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ABSTRACT

Air leakage in braking pipes is a commonly encountered me-
chanical defect on trains. A severe air leakage will lead to
braking issues and therefore decrease the reliability and cause
train delays or stranding. However, air leakage is difficult
to be detected via visual inspection and therefore most air
leakage defects are run to fail. In this research we present a
framework that not only can detect air leakages but also pre-
dicts the severity of air leakages so that action plans can be
determined based on the severity level. The proposed con-
textual anomaly detection method detects air leakages based
on the on/off logs of a compressor. Air leakage causes fail-
ure in the context when the compressor idle time is short than
the compressor run time, that is, the speed of air consump-
tion is faster than air generation. In our method the logistic
regression classifier is adopted to model two different classes
of compressor behavior for each train separately. The logistic
regression classifier defines the boundary separating the two
classes under normal situations and models the distribution of
the compressor idle time and run time separately using logis-
tic functions. The air leakage anomaly is further detected in
the context that when a compressor idle time is erroneously
classified as a compressor run time. To distinguish anomalies
from outliers and detect anomalies based on the severity de-
gree, a density-based clustering method with a dynamic den-
sity threshold is developed for anomaly detection. The results
have demonstrated that most air leakages can be detected one
to four weeks before the braking failure and therefore can be
prevented in time. Most importantly, the contextual anomaly
detection method can pre-filter anomaly candidates and there-
fore avoid generating false alarms. To facilitate the decision-
making process, the logistic function built on the compressor
run time is further used together with the duration of an air
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leakage to model the severity of the air leakage. By build-
ing the prediction model on the severity, the remaining useful
life of the air braking pipe until it reaches a certain level of
severity can be estimated.

1. INTRODUCTION

Dutch Railways, the principal railway operator in the Nether-
lands, operates 178 VIRM (lengthened interregional rolling
stock) trains which are a series of electric multiple unit (EMU)
double-deck trains. These trains were built between 1994
and 2009 with on-board train management systems contin-
uously logging particular events on the local disk or on a re-
mote disk using wireless data communications. To ensure
all trains are reliable and safe to operate at the lowest cost,
Dutch Railways is continuously optimizing the maintenance
schedule to plan when and what to maintain (de Vos & van
Dongen, 2015). Condition-based monitoring data collected
from the on-board train management systems enable us to
move towards prognostics and health management (Coble,
Ramuhalli, Bond, Hines, & Upadhyaya, 2015; Schenkendorf
& Groos, 2015) of rolling stock. Condition monitoring (Bart-
ram & Mahadevan, 2015; Eker, Camci, & Jennions, 2014;
Prakash, Narasimhan, & Pandey, 2017) is more than detect-
ing train failure or malfunctions. Continuous gathering of
data allows for trend analysis over the entire fleet and allows
for data-driven performance improvements for instance ac-
tual state-dependent maintenance (Poot-Geertman, Huisman,
& van Rijn, 2015; O’Donovan, Bruton, & O’Sullivan, 2016;
Qiao & Weiss, 2016). With the wealth of condition infor-
mation, static and reactive preventive and corrective main-
tenance scheduling will be replaced by dynamic and proac-
tive predictive maintenance in the future (Eker et al., 2014;
Schenkendorf & Groos, 2015).

Like the heart of a human body which pumps blood around
the body, the compressor of a train pumps air into the braking
pipe. The air in the braking pipe is then consumed by op-
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Figure 1. Propose prognostic health management methodology for air leakage in braking pipe.

erations such as braking, door opening and closing and bio-
reactor usage. Air leakage in braking pipes is a commonly en-
countered mechanical defect on trains which occurs roughly
1.5 times a train per year on average. A severe air leakage will
lead to braking issues and cause train delays or stranding. For
a dense network operating 1,000 trains in the Netherlands, it
is a high risk in disturbing the passenger transportation ser-
vice. In short, air leakage defects are critical both in business
impact and service reliability. Therefore, checking air leak-
age is one of the daily maintenance tasks in the service depot
carried out by technicians. Nevertheless air leakage is one of
the most difficult defects to be detected by visual or audio in-
spection carried out in the workshops. According to historical
maintenance records from Dutch Railways, only a very low
percentage of air leakages can be discovered by daily inspec-
tions. Vast majority of air leakages were often reported by
train drivers during operation when they were facing braking
or door issues resulting in an event of train delay or stranding.

