid bars occur at each calculation of the remaining 

flying time. They represent the spread of the predictions 

given the maximum, minimum and mean power future 

flight plan demand inputs. These map to the maximum, 

minimum and median remaining time prediction. The true 

flying time remaining is found by subtracting the current 

time from the time at which the lowest battery SOC crossed 

30 percent. The predictions are seen to underestimate 

remaining flying time until the parasitic load is detected at 

about 5 minutes into the run. After the parasitic load is 

detected the remaining flying time predictions are 

immediately shifted down increasing the degree of 

underestimation. The α+ and α- accuracy cone bounds are for 

many applications specified symmetrically about the ground 

truth value. However, in our case, the bounds are biased to 

be well on the low side because of the hazard present in 

overestimating the remaining flying time. The α-λ metric is 

from (Saxena, Celaya, Saha, Saha, and Goebel, 2010). 

4. GROUND TEST VERIFICATION OF REMAINING FLYING 

TIME PREDICTION 

The ground-based verification testing of the Edge 540 T 

hardware and software was performed by strapping the 

vehicle down in the LaRC Electromagnetics and Sensors 

Branch High Intensity Radiated Fields (HIRF) test chamber. 

More information about the HIRF Chamber can be found in 

a report of an earlier UAS radio frequency emissions test in 

(Ely, Koppen, Nguyen, Dudley, Szatkowski, Quach, 

Vazquez, Mielnik, Hogge, Hill & Strom, 2011). The 

 

Figure 9. Predicted remaining flying time 

 

Figure 8. Example plot of measured and predicted battery current (top) and voltage (bottom) shown at three sample times 

over a trial battery discharge run  
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airplane was placed upon expanded-polystyrene blocks 

centered within the chamber, as seen in Fig. 10. The aircraft 

powertrain with propeller was operated with the vehicle 

anchored using a steel cable to the chamber wall. Its motor 

and actuators were operated from another room using the 

same remote control radio that would be used in subsequent 

flight tests. 

Measured aircraft states, battery SOC estimates, and 

remaining flying time estimates were transmitted to a 

ground station over a wireless downlink. The ground station 

also had an uplink interface that enables the aircraft’s 

autopilot to autonomously follow a given flight plan in 

chamber testing. This autopilot hardware-in-the-loop 

interfacing capability is discussed in (Bole et. al., 2013). 

Only manual control of the throttle was used for the test 

results described in this paper. Aircraft propeller RPM, 

estimated battery SOC, and predicted remaining flying time 

were displayed on the ground station for the system 

operators in near real-time. The motor throttle was 

commanded using the control radio by a manual operator, 

who read the RPM display from the ground station. The 

operator adjusted the remote control throttle to maintain the 

target values for the time duration as determined by the 

flight plan described in Section 3.3.  The test proceeded 

until a 28 percent SOC condition was indicated on the 

ground station display for the lowest battery. The throttle 

was set to zero, stopping the battery current draw. The 

motor batteries were allowed to rest for approximately one 

hour. The battery terminal voltages at rest were used to 

compute an empirical approximation of battery SOC at the 

end of the experimental run. Onboard data logging during 

the experiment runs was performed by the data system 

described in (Hogge, 2011).  

4.1. Test experience and lessons learned. 

During analysis of the test results it was noticed that the 

chamber runs had been run at too low an equivalent energy 

to match flight. When the RPM was increased to match the 

electrical power drawn during past flight maneuvers, motor 

heating became an issue. Our model aircraft subject matter 

expert (SME) indicated that the motor was overheating 

because the static test air flow is not representative of that of 

flight. The propeller-induced air flow was not enough to 

keep the area near the motor cool. Temperature monitoring 

was done to verify that motor winding temperature limits 

were not exceeded. This is a limitation of this technique. 

The motor, the electronic speed controller (ESC), and the 

batteries all can be damaged by this overheating during 

static testing. Use of a temperature monitor was found to be 

important to prevent this type of damage. 

Discrepancies were noticed in the SOC and remaining 

flying time estimation between the offline, object-oriented, 

battery model simulation code and the online, data-flow, 

real-time, operating system code. Suspected implementation 

errors were sought when there was a disagreement. A search 

for coding discrepancies revealed the following: 

 

Figure 10. Ground test chamber setup for active motor simulated flight 
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 The simulation input current value differed by one 

iteration step that was driving the UKF filter sigma 

point logic. 

