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ABSTRACT 

Turbomachinery often suffers various defects such as 

impeller cracking, resulting in forced outage, increased 

maintenance costs, and reduced productivity. Condition 

monitoring and damage prognostics has been widely used as 

an increasingly important and powerful tool to improve the 

system availability, reliability, performance, and 

maintainability, but still very challenging due to multiple 

sources of data uncertainties and the complexity of analytics 

modeling. This paper presents an intelligent probabilistic 

methodology for anomaly prediction of high-fidelity 

turbomachine, considering multiple data imperfections and 

multivariate correlation. The proposed method adeptly 

integrates several advanced state-of-the-art signal processing 

and artificial intelligence techniques: wavelet multi-

resolution decomposition, Bayesian hypothesis testing, 

probabilistic principal component analysis, and fuzzy 

stochastic neural network modeling. The advanced signal 

processing is employed to reduce dimensionality and to 

address multivariate correlation and data uncertainty for 

damage prediction. Instead of conventionally using raw time 

series data, principal components are utilized in the 

establishment of stochastic neural network model and 

anomaly prediction. Bayesian interval hypothesis testing 

metric is then presented to quantitatively compare the 

predicted and measured data for model validation and 

anomaly evaluation, thus providing a confidence indicator to 

judge the model quality and evaluate the equipment status. 

Bayesian method is developed in this study for denoising the 

raw data with multiresolution wavelet decomposition, 

quantifying the model accuracy, and assessing the equipment 

status. The dynamic stochastic neural network model is 

established via the nonlinear autoregressive moving average 

with exogenous inputs approach. It seamlessly integrates the 

fuzzy clustering and independent Bernoulli random function 

into radial basis function neural network. A natural gradient 

method based on Kullback-Leibler distance criterion is 

employed to maximize the log-likelihood loss function. The 

effectiveness of the proposed methodology and procedure is 

demonstrated with the 11-variable time series data and the 

forced outage event of a real-world centrifugal compressor. 

1. INTRODUCTION 

High-fidelity turbomachinery like centrifugal compressors 

and turbines often suffers various defects such as impeller 

cracking, resulting in forced outage or breakdown of the total 

plant, increased maintenance costs, and reduced productivity. 

The research conducted by Li, Zhang and Xu (2013), for 

instance, indicates that about 65% of issues in a centrifugal 

compressor are related to impellers or blades, and among 

them 40% related to blades have not been well understood 

due to complicated loading conditions. The replacement of 

cracked blade in a centrifugal compressor may cost the plant 

up to $500,000 a day. Real-time condition monitoring of a 

mechanical system, along with anomaly diagnostics and 

damage prognostics, aims to monitor whether the system is 

being appropriately operated and maintained to yield optimal 

performance and maximal reliability. It proactively detects 

potential failure mode by triggering an alarm to avoid 

unplanned outages of the system, identifies root cause for the 

detected anomaly, and further provides actionable 

recommendations to advise the optimal operation or 

predictive maintenance of the plant. Condition monitoring 

and damage prognostics has therefore become an 

increasingly important tool to improve the system 

availability, reliability, performance, and maintainability, 

thus facilitating customers to increase operating revenues, 

reduce fuel costs, ensure safe and secure work environment, 

and enhance customer dispatch competitiveness. It usually 

involves automatically assessing the condition of a system 

and its components and predicting their remaining use time 

under current conditions through applying advanced signal 
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processing techniques and analytical algorithms on 

multivariate historical data. Analytics has attracted 

increasing attention in condition monitoring of 

turbomachinery to increase the efficiency of a plant, diagnose 

the root causes of faults in equipment, and enable a fleet-wide 

optimization of asset performance. Condition monitoring and 

damage prognostics of such a turbomachinery system, 

however, involve multiple sources of data uncertainties and 

complexity of modeling, making the problem very 

challenging.  

The key to success of predictive monitoring includes two 

factors: reliable predictive model and quantitative alarming 

analytics. The predictive model needs to be established and 

trained from a set of historical operation data without any 

assumed anomaly, with the purpose of representing the 

system behavior under normal operation condition. The 

established model is next used to predict the system response 

under unknown conditions. The predicted response is 

compared with the sensed system response. A decision logic 

is then developed to judge the status of the system under the 

operation and trigger an alarm if the indicator representing 

the system status exceeds the predefined threshold. This 

paper attempts to develop an intelligent probabilistic 

modeling methodology for automatic damage prediction and 

anomaly alarming of turbomachinery, based on the adept 

integration of advanced signal processing, pattern 

recognition, intelligent algorithms, and probabilistic 

decision-making methods. 

Over the past decade numerous researchers have developed 

conventional data analysis methods (e.g., Baydar, Chen, Ball 

& Kruger, 2001; Eftekharnejad, Carrasco, Charnley & Mba, 

2011; Galka & Tabaszewski, 2011; McFadden & Toozhy, 

2000; Wang, Chen, Wu & Wu, 2001), signal processing 

techniques (e.g., Al-Badour, Sunar, Cheded, 2011; Liu, Guo, 

Wang, An, Guo & Lian, 2010;  Rai & Mohanty, 2007) and 

artificial intelligence (AI) algorithms (e.g., Chen, Taniguchi, 

Toyota & He, 2005;  Samanta & Al-Balushi, 2003; Wang, 

Golnaraghi & Ismail, 2004) for condition monitoring of 

turbomachine. For instance, Baydar et al. (2001) applied the 

Hilbert–Huang Transform technique to analyze the vibration 

signal through intrinsic mode functions obtained from the 

empirical mode decomposition. The fast Fourier transform 

(FFT) technique is then applied on the intrinsic mode 

functions for bearing fault diagnosis.  

Artificial intelligence-based methods have recently become 

increasingly popular in the damage diagnostics of rotating 

machinery. For example, Chen et al. (2005) combined the 

instantaneous power spectrum and genetic programming for 

fault diagnostics of plant machinery. Samanta and Al-Balushi 

(2003) presented the two-layer backpropagation-based 

artificial neural network for fault diagnosis of rolling element 

bearings. Wang et al. (2004) evaluated the recurrent neural 

networks and neuro-fuzzy approach for fault prognostics of 

rotating machinery. The neuro-fuzzy method was then 

adopted to develop an online machine fault prognostic 

system. Recently, Edwards, Lee and Friswell (1998) 

provided a comprehensive literature review of the state of the 

art on the fault diagnosis of rotating machine mainly from the 

failure mechanism perspectives. It is recommended that more 

research on online condition monitoring of rotating machine 

is needed with emphasis on the data-driven expert system and 

neural network methods. Jardine, Lin and Banjevic (2006) 

provided another comprehensive literature review on various 

methods for machinery diagnostics prior to 2006, while most 

recently Lee, Wu, Zhao, Ghaffari, Liao and Siegel (2014) 

presented a state-of-the-art review on prognostics and health 

management for rotary machine. Both have emphasized that 

the signal processing techniques play a key role on the 

diagnostics and prognostics of a rotary machine.  