In this work, a new discovery of using switch on and off logs
of a compressor to detect air leakages in braking pipes is re-
ported. Due to the high variation and noisy nature of the com-
pressor behavior data, clustering techniques (Upadhyaya &
Singh, 2012; Behera & Rani, 2016; Khan, Awad, & Thurais-
ingham, 2007) are considered most applicable to our appli-
cation for anomaly detection. Anomaly detection (Chandola,
Banerjee, & Kumar, 2009; Behera & Rani, 2016; Khan et
al., 2007; Biswas et al., 2016) is widely applied in many
applications where continuous monitoring is available. The
goal is to find variants that are different from normal be-
haviors. In applications where false positives are very ex-
pensive, post-processing or human interaction are often re-
quired to eliminate false positives. Contextual anomaly de-
tection (Mahapatra, Srivastava, & Srivastava, 2012; Hayes &
Capretz, 2015) is a newly emerging field of study that aims to
detect anomalies that occur within the context of other meta-

information such as spatial or temporal information. For in-
stance, a sensor value 0 during work hours might be normal
while it is abnormal during off-work hours. In this study the
logistic regression classifier (Mitchell, 1997; Ng & Jordan,
2002) is adopted for building context of ”Compressor Run
Time” and ”Compressor Idle Time” separately for each train.
The context is used for defining a threshold to filter out non-
targeted regions because air leakage is most likely occur in
regions where ”Compressor Idle Time” is overlapped with
”Compressor Run Time”. This threshold differs per train due
to difference in configuration, age and usage, and therefore
the role of the logistic regression classifier is to model the
distribution of these two classes in order to identify the deci-
sion boundary between them separately for each train and use
it as the threshold.

However, during normal services, the air consumption in the
braking pipes can be triggered by activities such as braking,
door opening and closing and bio-reactor usage and so forth.
Also the number of carriers of the train has an impact on the
duration of air consumption. Therefore there might be sud-
den and singular occurrences of speedy air consumption due
to sudden increase of air consumption demands. This kind
of sudden increase of usage demand is defined as an outlier.
The most intuitive way to distinguish anomaly from outlier
is based on density since a leakage is a mechanical failure
which will occur constantly in a certain period of time. On
the other hand, a sudden increasing demand is often a sin-
gle and random event. In this work, we have developed a
density-based clustering approach which is inspired by DB-
SCAN (Ester, Kriegel, Sander, & Xu, 1996; Birant & Kut,
2007) to detect regions of high density. These regions in-
dicate the existence of air leakage. To consider the severity
degree of air leakage in anomaly detection, we have defined
a dynamic density threshold based on the logistic model de-
scribing the context. The result of contextual anomaly detec-
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Figure 2. Illustration of air circulation system.

tion based on the density-based clustering approach suggest
that air leakages in braking pipes can be detected at least one
to four weeks before the braking failure.

To facilitate the decision-making process and decide the right
time for operations and maintenance actions, the logistic func-
tion built on the compressor run time is further used together
with the duration of an air leakage to model the severity of the
air leakage. The severity level is modeled in such a method
that it is always between 0 and 1, and a higher value means a
higher severity degree in air leakage. By building the predic-
tion model on the severity, the remaining useful life of the air
braking pipe until it reaches a certain level of severity can be
estimated.

To summarize, the main contribution of this work include:

• enabling the data-driven detection of air leakage in train
braking pipes,

• development of the robust contextual anomaly detection
method to detect air leakages among different data dis-
tributions,

• development of the severity index to indicate the severity
level of a detected air leakage to facilitate the decision
making process for maintenance planning.