 The simulation input current value differed by one 

iteration step that was driving the battery state space 

model output logic. 

 The temperature model code was planned for future 

work and not intended for use with the actual battery 

temperatures encountered because the equivalent circuit 

model parameters had been fitted only at a constant 30 

degrees C in the laboratory. 

Once the online and offline code matched these conditions, 

the online SOC matched the offline SOC check case value 

instead of being one-third more conservative. 

4.2. Performance Requirements 

The specification of performance requirements for ground 

verification of remaining flying time predictions is 

described next. The predictive element to be tested in this 

work is an alarm that warns system operators when the 

powertrain batteries are two minutes from reaching 30 

percent SOC under normal operations. These requirements 

were drawn from a case study of a eUAV with battery 

operated propulsion (Saxena, Roychoudhury, Celaya, Saha, 

Saha, & Goebel, 2012). The highest level goal was stated 

“…complete a specified research mission by a given 

milestone deadline in a cost effective and safe manner.” The 

performance goals derived from that were translated into 

functional requirements to ensure that adequate battery 

power remains until the aircraft lands safely. The 

requirements were further deconstructed to suggest specific 

requirements for a prognostic algorithm. The decision lead 

time λ was specified based upon consultation with the 

operators to give what would be an adequate lead time for a 

decision and action to be taken to not put the eUAV to risk. 

The target λ was set at two minutes. The λ metric is related 

to the prediction horizon (PH) which is the time when the 

algorithm’s performance converges to within desired 

specifications. Accuracy requirements for the two-minute 

warning were specified as in Saxena et al., 2012, with a 

number of extensions added derived from the flight testing 

rules, operational experience, and the NASA Langley UAS 

Operations Office: 

1. The prognostic algorithm shall raise an alarm no later 

than two minutes before the lowest battery SOC 

estimate falls below 30 percent for at least 90 percent 

of verification trial runs. 

2. The prognostic algorithm shall raise an alarm no 

earlier than three minutes before the lowest battery 

SOC estimate falls below 30 percent for at least 90 

percent of verification trial runs. 

3. Verification trial statistics shall be computed using at 

least 20 experimental runs.  

4. At the end of the two-minute warning period the pilot 

shall have an option of doing two go arounds before the 

aircraft must land. 

5. After the two-minute warning the pilot is advised not to 

increase altitude significantly. 

6. The ending SOC estimation error as identified from the 

resting battery voltage shall be less than five percent 

for at least 90 percent of verification trial runs. 

To meet requirement one, “raise an alarm no later than two 

minutes”, the algorithm is tuned to raise the two-minute 

alarm early rather than late since landing becomes unsafe if 

not enough charge reserve is present. This is shown in Fig. 9 

where the ±α accuracy cone is below the actual time 

remaining and biases the estimated remaining flying time to 

be shorter than the actual remaining flying time. 

Requirement two, “raise an alarm no earlier than three 

minutes”, limits the “opportunity cost” of unnecessarily 

denied flying time (Saxena et al., 2012). This is to utilize the 

flying time resource to the utmost possible. The additional 

number of shorter flights come with an increased vehicle 

loss risk from the elevated hazard from the additional 

takeoffs and landings performed. Requirement three, 

“statistics shall be computed using at least 20 experimental 

runs”, is an attempt to define a target number of 

experimental trials needed to give a desired confidence 

limit. There is always a cost trade-off between the increased 

number of trials required for high confidence and the 

acceptance of risk from low confidence predictions resulting 

from fewer trials. Requirement four, “pilot shall have an 

option of doing two go arounds”, is an energy reserve safety 

requirement to allow two landing attempts before battery 

exhaustion. It was initially based upon operators’ experience 

and engineering judgment. A landing overrun incident 

required ground-test verification of the energy reserve 

required to accomplish two repeated landing attempts. This 

confirmed the already established 30 percent SOC time-to-

land threshold. Requirement five, “pilot is advised not to 

increase altitude significantly”, grew out of variability in 

maneuvers chosen by the pilot just before the time of 

landing, and is a constraint on unplanned maneuvers close 

to the 30 percent SOC minimum energy threshold. When 

the battery is close to the 30 percent SOC, it is operating in 

the non-linear region, thus the SOC falls at a faster rate. The 

linear assumptions behind the aircraft’s powertrain and 

aerodynamics model (Bole et al., 2013) are also at odds with 

this non-linear behavior. Requirement six, “SOC estimation 

error… shall be less than five percent for…90 percent 

trials” is an accuracy goal for the method of estimating the 

SOC. There is a stable, empirical, relationship between 

resting battery voltage and SOC that can then be used to 

compute the ending SOC error between the resting SOC and 

that estimated by the prognostic algorithm at the end of the 

flight. 
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4.3. Initial experimental results and corrected results 