These methods reviewed in the above-referenced literature 

have not fully addressed several important issues in the 

damage prognostics of large turbomachinery: 1) imperfection 

of the experimental data or field measurements, 2) impact of 

multivariate correlation on the damage prognostics, 3) 

nonlinear and stochastic behavior of rotating machine, 4) 

quantitative assessment of predictive models and 5) damage 

degree of the structural system under investigation. To the 

best knowledge of the authors, no other research has yet been 

reported on developing the stochastic intelligent model for 

damage prediction of turbomachinery under uncertainty, 

particularly addressing all the five challenges mentioned 

above. These challenges will be addressed through the 

intelligent probabilistic methodology presented in this study. 

In the past decades, various data driven nonparametric 

methods have been widely pursued in health monitoring and 

damage detection of structural systems (e.g., Adeli & Jiang, 

2006; Ghanem & Shinozuka, 1995; Hung, Huang, Wen & 

Hsu, 2003; Jiang & Adeli, 2005;  Jiang, Mahadevan & Adeli, 

2007; Lei, Jiang & Xu, 2012; Masri, Nakamura, Chassiakos 

& Caughey, 1996; Masri, Smyth, Chassiakos, Caughey & 

Hunter, 2000; Nakamura1, Masri, Chassiakos & Caughey, 

1998; Wu, Xu & Yokoyama, 2002). Ghanem and Shinozuka 

(1995) comprehensively presented the system identification 

theory and guidelines for various engineering applications. 

After then a number of authors (Adeli & Jiang, 2006; Hung 

et al., 2003; Jiang & Adeli, 2005; Masri et al. 1996; Masri et 

al. 2000; Nakamura1 et al. 1998; Wu et al. 2002) developed 

various neural networks based artificial intelligence method 

for system identification and damage detection.  Jiang et al. 

(2007) integrated the Bayesian theory with wavelet packet 

transform method for data denoising in structural system 

identification. Lei et al. (2012) applied an extended Kalman 

method for system identification using limited input and 

output measurement data. Unlike parametric methods, the 

identification model in the nonparametric approach does not 

represent any physical quantity directly, instead it is trained 

to approximate the physical structure and predict its response. 

In addition, the nonlinear autoregressive moving average 

with exogenous inputs (NARMAX) approach (Chatfield, 
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2004) is commonly used in the nonparametric methods for 

mapping the input-output relationship. The approach has 

flexibility in effectively representing system nonlinearity and 

has proven to be a powerful tool for mapping the nonlinear 

input-output relationship in system identification (e.g., Juang, 

1994), therefore the NARMAX method has been employed 

in the nonparametric approach of this study. 

Recently Jiang and his coauthors (e.g., Jiang & Adeli, 2007; 

Jiang & Mahadevan, 2008a&b; Jiang & Foster, 2013; Jiang 

& Foster, 2014; Xu, Jiang, Huang, Yang & Wang, 2016) 

developed various nonparametric methods for system 

identification, damage detection, and condition monitoring. 

In particular, Xu et al. (2016) proposed a probabilistic signal 

processing methodology for damage diagnosis of centrifugal 

compressors. The method adeptly integrates three advanced, 

state-of-the-art data mining techniques: discrete wavelet 

packet transform, Bayesian hypothesis testing, and 

probabilistic principal components analysis (PPCA). 

Bayesian wavelet approach (Jiang et al., 2007) is employed 

to clean the raw data in order to improve the accuracy of 

anomaly diagnostics from multivariate time series data. Refer 

to (Jiang et al., 2007) for the state-of-the-art review on the 

limitations of the conventional wavelet denoising 

approaches. In this study, the Bayesian wavelets approach is 

employed to provide more accurate data denoising 

particularly for the measured data even with uncertainties. 

The discrete wavelet packets decomposition provides more 

coefficients representing additional subtle details of the 

signal, thus avoiding under-denoising, and Bayesian 

hypothesis testing or the ratio of posterior odds approach 

provides a direct means to assess whether there is noise in the 

data, thus avoiding over-denoising. Refer to Abramovich, 

Sapatinas and Silverman (1998), Coifman and Donoho 

(1995) and Daubechies (1998) for more details about the 

wavelet decomposition, and Kass and Raftery (1995) and 

Vidakovic (1998) about Bayesian hypothesis testing. 

Besides, the PPCA technique is developed to quantify 

measurement errors (one type of imprecision), eliminate 

incoherence, and reduce dimension from multivariate sensor 

data for damage diagnostics. In this study, the preprocessed 

data is employed in the nonparametric modeling and damage 

prediction with the purpose of improving computing 

efficiency and prediction accuracy.  

The stochastic neural network (SNN) has been demonstrate 

to be a powerful tool for effective approximation of complex 

nonlinear stochastic systems in financial engineering 

(Kamitsuji & Shibata, 2003; Lai & Wong, 2001) and 

mechanical engineering (Peeters & Roeck, 2001). More 

recently, Jiang, Mahadevan and Yuan (2017) developed a 

dynamic fuzzy stochastic neural network model for 

nonparametric system identification. The model is developed 

to handle two types of imprecision in the sensed data: fuzzy 

information and measurement uncertainties. A fuzzy C-

means clustering algorithm is employed as a data mining tool 

to divide the sensed data into clusters with common features. 

The fuzzy stochastic model is created by combining the fuzzy 

clusters of input vectors with the radial basis activation 

functions in the stochastic neural network. A natural gradient 

method is developed based on the Kullback-Leibler distance 

criterion for quick convergence of the model training. The 

model is validated using a Bayesian hypothesis testing-based 

metric and demonstrated with different numerical examples. 

This study is the first time to develop this fuzzy SNN model 

for damage prediction of turbomachinery. 

This study presents a Bayesian stochastic neural network 

method for automatic damage prediction and anomaly 

alarming in turbomachinery. To the best knowledge of the 

authors, this is the first attempt to adeptly integrate advanced 

signal processing, AI algorithm and probabilistic assessment 

methods for automatic damage prediction of turbomachinery. 

In this paper the stochastic neural network model is trained to 

predict the system response. Instead of directly using raw 

time series data as used in Jiang et al. (2017) for structural 

system identification, principal components obtained from 

wavelet PPCA approach are employed in the model 

establishment and response prediction, thus improving the 

damage prediction accuracy and efficiency. Bayesian interval 

hypothesis testing metric is then presented to quantitatively 

compare the predicted and measured time series and provide 

a confidence indicator to evaluate the status of the system. 

Bayesian probabilistic method is developed in this study for 

three purposes: thresholding the raw data with 

multiresolution wavelet decomposition, quantifying the 

model accuracy, and assessing the system status. A 

generalized procedure is provided to implement the proposed 

methodology. The method and procedure are demonstrated 

with the time series data and a failure event collected from a 

real-world centrifugal compressor.  

