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ABSTRACT 

Sensor data validation has become an important issue in the 

operation and control of energy production plants. An 

undetected sensor malfunction may convey inaccurate or 

misleading information about the actual plant state, 

possibility leading to unnecessary downtimes and, 

consequently, large financial losses. The objective of this 

work is the development of a novel sensor data validation 

method to promptly detect sensor malfunctions. The 

proposed method is based on the analysis of data regularity 

properties, through the joint use of Continuous Wavelet 

Transform and image analysis techniques. Differently from 

the typical sensor data validation techniques which detect a 

sensor malfunction by observing variations in the 

relationships among measurements provided by different 

sensors, the proposed method validates the data collected by 

a given sensor only using historical data collected from the 

sensor itself.  The proposed method is shown able to correctly 

detect different types and intensities of sensor malfunctions 

from energy production plants. 

1. INTRODUCTION  

Modern energy production plants are complex systems, 

equipped with hundreds of sensors to measure, at relative 

high frequency, physical parameters, such as pressures, 

temperatures and flows for operation control and diagnostic 

purposes. In practice, sensors may malfunction, i.e. they can 

provide inaccurate readings of the monitored physical 

parameters. The most common types of sensor malfunctions 

are: freezing (or constant), noise, spike (or short) and 

quantization (Sharma et al., 2010) (Tolle et al., 2005). They 

can lead to the incorrect intervention of plant operators and 

automatic control systems, causing undesirable 

consequences, such as unnecessary component downtimes, 

or even plant shutdowns with associated large financial 

losses. Thus, the task of promptly detecting the occurrence of 

a sensor malfunction, which is often referred to as sensor data 

validation, is of paramount importance. It has been addressed 

by a variety of methods including Auto Associative Neural 

Network (AANN) (Hines et al., 1998), Nonlinear Partial 

Least Squares Modeling (NLPLS) (Rasmussen et al., 2000), 

Principal Component Analysis (PCA) (Penha & Hines, 2001) 

(Baraldi et al., 2011), Auto Associative Kernel Regression 

(Baraldi et al., 2015) (Garvey et al., 2007), and Multivariate 

State Estimation Technique (MSET) (Gross et al., 1997) 

(Coble et al., 2012). 

A limitation of these approaches is that they only detect the 

abnormal behavior of the measured signals, which, however, 

can be due to several causes, such as a sensor malfunction, a 

process anomaly, a failure of a plant component. The 

subsequent identification of the cause of the abnormal 

behavior is typically a time-consuming task, which requires 

an intervention of the plant personnel or the use of other 

dedicated diagnostic systems. Furthermore, data validation 

approaches typically detect the anomalous behavior of a 

sensor using information provided by other sensors. The 

basic idea is that a sensor malfunction causes a modification 

of the functional relationships among the measured signal 

values. The use of data collected from other sensors may 

cause difficulties from a practical point of view. For example, 

when hundreds of signals are monitored in a plant, it is 

necessary to group them into several subsets, since it has been 

shown in (Roverso et al., 2007), (Baraldi et al., 2011) that a 

single model based on all (hundreds) signals is not able to 

provide satisfactory performances. Although the problem of 

sensor grouping has been successfully addressed in (Baraldi 
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et al., 2011) and (Baraldi et al., 2014) by using ensembles of 

models dedicated to detecting of sensor malfunctions in a 

specific group of sensors, the proposed solutions still have 

some practical limitations: 

1) the necessity of periodically updating the models and the 

corresponding signal grouping to take into account 

possible modifications of the signals relationships 

(Roverso et al., 2007); 

2) the fact that these models are not easily scalable to a fleet 

of plants (Baraldi et al. 2011), since each plant has its 

own characteristics and, therefore, it requires a dedicated 

grouping of the signals.  

To overtake these limitations, we aim at developing a 

completely different approach for detecting sensor 

malfunctions. The idea is to develop a dedicated data 

validation model for each sensor, based on historical data 

collected from the sensor itself in healthy conditions. Since 

the approach does not consider relationships among different 

signals, it can be systematically applied to a fleet of plants, 

without requiring sensor grouping.  

The proposed sensor data validation method builds up from 

the idea that a sensor fault alters the regularity of a signal, i.e., 

its degree of smoothness. Continuous Wavelet Transforms 

(CWT) are able to characterize and quantify the local 

regularity of a signal (Mallat, 2008), and have been employed 

in many engineering applications. For example, the Lipshitz-

exponent, which can be estimated from CWT by using the 

Wavelet Modulus Maxima (WMM) (Mallat & Hwang, 

1992), has been used for bearing faults diagnostics (Li, 2010), 

machinery health monitoring (Miao et al., 2007) and signal 

denoising (Mallat & Hwang, 1992). A limitation of WMM is 

that it is sensible only to signal irregularities, whereas it does 

not allow detecting types of sensor malfunctions which add 

regularity to a signal, such as freezing. For this reason, in this 

work, we propose a novel method based on the use of CWT 

scalograms, which are two-dimensional images representing 

the time evolution of the squared magnitude (or power) of the 

CWT at different frequencies (Mallat, 2008).  

The method combines the use of CWT with image 

analysis techniques for the identification of the similarity 

among the test data and an archive of historical data. It 

involves the following steps:𝑖) performing the CWT of the 

test signal, 𝑖𝑖) computing the corresponding scalogram image 

and 𝑖𝑖𝑖) comparing this scalogram with those obtained from 

historical data of the signals collected by the sensor. With 

respect to the last step, the comparison between scalogram 

images is performed by defining a proper measure of 

similarity between images based on a pixel by pixel 

comparison. 

The main contributions of this work are: 

• the use of CWT scalogram images to detect sensor 

malfunctions;  

• the development of a method which allows the detection 

of a sensor malfunction without using data measured by 

other sensors, is robust to different sensor malfunction 

types and intensities and able to graphically motivate the 

reasons of the detection through the use of scalograms. 

The performance of the proposed method has been verified 

with respect to data taken from an energy production plant. 

Realistic examples of sensor malfunctions have been 

artificially injected in the data streams and the proposed 

method has been compared with a literature PCA-based 

approach from the point of view of the percentage of false 

and missed alarms. 

The remainder of the paper is organized as follows. Section 

2 highlights the main issues associated to sensor data 

validation and provides a description of the most common 

sensor malfunction types. In Section 3, the problem statement 

and notation are discussed. In Section 4, some mathematical 

features of CWT at the basis of the proposed method are 

discussed. Section 5 provides an in-depth discussion of the 

proposed method. The application of the proposed method to 

the case study is shown in Section 6. The methodology 

limitations and its possible developments are discussed in 

Section 7. Finally, in Section 8 conclusions are drawn.  

2. SENSOR DATA VALIDATION 

The objective of this work is the development of a sensor data 

validation method for online detecting sensor readings 

deviating from the ground truth values of the monitored 

physical parameters. Signal deviations can be triggered by a 

single sensor fault or by the failure of a node with attached 

several sensors, because of hardware failure or sensor internal 

malfunction (e.g., losing the connection with the sensor 

board). According to (Sharma et al., 2010), these types of 

malfunction are considered as non-functional faults since 

they only impact the fidelity of the reported data. The 

different types of sensor malfunctions are typically classified 

as (Ni et al., 2009) (Sharma et al., 2010):  

•  Spike (or short): a sharp change in the measured value 

between two successive measurements. It produces a 

single isolated sensor reading with a value that is 

significantly far from the signal ground truth (Figure 1). 