Figure 11 is a cumulative plot of 26 verification test 

chamber runs that shows the difference between the times at 

which the two minutes remaining alarm was raised and the 

time at which the lowest battery SOC estimate crossed the 

30 percent threshold. The remaining flying time can be 

thought of as the Remaining Useful Life (RUL) for the 

specific flying cycle. This becomes zero by definition when 

the lowest battery SOC estimate is below 30 percent. The 

RUL is plotted on the horizontal axis. Note that the positive 

scale increases right-to-left, the reverse of normal 

convention. Vertical dashed lines mark this axis and denote 

the two-minute and three-minute alarm time limit criteria.  

The criteria stated in section 4.2 are the design requirements 

indicating the acceptable range that the two-minute alarm is 

early or late. The vertical axis measures the run sequence 

number. This number happens to increase with calendar 

time when the run was performed. There was a one-year 

hiatus between the first 26 runs and the runs after 26 

appearing on later plots and is denoted by the horizontal 

solid line with the year 2014 on the lower side for the initial 

runs and 2015 on the upper side for the later runs.  Runs that 

were performed with and without parasitic load injection are 

identified by triangle and circle symbols respectively. In 

Fig. 11, one verification run out of the 26 is seen to violate 

the two-minute warning requirement late prediction limit. 

This was originally reported in Hogge et al. (2015). It was 

later discovered that there was a problem with the method 

used to characterize the battery capacity parameters that 

caused the algorithm to bias the estimate of the remaining 

flying time of Fig. 11. Figure 12 is the same plot made using 

corrected battery capacity values. The incorrect capacity 

came from a fit to the voltage profile using the high current 

chamber run data instead of from a fit using a laboratory 

low current discharge (2A) battery characterization cycle. 

Violation of the assumed condition of chemical equilibrium 

made it impossible to identify the capacity parameter 

accurately with this method. This was corrected through use 

of the low current discharge capacity values. In practice 

there were additional aging effects that were not captured 

accurately because the laboratory 2A slow discharge 

experiment was not the best method to identify them. A trial 

and error process based upon logging the battery voltage 

after the run was used to work around this limitation as 

discussed in section 3.1. 

The two-minute alarm algorithm tuning was made more 

conservative by using a coefficient of 1.09 to increase the 

velocity input to the drag model. This was based on 

preliminary flight experience to compensate for wind gusts 

and pilot variation in the trim of the aircraft that led to late 

biases in the estimated remaining flying time. In addition, 

not all flights were performed under the same weather 

conditions. When a coefficient of 1.0 was used to adjust the 

velocity input to the drag model, the pilot’s increased use of 

speed during gusty winds and the pilot’s difficulty in 

trimming the eUAV for optimum flight led draws higher 

current leading to faster charge depletion resulting in unsafe 

operational limits. The resulting late alarm predictions 

violated the safety criteria set by the operators. Uncertainty 

in those is not incorporated. 

4.4. Battery parameter deterioration with age 

Evidence of deterioration in the results is seen in Fig. 13 

after a one-year gap in test runs. Ten additional ground test 

runs were added to Fig. 12 plot. The increase seen in the 

dispersion of the remaining useful life estimate for the 2015 

series of runs has some runs failing early and some runs 

failing late. Another issue discovered was that the battery 

 

Figure 11. Original plot of two-minute alarms for 26 

runs done in 2014.  

 

Figure 12. Two-minute alarms for 26 runs using 

corrected battery capacity parameters. 
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aging had changed the capacity parameters significantly, but 

the year-old characterization runs had overestimated the 

battery capacity Cmax used in the later runs (2015). This 

deficiency was mitigated through use of revised battery 

capacities (June 2015) to recalculate the data (Fig. 14). Even 

though the improvements were made to the capacity 

parameter estimates, the number of runs that exceeded the 

two-minute alarm bound has an increasing trend. The 

increased failures in the later runs may be due to the 

batteries approaching the end of their service life as stated 

by the manufacturer as being a 20 percent reduction in their 

initial capacity (Thunder Power RC, 2013). The batteries 

were approaching this value during the 2015 ground tests. 