2. STOCHASTIC NEURAL NETWORK PREDICTION MODEL 

The mathematical model embedded in a neural network 

method is generally established from the input-output data 

sets collected from an underlying system, expressed as 

follows: 

kkk efy  )(X   (1) 

where the variable Xk represents the k-th input vector (time t) 

in the NARMAX approach. In this study, rather than directly 

using multivariate time series data in Jiang et al. (2017), the 

multi-dimension principal components obtained from 

wavelet PPCA approach as described in Xu et al. (2016) are 

employed as the input-output set {Xk , yk} in Eq. (1). In 

addition, rather than single output in Jiang et al. (2017), 

multiple output variables are predicted simultaneously from 

Eq. (1). 

In Eq. (1), the symbol f(.) represents a scalar nonlinear 

stochastic neural network mapping or approximation 

function in this study, and ek is the error between the actual 

and estimated values of the k-th future output yk (i.e., at time 
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t). The error is an independent and identically-distributed 

(iid) zero-mean random variable, i.e., ek ~ N(0, 2), in which 

 is the deviation of ek. Figure 1 shows the proposed hybrid 

stochastic neural network model for damage prediction. The 

establishment of the predictive model represented by Eq. (1) 

consists of five steps: (1) preprocessing the raw data, (2) 

extracting the PCA features, (3) constructing the SNN model, 

(4) training the model, and (5) validating the model, as 

described subsequently. 

2.1. Bayesian Wavelet Multiscale Analysis 

Sensor data continuously collected from an operational 

turbomachinery is usually stored in a form of time series at a 

certain interval (e.g., 5 minutes). Sensor data often contains a 

wide spectrum of imperfections, such as noise, error and 

incoherence.  In past decades, various methods have been 

presented to remove noise from sensor data, however, little 

study has been conducted to assess multiple imperfections 

simultaneously for anomaly detection. In this study, the 

comprehensive data mining methodology presented in Xu et 

al. (2016) is employed as part of the damage prediction 

framework to handle multiple imperfections in the raw 

signals and reduce data dimension for subsequent predictive 

modeling, thus improving the prediction accuracy. Bayesian 

wavelet method is employed to remove noise, while multi-

scale wavelet analysis is used to analyze the contexts in the 

signal.  

Wavelets provide an effective hierarchical framework to 

interpret the information context in a signal through the 

multi-resolution time-frequency decomposition. The 

transient changes in the signal context are usually represented 

in the details at the fine resolution of a wavelet decomposition. 

Coifman and Wickerhauser (1992) proposed the wavelet 

packet transform (WPT) analysis to allow for a finer and 

adjustable resolution in the high frequencies (details). 

Compared with conventional wavelet transform methods, the 

discrete wavelet packet transform (DWPT) method is a more 

effective approach to extract features from either stationary 

or non-stationary signals to represent the underlying dynamic 

systems (Mallat, 1989). In this study, the DWPT approach is 

utilized for denoising and multiscale analysis of the i-th 

original time series Si×N (i = 1, …, q), each containing N raw 

data points. Each time series is decomposed into p sets of 

coefficients Ap×N, in which p = 2j is the number of wavelet 

coefficients for j-th level decomposition (e.g., j = 1, 2, and 3 

for the 3-level decomposition). A Bayesian thresholding 

approach is then applied on each decomposed coefficient 

series to remove the possible noise. A cleansed time series is 

Figure 1. Illustration of hybrid SNN damage prediction method 
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reconstructed from the denoised coefficients for subsequent 

principal component analysis. The Bayesian wavelet 

denoising method is briefly described below. Refer to Jiang 

et al. (2007) for more details about this method. 

In the DWPT approach, a given time series with N data 

points, f(ti) (i = 1, 2,…, N), is simultaneously decomposed 

into a series of scaling coefficients, sj(k), and wavelet 

coefficients, wj(k). The time series is then represented by the 

inverse wavelet transform and the DWPT coefficients, i.e., 

sj(k) and wj(k), as follows: 

 
 


k j

ikjjikjji tkwtkstf )()()()()( ,,    (2) 

where )( itf  is the reconstructed time series after removing 

possibly noisy components from the decomposed coefficients 

described below, and the double summation indicates that the 

scaling and wavelet subspaces are simultaneously split into 

second-level subspaces to provide the frequency and time 

breakdown of the signal. The total number of decomposed 

coefficients at the j-th level, L = 2j, is obtained from the 

DWPT approach. The discrete values of the original signal 

are used for initial values of the scaling coefficients. A 

recursive way is utilized to compute the DWPT coefficients 

of a given time series. Refer to Burrus, Gopinath and Guo 

(1998) for details regarding the computation of the 

coefficients. 

For the sake of generality, let djk denote the k-th decomposed 

coefficients at the j-th level (j = j0, …, J-1; k = 0, 1, …, 2j-1), 

e.g., sj(k) and wj(k) in Eq. (2), obtained by the DWPT 

approach. Based on the Bayes’ rule, the posterior distribution 

of the cleaned coefficients, jkd , is obtained as follows (Jiang 

et al., 2007): 















 22
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jj
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jkjjkjkjk dNdd








  (3) 

where the symbol ~ denotes a distribution; N(a, b) is a normal 

distribution with the mean of a and the standard deviation of 

b; jkd̂  is the distribution of the decomposed coefficients; jk 

is a binary random variable with independent Bernoulli 

distribution j, i.e., P(jk=1)=1 - P(jk=0)=πj. It determines 

whether the coefficients jkd  are zero (jk=0) or nonzero 

(jk=1). The variance 
2

j  represents the magnitude of jkd  at 

the j-th level decomposition level. In practical applications, 

the same values of 
2

j  and j may be assigned for all 

coefficients in the j-th level. The values of j = 0.5 and j = 1 

are chosen for the non-informative priors in the example 

presented in this paper. The standard deviation j is estimated 

from the wavelet coefficients of the j-th level DWPT 

decomposition through dividing the median of the wavelet 

coefficients by a factor. The value of 0.6745 suggested by 

Percieval and Walden (2000) for the factor is chosen in the 

examples presented in this paper.  

Bayesian hypothesis test is then employed to threshold the 

decomposed coefficients by determining whether accepting 

the null hypothesis, 0:0 jkdH , The thresholding rule is 

defined as follows: 

 1ˆ~
 jkjkjk Idd      (4) 

where jk is the posterior odds ratio of  jk=0 versus jk=1, and 

I(.) is an indicator function. I(.) is equal to unity when jk < 

1, which indicates that H0 is rejected and the coefficient jkd

is estimated by jkd̂ . Otherwise, I(.)  is equal to zero and jkd̂  

is removed. The variable jk is derived from the conditional 

probability of jk, representing the Bayes factor. The 

thresholded coefficients jkd
~

 obtained from Eq. (4) are used 

to reconstruct the cleaned time series based on Eq. (2), i.e., 

)(
~

itf . 

