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ABSTRACT 

The operation and maintenance costs of offshore wind farms 

can be significantly reduced if existing corrective actions 

are performed as efficient as possible and if future 

corrective actions are avoided by performing sufficient 

preventive actions. In this paper a prognostic model for 

degradation monitoring, fault prediction and predictive 

maintenance of offshore wind components is defined.  

The diagnostic model defined in this paper is based on 

degradation, remaining useful lifetime and hybrid inspection 

threshold models. The defined degradation model is based 

on an exponential distribution with stochastic scale factor 

modelled by a normal distribution. Once based on failures, 

inspection or condition monitoring data sufficient 

observations on the degradation level of a component are 

available, using Bayes’ rule and Normal-Normal model 

prior exponential parameters of the degradation model can 

be updated. The components of the diagnostic model 

defined in this paper are further explained within several 

illustrative examples. At the end, conclusions are given and 

recommendations for future studies on this topic are 

discussed. 

1. INTRODUCTION 

The offshore wind energy is the fastest growing power 

sector in Europe, set to have a fivefold increase in installed 

capacity by 2030 (Tardieu et al. 2017). The offshore wind 

growth can be sustained only if offshore wind operation and 

maintenance (O&M) costs are reduced to their minimum, 

allowing utilities to operate profitable offshore wind farms 

in absence of government subsidies (Asgarpour 2018). The 

majority of O&M costs of offshore wind farms is caused by 

unplanned failure of wind farm components (Asgarpour & 

Sørensen 2015). The costs of unplanned failures can be 

reduced significantly if faults of wind farm components can 

be predicted, before they occur, or be detected, as soon as 

they occur and before they lead to a failure. In (Asgarpour 

& Sørensen 2018), a Bayesian diagnostic model for fault 

detection and condition based maintenance of offshore wind 

farm components is introduced. This paper focuses only on 

fault prediction or prognostics of offshore wind 

components.  

In (Sikorska & Ma 2011), a thorough overview on 

knowledge-based, stochastic, Artificial Neural Network 

(ANN) and physical prognostic models applicable for 

Remaining Useful Lifetime (RUL) prediction of engineering 

assets is given. The authors in (Sikorska & Ma 2011) have 

concluded that mathematically or computing complexity 

limits current use of many prognostic approaches to industry 

practitioners. In (Novaes et al. 2018) and (Kandukuri et al. 

2016), available prognostic models for gearbox, main 

bearing and blades of wind turbines are reviewed. Authors 

in (Novaes et al. 2018) have concluded that in contrary to 

diagnostics, very little attention has been given to the 

application of prognostic techniques in wind turbines. In 

(Lau et al. 2012), Hidden Markov Model (HMM), ANN and 

Particle Filter (PF) techniques for prognostic of offshore 

wind turbines are reviewed. Furthermore, in (Nielsen & 

Sørensen 2017), (Rasekhi Nejad et al. 2014) and (Griffith et 

al. 2014) case studies for prognostic of wind turbine blades, 

gears and bearings are given. 

This paper demonstrates an applied and computationally 

inexpensive solution for prognostic and predictive 

maintenance of offshore wind components. In the 

followings, first degradation and remaining useful lifetime 

models are briefly discussed and then, within several 

illustrative examples a prognostic model for predictive 

maintenance of offshore wind components is outlined. 

_____________________ 
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which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 
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2. DEGRADATION MODELLING 

Instead of probability of a failure, reliability of a component 

can be expressed by its degradation. According to EN 

13306:2010 (Technical Committee CEN 319 2010), 

degradation is “detrimental change in physical condition, 

with time, use or external cause”. Reliability of a 

component can be degradation based if the degradation of 

the component is gradual, observable and measurable.  

In (Welte & Wang 2014), an overview of applicable models 

for degradation modeling of wind turbine components is 

given. The degradation level of a component can be 

estimated based on a physical or data-driven degradation 

model. Relevant physical models for degradation modeling 

of wind farm components are Paris’ law for crack growth 

development (applied typically for degradation modelling of 

welded details in steel towers and monopiles, and in wind 

turbine blades) and S-N curves and the Palmgren-Miner’s 

rule for fatigue assessment (applied typically for 

degradation modelling of foundations or drivetrain 

mechanical components).  