• Noise: the variance of the sensor readings increases and 

the data becomes highly uncorrelated with the true signal 

values (Figure 2). 

•  Freezing (or constant): the sensor reports a constant 

value for a large number of successive samples. It may 

precede and/or follow an unexpected signal jump, with 

readings that may fall outside the range of the measured 

phenomenon. Figures 3 and 4 show some examples of 

freezing without and with jump, respectively. 

•  Quantization: a reduction of the analogue-to-digital 

resolution conversion. Quantization replaces signal 

ground truth values with their approximations into a 
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finite set of discrete levels. In practice, the sensor reading 

is characterized by intervals with constant values 

followed by sharp changes (Figure 5). 

 

Figure 1. Example of sensor spike. Left: ground truth signal 

values; right: corresponding readings in case of sensor 

spike. 

 

Figure 2. Example of sensor malfunction due to noise. Left: 

ground truth signal values; right: corresponding readings in 

case with noise. 

  

Figure 3. Example of sensor freezing. Left: ground truth 

signal values; right: corresponding readings in case of 

sensor freezing.  

 

Figure 4. Example of sensor freezing with jump. Left: 

ground truth signal value; right: corresponding readings in 

case of sensor freezing with jump 

 

Figure 5. Examples of sensor quantization. Left: ground 

truth signal value; right: corresponding readings in case of 

sensor quantization. 

3. PROBLEM STATEMENT AND NOTATION  

Let 𝑥(𝑡) be the measurement of a generic plant sensor at time 

𝑡. The objective of the present work is to develop a method 

for promptly detecting the occurrence of sensor malfunctions. 

We assume that: 

i. historical measurements 𝑥(𝜏), 𝜏 < 𝑡, taken by the sensor 

when it was in healthy conditions are available; this 

assumption requires that the training data are validated 

in advance by plant experts to guarantee that they have 

been collected by healthy sensors. This activity is 

typically performed by considering maintenance reports 

and by visual inspection of the acquired signals.  

ii. the data in 𝑥(𝜏) are representative of the plant operating 

conditions, whether normal or anomalous, caused by the 

degradation and failure of components.  

iii. Indeed, in real industrial applications, with sensor data 

collected for long periods of time (e.g. years), a large 

spectrum of plant operating conditions is registered, 

including plant anomalous ones.  

The detection of the sensor malfunction is based on the 

analysis of the last 𝐿 measurements collected in the time 

window 𝑥𝐿(𝑡) = {𝑥(𝑡 − 𝐿 + 1), … , 𝑥(𝑡)}, which is hereafter 

referred to as test pattern. The historical measurements 𝑥(𝜏) 

are organized into 𝑆 training vectors of length 𝐿, containing 

the measurements in the time window 𝑥𝐿,𝑗 = {𝑥𝑗(1 +

(𝑗 − 1)Δ), … , 𝑥𝑗((𝑗 − 1)Δ + 𝐿)}  with 𝑗 = 1, … , 𝑆  and 0 ≤

Δ < 𝐿 . The difference 𝐿 − Δ  represents the overlapping 

between two consecutive time windows, i.e. the last 𝐿 − Δ 

measurements of the 𝑗 − 𝑡ℎ vector 𝑥𝐿,𝑗 coincide with the first 

𝐿 − Δ measurements of the vector 𝑥𝐿,𝑗+1. 

4. CONTINUOUS WAVELET TRANSFORMS FOR SENSOR 

MALFUNCTION DETECTION 

Signal measurements in energy production plants may show 

transients and non-stationary behaviors.  Therefore, time or 

frequency-domain methods, which have been developed for 

stationary signals, cannot be applied with success to the 

sensor data validation task. Due to the time-varying 
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frequency spectrum of the signals, suitable time–frequency 

decomposition tools are needed for real-time signal data 

validation. Time–frequency analysis can identify the signal 

frequency components and reveal their time-variant features. 

Various time–frequency analysis methods have been 

proposed and applied to fault detection, diagnostics and 

prognostics. Among these, Short-Time Fourier Transform 

(STFT), Wavelet Transform (WT), Hilbert–Huang 

Transform (HHT), and Wigner–Ville Distribution (WVD) 

are the most commonly used approaches. 

Wavelet transform is a mathematical tool that converts a 

signal into a different form (Gao & Yan, 2011). The objective 

of the conversion is twofold: i) to reveal signal characteristics 

that are hidden in the time domain and ii) to provide a more 

succinct representation of the original signal. A base wavelet 

function 𝜓(𝑡)  is needed in order to perform the wavelet 

transform. A wavelet is a small wave that has an oscillating 

wavelike characteristic and has its energy concentrated in 

time. A wavelet is used as template for analyzing time-

varying or nonstationary signals by decomposing the signal 

into a 2D, time-frequency domain representation (Gao & 

Yan, 2011) (Mallat, 2008).  

For any real signal 𝑥(𝑡) ∈ 𝐿2(ℝ), the Continuous Wavelet 

Transform (CWT) with scale parameter 𝑠 > 0, translation 

parameter 𝑢 ∈  ℝ and wavelet function 𝜓(𝑡) is: 

𝐶𝑊𝑇𝑥
𝜓(𝑢, 𝑠) = ∫ 𝑥(𝑡)

1

√𝑠
𝜓 (

𝑡 − 𝑢

𝑠
) 𝑑𝑡

+∞

−∞

 (1) 

The reader interested in more mathematical details about 

wavelet transform can refer to Appendix A. The translation 

parameter 𝑢  can be interpreted as the time instant around 

which the signal is analyzed. With respect to the scale 

parameter, at small 𝑠  values 𝐶𝑊𝑇𝑥
𝜓(𝑢, 𝑠)  provides 

information on the details (i.e., the high frequency content) 

of the signal in the neighborhood of time instant 𝑢, whereas 

at large 𝑠  values 𝐶𝑊𝑇𝑥
𝜓(𝑢, 𝑠)  provides information on the 

trend (i.e., the low frequency content) of the signal in the 

neighborhood of time instant 𝑢 . A standard way of 

representing the CWT is to use a two-dimensional image, 

called scalogram, graphically representing the square of the 

CWT,  |𝐶𝑊𝑇𝑥
𝜓(𝑢, 𝑠)|

2
, as function of the translation 

parameter 𝑢  and scale parameter 𝑠.  Since the signals 

considered are typically digital signals, a discrete 

approximation of Eq. (1) is typically computed (Torrence & 

Compo, 2010). The approximated scalogram is a matrix 

whose rows and columns correspond to different scales 𝑠 and 

translation parameters 𝑢 , respectively. Figure 6 shows a 

cosine signal with a sudden change of frequency at time 𝑡 =
25  and its corresponding scalogram image, which clearly 

allows graphically identifying the time at which the change 

of frequency occurs.  

 

Figure 6. Left: Signal 𝑥(𝑡); right: and corresponding    

scalogram |𝐶𝑊𝑇𝑥
𝜓(𝑢, 𝑠)|

2
.  