2.2. Probabilistic Principal Component Analysis 

After cleaning the multivariate time series data, the 

probabilistic principal component analysis (PPCA) approach 

(Tipping & Bishop, 1999) is utilized to (1) reduce data 

dimensionality, (2) address the multivariate correlation, and 

(3) handle data uncertainty. The PPCA is derived from a 

Gaussian latent variable model which is closely related to 

statistical factor analysis. The factor analysis is a 

mathematical technique used to reduce the number of 

variables (dimensionality reduction), while identifying the 

underlying factors that explain the correlations among 

multiple variables (Bezdek, 1981). For the convenience of 

formulation, let 
q

ii tf  )(
~

y  represent the q-

dimension real numbers, and  Y = [y1, …, yN]T  denote the N 

× q data matrix representing the q variables, each containing 

N cleaned time series data points, )(
~

itf . Let   = [1, …, 

N]T be the N × d data matrix with i d (d  q) representing 

d latent variables (factors) that cannot be observed, each 

containing the corresponding N positions in the latent space. 

The latent variables i are conventionally defined to be 

independently distributed Gaussian variables with zero mean 

and unit variance, i.e. i ~ N(0, I). The latent variable model 

relates the observable variable yi in the correlated data matrix 

Y to the corresponding uncorrelated latent variable matrix , 

expressed in the Gaussian distribution form as 

yi|( iθ ,W, ψ ) ~ ),( ψμWθ iN ,  i = 1, 2, …, N    (5) 
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where  = 2I is the isotropic noise covariance, the q×d 

weight matrix W describes the relationship between the two 

sets of variables yi and i, and the parameter vector  consists 

of  q mean values obtained from the data matrix Y, i.e. 

 


N

i iN
1

)1( yμ . The unadjusted data in the lower 

dimensional latent space, 
T

N ],,[ **

1

*
θθΦ  , is obtained as:  

YWMΦ
T

MLML

1*    (6) 

where WWIM
T

MLMLML  2 . Equation (6) has the mean of 

μWM
T

MLML

1
. The d-dimensional Principal Components (PC) 

matrix * is applied as inputs to data-driven predictive 

modeling for damage prediction of the centrifugal 

compressor. 

2.3. Constructing Fuzzy SNN Model 

Different types of neural network models may be employed 

to approximate a mechanical system. The nonlinear fuzzy 

stochastic neural network model, originally developed by 

Jiang et al. (2017) for system identification, is developed for 

damage prediction in this study. The general dynamic input-

output mapping in the model is expressed as follows: 

  dIfy k

T
J

j

jkjjjkkk  


XccXX
1

225.0exp)(ˆ 

,  
max , ,2 ,1 Nk    (7) 

where kŷ = )( kf X  is the k-th estimated value of the future 

output (principal component), Xk is the PCs obtained from 

the PPCA of historical time series, and Ijk are independent 

Bernoulli random variables with P{Ijk = 1|Xk} = 1 – P{jk = 

0|Xk} = )( k

T

jj Xa , in which )1/(1)( ueu   is 

the logistic function with (-)=0 and ()=1. The symbol 

||.|| denotes the Euclidean distance between two vectors, the 

parameter j is the deterministic weight of the link of the j-th 

hidden node to the output; the Gaussian (bell-shaped) transfer 

function  2
25.0exp)( jkjj cX    is used as the 

nonlinear activation function to form a radial basis function 

neural network (RBFNN), in which j is the j-th spread 

parameter and cj is the j-th center of the Gaussian function, 

each having p values. The parameter cj is also referred to as 

the cluster of the multidimensional input vector to be 

obtained by using the fuzzy C-means (FCM) clustering 

approach (Moody & Darken, 1989) in this study. In this 

model, the multiplicity Ijk(j) is treated as a stochastic 

neuron. The RBFNN is chosen to construct the SNN model 

because it has been demonstrated to be an effective approach 

to model a nonlinear dynamic system with the least 

computational effort (Kennel, Brown & Abarbanel, 1992). 

Figure 2 shows the feedback architecture of the three-layer 

dynamic SNN model with multiple-PC inputs multiple-PC 

outputs, consisting of an input layer, a hidden layer, and an 

output layer. There are p input nodes in the input layer for 

each principal component. The ellipses in the hidden layer 

represent the activation functions(j) in Eq. (7). The dashed 

arrows represent the stochastic weights (i.e., Ijk) of the links 

connecting the neurons in the hidden layer to the PC output, 

which is different from traditional neural network models 

with deterministic weights for all links. Note that the inputs 

consist of the original PC series while the outputs are the 

approximated PCs. The previous p outputs for each PC series 

are fed back to the input layer to predict the current output.  

The performance of the fuzzy SNN model is affected by three 

important factors. First, the input dimension for each PC 

series, p, for the NARMAX approach, is chosen by the 

attractor concept in the chaos theory, i.e., false nearest 

X
k 
= Input vector = [y

k1
, y

k2
, …, y

kp
 ]

T
, (k = 1, 2, …, N

max
);

 N
max

 = number of input vectors; p = Dimension of 

input vector;  J = Number of neurons;  

b
ji
 = Weight of the link connecting the i-th input node to the j-

th neuron in the hidden layer (i = 1, 2, …, p; j = 1, 2, …, J);   = 

k-th output of stochastic neural network of i-th principal 

component;(j) = j-th neuron in the hidden layer = ; 
j
 = 

Weight of the link connecting the bias to the j-th neuron. I
jk 

= 

Stochastic weight of the link connecting the j-th node in the 

hidden layer to the output node. 

Figure 2. Architecture of the proposed MIMO dynamic 

stochastic neural network 
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neighbor (FNN) method. The FNN approach assumes that a 

small embedding dimension results in state space points that 

are far apart in the original state space to be considered 

neighboring points in the reconstructed state space (Moody 

& Darken, 1989) .  Second, the centers for the RBFNN model 

are determined by using the FCM clustering algorithm. Given 

the centers cj, the total number of parameters to be modified 

in the fuzzy SNN model is obtained by np = 3J + J  d  p + 

d  p + 1, which consists of J  d  p parameters aij (i = 1, …, 

dp, j = 1, …, J), J parameters j, hidden weights j, and 

spread parameters j (j = 1, …, J), dp input weights bi, and 

one bias d.  The third influencing factor is the number of 

neurons, J. In this study, the Bayesian information criterion 

(BIC) [referred to as the Schwarz criterion by Kass and 

Raftery (1995)] is applied to select the optimum number of 

neurons to be used in the Fuzzy SNN model. The approach 

selects a simpler model (in terms of the number of 

parameters) with a good fit of the data based on Bayes’ 

theorem.  

2.4. Training the Stochastic Model 

A natural gradient method based on the Kullback-Leibler 

distance criterion is developed to effectively avoid being 

entrapped in a local minimum. This approach has been 

observed to converge very quickly in training multilayer 

fuzzy SSN models (Jiang et al. 2017). The loss or objective 

function, D(), is defined as the complete-data log-likelihood 

function expressed as follows: 

D(𝛉) = −log⁡𝑙(𝐗, 𝐲, 𝛉, 𝐈) = − log 𝑔(𝑦| 𝐗, 𝛉, 𝐈)ℎ(𝐗)⁡ 
= − log𝑔(𝑦| 𝐗, 𝛉, 𝐈) − log h(X)   (8) 

where y represents a d-dimension PC output vector in the 

model, X represents all input PC vectors corresponding to y, 

l(X, y, , I) is the likelihood function of y, and h(X) is the 

probability density function (pdf) of the input vector X 

(representing the past PC series) which is independent of 

parameters . In training the model, the input vector X 

consists of the previous prediction PC data. Therefore, 

Equation (8) represents the Kullback-Leibler distance that 

measures the similarity between the probability distribution 

of model prediction h(X) and that of actual PCs g(y|X, , I), 

in terms of entropy information of the data. Refer to Jiang et 

al. (2017) for more details about the model training. 