Data-driven models for degradation modeling are statistical 

or Artificial Intelligence (AI) models based on continuous 

condition monitoring or inspection data. In (Schwabacher & 

Goebel 2007), a survey on AI models for prognostics is 

given. In contrary to AI models, statistical models are 

computationally inexpensive and are applicable to a wider 

range of component types and failure modes. In (Si et al. 

2011), a comprehensive overview on statistical data-driven 

techniques for lifetime estimation of engineering assets is 

given.  

Among statistical prognostic methods, exponential model is 

one of the most popular methods used (Li et al. 2015). In 

this paper, degradation of a component is assumed to be 

modelled using an exponential model: 

𝐷(𝑡) = 𝛽(𝜇, 𝜎)×𝑒𝛼𝑡 (1) 

The initial deterministic shape factor and normal distributed 

scale factor of an exponential degradation model should be 

first estimated. Once enough observations from degradation 

level or failures of a component are available, the initial 

shape and scale parameters can be updated. 

2.1. Initial degradation model 

In absence of sufficient operational data at the beginning of 

a wind farm lifetime, the initial values of shape and scale 

factors of an exponential degradation model of a repairable 

component can be estimated based on its average failure 

rate, which can be translated back into its mean time 

between failures (1 𝜆⁄ = 𝑀𝑇𝐵𝐹). Then, a component failure 

can be expressed by its maximum degradation 𝐷(𝑡) = 1 

once its lifetime reaches 𝑡 ≈ 1 𝜆⁄ = 𝑀𝑇𝐵𝐹: 

𝐷(𝑡 ≈ 1 𝜆⁄ = 𝑀𝑇𝐵𝐹) = 1
   𝑡ℎ𝑒𝑛   
→     

𝐷(1 𝜆⁄ ) = 𝛽(𝜇, 𝜎)𝑒
𝛼
𝜆 = 1

   𝑡ℎ𝑒𝑛   
→     

𝛽(𝜇, 𝜎) ≈ 𝜇𝛽 =
1

𝑒
𝛼
𝜆

⁄  
(2) 

Now that relation between shape and mean of the scale 

factor is known, it is sufficient to assume one of them. 

Based on the previous experience or experts’ judgment, the 

shape factor of a component can be chosen. For instance, in 

Figure 1, the initial exponential degradation model for a 

component with an average failure rate per year equal to 

0.05 based on three different shape factor assumptions is 

shown. 

 

Figure 1. Initial degradation model of a component based on 

different shape factors assuming 0.05 as its failure rate per 

year 

In Figure 1 it can be seen that a smaller shape factor (e.g. 

0.3) results into more gradual degradation curve. On the 

contrary, a higher shape factor (e.g. 0.9) results into a less 

gradual degradation curve with sudden failure.  

For instance, if based on the previous experience or experts’ 

judgment, the shape factor of 0.7 be assumed for 

degradation model of the component shown in Figure 1, 

then according to Equation (2) the mean initial scale factor 

of this component can be calculated as 8.315𝐸 − 07. 

The initial scale factor of an exponential degradation model 

can be assumed deterministic or if possible, based on the 

previous experience or expert’s judgement, its standard 

deviation can be assumed. For instance, if the standard 

deviation of the scale factor be assumed as 5% of its mean, 

then the normal distributed scale factor can be defined as 

𝛽(8.315𝐸 − 07, 4.157𝐸 − 08). Now that both initial shape 

and scale factors are known, the initial or prior degradation 

model based on Equation (1) can be formulated as  
𝐷(𝑡) = 𝛽(8.315𝐸 − 07, 4.157𝐸 − 08) ×𝑒0.7𝑡. 

In Figure 2 the degradation model of the aforementioned 

component based on 1%, 50% and 99% quantiles of its 

stochastic normal distributed scale factor is visualized. 
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Figure 2. Initial degradation model of a component based on 

different scale factor quantiles assuming 0.7 as its shape 

factor 

As shown in Figure 2, for a fixed assumed shape factor, 

smaller scale factors lead to slightly longer lifetime and 

higher scale factors lead to slightly shorter lifetime.  

The uncertainty introduced by assuming the shape factor 

and standard deviation of the scale factor can be 

significantly reduced one sufficient observations for 

updating the initial model are available. The updating of 

initial shape and scale factors are discussed in the following 

section. 

