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ABSTRACT 

Data-driven condition-based maintenance (CBM) can be an 
effective predictive maintenance strategy for components 
within complex systems with unknown dynamics, non-
stationary vibration signatures or a lack of historical failure 
data. CBM strategies allow operators to maintain 
components based on their condition in lieu of traditional 
alternatives such as preventive or corrective strategies. In 
this paper, the authors present an outline of the CBM 
program and a field pilot study being conducted on the 
gearbox, a critical component in an automated cable-driven 
people mover (APM) system at Toronto’s Pearson airport. 
This CBM program utilizes a paired server-client “two-tier” 
configuration for fault detection and prognosis. At the first 
level, fault detection is performed in real-time using 
vibration data collected from accelerometers mounted on the 
APM gearbox. Time-domain condition indicators are 
extracted from the signals to establish the baseline condition 
of the system to detect faults in real-time. All tier one tasks 
are handled autonomously using a controller located on-site.  
In the second level pertaining to prognostics, these condition 
indicators are utilized for degradation modeling and 
subsequent remaining useful life (RUL) estimation using 
random coefficient and stochastic degradation models. 
Parameter estimation is undertaken using a hierarchical 
Bayesian approach. Degradation parameters and the RUL 
model are updated in a feedback loop using the collected 
degradation data. While the case study presented will 
primarily focus on a cable-driven APM gearbox, the 
underlying theory and the tools developed to undertake 
diagnostics and prognostics tasks are broadly applicable to a 

wide range of other civil and industrial applications. 

1. INTRODUCTION AND OBJECTIVES 

1.1. Background on the application 

Condition-based maintenance (CBM) is a predictive 
maintenance strategy where the maintenance decisions are 
made based on the current health of the system. CBM has 
recently evolved as a viable alternative to traditional 
maintenance methods such as run-to-failure maintenance, 
which is performed in response to failures, and preventive 
maintenance, where maintenance actions are carried out 
periodically without a complete knowledge of the system’s 
(or component) health. A properly implemented CBM 
framework addresses the main pitfalls of traditional 
maintenance methods by minimizing the unplanned system 
downtimes common in the run-to-failure maintenance 
method, while reducing the number of planned preventive 
maintenance actions required (Jardine et al., 2006). 

CBM is comprised of two main components: diagnostics 
and prognostics.  Diagnostics is a multi-level, sequential 
process consisting of fault detection, fault isolation, and 
fault diagnosis. The diagnostic capabilities of a CBM 
framework can be determined by the role the framework 
plays in the overall system maintenance. For systems that 
are designed to complement or aid maintenance personnel, 
such as the CBM framework presented herein, it is 
sufficient to only perform the first level of diagnostics 
(detection). Prognostics involve the prediction of the future 
performance of a monitored system. It includes the 
prediction of the remaining useful life (RUL) of a system, 
and the determination of, if and when a fault will occur, and 
the likelihood of that fault occurring. These measures of 
prognostics are obtained using degradation models 
generated from data collected from sensors mounted on the 
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system. A CBM program can be designed to perform 
diagnostics or prognostics, or both, and is comprised of 
three major operational steps: collection of sensor data, 
post-processing the collected data, and maintenance 
decision-making (Jardine et al., 2006). 

This paper concerns with the application of CBM to 
automated people movers (APMs), and presents a 
university-industry collaborative between the authors, 
Toronto’s Pearson Airport, and Doppelmayr Cable Car Ltd., 
who commissioned this system and currently operate it at 
the airport. APMs are guided mass transit systems that 
utilize computer-controlled trains to transport passengers 
across a dedicated network. In many commercial airports, 
APMs are an integral piece of infrastructure to their 
operation, providing passengers with a quick and efficient 
means of transportation between key facilities within the 
airport and to offsite facilities.  