 

As mentioned earlier, a sensor malfunction alters the 

regularity of a signal, i.e., its degree of smoothness. For 

example: a sensor malfunction causing spikes adds 

irregularity to a signal, being a spike an approximation of a 

Dirac distribution, which is not differentiable (Mallat & 

Hwang, 1992); a sensor malfunction causing freezing of the 

sensor readings adds regularity to the signal, since a constant 

signal is differentiable infinite times. A measure of the local 

regularity of a signal is provided by the Lipshitz exponent 𝛼 

(Mallat & Hwang, 1992) which is introduced, from a 

mathematical point of view, in Appendix B. Considering a 

function 𝑥(𝑡), it is possible to show that: 

•  if 𝑥(𝑡)  is uniformely Lipschitz 𝛼 > 𝑛  in the 

neighborhood of 𝑡0, this implies that 𝑥(𝑡) is necessarily  
𝑛 times continuously differentiable in this neighborhood 

(Mallat, 2008); 

• 𝛼  equal to 1  implies that 𝑥(𝑡)  is a continuously and 

differentiable function at 𝑡0; 

• 𝛼 ∈ (0,1) implies that the function 𝑥(𝑡) is continuous at 

𝑡0 but the first derivative of the function at that point is 

not continuous;  

• 𝛼 equal to 0 implies that the function is discontinuous at 

𝑡0 but bounded in the neighborhood of 𝑡0. 

In (Struzik, 2001), the estimation of the Lipschitz-exponent 

at a given point 𝑡0  has been obtained through the use of the 

Wavelet Modulus Maxima (WMM). A WMM is defined as 

any point (𝑢0, 𝑠0)  such that |𝐶𝑊𝑇𝑡
𝜓(𝑢, 𝑠0)| is a local 

maximum at 𝑢 = 𝑢0  and the maxima line consists of the 

points that are local maxima. The approximated estimation of 

𝛼 is provided by: 

𝛼 = 2

1
𝑧−1

∑ 𝑙𝑜𝑔2(𝑠=𝑧−1
𝑠=1

𝐶𝑊𝑇𝑥
𝜓(𝑢,𝑠+1)

𝐶𝑊𝑇𝑥
𝜓(𝑢,𝑠)

)

 
(2) 

where 𝑧 is the length of the maxima line that propagates from 

coarse scales to fine scales. This equation has been 

successfully applied in many engineering problems, like 

bearing faults diagnostics (Li, 2010), machinery health 
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monitoring problems (Miao et al., 2007) and signal denoising 

(Mallat & Hwang, 1992). These works typically rely on the 

fact that any irregularity can be detected by finding the 

translation parameter 𝑢  at which WMM converge at fine 

scales (Mallat & Hwang, 1992). Notice, however, that 

methods for 𝛼 estimation based on WMM are only able to 

provide a rough approximation, since they exploit only the 

information carried out by the first and last points of the 

maxima line (Miao et al., 2007). A common problem of 

WMM-based techniques for the estimation of 𝛼 is that the 

limited resolution of a discrete signal implies that the scale 𝑠 

cannot be arbitrarily small, causing approximations which 

can lead to inaccurate Lipschitz exponent estimation (Tu et 

al., 2005). Therefore, the use of WMM for sensor data 

validation is applicable to detect only those types of sensor 

malfunctions adding irregularity to a signal, such as spike and 

noise, whereas those adding regularity to a signal, such as 

freezing, cannot be properly detected since none of the 

maxima lines converge to the 𝑢 corresponding to the freezing 

(Mallat & Hwang, 1992). 

To overcome these limitations of the use of WMM for 

sensor data validation, in this work we propose to directly 

work on scalogram images. This original approach is 

motivated also by the possibility of taking full advantage of 

the redundancy provided by the CWT, which allows avoiding 

loss of information (Kovačević & Chebira, 2007) and has 

been shown useful in many applications such as feature 

extraction (Sengüler, 2016). 

With respect to the choice of the type of wavelet transform, 

notice that different sensor malfunctions influence the 𝐶𝑊𝑇 

coefficients in specific and different scale ranges, as it will be 

shown in Section 4.1 and Appendix B. For this reason, an 

efficient sensor validation tool should be based on a wavelet 

transform able to provide an accurate scale localization, such 

as Morlet wavelet: 

𝜓(𝑡) =
1

𝜋1/4
  𝑒𝑖𝜋𝑓0𝑡  𝑒−𝑡2/2 (3) 

which has been shown to provide more accurate scale 

localization than other types of wavelet functions (Karacan & 

Olea, 2014).  

4.1. Analysis of the scalogram characteristics in 

correspondence of different types of sensor 

malfunction 

In this Section, we discuss the characteristics of the 

scalograms of the signals measured in case of different types 

of sensor malfunctions.   

4.1.1. Spike 

Figure 7 shows the scalograms obtained from a signal 

acquired by a healthy sensor (Figure 7a) and the same signal 

to which a spike has been artificially injected at time 𝑡 = 50 

(Figure 7b). 

 

Figure 7. Top: scalogram of the signal of Figure 1(a) 

acquired by a healthy sensor; bottom: scalogram of the 

signal of Figure 1(b) corresponding to the same signal with 

a spike at 𝑡 = 50. 

As expected, the main difference between the two scalogram 

images is observed in the neighborhood of the time at which 

the spike has been injected and consists in the abrupt 

increasing of the wavelet coefficients at small scales. This 

result is coherent with the fact that, from a theoretical point 

of view, a spike can be seen as an approximation of a Dirac 

distribution which is characterized by a Lipschitz exponent 

equal to -1 (Mallat & Hwang, 1992). Thus, the wavelet 

transform modulus maxima increases proportionally to 
1

𝑠
 

over a large range of scales in the corresponding 

neighborhood (Mallat & Hwang, 1992). In conclusion, a 

spike can be recognized for its large coefficients in the 

scalogram at small scales. 

4.1.2. Noise 

Figure 8 shows the scalograms obtained from a signal 

acquired by a healthy sensor (Figure 8a) and the same signal 

to which noise has been artificially injected (Figure 8b). The 

scalogram image shows larger CWT coefficients at all times 

in the case of presence of noise. According to (Qiu et al., 

2006), this is due to the fact that noise adds irregularity to the 

signal in every sample, increasing its variance. In practice, a 

noisy signal shows sharper changes than the nominal one, 

which can be seen as a combination of many low intensity 

spikes. This implies CWT coefficients larger than in the case 

of a healthy sensor, but smaller than those observed in 

correspondence of the spike. 
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Figure 8. Top: scalogram of the signal of Figure 2(a) 

acquired by a healthy sensor; bottom: scalogram of the 

signal of Figure 2(b) corresponding to the same signal after 

artificially injecting a noise malfunction. 

4.2. Freezing  

Figure 9 shows the scalograms obtained from a signal 

acquired by a healthy sensor (Figure 3a) and the same signal 

to which a freezing has been artificially injected (Figure 3b). 