2.2. Updating the degradation model 

The initial or prior degradation model of a component can 

be updated once observations on the degradation level of the 

component are available or once the component 

unexpectedly fails. The observations on the degradation 

level of a component can be based on inspection or 

condition monitoring data. Estimation of the degradation 

level of a component based on real-time condition 

monitoring data (such as vibration, temperature and oil 

particle data) is not further discussed here. In (Gebraeel et 

al. 2005), Bayesian updating of stochastic parameters of 

exponential degradation models based on real-time 

condition monitoring data is discussed in detail.  

The degradation level of a component based on inspections 

can be determined using a Degradation Matrix. A 

degradation matrix is a catalogue for technicians to translate 

their observations during inspection of a component into 

discrete degradation levels of that component. If observed 

degradation of a component is known, then the mean 

observed scale factor of its exponential degradation model 

can be formulated as: 

𝛽(𝜇, 𝜎) ≈ 𝜇𝛽 =
𝐷
𝑒𝛼⁄

  𝑡ℎ𝑒𝑛  
→     

𝜇𝛽,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 =
𝐷𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝑒𝛼⁄  

(3) 

 

In Table 1 an example of such a degradation matrix for wind 

turbine main bearings and monopiles is given. 

Component Observed Damage 
Estimated 

Degradation 

Bearing   

 No damage 0 - 0.2 

 Micro pitting 0.2 - 0.4 

 Debris damage 0.4 - 0.6 

 Edge loading 0.6 - 0.8 

 Cage damage 0.8 - 1.0 

Monopile   

 No damage 0 - 0.2 

 Coating damage 0.2 - 0.4 

 Scour protection damage 0.4 - 0.6 

 Substantial corrosion 0.6 - 0.8 

 Substantial cracks 0.8 - 1.0 

Table 1. Example of degradation matrix for inspection wind 

turbine of bearings and monopiles 

For instance, if a technician observes minor coating damage 

on an offshore wind monopile, using the degradation matrix 

given in Table 1 she can translate it into degradation level of 

0.25. Then, based on Equation (3)  and assuming 0.7 as the 

shape factor, the associated mean scale factor to this 

degradation level is 0.124. 

In order to take into account the uncertainty of inspection or 

condition monitoring based observations, a hybrid of 

observations from different sources can be used. Then, the 

scale factors estimated based on these inspections can be 

fitted to a normal distribution and consequently, observed 

mean and standard deviation of the observed scale factor 

can be determined. For instance, besides the inspection 

results, the degradation level of the same monopile based on 

the accumulated fatigue calculated from structural health 

monitoring data can be estimated. Then, the observed scale 

factor can be used to updated the prior one estimated in 

section 2.1. 

2.2.1. Updating of scale factor 

As discussed above, once by inspections and/or condition 

monitoring data the degradation level and associated 

observed scale factor of a component is known, the 

posterior scale factor of that component’s degradation 

model can be calculated. The posterior distribution of a 

normal distribution is also a normal distribution. According 

to the Bayes’ rule and Normal-Normal model (Jacobs 2008), 

the parameters of the posterior distribution of a prior normal 

distribution given an observation can be calculated using 

Equations (4) and (5): 
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1
𝜎𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
2⁄ = 1

𝜎𝑃𝑟𝑖𝑜𝑟
2⁄ + 1

𝜎𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑
2⁄  (4) 

𝜇𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =

1
𝜎𝑃𝑟𝑖𝑜𝑟
2⁄

1
𝜎𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
2⁄

×𝜇𝑃𝑟𝑖𝑜𝑟 + 

1
𝜎𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑
2⁄

1
𝜎𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
2⁄

×𝜇𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑  

(5) 

According to Equation (4), the posterior precision of a 

normal distribution is equal to the summation of its prior 

and observed precisions (1 𝜎2⁄ ). Furthermore, according to 

Equation (5), the posterior mean of a normal distribution is 

equal to the summation of its weighted prior and observed 

means. For instance, if based on several observations the 

degradation scale factor of the component shown in Figure 2 

is observed as a normal distribution with 𝜇𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 =
1.2𝐸 − 6  and 𝜎𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 = 1.2𝐸 − 7 , then according to 

Equations (4) and (5) the posterior degradation scale factor 

of this component can be formulated as 𝛽(8.71𝐸 −
7, 3.928𝐸 − 8).  

In Figure 3, the prior, observed and posterior normal 

distributed scale factors of the degradation model are 

visualized. 