For the simplicity of formulation, let )( k

T

jjjk Xa   

(j = 1, …, J; k = 1, …, Nmax) represents the logistic function 

at the j-th neuron for the k-th input vector, in which J and Nmax 

are the optimum number of hidden neurons and the maximum 

training data sets, respectively. For all features, the objective 

function in Eq. (8) can be expressed as 

D(𝛉) = ∑ {
1

2𝜎2
[𝑦𝑘 − �̂�𝑘]

2 −∑ [𝐈𝑗𝑘 log(𝜓𝑗𝑘) +
𝐽

𝑗=1

𝑁𝑚𝑎𝑥

𝑘=1
 

(1 − 𝐈𝑗𝑘)log⁡(1 − 𝜓𝑗𝑘)] − 𝑙𝑜𝑔ℎ(𝐗𝑘)} +
𝑁𝑚𝑎𝑥log⁡(2𝜋𝜎

2)

2
   (9) 

where ),(ˆ θXkk fy   is the model prediction defined by 

Eq. (7). Next the natural gradient learning algorithm based on 

the Kullback-Leibler distance criterion is pursued to find the 

optimum * that maximizes the log likelihood function (Eq. 

9). Note that the natural gradient learning has the same form 

as the online Gauss-Newton method for the sum-of-squares 

error function. The difference lies in that the former is based 

on the information theory considering the uncertainties in 

both feature data and predictive model, which is not 

considered in the latter based on the sum-of-squares error 

function. Refer to Jiang et al. (2017) for the details about the 

natural gradient learning method for model training. The 

established SNN model is validated by Bayesian metric and 

the features obtained from a set of new data, as described 

subsequently. 

3. MODEL VALIDATION AND DAMAGE DETECTION 

The validated model is used to predict the response features 

under unknown condition. The predicted data is then used to 

evaluate the system status. Both validating the predictive 

model and evaluating the system status involve comparing 

the predicted principal components and those obtained from 

measurement data. A Bayesian factor metric is employed to 

quantitatively judge the model and system status, i.e., 

whether the predicted features deviate from those obtained 

from actual measurements.  

A Bayes factor-based assessment metric developed by Jiang 

and Mahadevan (2008b) for structural damage detection is 

employed in this study as a quantitative measure to evaluate 

predictive model and judge system status, by using different 

sets of data. In the model validation, the data collected from 

the system without any damage is used, while in the damage 

prediction, a set of data from the system with unknown 

condition is used. Within the context of binary hypothesis 

testing, consider two hypotheses H0 and H1. The point null 

hypothesis (H0: yexp = ypred) indicates that the predictive model 

is accurate or the system is healthy, while the alternative 

hypothesis (H1: yexp ≠ ypred) indicates that the model is 

inaccurate or the system is damaged. Their prior probabilities 

of acceptance are denoted by 0 = Pr(H0) and 1 = Pr(H1). 

Assuming yexp = {y1,exp, y2,exp, …, exp,maxNy } and ypred = 

{y1,pred, y2,pred, …, pred,maxNy } to be the Nmax samples of PC 

features obtained from experimental data and model 

predictions, respectively. Let ei = yiexp – yipred represent the 

difference between them, and obs = {e1, e2, …, 
maxNe } 

represent Nmax values of the error, which is usually assumed 

to follow a normal distribution N(, 2) with  known in this 

paper (estimated using the data set obs). The problem 

becomes testing H0:  = 0 to in favor of the model or a healthy 

system, versus H1:   0 to reject the model or in favor of a 

damaged system with  |H1 ~ N(, 2), in which  and  are 
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two parameters of the prior density of  under the alternative 

hypothesis. Per the suggestion in Migon and Gamerman 

(1999), the parameters  = 0 and 2 = 2 are used if no 

information on f(|H1) is available. The Bayes factor, the 

ratio of probability of observing the data given the null 

hypothesis (i.e., model is accepted or the system is healthy) 

to the probability of observing the data given the alternate 

hypothesis (i.e., model is rejected or the system is unhealthy), 

is calculated as follows (Jiang and Mahadevan 2008b): 

01B
)0:|dataPr(

)0:|dataPr(

obs1

obs0







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







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)1(2

exp1




N

N
N       (10) 

Refer to Jiang and Mahadevan (2008b) for details of the 

derivation of Eq. (10).  Since B01 is non-negative, the value 

of B01 is often converted into the logarithm scale for the 

convenience of comparison among a large range of values, 

that is 

b01 = ln(B01) =
2

2

obs

max

2

max

max
)1(2

)1ln(
2

1








N

N
N  

)1ln(
2

1
max  N    (11) 

where ln(.) is a natural logarithm operator, and the value of 

0.5ln(Nmax+1) is the upper bound of b01. A positive value of 

b01 indicates that the data supports the model or a healthy 

system (i.e., accepting H0) while a negative value indicates 

that the data rejects the model or implies damage in the 

system (i.e., rejecting H0). Kass and Raftery (1995) suggest 

interpreting b01 between 0 and 1 as weak evidence in favor of 

H0, between 3 and 5 as strong evidence, and b01 > 5 as very 

strong evidence. Negative b01 of the same magnitude is said 

to favor H1 by the same amount. 

The Bayesian measure of evidence that the predictive model 

is accurate (or the system is healthy) may also be quantified 

by the posterior probability of the null hypothesis Pr(H0|data), 

denoted by .  For a binary hypothesis testing we have 

Pr(H1|data) = 1 - Pr(H0|data), and 1 = 1 - 0. Thus, using the 

Bayes theorem Pr(H0|data) can be obtained as follows: 

0010

001

0
1

)data|Pr(





B

B
H


   (12) 

Equation (12) is used to quantify the confidence in accepting 

the null hypothesis (i.e., accepting the model or a healthy 

system) based on the features extracted from sensor data and 

predicted output. Usually 0 = 1 = 0.5 is assumed due to the 

absence of any prior knowledge about the two hypotheses. In 

that case, Eq. (12) simplifies to  = B01/(1+B01), where B01 

0 indicates 0% confidence in accepting the null hypothesis, 

and B01  indicates 100% confidence. 

4. IMPLEMENTATION PROCEDURE 

Figure 3 shows the generalized process for damage prediction 

using the proposed probabilistic methodology and the time 

series data collected from a turbomachine. The process 

consists of 21 steps (denoted by numbers in Fig. 3), as 

explained below. 

1) Read raw time series data acquired from multiple 

sensors installed on a turbomachine. Figure 4 shows the 

example sensors used to acquire operational data from a 

centrifugal compressor. The sensor data includes various 

performance variables, such as compressor inlet and exhaust 

temperature, pressure, and axis displacement, temperature 

and vibration. These sensors measure the operational 

performance of the machine, generally in the form of time 

series. Assume the multiple time series data are obtained for 

q variables, each having M data points, yielding a raw data 

matrix Rq×M for signal processing, damage diagnosis and 

damage prediction.  The 1-hour interval data is used in the 

example presented in this paper for demonstration purpose.  