The scalogram obtained from the frozen signal is 

characterized by a large region with zero CWT coefficients 

at small scale. The zero CWT coefficients are due to the fact 

that when the wavelet atom 𝜓𝑢,𝑠(𝑡) support includes that of a 

constant signal 𝑥(𝑡) = 𝑐0, Eq. (1) becomes:  

𝐶𝑊𝑇𝑥
𝜓(𝑢, 𝑠) = ∫ 𝑥(𝑡)

+∞

−∞

𝜓∗
𝑢,𝑠

(𝑡)𝑑𝑡 =

= ∫ 𝑐0𝜓∗
𝑢,𝑠

(𝑡)𝑑𝑡
𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝜓𝑢,𝑠 

= 0 

(4) 

where the last equality holds for the vanishing moment 

property (Eq. 20 in Appendix B). Notice that, since the 

smaller is 𝑠, the smaller is the support of 𝜓𝑢,𝑠(𝑡), we can 

conclude that for a fixed value of the translation parameter 𝑢, 

the support of the atom 𝜓𝑢,𝑎(𝑡) is included in that of the atom 

𝜓𝑢,𝑏(𝑡) provided that 𝑎 < 𝑏. Thus, if the support of  𝜓𝑢,𝑏(𝑡) 

includes the frozen signal interval, then also the support of 

𝜓𝑢,𝑎(𝑡) includes the same interval and, consequently, has a 

zero CWT coefficient. For this reason, the region with zero 

CWT coefficient values becomes larger when 𝑠 decreases to 

zero and tends to show a triangular shape (Figure 9).  

 

Figure 9. Top: scalogram of the signal of the Figure 3(a) 

acquired by a healthy sensor; bottom: scalogram of the 

signal of Figure 3(b) corresponding to the same signal after 

artificially injecting a freeze without jump malfunction. 

4.3. Quantization 

Figure 10 shows the scalograms obtained from a signal 

acquired by a healthy sensor (Figure 5a) and the same signal 

to which a quantization has been artificially injected (Figure 

5b). The comparison of these two Figures shows that the 

CWT coefficients at large scales are very similar whereas 

there are differences at small scales. In detail, the effect of the 

quantization is twofold: 

• when the quantized signal is constant for several 

successive samples, the CWT coefficients become 

smaller with respect to the same case without 

quantization (dashed region in Figure 10b). This is due 

to the fact that the quantized signal behaves like a frozen 

signal in this time interval; 

• when quantization induces sudden jumps, the CWT 

coefficients become larger than those of the same case 

without quantization. This is due to the fact that a 

quantized signal behaves like a low intensity spike in 

these time intervals. 

Thus, a quantized signal can be viewed as a signal in which 

short periods of freezing are alternated to low intensity 

spikes. 
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Figure 10.  Signal in nominal condition (left) corresponding 

to the same signal after artificially injecting a quantization 

malfunction (right). 

 

Figure 11. Top: scalogram of the signal of the Figure 5(a) 

acquired by a healthy sensor; bottom: scalogram of the 

signal of Figure 5(b) corresponding to the same signal after 

artificially injecting a quantization malfunction. 

Notice that freezing and quantization malfunctions can also 

be detected by computing a first-order forward finite 

difference approximation of the test signal first derivative, 

and then, setting a detection threshold on the number of 

consecutive chunks of 0’s. A drawback of this approach is 

that it would require the development of dedicated models 

and the setting of the corresponding detection thresholds for 

each type of sensor malfunctions, whereas the proposed 

method allows dealing with all the considered sensor 

malfunctions using just one model and one detection 

threshold. 

5. SENSOR MALFUNCTION DETECTION METHOD 

The method proposed in this work is based on the idea of 

comparing the scalogram obtained from the test vector 

𝑥𝐿(𝑡) = {𝑥(𝑡 − 𝐿 + 1), … , 𝑥(𝑡)} to the scalograms obtained 

from the training vectors 𝑥𝐿,𝑗 = {𝑥𝑗(1 + (𝑗 −

1)Δ), … , 𝑥𝑗((𝑗 − 1)Δ + 𝐿)}, 𝑗 = 1, … , 𝑆, 0 ≤ Δ < 𝐿.  

First, each training vector 𝑥𝐿,𝑗, = 1, … , 𝑆, is transformed in 

the corresponding scalogram by applying the following 

procedure:  

Step 1: Compute the CWT, 𝐶𝑊𝑇
𝑥𝐿,𝑗
𝜓 (𝑢, 𝑠),  and the 

corresponding scalogram image 𝐼𝑗(𝑡). The scalogram 𝐼𝑗(𝑡) 

is a matrix of size 𝑁𝑥𝑀 , where 𝑁  and 𝑀  depend on the 

discretization of the scale parameter 𝑠  and translation 

parameter 𝑢  (typically 𝑀 = 𝐿) , respectively. According to 

the results of the analysis of Section 3, large scale values do 

not provide useful information for sensor malfunction 

detection and, consequently, the analysis focuses on scale 

values lower than a prefixed threshold, i.e., only scale values 

𝑠 < �̃� are retained. Notice that this results in a reduction of 

the original scalogram dimensions from 𝑁𝑥𝑀  to 𝑁𝑥 𝑀, 
being 𝑁 < 𝑁. 

Step 2: Process the scalogram image to:  

a) enhance the differences at low scales, which have been 

shown to be relevant for the identification of a sensor 

malfunction caused by freezing or quantization (Sections 

3.3 and 3.4); 

b) normalize the intensities 𝐶𝑊𝑇
𝑥𝐿,𝑗
𝝍 (𝑢, 𝑠)  in the range 

[0, 1]. 

Step a) transforms the scalogram image 𝐼(𝑡) into a new 

scalogram image: 

𝐼𝑗(𝑡)𝑝,𝑞 = {
𝐼𝑗(𝑡)𝑝,𝑞

𝑎𝑚𝑎𝑥

𝑖𝑓 𝐼𝑗(𝑡)𝑝,𝑞 ≤  𝑎𝑚𝑎𝑥  

𝑖𝑓 𝐼𝑗(𝑡)𝑝,𝑞 >  𝑎𝑚𝑎𝑥

 (5) 

where 𝑎𝑚𝑎𝑥 is a predefined threshold.  

Step b) converts the scalogram 𝐼𝑗(𝑡) into a 

greyscale image 𝐺𝑗(𝑡)  by scaling its entries in the 

interval [0,1] as follows: 

 

𝐺𝑗(𝑡)𝑝,𝑞 =  
𝐼𝑗(𝑡)𝑝,𝑞 − 𝐼𝑗(𝑡)𝑚𝑖𝑛

𝐼𝑗(𝑡)𝑚𝑎𝑥 − 𝐼𝑗(𝑡)𝑚𝑖𝑛

 (6) 

where 𝐼𝑗(𝑡)𝑚𝑖𝑛 and 𝐼𝑗(𝑡)𝑚𝑎𝑥 are the minimum and the 

maximum values of the matrix  𝐼𝑗(𝑡) in all the training 

scalograms.  