 

Figure 3. Posterior scale factor of a component plotted 

against prior and observed scale factors 

Similarly in Figure 4, the prior, observed and posterior 

degradation of this component based on its Bayesian 

updated scale factor is visualized. 

 

Figure 4. Posterior degradation of a component based on its 

updated scale factor 

It should be noted that in Figure 4, only 50% quantile of the 

degradation graphs is visualized. 

2.2.2. Updating of shape factor 

The shape factor of an exponential degradation model can 

also be updated once an unexpected failure (not expected by 

its degradation curve) is occurred. If a failure occurs at time 

t, then the updated shape factor can be calculated as: 

𝐷(𝑡) = 𝛽(𝜇, 𝜎)𝑒𝛼𝑡 = 1
   𝑡ℎ𝑒𝑛   
→    𝛼 =

− ln 𝜇𝛽

𝑡
 (6) 

For instance, if it is observed that the component shown 

Figure 2 with shape factor of 0.7 has failed unexpectedly at 

year 18, then according to Equation (6) the updated 

degradation shape factor of this component is 0.78. 

Similar to updating method of scale factor, the shape factor 

can also be updated within a Bayesian model. In that case, 

the shape factor should be modelled as a stochastic variable, 

perhaps fitted to a Weibull distribution. Then, the prior 

shape factor can be updated based on observed failures to 

determine the posterior shape factor. This method is not 

further discussed in this paper. Since both updated shaped 

and scale factors are known, the updated or posterior 

degradation model for this component can be formulated as  
𝐷(𝑡) = 𝛽(8.71𝐸 − 7, 3.928𝐸 − 8) ×𝑒0.78𝑡.  

In Figure 5, the 50% quantile posterior degradation of this 

component based on its updated shape and scale factors is 

shown. 
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Figure 5. Posterior degradation of a component based on its 

updated scale and shape factors 

Now that degradation modelling of a wind farm component 

is known, the remaining useful lifetime of a component at 

any given time can be calculated. 

3. RUL MODELLING 

Once the degradation of a component reaches its maximum, 

that component can be considered as failed. Based on this 

statement, the Remaining Useful Lifetime (RUL) of such a 

component at a given time t can be calculated as: 

𝑅𝑈𝐿(𝑡) = (
−ln𝛽(𝜇, 𝜎)

𝛼⁄ ) − 𝑡 (7) 

The RUL estimation of a component is of interest especially 

when the degradation level of that component is verified by 

observations. As an example, the 50% quantile of the 

remaining useful lifetime of a component with the posterior 

degradation shown in Figure 5 at year 15 using Equation (7) 

can be calculated as 2.94 years. 

According to this remaining useful lifetime estimation, this 

component can operate for another 2.94 years before its 

failure. This value calculated for 50% quantile is the mean 

of RUL at year 15. In order to determine the uncertainty 

associated with this RUL prediction at 15 years of lifetime, 

the RUL(15) for all quantiles should be calculated.  

For instance, in Figure 6 the RUL of this component at year 

15 based on all quantiles is visualized. 

 

Figure 6. Uncertainty in RUL prediction at year 15 for the 

component shown in Figure 5 

 

In Figure 6, it can be seen that the RUL predication at year 

15 deviates from approximately 2.8 years to 3.1 years. This 

uncertainty can be translated into standard deviation of 

0.056 years. Similarly, in Figure 7, five quantiles of the 

remaining useful lifetime of this component plotted against 

its lifetime and degradation level are shown. 

 

Figure 7. Remaining useful lifetime of a component plotted 

against its lifetime and degradation level 

From Figure 7 the variation between different remaining 

useful lifetime quantiles for a given time is not very visible 

since the standard deviation of the RUL for this example 

(about 0.05 year) is too small for yearly scale of this graph. 

4. PROGNOSTIC MODEL 

Now that both degradation and RUL models for offshore 

wind components are known, a prognostic model for fault 

prediction, degradation monitoring and predictive 

maintenance of offshore wind components can be 

developed. In Figure 8, a framework of a prognostic model 

with Bayesian updating for offshore wind farms is outlined. 
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Figure 8. Framework of a prognostic model with Bayesian 

updating for offshore wind farms 

The degradation and RUL models required for this 

prognostic framework are already discussed in the previous 

sections of this paper.  