2) Perform data validation on the acquired time series 

data for the unit under investigation. Techniques may include 

graphical plots, outlier analysis and data filtration. Outliers 

tend to pull the mean value towards themselves and inflate 

the variance in their direction, thus affecting the moment 

characteristics of the data. The outliers are usually 

inconsistent with the expectation of the majority elements of 

the series. They may be produced from measurement errors 

and equipment operation anomaly, which cannot be used to 

represent the normal operational condition of that unit. These 

outliers should therefore be removed for further analysis with 

proper justification. In this study, graphical analysis is first 

employed to identify the outliers in the time series data. Box 

plot is then applied to identify the outliers. The Box-plot is a 

type of exploratory data analysis technique which can 

visually show different types of populations without any 

assumption of statistical distribution. Note that the outliers 

are a kind of uncertainty and will be further processed 

through the advanced quantitative analysis by Bayesian 

wavelet signal processing and probabilistic principal 

component analysis subsequently. 

3) Determine a validated data matrix Sq×N for 

subsequent analysis, in which N is the number of validated 

data points (N ≤ M). After the outlier analysis, data filtration 

may be performed to ensure that the sensor data represents 

the unit under normal operation via truncating sensor data in 

the reasonable operating range. Generally critical variables 

suggested by the subject matter expert should be used to 

define the normal operating status of the unit. In addition, the 

operational data during the outage downtime should be 

removed from the subsequent analysis. The proper range for 

each variable should be obtained from the manual of original 

equipment manufacturer, material standard, or design team.  

4) Normalize each time series by using the mean value 
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of each variable, yielding a normalized data matrix, Yq×N. Its 

purpose is to reduce the impact of different quantities of 

multivariate time series on the anomaly prediction. The 

normalization allows for the comparison of multiple time 

series variables simultaneously. It avoids the duplicate 

contribution of the same response to damage detection and 

prevents the undue domination of variables with large 

numerical values over the variables with small numerical 

Figure 3. Flow chart of the proposed dynamic fuzzy SNN method for anomaly prediction 
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values, thus improving the accuracy of damage detection 

using multivariate sensor time series. 

5) Perform discrete wavelet packet transform of the i-

th time series Si×N (i = 1, …, q), each containing N data points. 

The DWPT approach decomposes the raw time series into 

multi-resolution time-frequency domains for each variable. 

Each time series will be decomposed on p sets of coefficients 

Ap×N, in which p = 2j is the number of wavelet coefficients for 

j-th level decomposition (e.g., j = 1, 2, and 3 for the 3-level 

decomposition). 

6) Perform Bayesian hypothesis testing on each set of 

decomposed wavelet coefficients. The integrated Bayesian 

wavelet signal processing captures subtle details of signals 

meanwhile assessing noise, error and incoherence context in 

a direct means, thus avoiding the conventional under-

denoising and over-denoising issues.  

7) Reconstruct each time series signal from the 

cleansed wavelet coefficients by using Eq. (2).  

8) Evaluate the effectiveness of the Bayesian wavelet 

cleansing approach via power spectral analysis on the 

cleansed and raw time series. The Welch method (Stoica & 

Moses 1997) may be to produce the spectral density from a 

finite-length signal by averaging the periodograms of 

overlapped, windowed signal sections. The periodogram is 

obtained by a short time Fourier transform. The average 

enables to reduce the variance or noise in the estimated power 

spectra, which is different from other existing methods such 

as the multiple signal classification method or the eigenvector 

method.  

9) Determine the reduced dimension d using the 

conventional PCA approach and predefined 95% threshold 

for multivariate time series. Its purpose is to yield a d-

dimension reduced data matrix containing 95% information 

of the raw data. 

10) Produce the reduced data matrix, d×N, using 

probabilistic PCA approach. The multivariate statistical 

analysis method is employed to fuse multivariate data, 

considering data uncertainty and correlation. The method 

incorporates statistical factor analysis, matrix Eigenvalue 

decomposition, and maximum likelihood estimation. Its 

purpose is to integrate useful information from multiple 

sensors, considering uncertainty and correlation in the 

multivariate sensor data. 

11) Split the principal components matrix into three 

parts: 50% training (train), 30% validation (valid), and 20% 

testing (test) data sets. The training data is used to establish 

a predictive stochastic neural network model. The validation 

and testing data are then used to evaluate and test the 

predictive model for damage detection, respectively. 

12) Construct input state vectors from training data set 

(train) for dynamic stochastic neural network. The false 

nearest neighbor approach with the chaotic attractor concept 

is used in this study. 

13) Determine the number of hidden nodes in the SNN 

model by using the Akaike’s final prediction error method to 

achieve an optimal model structure. 

14) Find data clusters by using fuzzy clustering 

analytics. The clusters will be integrated with stochastic 

radial basis neurons to create the fuzzy SNN model (Eq. 7). 

The fuzzy C-means algorithm is employed to find clusters. It 

assigns membership to each data point corresponding to each 

cluster center based on the distance between the cluster center 

and the data point.  

15) Calibrate the fuzzy SNN model parameters by using 

the natural gradient approach with the Kullback-Leibler 

distance criterion, and the expectation-maximum algorithm. 

The model parameters calibration will stop if either the 

minimum error between the predicted PC response and actual 

data or the maximum of calibration iteration is met, 

whichever is reached earlier.  

16) Validate the fuzzy SNN model with both qualitative 

approach (graphical comparison) and quantitative methods 

(Bayesian hypothesis testing) for a new data set (valid). The 

same input dimension as the model establishment is used in 

the model validation. The graphical comparison is conducted 

in both time and frequency domains. A power density 

spectrum method, called pseudospectrum and pursued by 

Jiang and Adeli (2007) for structural damage detection, is 

employed in this paper to visually identify the difference. The 

pseudospectrum provides a reliable solution for eigenvalues 

of a non-normal matrix (whose eigenvectors are not 

orthogonal), which cannot be solved easily by a standard 

eigenvalue solution method. The approach produces a higher 

Figure 4. Illustration of sensors layout used to collect 

time series data 

http://en.wikipedia.org/wiki/Power_spectrum
http://en.wikipedia.org/wiki/Power_spectrum
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frequency resolution even for data with high uncertainty (or 

high noise) than the conventional fast Fourier transform 

method (Migon & Gamerman, 1999).  The quantitative 

methods include root mean square error and Bayes factor 

obtained from Bayesian hypothesis testing as described 

previously. If the model doesn’t meet the acceptable 

threshold, the model parameters need to be calibrated again. 

17) Apply the validated fuzzy model for response 

prediction on the new data set (test). Similarly, the same 

input dimension as the model establishment is used in the 

model prediction. The difference between the obtained 

prediction output and the actual principal component data is 

then calculated.  