Since two consecutive training vectors, 𝑥𝐿,𝑗 and 

𝑥𝐿,𝑗+1, overlap of Δ − 𝐿 components (Section 3), i.e., the last 

𝐿 − Δ measurements of the 𝑗𝑡ℎ vector 𝑥𝐿,𝑗  coincide with the 

first 𝐿 − Δ measurements of the vector 𝑥𝐿,𝑗+1, the effect on 

the scalogram of the occurrence of an event, such as a plant 

transient, will be visible at different times in different 

consecutive scalograms. This allows obtaining in the training 

scalograms an overall representation of the signal measured 

by healthy sensors that is invariant from the shift of the 

events. 
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Then, for the test vector 𝑥𝐿 , we repeat Steps 1 and 2 to obtain 

its corresponding scalogram 𝐼(𝑡) . Notice that entries of 

matrix 𝐼(𝑡)  (Eq. (5)) close to 𝑎𝑚𝑎𝑥  at low scales indicate 

sensor malfunctions which add irregularity (i.e., noise and 

spike) and entries lower than 𝑎𝑚𝑎𝑥  indicate sensor 

malfunctions which add regularity (i.e., quantization and 

freezing). With respect to matrix 𝐺(𝑡) in Eq. (6), entries close 

to 1 at low scales are typical of noise and spike malfunctions, 

whereas entries close to 0 are typical of quantization and 

freezing malfunctions. Once the training and test grayscale 

images, 𝐺𝑗 and 𝐺, have been obtained, they are compared by 

applying the following procedure:  

A1 Compute the dissimilarities 𝑑𝑗   between the greyscale 

image 𝐺(𝑡)  and all the greyscale images 𝐺𝑗  obtained 

from the historical signals 𝑥𝐿,𝑗, pre-processed according 

to Steps 1-2:  

𝑑𝑗 = ‖𝐺(𝑡) − 𝐺𝑗‖    𝑗 = 1, … , 𝑆        (7) 

       where the matrix norm of the scalogram is: 

‖𝐺(𝑡)‖ = ∑ ∑|𝐺(𝑡)𝑝,𝑞|

𝑀

𝑗=𝑞

𝑁

𝑝=1

 (8) 

A2 Identify the scalogram of the training set most similar to 

the one currently tested, i.e. the one characterized by the 

minimum dissimilarity 𝑑∗: 

𝑑∗ = 𝑚𝑖𝑛
𝑗=1,…,𝑆

𝑑𝑗 (9) 

A3 Compare 𝑑∗ with a fixed detection threshold 𝑇:  if 𝑑∗ is 

greater than 𝑇, then a sensor malfunction is detected.  

Parameters 𝑇, 𝑎𝑚𝑎𝑥 , and �̃� are set by minimizing a weighted 

sum of the number of false and missed alarms, 𝑓𝑎 and 𝑚𝑎, on 

a validation set: 

 �̃�(𝑓𝑎, 𝑚𝑎) = 𝑤1𝑓𝑎 + 𝑤2𝑚𝑎 (10) 

where the weights 𝑤1 and 𝑤2 are set by considering a proper 

trade off between missed and false alarms. The validation set 

is formed by: 

i. historical data collected when the sensor was healthy, 

different from those used for the model training. 

ii. data representative of sensor malfunctions. If these latter 

data are not available, they can be simulated using the 

procedure described in Appendix C. 

5.1 TIME COMPLEXITY 

Resorting to the big 𝑂  notation typically employed for 

evaluating algorithm complexity (Wegener, 2005), the 

computational complexity of the different steps of the 

proposed method for testing a signal segment of 𝐿 samples 

and setting 𝑀 = 𝐿 is: 

• Step 1: 𝑂(𝑁𝐿 log 𝐿)  for computing the wavelet 

transform of the test signal 𝑥𝐿(𝑡) , with 𝑂(𝐿 log 𝐿) 

representing the time complexity required per scale 

(Torrence & Compo, 2010); 

• Step 2: 𝑂(𝑁𝐿) for scalogram preprocessing; 

• A1: 𝑂(𝑁𝐿𝑆) for computing all distances 𝑑𝑗; 

• A2: 𝑂(𝑆); 

• A3: 𝑂(1). 

Notice that the computational complexity is 𝑂(𝐿3)  in the 

worst case, i.e., when 𝐿 = 𝑁 = 𝑆. 

6. CASE STUDY 

We consider a dataset containing real temperature 

measurements recorded at a sampling frequency 𝑓𝑠 = 1 𝐻𝑧 

from a component of an electricity production plant (Baraldi 

et al., 2015). The data have been validated by plant experts to 

guarantee that they have been collected by healthy sensors 

when the plant components were in healthy conditions. The 

temperature signal has been segmented using a fixed time 

window of length 𝐿 = 120 samples (corresponding to 120 

seconds), with overlapping of 20 samples. The overlapping 

of the training pattern has been introduced to deal with the 

fact that a malfunction can occur at any time of the test 

window. Therefore, in order to detect it, various shifted 

training vectors with an overlap of 𝐿 − Δ = 20 samples are 

considered in the training set. Since the available data have 

been collected by a healthy sensor, we have artificially 

simulated sensor malfunctions of different types and 

intensities, according to the procedure proposed in (Sharma 

et al., 2010) and reported in Appendix C. Figure 12 shows an 

example of signal behavior and Figure 13 examples of 

simulated low-intensity sensor malfunctions. Since the 

available historical signal vectors 𝑥𝐿,𝑗  have been collected 

from a plant in normal condition, the case study does not fully 

meet the second assumption of the problem statement, i.e., 

that the available historical data are representative of all the 

plant operating conditions, including anomalies caused by 

degradation and failure of the component. Therefore, 

component malfunctions can be erroneously detected as 

sensor malfunction by the data validation method. Notice, 

however, that component failures and malfunctions typically 

involve several signals at the same time and therefore can be 

distinguished from sensor malfunctions.  
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Figure 12. Signal measurements obtained from a healthy 

sensor.  

 

 

Figure 13. Simulated sensor malfunctions: freezing (top-

left), spike (top-right), noise (down-left), quantization 

(down-right). 

6.1. Dataset partitioning 

We have partitioned the available data into three subsets: 𝑖) 

a training set, 𝑖𝑖)  a validation set, and 𝑖𝑖𝑖)  a test set. The 

training set is formed by 67 signal segments measured from 

a healthy sensor and constitutes the set of vectors 𝑥𝐿,𝑗 from 

which the dissimilarity of the test segment is computed in 

Step 3 (Section 4). The validation and test sets are formed by 

400 and 460 signal segments, respectively, and contain 

measurements from the healthy sensor and artificially 

injected sensor malfunctions of different types and 

intensities, according to the proportions of Tables 1 and 2. 

The validation set has been used to determine the values of 

the parameters of the method: wavelet coefficient threshold  

𝑎𝑚𝑎𝑥  (Step 2a), maximum scale �̃�  (Step 1) and detection 

threshold 𝑇 (Step 5), whereas the test set has been used to 

evaluate the performance of the proposed methodology. To 

better mimic a real application, the signal segments of the 

training set temporally preceed those of the validation set, 

which preceed those of the test set. 

Type of sensor 

malfunction  

Number of signals in the 

validation set 

Freezing 100 

Spike 100 

Noise 100 

Quantization 50 

Healthy 50 

Table 1. Validation set partition. 

 

Sensor 

malfunctions 

Number of signals in the 

test set 

Freeze 100 

Spike 100 

Noise 100 

Quantization 80 

Healthy 80 

Table 2. Test set partition. 

6.2. Results 

Wavelet coefficient threshold 𝑎𝑚𝑎𝑥 ,  scale �̃�  and detection 

threshold 𝑇 have been set by minimizing the function �̃� Eq. 