Our proposed prognostic health management methodology
for air leakage in braking pipe is as shown in Fig. 1. The
lower part consists of the procedures and the upper part con-
tains the proposed methods/models. In addition to the con-
ventional procedures (Coble et al., 2015), we have added a

feedback loop to the methodology to enable both validation
and continuous improvement on the models. In this paper, the
application and development of logistical regression classifier
in the Monitor and Detect procedure and density-based clus-
tering in the Diagnose procedure will be described in detail in
Section 2. The development of severity modeling by logistic
function and severity prediction using the Linear Regression
models will be introduced in Section 3. Experimental results
on individual trains and over the fleet will be presented and
discussed in Section 4.

2. CONTEXTUAL AIR LEAKAGE DETECTION IN BRAK-
ING PIPES

In Fig. 2, the sketch of the mechanism of the air circulation
system is illustrated. The air pressure of a main reservoir on
VIRM trains should be kept in the level between 8.5 and 10
bar at all times. When it drops to below 8.5 bar, the compres-
sor will be switched on to pump air into the main reservoir
until the air pressure reaches 10 bar again. After 10 bar is
researched, the compressor will be switched off. Air in the
main reservoir will be consumed by the braking pipe during
service. The time it takes for a compressor to pump air into
the main reservoir is defined as the ”Compressor Run Time”
in this work. The time it takes for the braking pipe to consume
air in the main reservoir while the compressor is switched off
is defined as the ”Compressor Idle Time”. It is not difficult to
imagine that when the speed of air generation is slower than
air consumption there will be insufficient air supply to the
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braking pipes and therefore braking issues will occur. One
of the most possible cause of this phenomenon is air leakage
in the braking pipe which is a commonly found mechanical
defect on trains. To the best of our knowledge, this is the
first work discovering the capability of switch on/off logs of
a compressor in detecting air leakage in braking pipes. Such a
discovery is extremely valuable since air leakage is one of the
most difficult defect to be detected by visual or audio inspec-
tion carried out in the workshops. By converting the switch
on/off logs of a compressor into duration of compressor run
time and idle time, air leakage is finally possible to be contin-
uously monitored and detected from data.

Due to the difference in configuration and operational use of
each train, the range and distribution of ”Compressor Idle
Time” and ”Compressor Run Time” differ per train. How-
ever, the physical observation that when the speed of air con-
sumption is faster than the speed of air generation, there might
exist an air leakage applies in general to all trains. To find out
the region of interest for air leakage detection for each train,
the logistic regression classifier is adopted for building con-
text of ”Compressor Run Time” and ”Compressor Idle Time”
separately for each train as a two class problem where ”Com-
pressor Run Time” is the positive class and ”Compressor Idle
Time” is the negative class. By building the context with lo-
gistic models, a threshold can be defined at the intersecting
point where the probability of the positive class and negative
class are both 0.5 to pre-filter non-targeted regions. Since
air leakages occur most likely in regions where ”Compres-
sor Idle Time” is overlapped with ”Compressor Run Time”
and therefore only ”Compressor Idle Time” with a similarity
higher than 0.5 by applying the logistic model of the positive
class will be considered for the clustering procedure.

2.1. Learning Context with Logistic Regression Classifier

Logistic regression classifier is a linear model for learning
P (Y |X) in the case where Y is the class label and X =
[x1, x2, ..., xm] is an input data vector. In our application
we only consider the case where Y is a boolean variable (2
class problem) andm equals 1 which means the data vector is
one-dimensional. The parametric model assumed by logistic
regression in the 2 class setting is:

P (Y = 0|X) =
1

1 + exp(w0 +
∑m

i=1 wixi)
(1)

and

P (Y = 1|X) =
exp(w0 +

∑m
i=1 wixi)

1 + exp(w0 +
∑m

i=1 wixi)
. (2)

The goal is to learn the parameters wj , for all j’s from train-
ing data. Since the sum of the two probabilities in Eq.(1)
and Eq.(2) must equal 1, Eq.(2) can be directly derived from
Eq.(1).

In our application, we use the point X̂ where P (Y = 0|X̂)
equals P (Y = 1|X̂) as the threshold. That is the point X̂
where

1

1 + exp(w0 + w1x̂1)
=

1

2
, (3)

and X̂ = [x̂1] since the data vector is one-dimensional in our
application. By taking the natural logarithm, this becomes

w0 + w1x̂1 = 0. (4)

By transforming Eq.(4), one can derive

x̂1 = −w0

w1
. (5)

Therefore, after learning parameters wj , for all j’s, the point
X̂ can also be derived. That is, for all data points in the neg-
ative class (”Compressor Idle Time”), only those less than or
equal to X̂ will be included in the clustering procedure for
anomaly detection.