18) Judge the equipment healthy status by using 

Bayesian hypothesis testing method and the difference data 

obtained previously. Bayes factor and confidence obtained by 

Eqs. (11) and (12), respectively, are used as the quantitative 

assessment indicators. Bayesian hypothesis testing is 

conducted on a continuously rolling window (e.g., 12 hours 

used in the example presented in this paper). In each step, the 

currently predicted value is added to replace the earliest point 

in the rolling window, thus yielding the Bayesian factor and 

confidence over the time for the health assessment based on 

the testing data.   

19) Output the healthy status signatures such as Bayes 

factor and the confidence. The Bayes factor in the logarithm 

scale has the negative value to indicate the possible damage 

occurring to the equipment under investigation, with more 

than 50% confidence. In that case, an alarm would be 

generated to notify the user for damage diagnostics or root 

cause analysis of the possible fault. 

20) Diagnose the fault of equipment to pinpoint fault 

details. The PCA coefficients obtained previously can be 

used to identify the critical variables contributing to the fault. 

Time series analysis may be further used to pinpoint the fault 

initiation and details for maintenance recommendation. 

21) Provide actionable maintenance recommendation if 

any damage is identified. The diagnosis results will not only 

facilitate the decision-making in alarming logics 

development, performance monitoring, and condition 

evaluation for the equipment, but also assist the asset 

management of the equipment by scientific schedule of 

inspection and maintenance and effective management of 

parts procurement.  

5. ILLUSTRATIVE EXAMPLE 

The proposed methodology and its implementation process 

shown in Fig. 3 is demonstrated with a set of operational data 

collected from a real centrifugal compressor. The time series 

data of the q = 11 variable (two bearing temperature 

variables) shown in Figure 4 was recorded at 1-hour interval 

from March 1st to Oct 18th, right before the forced outage due 

to the compressor failure at multiple impellers. As an 

example, Figure 5 shows the impeller of a centrifugal 

compressor with multiple blades damage. By removing the 

data points during the maintenance outage, M = 3710 of raw 

data points is obtained for this study at each variable. 

 

5.1. Data Preprocessing 

All operational data used in the example are recorded 

manually. These data unavoidably contain human errors, 

outliers, missing values, and noise. As an example, Figure 6 

shows the raw time series data for axis vibration, inlet 

temperature and exhaust temperature measured at the 

centrifugal compressor. Note that the left vertical axis 

indicates the vibration variable, while the right vertical axis 

indicates the temperature variable. The gaps in the time series 

of Fig. 6 show the unavailable data during that period. 

Obviously, it is difficult to visually identify any significant 

change from the raw data series over the time, indicating that 

advanced analytics techniques are needed for signal 

processing of the data to develop automatic anomaly 

detection algorithms.  In addition, it is observed that the 

multiple time series data indicate possible correlation from 

their trend over the time. Multivariate analysis techniques are 

therefore needed to facilitate the decision making on the 

diagnostics of a complicated system with multivariate time 

series data. 

Furthermore, it is observed that each time series shows large 

variation over the time, indicating that the data may be 

contaminated by human errors due to the manual reading or 

noise from machine operation. The variation may result from 

the varying operational modes of the machine in practice. 

These noises or variabilities in the raw would influence the 

accuracy of diagnostics as shown later. Also, possible outlier 

points are observed in different time series. These obvious 

outliers are removed for subsequent data analysis.  

Figure 5. Photograph of impeller cracks in a real-

world centrifugal compressor 
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A data matrix with the same dimension q × N, where q = 11 

and N = 3616 (in comparison to N = 3710 in the raw data set) 

is obtained by removing the obvious outliers or unavailable 

points from each time history data. In addition, in order to 

prevent the undue domination of variables with large 

numerical values over the variables with small numerical 

values in the multivariate damage prediction, each time series 

is divided by its corresponding mean value, thus normalizing 

the variables into dimensionless vector.  

5.2. Bayesian Wavelet Denoising 

Three decomposition levels of DWPT using the Daubechies 

wavelet of order 8 is first conducted to characterize the details 

of each time series data in this example. As an illustrative 

example, Figure 7 shows the three-level DWPT 

decomposition for the normalized exhaust flow data using the 

Daubechies wavelet of order 8. The normalized data shown 

in Fig. 7a are resolved into one approximation coefficients 

(Fig. 7b) and seven detail coefficients (Fig. 7c). Obviously, 

the approximation coefficients capture the principal trend of 

the raw data, while the high-frequency components in the raw 

signal are represented in the other decomposition detailed 

coefficients. It should be noted that the scale of the vertical 

axis in approximate coefficient is chosen differently from the 

detailed series in Fig. 7c for the sake of visibility of the 

illustration. Next, given a time series, the Bayesian 

thresholding is first applied to each decomposition 

coefficient produced from DWPT approach, as shown in Fig. 

7. A cleaned time series is then reconstructed from the 

thresholded wavelet coefficients. Refer to Xu et al. (2016) for 

the denoising result comparison. 

5.3. Feature Extraction by Probabilistic PCA 

The number of principal components of the cleansed data 

matrix Y, d = 3, is obtained by predefining at least 95% 

information in the data to be considered, which result in the 

actual 95.5% information accounted for. The maximum 

likelihood estimates for the PPCA variability parameters 2 

and W are obtained for the cleaned 11 × 3616 data matrix. 

The resulting coefficients WML are used for the data matrix to 

produce the 3 × 3616 reduced data matrices * using Eq. (6). 

Figure 8 shows the obtained weights of 11 variables 

contributing to the 3-dimension principal components. The 

weights can be used to effectively identify the critical 

variables which make significant contribution to the principal 

components. For instance, five variables, including the inlet 

temperature, exhaust temperature, inlet guide vane angle, 

axis vibration, and axis displacement, make main 

contribution to the first principal component, which accounts 

for 61% information of the original data.  The information is 

useful for pinpointing variables which play a vital role on the 

damage identified from the predictive modeling and 

Bayesian assessment, further providing accurate actionable 

recommendation on maintenance activities. 

5.4. Fuzzy SNN Modeling 

Using the FNN method as described in Jiang et al. (2017), p 

= 5 is obtained for each principal component series (yk) of the 

Figure 6. Data sample used in the demonstration example 
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1073 data points, resulting in a 15-dimensional input vector 

and the maximum number of input-output data sets of Nmax  = 

N – p = 1068. Next, the BIC approach associated with the 

FCM method is applied for the constructed input vectors to 

generate the optimum number of neurons J = 2. The model is 

then trained using the natural gradient method described 

previously. In the model training, the previous seven data 

points in each principal component are used as inputs, and the 

Figure7. Three-level DWPT decomposition of normalized raw exhaust flow data using the Daubechies 

wavelet of order 8: a) Noisy time series, b) decomposition approximation coefficients, and c) Seven 3-level 

decomposition detail coefficients  

(a)  

 

(b) 

(c) 

Figure 8. Weights of 11 variables contributing to 3-dimension principal components 
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current prediction yk is used as the output of the model. The 

model converges quickly in only 4 iterations with a training 

error of RMSE = 0.079.  