(9) assuming 𝑤1 = 𝑤2 = 1, i.e., by giving same importance 

to the contributes. By setting 𝑎𝑚𝑎𝑥 = 0.06, �̃� = 2.8 and 𝑇 =
884, we have obtained the optimal trade off 1% of missed 

alarms and 4% of false alarms in the validation set. This 

choice of the scale parameter �̃� results in a reduction of the 

original scalogram dimensions from 591x120 to 50x120, 

with evident benefits on the computational burden. Figure 14 

shows the variations of the false alarm rates and of different 

types of missed alarm rate with respect to variation of the 

detection threshold 𝑇. It is interesting to observe that if the 

threshold 𝑇 is progressively increased, the first types of 

missed alarms that occur are those caused by quantization and 

freezing malfunctions, whereas spike and noise malfunctions 

are correctly recognized. This is due to the fact that the 

scalograms corresponding to quantization and freezing 

malfunctions are more similar to those obtained from a 

healthy sensor than those corresponding to spike and noise 

malfunctions, as shown in Figures 7, 8, 9 and 11. Thus, the 

identification of quantization and freezing malfunctions is 

more sensible to the threshold value than that of the spike and 

noise malfunctions. 
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Figure 14.  Variations of the false alarm rate (cross-dotted 

black line) and of the missed alarm rates due to freezing 

(dashed blue curve), quantization malfunctions (dotted red 

curve), spike malfunctions (circle-dotted purple curve), 

noise malfunctions (continuous green curve). The total 

variation of the missed alarm rate is referred using the 

(dash-dot grey curve). 

 

Figure 15.  Example of missed alarm: the quantized signal 

segment (Top) and the corresponding signal segment before 

the malfunction injection (Down). 

The application of the proposed method to the signal 

segments of the test set gives a 0% rate of false alarms and a 

1.5% rate of missed alarms, caused by quantization, whereas 

freezing, spikes and noise are always correctly detected. 

Figure 15 shows an example of a missed alarm caused by a 

quantized signal segment incorrectly considered as healthy. 

Notice that the degree of quantization of this signal segment 

(intensity of the malfunction) is very small and the quantized 

signal segment appears very similar to the corresponding 

segment before the injection of the malfunction (Figure 15, 

Top).  

We have compared the results of the proposed methodology 

with those obtained by applying a) a sensor data validation 

approach based on the use of Principal Component Analysis 

(PCA) (Penha & Hines, 2001) and b) a two classes SVM 

classifier with Gaussian kernel directly applied to the raw 

measurements. 

 

The PCA approach relies on the following steps: 

• the extraction of 87 lumped features, such as statistical 

metrics (e.g., means, standard deviations, etc.) and 

analytics (e.g., derivatives, elongation, etc.), signal 

transforms in the frequency domain (e.g., Fourier 

Transform, Laplace Transform) and/or in the time-

frequency domain (e.g., Short Time Fourier Transform 

(STFT). The considered set of features have been shown 

able to catch the dynamic behavior of the signals in 

prognostics and health management applications in 

(Baraldi et al., 2016) (Cannarile et al., 2017); 

•  the application of PCA to the training data, which 

correspond to measurements obtained from a healthy 

sensor; 

•  the identification of the number of principal components 

to be used for the signal reconstruction (Penha & Hines, 

2001). This is performed by looking for the most 

satisfactory trade-off between false and missed alarm 

rates in the validation set; 

•  the reconstruction of the test set data and the comparison 

of the Square Prediction Error (SPE) (Lee et al, 2004) 

(also referred to as Q-statistic or residual (Lee et al., 

2004)) with a fixed threshold (Lee et al., 2004).  

 

With respect to the SVM classifier we have considered two 

classes: “normal condition” (class 1) and “sensor 

malfunctioning” (class -1). The SVM classifier has been built 

using a dataset which will be referred to as 𝑇𝑟
𝑁𝑒𝑤 , formed by 

the union of the training and validation sets introduced in 

Section 6.1. 𝑇𝑟
𝑁𝑒𝑤  is, therefore, made by 𝑁1 = 117  and 

𝑁−1 = 350 patterns of class 1 and -1, respectively. The two 

parameters of the SVM with Gaussian kernel, i.e., the scale 

parameter 𝜎2 of the Gaussian kernel and the cost parameter 

𝐶, controlling the tradeoff between error penalization and the 

complexity of the classification function, have been set by 

trial-and-error with the objective of minimizing the cost 

function in Eq. (10) with weights 𝑤1 = 𝑤2 = 0.5. Table 3 

reports the considered values of the parameters 𝜎2  and 𝐶. 
The set 𝑇𝑟𝑛𝑒𝑤  has been randomly partitioned in a training-

set (75% of total patterns) and a validation set (25% of total 

patterns). Being the training-set unbalanced (𝑁−1
𝑡𝑟 = 0.75 ∗

𝑁−1 > 𝑁1
𝑡𝑟 = 0.75 ∗ 𝑁1), we have used the Different Error 

Cost (DEC) method (Batuwita & Palade, 2013) where the 
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parameter 𝐶  has been scaled by 𝑁𝑡𝑟/(2𝑁𝑁1
𝑡𝑟 )  for class 1 

patterns and by 𝑁𝑡𝑟/(2𝑁𝑁−1
𝑡𝑟 )  for class -1 patterns, with 

𝑁𝑡𝑟 = 𝑁1
𝑡𝑟 + 𝑁−1

𝑡𝑟 . We have found that the solution 

minimizing the considered cost function (Eq. (10)) is: 

(𝜎2, 𝐶) = (16,64).   Finally, we have trained a new SVM 

using 𝑇𝑟
𝑁𝑒𝑤 and tested it on the test set (Table 2). 

 
Hyperparameter Considered values 

𝜎2 
{2−8, 2−7, 2−6, 2−5, 2−4, 2−3, 2−2, 2−1 

20, 21, 22, 23, 24, 25, 26, 27, 28}   

𝐶 
{2−8, 2−7, 2−6, 2−5, 2−4, 2−3, 2−2, 2−1 

20, 21, 22, 23, 24, 25, 26, 27, 28}   

Table 3. Considered values of hyperparameters 𝜎2 and 𝐶. 

Table 4 compares the results obtained by the proposed 

method, the PCA-based method and the SVM classifier. 

 

METHOD 

Percentage 

of Missed 

Alarm 

Percentage of 

False Alarm 

Proposed Method 0% 1.25% 

PCA-based Method 

(𝑃 = 90%) 
10.8% 

 

1.25% 

 

SVM using raw data 22.5% 45.5% 

Table 4. Comparison of the performance of the proposed 

method with the PCA based approach. 

From Table 4 we can conclude that: 1) the PCA proposed 

approach is less accurate than the proposed method: the 

percentage of missed alarms increases from 0% to 10.8% 

(Table 4), with the same percentage of false alarms; 2) the 

SVM method performs poorly compared to the proposed 

method with larger rates of missed alarms and false alarms. 

We have evaluated the robustness of the proposed method 

with respect to different intensities of the malfunctions, 

simulated according to (Sharma et al., 2010) (see Appendix 

C). Table 5 reports the results in term of missed alarms for 

the different types of sensor malfunctions.  

 

Sensor 

malfunctions 

Low 

Intensity 

Medium 

intensity 

High 

intensity 

Freezing 0% 1% 0% 

Spike 0% 0% 0% 

Noise 0% 0% 0% 

Quantization 6% 2% 0% 

Table 5. Percentage of missed alarms considering sensor 

malfunctions of low, medium and high intensities. 

We can conclude that the method provides satisfactory 

performances and, as expected, the overall percentage of 

missed alarms decreases as the malfunction intensity 

increases. 