The CBM application in this paper is for the gearbox of a 
live APM, which is a cable-driven system at Toronto’s 
Pearson Airport, named the LINK train (LINK) (Figure 1). 
LINK provides the airport’s 25 million annual passengers 
with continuous service between the airport’s two terminals 
and parking facilities. Consequently, unexpected shutdowns 
due to faults in the system can lead to significant 
inconvenience to the passengers and indirect economic 
impact to the airport. Excessive unnecessary maintenance 
can also prove to be costly in the long term. CBM is an 
attractive solution to this paradigm, and this application 
provides a rich test-bed to pilot a CBM program and to 
demonstrate the interconnectivity between diagnosis and 
prognosis, and key implementation aspects in achieving the 
same. 

The APM system studied here (Figure 1(a)) is of the cable-
driven type that consists of a cable-propelled train mounted 
on a steel guideway. The trains themselves do not contain 
any drive assemblies. Rather, power is generated from a 
central station that houses all of the drive train machinery. 
Tractive forces are then transferred to the train through a 
cable that is fixed to the underside of the carriage 
(Doppelmayr Cable Car, 2017; Lee et al., 2016). The most 
critical component in this APM system is the gearbox 
(strictly speaking, a gearbox is a system consisting of a 
gears, shaft and bearings), and hence it is natural to start to 
the CBM pilot on this system. The overall health of the 
gearbox can be cost-effectively monitored using vibration 
measurements using accelerometers mounted directly on the 
gearbox housing, at critical locations, as shown in Figure 
1(b). The locations shown on the gearbox housing in Figure 
1(b) have been chosen in a way that the sensors are placed 
in the immediate proximity of the main shaft and bearings. 
Prior to describing the main contributions of this paper, a 
brief review of background literature is described next. 

a)  

b)  
Figure 1. a) APM train (Doppelmayr Cable Car, 2017), b) 
gearbox housing with accelerometers A1 to A4 

1.2. Literature Review 

There exists a relatively large volume of literature on 
vibration-based machinery diagnostics and prognostics 
techniques, specifically related to systems with rotating 
components. The review paper by (Jardine et al., 2006) 
provides a comprehensive summary on vibration-based 
damage detection including time domain, frequency 
domain, and time-frequency domain methods, as well as 
pattern recognition analysis. The information provided can 
be effectively used for bearing and gear fault diagnostics. 
Another review paper (Robert B. Randall & Antoni, 2011), 
provides an excellent tutorial of the most effective 
contemporary techniques for rolling element diagnostics. 
Although the literature on the machinery diagnostics is rich, 
majority of the work is focused on the fault detection of 
systems with high speed rotating components, and there is 
relatively little study carried out towards the maintenance 
planning of machinery systems with low-speed components, 
such as critical components within cable-driven APMs. 
Recently, Bechhoefer et al., 2016 and Yin et al., 2014 
studied a number of vibration based techniques for large, 
slow bearing fault diagnostics in wind turbines, which is one 
of the few studies that exist on this topic today.  

Data-driven techniques have been shown to be efficient and 
reliable means to perform fault detection in rotating 
machinery systems (Bechhoefer et al., 2016; Timusk et al., 
2008; Yin et al., 2014). This is due to the fact that in such 
methods fault classification (e.g., faulty or not) is obtained 
based on the statistical analysis of the vibration signatures 
even without a need for a priori knowledge regarding the 
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physical characteristics of the component/system being 
studied. This reduces the need for extensive signal 
processing and more importantly reduces user intervention, 
which usually makes them more conducive to automation. 
The idea behind data-driven techniques is to employ 
suitable condition indicators (e.g., extracted from vibration 
signals) which are sensitive to fault signatures embedded 
within the measurements (Timusk et al., 2008). Root mean 
square value (RMS), crest factor (CF), kurtosis and 
skewness are some examples of statistical condition 
indicators previously used for condition monitoring of 
rotating components employing vibration measurements 
(Večeř et al., 2005). Over the recent decades, several 
statistical methods such as hidden Markov models (HMMs) 
(Rabiner, 1989; Bunks & Mccarthy, 2000; Boutros & Liang, 
2011), semi-Markov models (Q. Liu et al., 2012), hybrid 
HMMs (Sadhu et al., 2016), support vector machines 
(Sharma, et al. 2014), Gaussian mixture models (GMMs) 
(Nelwamondo et al., 2006), and symbolic analysis have all 
been used successfully for rotating machinery diagnostics 
(Chin et al., 2005).  