Figure 9 shows the comparison results of fuzzy SNN model 

in terms of both time (Fig. 9a) and frequency (Fig. 9c) 

domains for the first principal component. Figure 9b shows 

the difference of the predicted and actual principal 

components. It should be noted that the scale of the vertical 

axis is chosen differently for results comparison in Fig. 9a 

and error plots in Fig. 9b for the sake of visibility of the 

illustration. The Bayesian hypothesis testing is applied to the 

difference shown in Fig. 9b. The Bayes factor b01 = 1.89 is 

obtained, implying that the model is acceptable with the 

confidence of 86.9%.  The pseudospectra of the predicted and 

actual values between the frequency range of 0 and  is 

shown in Fig.9c. The difference of the pseudospectra 

obtained from predicted and actual principal components 

(Fig. 9c) is insignificant, implying that the model shows high 

accuracy from the visual comparison. 

The trained model is validated by applying to conduct one-

step-ahead prediction on the validation data (350 points). In 

applying the trained model, the computed previous five 

values (i.e., p = 5) for each principal component are fed into 

the input layer to calculate the current prediction. The 

comparison of the validation results for the three principal 

components is shown in Fig. 10a, which visually indicates the 

match between the predicted and actual results. The error of 

RMSE = 0.0017 and Bayes factor of 199 with the confidence 

of nearly 100% are obtained for the validation results, 

quantitatively demonstrates that the fuzzy SNN model 

provides an accurate prediction of the system response in 

terms of principal components.  

5.5. Bayesian Damage Prediction 

The trained model is further applied to conduct one-step-

ahead prediction on the testing data (2171 points). Like 

model validation, the computed previous five values (i.e., p = 

5) for each principal component are fed into the input layer 

to calculate the current prediction. The comparison of the 

prediction results and the error for the three principal 

components is shown in Fig. 10b and Fig.11a, respectively. 

Bayesian hypothesis testing is applied to the rolling window 

of 12 hours to yield the continuous quantitative indicators 

factors. Figure 11b shows the confidence over the time for 

both validation and testing data. It is observed that two alarms 

would be generated at 5:00AM of Sep 2nd and 2:00AM of Oct 

Figure 9. Modeling results of fuzzy SNN (1073 data points): (a) time domain comparison; (b) error 

(RMSE = 0.079 and b01 = 1.89), and (c) pseudospectra comparison 

(a)  
  

(b) 

(c) 
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9th to alert the possible damage on the equipment under 

operation, where the confidence of equipment healthy is less 

than 50%. The two alarms will last for 64 hours and 34 hours, 

respectively. The damage prediction results match well with 

the diagnostics results presented in Xu et al. (2016) about this 

compressor event. The damage on the impellers of this 

compressor might initiate in the end of July, which results in 

the principal components trend change, and then accumulated 

to a certain level to trigger the operation behavior change in 

the beginning of September when multiple alarms will be 

triggered. Finally, the compressor had a forced outage on Oct 

23rd as the damage cumulates to the certain level that the unit 

cannot be operated any more. This indicates that the proposed 

intelligent algorithm associated advanced signal processing 

and data mining can quantitatively detect this damage in 

advance of about 2 weeks to prevent the forced outage, thus 

facilitating the decision making on the damage diagnostics 

and prediction with multivariate time series. 

6. CONCLUDING REMARKS 

This paper presents an innovative intelligent methodology for 

anomaly prediction of high-fidelity turbomachinery. The 

methodology and procedure seamless integrates the wavelet 

multi-resolution decomposition, Bayesian hypothesis testing, 

probabilistic principal component analysis (PPCA), and 

fuzzy stochastic neural network (SNN) modeling to provide 

accurate anomaly prediction for a turbomachine, considering 

possible uncertainty and noise in the sensed multivariate time 

historical data. A generalized procedure is provided to 

implement the proposed methodology for damage prediction 

of a turbomachine. The proposed method and procedure is 

demonstrated with the 11-variable time series data and a 

forced outage event of a real-world centrifugal compressor. 

The wavelet PPCA data preprocessing is employed in this 

study to reduce dimensionality and to address multivariate 

correlation and data uncertainty for damage prediction. 

Instead of directly using raw time series data as 

conventionally used in neural network model for structural 

damage detection, the yielded principal components are 

employed in the model establishment and anomaly 

prediction. Bayesian interval hypothesis testing metric is then 

presented to quantitatively compare the predicted and 

measured data for model validation and anomaly evaluation, 

thus providing a confidence indicator to judge the model 

quality and evaluate the equipment status. As such, Bayesian 

method is used in this study for three purposes: thresholding 

the raw data with multiresolution wavelet decomposition, 

quantifying the model accuracy, and assessing the system 

status. 

The dynamic stochastic neural network model is established 

via the nonlinear autoregressive moving average with 

Figure 10. Validation and testing results of fuzzy SNN in time series: (a) Validation (350 data points) and 

(b) Testing (2171 data points) 
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exogenous inputs approach. It adeptly integrates the fuzzy 

clustering and independent Bernoulli random function into 

radial basis function neural network. A natural gradient 

method based on Kullback-Leibler (KL) distance criterion is 

employed to maximize the log-likelihood loss function. The 

KL distance measures the similarity between two probability 

density functions in terms of the entropy information of the 

data. The dynamic fuzzy SNN model is advantageous over 

the conventional static neural networks in two aspects. First, 

the former is a dynamic stochastic model that preserves the 

time sequence of the input vectors and memorizes the past of 

the time series data, while the latter is a deterministic model 

based on single-valued input nodes. Second, the fuzzy 

stochastic SNN can handle the fuzzy information and 

uncertainty in the sensed data through the fuzzy clustering 

and stochastic neurons in the model, which cannot be dealt 

with by the latter.  

Numerical results in the example indicate that the proposed 

intelligent probabilistic algorithm associated advanced signal 

processing and data mining can quantitatively detect this 

damage in advance of about 2 weeks to prevent the forced 

outage, thus facilitating the decision making on the damage 

diagnostics and prediction with multivariate time series, 

considering uncertainty and data correlation. The proposed 

methodology provides an advanced state-of-the-art approach 

and powerful tool to process multivariate time series data for 

damage prediction in order to evaluate the turbomachine 

condition. This study can facilitate cost-effective schedule for 

timely preventive maintenance and ensure product safety and 

increase product availability and customer satisfaction.  

Figure 11. Validation and testing results of fuzzy SNN in time series: (a) Error and 

(b) Bayes confidence 
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In future research, the proposed method will be extended to 

predict damage for more complicated scenarios in a 

centrifugal compressor, for example, many monitoring data 

sets, missing data in measurements and multiple-multivariate 

measurements with different boundary conditions. The 

application can also be extended to other turbomachine such 

as gas turbine and steam turbine, or any other asset damage 

prediction with measured time series data. In addition, further 

research may be conducted to optimally select the wavelet 

functions and decomposition level in the multiresolution 

analysis, as well as choose other stochastic neurons in the 

SNN model. The robust performance evaluation and 

comparison with other methods will be conducted in future 

research as well. 
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