As seen in Figure 8, once degradation and RUL models of 

offshore wind components are established, inspection 

thresholds should be defined to initiate inspections for 

validation of the predicted degradation of components. If 

based on an inspection it is proven that the predicted 

degradation level is correct, then a predictive maintenance 

work order should be created to reduce the degradation of 

the component or to avoid its future faults. On the other 

hand, if based on an inspection it is proven that predicted 

degradation level of the component is not correct, then the 

observed degradation level should be used to update the 

initial or prior degradation and RUL models, as discussed in 

section 2.2 of this paper. 

Validation of the predicted degradation level can be done 

based on the degradation matrix shown in Table 1. For 

instance, the predicted degradation level of a component is 

considered proven only if it is within 10% of the observed 

degradation, determined by using the degradation matrix 

within an inspection. 

The inspection thresholds can be defined based on a 

degradation limit, based on a RUL limit, or based on a 

hybrid of these two. The inspection thresholds should be 

defined in a way to minimize the number of false 

predictions and to comply with defined O&M costs or wind 

farm availability targets. 

4.1. Degradation based threshold 

The degradation based inspection thresholds are triggered 

once the predicated degradation level of a component goes 

over a limit, such as 0.7 of the 50% quantile degradation 

curve. If a prognostic model opts for a degradation based 

threshold, then an inspection should be done once a 

component lifetime reaches: 

𝐷(𝑡) = 𝛽(𝜇, 𝜎)𝑒𝛼𝑡
   𝑡ℎ𝑒𝑛   
→    𝑡 =

ln(𝐷(𝑡)/𝛽(𝜇, 𝜎))

𝛼
 (8) 

For instance, if a prognostic model for the component 

shown in Figure 5 opts for 70% of the degradation at 50% 

quantile as the inspection threshold, then according to 

Equation (8) an inspection for this component should be 

created once its lifetime reaches 17.6 years. 

If the inspection outcome proves that the predicted 

degradation is correct, then a predictive work order should 

be created. At this time, according to Equation (7) the 

remaining useful lifetime of this component is only 0.29 

year or three and half months. 

As discussed earlier in section 3 of this paper, the 

uncertainty or standard deviation of these estimations can be 

determined by calculating these values for all quantiles. 

It is possible that three and half months is not enough time 

to execute this predictive work order, while keeping work 

order execution costs to its minimum, especially if it is in 

winter season when long waiting times due to harsh 

offshore weather condition is expected. In order to avoid 

this situation, a prognostic model can opt for a RUL based 

inspection threshold. 

4.2. RUL based threshold 

The RUL based inspection thresholds are triggered once the 

predicated RUL of a component goes below a limit, such as 

0.5 year of the 50% quantile RUL curve. If a prognostic 

model opts for a RUL based threshold, then an inspection 

should be done once a component RUL reaches: 

𝑡 = (
−ln𝛽(𝜇, 𝜎)

𝛼⁄ ) − 𝑅𝑈𝐿(𝑡) (9) 

or once the degradation of the component becomes: 

𝐷(𝑡) = 

(𝛽(𝜇, 𝜎)𝑒𝛼𝑡|𝑡 = (
−ln𝛽(𝜇, 𝜎)

𝛼⁄ ) − 𝑅𝑈𝐿(𝑡)) 
(10) 

For instance, if a prognostic model for the component 

shown in Figure 5 opts for half a year or six months RUL 

(at 50% quantile) as the inspection threshold, then according 

to Equations (9) and (10), a predictive work order for this 

component should be created once its lifetime reaches 17.39 

years or once its degradation becomes 0.68. 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

7 

Similarly, as discussed earlier in section 3 of this paper, the 

uncertainty or standard deviation of these estimations can be 

determined by calculating these values for all quantiles.  

If an inspection threshold is RUL based, then it can be 

ensured that sufficient time for preparation and execution of 

follow up predictive work orders is available. However, 

RUL based thresholds do not directly consider the 

degradation level of a component, which can result into 

non-repairable damage to some components. 

4.3. Hybrid threshold 

The optimal inspection threshold for wind farm components 

is a hybrid of degradation and RUL based thresholds to 

ensure that always sufficient time is available for cost-

effective predictive maintenance of components and at the 

same time, the damage of the component is not very severe 

and still it can be easily repaired without bearing much 

costs.  