Prognostics literature on low-speed, live, non-stationary 
components that lack failure data, such as the case with the 
APM under consideration here, is scarce. Generally, there 
are two main approaches for RUL estimation or reliability 
predictions: model based and data-driven approaches.  
Model based approaches involve modeling the underlying 
degradation process based on the physics of the failure 
mechanism; while, data-driven approaches build a statistical 
model solely based on collected sensory data (Si et al., 
2011). Model-based techniques are difficult to implement 
for components embedded in complex systems such as 
APMs, as the dynamics and degradation processes are 
seldom conducive to direct modeling. On the other hand, 
statistical models, such as random coefficient regression or 
power law based regression models, can operate directly on 
degradation surrogates obtained from measurements to 
model the degradation path, and to predict the RUL 
distribution given a predefined threshold. Such models have 
widely been used (Chen & Tsui, 2013; Kaiser & Gebraeel, 
2009; X. Wang et al., 2014) for bearing prognosis. When 
these methods are integrated in a Bayesian framework, they 
can estimate and update the reliability predictions in real-
time even when prior information is limited. In some cases, 
such as exponential models or linear models with Weibull 
distributed slopes, a closed form expression for time to 
failure can be derived, which makes Bayesian inference 
relatively straight-forward (Lu & Meeker, 1993). When 
such closed-form solutions are not possible, their reliability 
can be assessed using sampling methods such as Markov 
chain Monte Carlo (MCMC) based methods.  

An issue often not addressed in the literature is the practical 
implementation on live systems. Automation of a CBM 
implementation with various interconnected tasks presents 
its own unique set of challenges. The mapping of real world 

observations to virtual instances, the separation of prior 
knowledge and the fluent and timely distribution of sensor 
data to various system components throughout different 
operating states are all non-trivial tasks to automate (Baum 
et al., 2017). Currently, at best, these routines have been 
developed to work semi-autonomously (Robert Bond 
Randall, 2012, Chapter 5), and most autonomous methods 
are limited to fault detection only and do not address the 
prognostics aspects. 

1.3. Objectives and contributions 

The first objective pursued in this paper is fault detection in 
the gearbox of the APM described earlier. The inherent 
stochastic nature of gearbox vibration signals, coupled with 
the addition of non-stationarity due to constant stop and 
start phases of the train and the multi-path convolved 
sources from the constituent components in the gearbox 
makes the signal isolation of a single component extremely 
challenging. In addition, the slow speed of the system may 
render traditional impact-based signal processing techniques 
for fault detection ineffective. Furthermore, such 
sophisticated signal processing techniques are not conducive 
to automation, which limits the application to near real-time 
fault-detection. All these challenges call for an alternate, 
simpler, data-driven approach to perform fault detection , 
which is conducive to automation. 

The second objective is to develop a data-driven 
methodology for undertaking prognostics. This is 
accomplished using a degradation model employing 
surrogates extracted from vibration data. The problem of 
prognosis is compounded by the fact that prior failure 
information is unavailable and has to be updated over time. 
A Bayesian hierarchical approach is used to set and update 
failure thresholds in the absence of historical data, while the 
Gaussian mixture models reinforced with information 
criteria decomposes the system’s behavior into its unique 
operating states to allow for state-based monitoring. The 
only sensors used in this application are accelerometers and 
the data processing platform consists of a commercially 
available programmable controller and a PC. This CBM 
platform is designed to complement, not replace, existing 
maintenance personnel. The CBM prognostics outputs, RUL 
and reliability, are invaluable metrics for asset management 
and long-term maintenance planning, respectively. 

There are two main contributions of this paper. First, the 
presented approach is specifically targeted towards fault 
detection in a cable-driven APM gearbox based on 
operational data. To the authors’ knowledge, this is a first of 
its kind in the literature. The proposed framework is 
designed to be conducive to automation. Secondly, the use 
of the hierarchical Bayesian approach for model updating 
allows the framework to periodically generate fault 
detection failure thresholds based on the actual condition of 
the system; and, provides the flexibility to model the 
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degradation of systems with very little historical failure 
information. Many of the data-driven statistical tools used in 
this paper are available in the literature and a brief 
background on the key tools is given in this section. 