Furthermore, we have tested the proposed method on 100 

signal segments characterized by the simultaneous presence 

of two sensor malfunctions, obtained by randomly sampling 

their times of occurrence and their intensities from the same 

probability distributions used for sampling low intensity 

single sensor malfunctions. Table 6 reports the results in 

terms of missed alarms, for the different combinations of two 

sensor malfunctions. It is interesting to observe that the 

percentage of missed alarms, in case of quantization 

malfunction decreases to 0% (it was 6% in case of single low 

intensity malfunction). This is due to the fact that scalogram 

modifications caused by spike or noise malfunctions (Figures 

7 and 8) are easier to detect than those caused by to the 

quantization anomaly (Figure 11), and, therefore, the 

detection of the quantization malfunction is facilitated by the 

simultaneous presence of spike and noise malfunctions. 

Sensor 

malfunctions 

Number of 

segments 

Missed 

alarms 

Quantization+Spike 20 0% 

Quantization+Noise 20 0% 

Freezing+Spike 20 0% 

Noise+Spike 20 0% 

Noise+Freeze 20 0% 

Table 6. Percentage of missed alarms considering pairs of 

sensor malfunctions. 

With regards to the computational time, testing signal 

segments of 𝐿 = 120 samples has required on average 0.052 

seconds using an Intel Core i5-M430 @ 2.26 GHz processor 

with 4 Gb RAM in a MATLAB 2017b environment. 

Therefore, the proposed approach is suitable for being used 

in field operation. 

7. DISCUSSION AND OUTLOOKS 

In this work, we have not considered the possible influence 

of one sensor malfunction on other sensor readings. In 

complex systems characterized by many interconnected 

components in which the readings of some sensors are used 

for system control, one sensor malfunction can cause non-

optimal decisions of the control system, which results in 

anomalous behaviors of other signals. In this case, although 

the proposed method correctly identifies the sensor affected 

by the malfunction, it will also erroneously detect 

malfunctions of other sensors. Furthermore, multiple sensor 

malfunctions can be detected at the same time in cases of 

plant abnormal conditions caused by degradation or failures 

of plant components which are not included in the training 

set. The discrimination between a sensor malfunction and a 
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plant abnormal condition requires the development of a 

supervisor system integrating the data validation tool with a 

module for the detection of abnormal plant conditions. 

Another issue not investigated in this work is the 

classification of the type of sensor malfunction. We expect 

that a multi-class classifier (e.g., K-Nearest Neighbors 

(KNN), Decision Trees (DT), etc.), performs poorly in 

practice, due to the difficulty of discriminating between 

freezing and quantization sensor malfunctions which produce 

very similar variations in the signal values and in the 

associated scalograms, as discussed in Section 4. A possible 

approach to overtake this difficulty is the development of a 

One-Vs-All (OVA) classification system, where different 

binary classifiers are developed, each one trained to 

distinguish patterns of a single class from those of all the 

remaining classes.  

A limitation of the proposed method is that it cannot identify 

sensor malfunctions which cause drifts of the sensor readings. 

This is due to the fact that drifts do not alter the regularity of 

a signal (i.e., its smoothness), but introduce a (typically 

monotone) trend in the signal, which has no effect at the high 

frequency (low scale values). Therefore, the detection of the 

drift malfunction would require the development of method 

able to distinguish malfunctions which, differently from the 

malfunction types considered in this work, have effects at low 

frequencies. Finally, notice that if the current operational 

condition of the plant remarkably differs from those in which 

the training set data have been recorded, the performance of 

the method for detecting the occurrence of a sensor 

malfunctioning is expected to deteriorate. This problem can 

be overtaken by periodically retraining the model. 

8. CONCLUSION 

In this work, we have developed a novel method for sensor 

data validation, which combines the use of CWT with an 

image analysis technique. Sensor validation is performed by 

comparing the CWT scalogram obtained from the test signal 

with those obtained from historical data of the same signal. 

The performance of the method, measured in terms of false 

and missed alarm rates, is shown superior to that of a PCA-

based approach and binary SVM classifier for data validation. 

From a practical point of view, the method, differently from 

the traditional sensor data validation approaches which 

consider the correlations among plant signals, is easily 

applicable to all the sensors of a fleet of plants being the 

validation of the data measured from a sensor independent to 

that of other sensors. Furthermore, it has been shown that the 

analysis of the obtained scalograms allows distinguishing 

among the different types of sensor malfunction.  

APPENDIX A: CONTINUOUS WAVELET TRANSFORMS 

In mathematical terms, a wavelet is a function 𝜓(𝑡) ∈
𝐿2(ℝ) satisfying the admissibility condition (Mallat & 

Hwang, 1992): 

∫
|𝜉(𝜔)|2

𝜔
𝑑𝜔 = ∫

|𝜉(𝜔)|2

|𝜔|
𝑑𝜔 = 𝐶

0

−∞

< ∞
+∞

0

 (11) 

where 𝐿2(ℝ)  denotes the space of square-integrable 

functions and 𝜉(𝜔)  the Fourier transform of the wavelet 

function 𝜓(𝑡). The admissibility condition implies that the 

Fourier transform of the function 𝜓(𝑡)  vanishes at zero 

frequency: 

|𝜉(𝜔)|𝜔=0
2

= 0 (12) 

and that the average value of the wavelet 𝜓(𝑡)  is zero 

(Mallat & Hwang, 1992): 

∫ 𝜓(𝑡)𝑑𝑡 = 0
+∞

−∞

 (13) 

A dictionary of time-frequency atoms is defined from the 

wavelet function 𝜓(𝑡) by scaling 𝜓(𝑡) by 𝑠  (referred to as 

the scale parameter) and translating it by 𝑢  (referred to as 

translation parameter): 

𝜓𝑢,𝑠(𝑡): =
1

√𝑠
𝜓 (

𝑡 − 𝑢

𝑠
)    𝑢 ∈  ℝ,    𝑠 > 0 (14) 

  

For any real signal 𝑥(𝑡) ∈ 𝐿2(ℝ), the Continuous Wavelet 

Transform (CWT) with scale parameter 𝑠 and translation 

parameter 𝑢 is: 

𝐶𝑊𝑇𝑥
𝜓(𝑢, 𝑠) = ∫ 𝑥(𝑡)𝜓𝑢,𝑠(𝑡)𝑑𝑡

+∞

−∞

 (15) 

The factor 
1

√𝑠
 in Eq. (14) guarantees that the wavelet 

transform in Eq. (1) is directly comparable at different scales.  

APPENDIX B: LIPSCHITZ EXPONENT  

A function 𝑥(𝑡) is pointwise Lipschitz 𝛼 ≥ 0 at 𝑡0, if there 

exist 𝐴 > 0 and a polynomial 𝑃𝑡0
 of degree 𝑛𝛼 = ⌊𝛼⌋ , the 

greatest integer less than or equal to 𝛼, such that (Mallat, 

2008): 

 |𝑥(𝑡) − 𝑃𝑡0
 (𝑡)| ≤ 𝐴|𝑡 − 𝑡0|𝛼   ∀𝑡𝜖ℝ   (16) 

• The function 𝑥(𝑡)  is uniformly Lipschitz 𝛼  over the 

interval [𝑎, 𝑏] if it satisfies Eq. (16) for all 𝑡0𝜖[𝑎, 𝑏], with 

a constant 𝐴 that is independent of 𝑡0 (Mallat, 2008). 

• The Lipschitz regularity of 𝑥(𝑡) at 𝑡0 or over [𝑎, 𝑏] is the 

greatest value of 𝛼 such that 𝑥(𝑡) is Lipschitz-𝛼, i.e. the 

least real number that is greater than or equal to all 𝛼 

(Mallat 2008). 