In Fig. 3, an example is given to illustrate the functionality of
the logistic regression classifier in our application. From the
distribution of 2 classes in Fig. 3(a), the overlapped area can
be observed. The logistic regression classifier models these 2
classes with logistic functions as shown in Fig. 3(b) to find the
most significant point to distinguish these 2 classes. In this
example, the intersecting point of these 2 classes is at 497.4
and it is used as the threshold for filtering out any ”Compres-
sor Idle Time” with a duration value larger than 497.4 since
these values are very unlikely to be generated from air leak-
ages.

2.1.1. Training Logistic Regression Classifier

One common approach to train a logistic regression model
is to choose parameter values that maximize the probability
of the observed Y values in the training data, conditioned on
their corresponding X values. That is, to choose parameters
W satisfying

W ← argmax
n∑

k=1

lnP (Y k|Xk,W ), (6)

where W = [w0, w1, ..., wm] is the vector of parameters to
be estimated, Y k denotes the observed value of Y in the kth
training example, and Xk demotes the observed value of X
in the kth training example. The expression to the right of the
argmax is the logarithm of the conditional likelihood.

By substituting with Eq.(1) and Eq.(2), the log of the condi-
tional likelihood l(W ) can be then expressed as:

l(W ) =

n∑
k=1

Y klnP (Y k = 1|Xk,W )

+(1− Y k)lnP (Y k = 0|Xk,W )
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(a) (b)

Figure 3. The (a) distribution in histograms, and (b) trained logistic models of ”Compressor Run Time” and ”Compressor Idle
Time” data of train 8608.

=

n∑
k=1

Y k(w0 +

m∑
i=1

wixi)

−ln(1 + exp(w0 +

m∑
i=1

wixi)) (7)

where xki denotes the value of xi for the kth training example.

However, these is no closed form solution to maximizing l(W )
with respect toW , and one common approach is to use gradi-
ent ascent. The ith component of the vector gradient has the
form

∂l(W )

∂wi
=

n∑
k=1

xki (Y
k − P̂ (Y k = 1|Xk,W ))) (8)

where P̂ (Y k = 1|Xk,W ) is the prediction result of the lo-
gistic regression classifier. Since the conditional log likeli-
hood is a concave function, this gradient ascent procedure
will converge to a global maximum. By beginning with ini-
tial weights of zero, the weights are iteratively updated with

wi ← wi + η

n∑
k=1

xki (Y
k − P̂ (Y k = 1|Xk,W ))) (9)

where η is the step size which is often a small constant.

2.2. A Density-Based Clustering Approach for Anomaly
Detection with A Dynamic Density Threshold

For clustering in a noisy dataset, density-based approaches
are most commonly adopted. Among them, DBSCAN (Ester
et al., 1996; Birant & Kut, 2007) is one of the most well-
known approaches which requires two parameters: ε andmin-
Pts. The parameter ε defines the neighborhood of a consid-
ered point, and minPts is the minimum number of points

required to form a dense region. DBSCAN starts with an ar-
bitrary starting point that has not been visited. This point’s ε-
neighborhood is retrieved, and if it contains a sufficient num-
ber of points, a cluster is started. Otherwise, the point is con-
sidered as a noise. However this point might later be found
in the ε-neighborhood of a different point containing a suffi-
cient number of points and hence be made a part of a clus-
ter. If a point is found to be a dense part of a cluster, its
ε-neighborhood is also part of that cluster. Hence, all points
that are found within the ε-neighborhood are added, as is their
own ε-neighborhood when they are also dense. This proce-
dure iterates until all points are visited.

In the case of air leakage detection, the detection capability
in a severe region needs to be higher than that in a less severe
region. Therefore we have defined a dynamic density thresh-
old based on the condition of severity. The procedure of our
density-based clustering approach for anomaly detection with
a dynamic density threshold is described in the following:

• Step 1: Use the threshold defined in Section 2.1 to limit
the search range of anomalies.