2. BACKGROUND AND METHODOLOGY 

In this study a statistical process control (SPC)-based 
methodology is employed for the fault detection and 
prognosis of the APM system described previously. SPC 
describes an approach in which statistical methods are used 
to monitor and control a process. This CBM framework is 
comprised of two unique phases: a training phase and a 
continuous monitoring phase, as depicted in Figure 2. In the 
training phase, which only occurs once at the onset of the 
project, a representative sample of vibration data, collected 
through a set of accelerometers, is used as an input to 
generate the initial GMM and a degradation model 
(described in detail in this section). From these models the 
initial failure thresholds and initial degradation path 
parameters are obtained. The duration of the training phase 
should be chosen such that all the possible operational 
conditions (e.g. loads on the system) affecting the 
performance of the system are captured. For instance, for 
the training phase of the case-study presented in this paper, 
a 16-hour long vibration data was used which was recorded 
at different times of the day and week to cover any 
fluctuations in load due to different passenger volumes. In 
the continuous monitoring phase, the initial failure 
thresholds and initial degradation path parameters appear as 
inputs, alongside continuous raw vibration data (i.e. raw 
acceleration signals) collected throughout continuous 
monitoring. The continuous feature data (i.e. condition 
indicators), which is extracted from raw vibration signals, is 
compared against the failure thresholds to check for 
exceedance as well to update the GMM and degradation 
models. In the case of an exceedance, an alarm is generated 
to notify maintenance personnel of a potential fault. Upon 
inspection, if a fault is observed, the appropriate 
maintenance actions can be scheduled. If no fault is 
observed, the incident is tagged as a false alarm, and this 
information is fed back into the process to update the GMM 
and degradation model. In the following section, various 
components and the techniques employed in this two-tier 
framework are described in detail. 

2.1. Background on GMM 

Vibration data obtained from the cable-driven APM depends 
on several characteristics such as speed, direction and load, 
broadly termed as “states”. The proper identification and 
quantification of these state-induced vibration features is 
vital to the success of an SPC-based fault detection 
algorithm, since the premise of SPC is to detect statistical 
anomalies. GMMs can be used to help capture these 

anomalies in the observed data. A GMM is a probabilistic 
model that assumes that a given set of observed data can be 
modeled by a finite mixture of Gaussian distributions with 
unknown parameters (Nelwamondo et al., 2006). This is 
represented by Eq. (1) in one dimension, where K denotes 
the number of mixture components, and !! ,!! ,!! denote the 
mean, standard deviation and weight of mixture component 
i. 
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Eq. (1) is expanded for a multi-variate case as represented in 
Eq. (4), where the variance !! is replaced by the covariance 
matrix Σ!. 
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2.2. Bayes rule and posterior inference 

For processes where additional knowledge becomes 
available over time, a means to integrate the newly acquired 
knowledge with existing prior knowledge is beneficial. 
Baye’s rule is an effective method to combine such prior 
knowledge of the process parameters θ, (i.e. for the GMM, 
θ = !,!! ) with newly acquired knowledge. This approach 
is very well suited to applications where prior knowledge of 
the system is minimal at the beginning of the monitoring 
process. It allows for the constant refinement of model 
parameters as more information becomes available. Bayes 
rule is described by Eq. (7) below, where p(θ)  and its 
likelihood  p(y |θ)  is obtained from the 
data, y = {y!, y!⋯ y!}, to obtain the posterior distribution 
for the parameters, p(θ|y): 
 ! ! ! = ! ! ! ! !