This issue resulted in an additional operational requirement 

to repeat the bench capacity characterization after 10 

recharge cycles to update the Cmax parameter for each 

battery. The equivalent circuit models are not able to track 

any battery degradation unless the battery parameters are 

updated. This is one of the main drawbacks of the model 

where it cannot track aging efficiently. A slow discharge 

(2A) characterization experiment (Fig. 5) was attempted 

after 10 recharge cycles using our logging battery chargers. 

However, this process poorly identified Rs. Analysis by Lin 

& Stefanopoulou, 2015 indicates that the accuracy of the Rs 

measurement depends having a high current for the test 

condition as was done at initial purchase for one of the 

family of batteries (Fig. 4). This additional experiment may 

be necessary for all batteries to keep the model accurate. 

Additionally, other methods that use more detailed models 

of the electrochemical processes or can use dynamic in-use 

demand profiles could be developed and implemented 

(Daigle & Kulkarni, 2013). 

With updated battery parameters subject to the limitations 

mentioned above, there are fewer runs that fail by predicting 

the two-minute alarm late as seen in Fig. 14. Only one (run 

35) fails by predicting the alarm late. 13 verification runs 

out of the 36 performed are seen to violate requirement 

two’s “…raise an alarm no earlier than three minutes…” 

accuracy bound. The bulk of the predictions fail by 

predicting the two-minute alarm slightly over one minute 

early. The last eight runs have the poorest performance. This 

could be due to the battery parameters not being identified 

by the 2A slow discharge experiment, or it could be due to 

underlying divergence of the battery cell’s properties from 

aging. Consequently, the requirement that 90 percent of 

trials pass this benchmark is seen not to be satisfied because 

of the excessively early predictions, but this is better than 

failing late. Also there is increasing deviation from the mean 

trend indicating that there may be a systemic problem with 

the tracking of the battery internal state. This problem can 

be narrowed down to be age-related since the runs failing 

the two-minute to three-minute acceptance limits increase 

markedly after the 2014 runs, and the algorithm is very 

conservative. 

4.5. SOC estimation error results 

Now, let’s examine the SOC estimation error that underlies 

the two-minute alarm plots. The SOC error estimation of the 

first 26 runs performed during the 2014 test series and 

previously reported uncorrected in (Hogge et al., 2015) is 

shown in Fig. 15 with corrections made to the battery 

capacity and SOC. The 2014 portion of this data set 

correspond to the two-minute alarm plot of Fig. 12. When 

the battery SOC errors from the ten additional runs made in 

2015 are added, not much change is seen. Figure 16 shows 

box plots from the 2014 and 2015 combined data set. A total 

of 36 verification runs were performed if both years are 

included. Both plots use the empirical process “…Rs 

selection was repeated until the SOC estimates remained 

 

Figure 14. Two-minute alarms for additional runs done a 

year later using revised battery capacity parameters.  

 

Figure 13. Two-minute alarms for additional runs done a 

year later using out-of-date battery capacity parameters.  
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constant after a run…“, which was described at the end of 

section 3.1. The Rs parameter was corrected through this 

process which then corrected the SOC error. 

Because each verification run requires four powertrain 

batteries, 144 measurements of SOC estimation error are 

produced. The overall aspect of the errors are consistent. 

Only four of these measurements fall outside of the five 

percent error tolerance specified. Requirement six that 90 

percent of trials pass this benchmark is thus seen to be 

satisfied. More measurements were outside the five percent 

error tolerance before this correction was implemented. 

5. CONCLUSION 

A procedure for verifying the performance of remaining 

flying time predictions for a small electric aircraft was 

demonstrated. Aircraft battery packs reaching 30 percent 

SOC in flight was defined as a high risk operation for our 

experimental flying vehicle, to be avoided if possible. 

Ground-based simulated flight testing was shown to enable 

a safe means of running the aircraft power train to 30 

percent SOC in order to obtain an empirical measurement of 

the aircraft’s available safe operating time if motor 

temperature is monitored. Battery parameter identification 

from use and aging remains a problem to be solved for 

verifiably safe operations. 
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