• Step 2: In the interested region, calculate the neighbor-
hood density of each data point. The neighborhood den-
sity of a data point is the number of data points located
in its ε-neighborhood region. A ε-neighborhood region
of a data point xi is defined by:

|xi − xj | ≤ ε, ∀j (10)

where ε is an user-defined constant.

• Step 3: Classify a data point and all other points located
in its ε-neighborhood as anomalies if its neighborhood
density is higher than the density threshold. The density
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threshold should be dynamic and vary with the degree
of severity. That is, a more severe air leakage (shorter
idle duration) should be more easily detected by giving
a lower density threshold and vice versa. By giving a
user-defined density limit minPts, the dynamic density
threshold β becomes

β = 2 ∗minPts ∗ 1

1 + exp(w0 +
∑m

i=1 wixi)
, (11)

where 1
1+exp(w0+

∑m
i=1 wixi)

is adopted from Eq.(1).

• Step 4: For a data point, if its neighborhood density is
greater than or equal to its dynamic density threshold
β, this data point and all the other data points within
the neighborhood of this data points will be labeled as
anomalies.

• Step 5: Data points share equivalence relations will form
a connected component which is an irregular shaped clus-
ter Ck.

In detecting mechanical defects, occurrence frequency and
severity degree are two of the most commonly concerned fac-
tors. The proposed density-based clustering captures both by
setting dynamic density thresholds.

3. SEVERITY MODELING AND PREDICTION

From the diagnostic procedures described in the above sec-
tion, air leakages often can be detected one to four weeks be-
fore failure. However, for operations and maintenance plan-
ning, a exact indication for alarm triggering and action is usu-
ally desired. Therefore, in order to define the moment for
action, in this work a severity index S is proposed and it is
designed by combining the logistic function and the duration
of a air leakage as shown in Eq.(12).

S
tp
Ck

= max(1− 2

1 + exp(w0 +
∑m

i=1 wixi)
)

×min([
(tp − t0)

D
, 1]),

∀xi ∈ Ck at tp (12)

where tp is the current time stamp of incoming data points,
t0 is the oldest time stamp of all data points xi in Ck, and D
is the pre-defined duration of an observation period. That is,
S
tp
Ck

is the severity index of clusterCk at time stamp tp. Since
S
tp
Ck

is always between 0 and 1, a threshold θ can be easily
chosen for decision making. The purpose of the observation
period is to reduce the possibility of unnecessary alarms. The
necessity of the observation period D may differ per appli-
cation and the duration of the observation period depends on
the operational and maintenance planning requirements of the
train operator.

Given the current severity index, a prediction model f(·) can

be designed to estimate the severity index in the upcoming
hours as

Ŝ
tp+1

Ck
= f(S

tp
Ck
, S

tp−1

Ck
, ..., S

tp−q

Ck
), (13)

where Ŝtp+1

Ck
is the estimated severity index of cluster Ck for

time stamp tp+1. In this application, the Linear Regression
model is adopted for predicting the severity indexes. The time
horizon in which the severity index is predicted to reach the
action threshold θ is considered the remaining useful life of
the air circulation system.

4. EXPERIMENTAL RESULTS

From 178 VIRM trains 632,683 data points were collected in
the period from May 2015 to October 2016, in which 6,957
are labeled as ”Air Leakage” and 625,726 are labeled as ”Nor-
mal”. To be more clear, each data point is the median ”Com-
pressor Run Time” or median ”Compressor Idle Time” of a
specific compressor within one hour. For different trains, the
occurrences of compressor switch on/off logs differ per day
(ranging from 30 to 120 counts a day) depending on the num-
ber of carriers, compressor type and bio-reactor, etc. In order
to build a generic detection algorithm over the entire fleet, a
more universal unit is required to construct a stable system
and therefore time (in this case, hour) is used as the unit but
not individual occurrence. The data labels are derived from
maintenance records of air leakages in the same period. In
these 178 trains, 55 trains are mounted with real-time mon-
itoring systems and the data were sent via 4G network di-
rectly into the data center. In the rest of 123 trains, the data
were read out physically with laptops in the maintenance de-
pot. Due to the manual operations, there were sometimes long
gaps in weeks or months between data records.