The Lipshitz coefficient can be interpreted by considering the 

Taylor formula. Suppose that 𝑥(𝑡) is 𝑚 times differentiable 

in the interval [𝑡0 − 𝛿 , 𝑡0 +  𝛿 ]. Let 𝑃𝑡0
 be the Taylor 

polynomial in the neighborhood of 𝑡0: 
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𝑃𝑡0
(𝑡) = ∑

𝑥(𝑘)(𝑡0)

𝑘!
(𝑡 − 𝑡0)𝑘

𝑚−1

𝑘=0

 (17) 

The approximation error: 

 

𝜀𝑡0
= 𝑥(𝑡) − 𝑃𝑡0

(𝑡) (18) 

satisfies: 

∀𝑡𝜖[𝑡0 − 𝛿, 𝑡0 + 𝛿], 

  |𝜀𝑡0
| ≤

|𝑡 − 𝑡0|𝑚

𝑚!
  𝑠𝑢𝑝

𝑤𝜖[𝑡0−𝛿,𝑡0+𝛿]
|𝑥(𝑚)(𝑤)|  

(19) 

Since the Taylor formula relates the differentiability of a 

signal to local polynomial approximations (Mallat, 2008), the 

𝑚𝑡ℎorder differentiability of 𝑥(𝑡) in the neighborhood of 𝑡0 

yields an upper bound of the error 𝜀𝑡𝑜
 when 𝑡 tends to 𝑡0. The 

Lipschitz regularity refines this upper bound with non-integer 

exponents and, thus, it provides uniform regularity 

measurements over time intervals and at specific points 𝑡0. If 

𝑥(𝑡) has a singularity at 𝑡0 then, the Lipschitz exponent at 𝑡0 

characterizes the singularity behavior (Mallat, 2008). CWT 

have been used to estimate the Lipschitz exponent, and, thus, 

to characterize the local regularity of functions (Mallat & 

Hwang, 1992). According to (Holschneider & Tchamitchian, 

1989), the asymptotic decay of the wavelet transform at small 

scales is related to the local Lipschitz regularity through the 

following theorem: 

 

Theorem 1: 

Let 𝑥(𝑡) 𝐿2(ℝ) and [𝑎, 𝑏] an interval of ℝ. Let 0 < 𝛼 <
1. For any 𝜖 > 0, a function 𝑥(𝑡) is uniformly Lipschitz 𝛼 

over intervals (𝑎 + 𝜖, 𝑏 − 𝜖) , if and only if for any 𝜖 > 0 

there exists a constant 𝐴𝜀 such that for any 𝑢 ∈ (𝑎 + 𝜖, 𝑏 −
𝜖) and scale 𝑠: 

|𝐶𝑊𝑇𝑥
𝜓(𝑢, 𝑠)| ≤ 𝐴𝜀𝑠𝛼 (20) 

In order to extend Theorem 1 to Lipschitz exponents 𝛼 larger 

than 1, it is necessary to impose that the wavelet 𝜓(𝑡) has 

enough vanishing moments (Mallat & Hwang, 1992). A 

wavelet 𝜓(𝑡)  is said to have 𝑛  vanishing moments if and 

only if for all positive integers 𝛽 < 𝑛  it satisfies (Mallat, 

2008): 

∫ 𝑡𝛽
+∞

−∞

 𝜓(𝑡) 𝑑𝑡 = 0 (21) 

If the wavelet 𝜓(𝑡) has 𝑛 vanishing moments, then, Theorem 

1 remains valid for any non-integer value 𝛼 such that 0 <
 𝛼 < 𝑛  (Mallat & Hwang, 1992).  

APPENDIX C: SENSOR MALFUNCTIONS SIMULATION 

Different sensor malfunction intensities have been simulated 

according to (Sharma et al., 2010), using fixed time window 

𝑥𝐿 = {𝑥(1), … , 𝑥(𝐿)} of 𝐿 samples. According to (Sharma et 

al., 2010), we distinguish among low, medium and high 

intensity malfunctions, where low intensity malfunctions are 

harder to detect since faulty samples do not differ 

significantly from normal sensor readings. Low intensity 

sensor malfunctions have been simulated by setting the 

parameters 𝑓, 𝑔, ℎ, �̃� and 𝑄 in Eq. (22), Eq. (23), Eq. (24) and 

Eq. (25) to the values used in (Sharma et al., 2010) and 

reported in Table 6. To simulate medium and high intensity 

malfunctions the parameters 𝑓, 𝑔, ℎ and 𝑄  in Eq. (22), Eq. 

(23), Eq. (24) and Eq. (25), have been set as in (Sharma et al., 

2010) and are reported in Table 7. 

Parameter Coefficient 

ℎ 1 

�̃� 19 

𝑓 1.5 

𝑔 0.5 

𝑄 8 

Table 6. Parameters values used to simulate low intensity 

sensor malfunctions 

Parameters 
Coefficient for medium 

intensity 

Coefficient for 

high intensity 

ℎ 1 1 

�̃� 40 80 

𝑓 5 10 

𝑔 1.5 3 

𝑄 6 3 

Table 7. Parameters values used to simulate low intensity 

sensor malfunctions 

• Spike 

Spike malfunctions have been simulated by randomly 

drawing a sample 𝑟 and replacing the reported value 𝑥(𝑘) 

with 

�̃�(𝑟) = 𝑥(𝑟) + 𝑓𝑥(𝑟) (22) 

where the multiplicative factor 𝑓 determines the intensity of 

the spike faults.  

• Noise  

Noise malfunctions have been simulated selecting a set of 

successive samples 𝑊 and added a random draw from a 

normal distribution, 𝑁(0, 𝑔2𝜎2), to each sample 𝑥(𝑟) in 𝑊, 

i.e., 

�̃�(𝑟) = 𝑥(𝑟) + √𝑔2𝜎2𝑁(0,1) (23) 

where 𝜎2 is the variance of the signal in nominal condition 

and 𝑔 is a multiplicative factor, which allows controlling the 

intensity of noise malfunction. 
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• Freezing 

Freezing malfunctions have been simulated selecting the time 

length  �̃� < 𝐿 for which the signal measurement is affected 

by freezing, randomly sampling the time of occurrence of the 

malfunction �̃� = 1, … , 𝐿 − �̃�,  and replacing the sensor 

reading with 

�̃�(𝑟) = 𝑥(�̃�) + ℎ        𝑟 = �̃�, … , �̃� + �̃� − 1 (24) 

where ℎ  indicates the size of the sudden jump at the 

beginning of the freezing. 

• Quantization 

To inject quantization faults, we have firstly computed the 

minimum 𝑚𝑖𝑛  and the maximum 𝑚𝑎𝑥  values within the 

time window 𝑥𝐿 ; then, we have selected the number 𝑄  of 

discrete levels, so that the possible values that the quantized 

signal can assume are  

𝑦𝑙 = (𝑙 − 1) (
𝑚𝑎𝑥 − 𝑚𝑖𝑛

𝑄
) + 𝑚𝑖𝑛    𝑙 = 1, … , 𝑄 (25) 

Finally, the reported value 𝑥(𝑟)  is replaced with 𝑦𝑞∗(𝑟) , 

where the index 𝑞∗(𝑟) satisfies 

𝑞∗(𝑟) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑞=1,…,𝑄|𝑦𝑙 − 𝑥(𝑟)| (26) 
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