For instance, a hybrid inspection threshold for a component 

can be 70% of degradation and 6 months RUL both at 50% 

quantiles, whichever occurs first. In Figure 9, this hybrid of 

degradation and RUL based thresholds for prognostic of the 

component with posterior degradation curve given in Figure 

5 is visualized in red and green dotted lines. 

 

Figure 9. Hybrid degradation and RUL based inspection 

thresholds for prognostic of offshore wind components 

The hybrid inspection thresholds can be updated once based 

on the inspection results they proven to be insufficient. 

5. CONCLUSIONS 

The prognostic model defined in this paper is based on 

degradation and remaining useful lifetime of wind farm 

components. The degradation model defined here is based 

on an exponential model, which initial values of its 

deterministic shape factor and normal distributed stochastic 

scale factor can be determined by using the average failure 

rate of a component. Once sufficient inspection or condition 

monitoring based observations on the degradation level of a 

component is known or once a component unexpectedly 

fails, the initial shape and scale factors can be updated to 

determine the posterior degradation model. The 

uncertainties associated with assumed initial exponential 

parameters of the degradation model can be significantly 

reduced once sufficient observations for Bayesian updating 

of the model are available. The more this prognostic model 

is used in practice, the less the associated uncertainties are. 

In future studies on this subject, the exponential degradation 

model in this diagnostic model can be replaced by a 

physical or AI degradation model to increase the model 

accuracy. Relevant physical models for degradation 

modeling of wind farm components are Paris’ law for crack 

growth development (applied typically for degradation 

modelling of welded details in steel towers and monopiles, 

and in wind turbine blades) and S-N curves and the 

Palmgren-Miner’s rule for fatigue assessment (applied 

typically for degradation modelling of foundations or 

drivetrain mechanical components). Additionally, similar to 

Bayesian updating of the degradations scale factor, the 

degradation shape factor can be modelled as a Weibull 

distribution and be updated once some component failures 

are observed.  

In the prognostic model defined in this paper a hybrid of 

degradation and remaining useful lifetime inspection 

thresholds can be used to initiate an inspection for validation 

of the model results. Once an inspection is triggered, if 

using a defined degradation matrix, it is proven that the 

predicted degradation is not correct, based on the observed 

degradation during the inspection the scale parameters of 

the exponential degradation model can be updated. 

However, if by an inspection it is proven that the predicted 

degradation of a component is indeed correct, then a 

predictive based work order is created to reduce the 

component degradation or to avoid its future faults. 

Instead of using one set of thresholds followed by one 

predictive maintenance strategy, the application of multiple 

thresholds followed by several different preventive 

maintenance strategies based on different quantiles 

(uncertainty levels) of degradation and/or remaining useful 

lifetime curves can be investigated. Furthermore, within a 

Bayesian decision network, all possible unknown random 

outcomes of all possible future inspections can be modelled 

and then, optimal O&M strategy based on given cost or 

availability targets at any given time stamp can be 

estimated. In (Sørensen 2009) a framework for such a 

Bayesian decision model is defined and in (Nielsen 2013) 

and (Nielsen & Sørensen 2014) several case studies for risk 

based Bayesian decision models are presented. 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

8 

 

Figure 10. Framework for optimal short-term O&M 

planning of offshore wind farms 

Once based on the prognostic model defined in this paper 

optimal predictive work orders are created, a work order 

scheduling and prioritization model such as the one shown 

in Figure 10 should be used to determine optimal short-term 

O&M planning for all outstanding work orders in a working 

shift, including corrective, scheduled, condition based and 

upgrade work orders. In (Asgarpour 2018) scheduling and 

prioritization of offshore wind maintenance work orders is 

further discussed. 

NOMENCLATURE 

D(t) exponential degradation of a component at 

time t 

α   deterministic shape factor of D(t) 

β(μ, σ) normal distributed scale factor of D(t) 

with mean (μ) and standard deviation (σ) 

𝜆  average failure rate of a component 

MTBF mean time between failures of a repairable 

component 

𝜇𝑃𝑟𝑖𝑜𝑟  mean of the prior scale factor 

𝜎𝑃𝑟𝑖𝑜𝑟   standard deviation of the prior scale factor 

𝜇𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑  mean of the observed scale factor 

𝜎𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑  standard deviation of the observed scale 

factor 

𝜇𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟  mean of the posterior scale factor 

𝜎𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟  standard deviation of the posterior scale 

factor 
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