4.1. Diagnostics

In the experiments, the logistic regression classifier was built
for each train to derive the filtering threshold on ”Compressor
Idle Time”. For anomaly detection, our density-based cluster-
ing approach finds clusters in a two-dimensional dataset con-
sisting two features, i.e., ”Compressor Idle Time” and date
converted into the number of days from January 0, 0000.
The ε-neighborhood of a data point for the clustering pro-
cedure is therefore two-dimensional with ε1 of ”Compres-
sor Idle Time” being 0.2 times X̂ and ε2 of the number of
days being 2 days. The density limit minPts is set to 20 for
computing the dynamic density threshold β. The selection of
these ε and minPts values is based on both the engineering
principals and optimization against the confusion matrix (de-
tection capability against false alarm). The considered ranges
of ε and minPts need to be physically sensible and then the
different combination of these parameters sampled within the
ranges should be tested in order to derive the optimal combi-
nation.

The original ”Compressor Run Time” and ”Compressor Idle
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(a)

(b)

Figure 4. The (a) original compressor duration data and (b)
result of the proposed air leakage detection of train 8608.

(a)

(b)

Figure 5. The (a) original compressor duration data and (b)
result of the proposed air leakage detection of train 9580.
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(a)

(b)

Figure 6. The (a) original compressor duration data and (b)
result of the proposed air leakage detection of train 8652.

(a)

(b)

Figure 7. The (a) original compressor duration data and (b)
result of the proposed air leakage detection of train 8640.
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(a)

(b)

Figure 8. The results of (a) density-based clustering and (b)
baseline anomaly detection for train 8652.

Figure 9. Comparison in computational cost between the
baseline and our proposed anomaly detection method for air
leakage.

(a)

(b)

(c)

Figure 10. Modeled severity index of detected air leakages in
train (a) 8608, (b) 8640, and (c) 8652.
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Time” data, thresholds derived from logistic regression clas-
sifiers, and the results of contextual anomaly detection for
four trains with numbers 8608, 9580, 8652 and 8640, are pre-
sented in Fig. 4, Fig. 5, Fig. 6 and Fig. 7, respectively. From
the figures, it can be observed that the logistic regression clas-
sifier identifies a proper boundary separating the ”Compres-
sor Run Time” and ”Compressor Idle Time”. Please notice
that the percentage of air leakage data points is relatively
small and therefore it generally does not give a large impact
on the logistic regression classifier.

In order to verify the effectiveness of pre-filtering using the
logistic regression classifier, a baseline anomaly detection pro-
cedure is compared with the proposed procedure. The base-
line anomaly detection procedure first adopted the DBSCAN
clustering approach to find the dense regions on all ”Com-
pressor Idle Time” data points as shown in Fig. 8(a). Then
the logistic regression classifier is used for post-filtering to re-
move detected points above the threshold as given in Fig. 8(b).
It can be observed in Fig. 8(b) that several points were wrongly
detected as anomaly after post-filtering due to the high den-
sity in normal regions.

The confusion matrix of the results of our proposed contex-
tual anomaly detection is given in Table 1. The values in
brackets are those computed in the form of percentage. From
the confusion matrix, our method for contextual air leakage
detection in train braking pipes not only has a high detection
capacity of 84% but also a very low false alarm ratio. With-
out the context modeled with the logistic regression classi-
fier, there will be a large amount of false alarms if a density-
based clustering approach is applied. Even applied with a
post-filtering threshold as described in the baseline anomaly
detection procedure, the amount of false alarms is also signif-
icant as shown in Table 2. Moreover, as observed in Fig. 9
the proposed anomaly detection procedure is computation-
ally much more efficient than the baseline anomaly detection
procedure since the proposed anomaly detection procedure
pre-filters the ”Compressor Idle Time” which resulting in a
small subset of data points considered for the density-based
clustering while in the baseline anomaly detection procedure,
all ”Compressor Idle Time” data points were used in density-
based clustering.

4.2. Prognostics

To incorporate the operational and maintenance planning re-
quirements of Dutch Railways, the observation period D is
set to 7 days in the experiments. As a result, the severity in-
dexes derived from Eq.(12) for various air leakages cases are
shown in Fig. 10.

To be able to estimate the remaining useful life, the severity
indexes of all 5,844 correctly detected air leakage data points
listed in Table 1 are computed. A Linear Regression predic-
tion model f(·) is then trained by 10-fold cross-validation

Figure 11. Comparison of RMSE in predicting time horizon
from 1 to 15 hours using trained Linear Regression and Ridge
Regression models.

on Root-Mean-Square Error (RMSE) by using the previous
5 hours data to estimate the severity index of the upcoming
hour. That is,

Ŝ
tp+1

Ck
= f(S

tp
Ck
, S

tp−1

Ck
, ..., S

tp−4

Ck
). (14)

This procedure can be iterated by using the previous esti-
mated output as input such as

Ŝ
tp+2

Ck
= f(Ŝ

tp+1

Ck
, S

tp
Ck
, S

tp−1

Ck
, ..., S

tp−3

Ck
) (15)

up to a certain time horizon or until the pre-defined severity
threshold θ is reached.

To avoid collinearity issue in the input features, the experi-
mental results of Ridge Regression is also provided in Fig. 11
in addition to Linear Regression. For severity prediction there
is no collinearity issue observed since the RMSE of Linear
Regression and Ridge Regression are very similar to each
other. From Fig. 11 the 10-fold RMSE of the Linear Re-
gression model in predicting severity index from the next first
(operational) hour to the next fifteenth (operational) hour pro-
portionally increases from 0.01 to 0.09. This indicates the
certainty of severity prediction will decrease when the pre-
diction time horizon increases. However, it still remains in a
reasonable degree within 15 operational hours which is about
2 calendar days since a train is about 8 hours in operation
each day in the Netherlands.

The methodology of remaining useful life prediction for an
air leakage is illustrated in Fig. 12. After an air leakage was
detected for 5 hours, the severity indexes of these 5 hours
were then used to predict the upcoming 320 operational hours.
The predicted severity indexes are indicated by the blue solid
line while the actual severity indexes are indicated by the red
solid line in the figure. Assume that the severity threshold θ is
set to 0.8, the severity index is predicted to reach 0.8 after 156
operational hours by our method. Therefore the predicted re-
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Table 1. Confusion matrix of the experimental results of the proposed air leakage detection procedure

Predicted: Air Leakage Predicted: Normal
Actual: Air Leakage 5844 (0.840) 1113 (0.160)
Actual: Normal 665 (0.001) 625061 (0.999)

Table 2. Confusion matrix of the experimental results of the baseline anomaly detection procedure

Predicted: Air Leakage Predicted: Normal
Actual: Air Leakage 5892 (0.847) 1065 (0.153)
Actual: Normal 6831 (0.011) 618895 (0.989)

Figure 12. Illustration of remaining useful life prediction for
an air leakage.

maining useful life is 156 operational hours while the actual
remaining useful life is 190 hours.

5. DISCUSSION

In this paper, we presented a framework that not only can de-
tect air leakages but also predicts the severity of air leakages
so that action plans can be determined based on the sever-
ity level. The air leakage in train braking pipes is detected
based on the compressor behavior data. In order to avoid
false alarms, the logistic regression classifier is adopted to
model context of ”Compressor Run Time” and ”Compressor
Idle Time” and use the boundary separating these two classes
as the threshold for pre-filtering candidate of anomalies. In
order to detect anomalies according to their severity degree
in a noisy dataset, a density-based clustering approach with
a dynamic density threshold is developed. The experimen-
tal results have demonstrated that our method for contextual
air leakage detection can detect air leakages effectively with-
out generating false alarms. To facilitate the decision-making
process and define the moment for action in operations and
maintenance planning, the logistic function built on the com-
pressor run time is further used together with the duration of
an air leakage to model the severity of the air leakage. By
building the prediction model on the severity, the remaining
useful life of the air braking pipe until it reaches a certain

level of severity can be estimated.
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