∫ ! ! ! ! !  !" 
(7) 

where y!,  y!⋯ y! are some surrogate measures (condition 
indictors) of degradation at time 1, 2,⋯  t, respectively, and  
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Figure 2. SPC for CBM Framework 

can be assumed to be normally distributed with mean µ and 
variance  σ! . For the observed data y , the likelihood 
expression is given by: 
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2.3. Expectation-maximization 

When modeling a system without sufficient prior 
knowledge of its characteristics, the estimation of the 
model’s unknown parameters can be accomplished using the 
expectation maximization (EM) algorithm (Dempster et al., 
1977). EM attempts to estimate the values of the unknown 
parameters θ  that maximize the log likelihood !  of the 
observed data using an iterative two-step algorithm. First, in 
the expectation step, Baye’s rule is applied to the dataset to 
determine the cluster affinity of each data point for a given 
estimated parameter set θ!. A corresponding lower bound 
for the function g(θ!) =  !! is obtained from the results of 
the posterior inference.  Next, in the maximization step, the 
algorithm will attempt to find a new parameter set θ!!!such 
that g(θ!!!) > !(θ!). As the process is repeated, the log 
likelihood increases monotonically until it converges to a 
maximum. 

2.4. Akaike and Bayesian information criteria 

Complimentary to the EM algorithm, information criteria 
are used to evaluate the goodness of fit of a given statistical 
model relative to other models, by measuring the degree to 
which information is lost when that model is used to 
represent a set of observed data. In the context of the 
proposed CBM platform, the Akaike and Bayesian 
information criteria (AIC and BIC, respectively) are used to 
assess the goodness of fit for GMMs with different numbers 
of component mixtures.  AIC and BIC are an aid in 

determining a model that minimizes information loss 
without over-fitting with excessive parameters. For a finite 
sample of size n, AIC is calculated using Eq. (9), where k is 
the number of estimated parameters, L is the maximized 
likelihood function of a model, M, and θ are the model 
parameters that maximize the likelihood function. Similarly, 
BIC for a finite sample n is calculated using Eq. (11) 
(Akaike, 1974). 

!"# = 2! − 2 ln ! +  2!(! + 1)! − ! − 1  
(9) 

! = ! ! θ,!) (10) 

!"# = −2ln ! + ! (ln ! − ln 2! ) (11) 

2.5. Failure thresholds using Bayesian updating 

The accuracy of fault detection and RUL prediction 
algorithms depend upon the proper choice of the failure 
threshold(!!). Generally, a failure threshold for a given 
machine is generated based on the available failure data 
available from other similar units. However, for long-
lifetime machinery, failure data can be sparse or non-
existent, making threshold setting solely relying on 
historical data is a challenging or an impossible task. For 
situations where there is a lack of historical data a Bayesian 
hierarchical approach can be an effective alternative for 
calculating failure thresholds. For this paper, a Bayesian 
hierarchical approach is used in conjunction with the 3-
sigma rule for threshold setting and updating (Montgomery, 
2009). The 3-sigma rule is common in SPC literature and 
has been widely applied in Gearbox monitoring  (B. Liu & 
Makis, 2008),  bearing fault detection (W. Wang & Zhang, 
2008; Zhou et al., 2008) and structural health monitoring 
(Fugate et al., 2001).  

Let the prior distribution for µ  given σ!  be normally 
distributed with mean µ!  and variance  σ!! i.e.,f µ σ!) =
 f!(µ; µ!, σ!! ), then according to the Bayesian hierarchical 
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principle, the posterior distribution of f µ σ!, y) is given 
by: 

! ! !!,!)   ∝  ! ! !,!!) ! ! !!)  
∝  ! ! !,!!) !!(!; !!,!!!) 
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The posterior described above is a normal distribution 
(which is conjugate to the prior) with mean µ  and 
variance  σ! given by: 

 ! ! ! =  !  = ! !!!  + !!
!!!!!

  !"#   

!(!|!)  =  σ! =  (!!!!!  + !!!!)
(! !!!  + !!)  

(13) 

The above mentioned posterior mean and variance can also 
be expressed as: 

 
 ! = w! + 1 − ! !!   !"#  σ! = w σ

!

n  
(14) 

where w = nσ!!/(nσ!! + σ! ). Note that the posterior mean 
is the weighted average of the prior mean µ!and sample 
mean y. If the prior variance is low (and hence the prior 
information about µ is strong), then the posterior mean will 
be equal to prior mean, while if the prior variance is high 
then the posterior mean will be equal to sample mean.  Once 
the µ and σ!values are estimated, the failure threshold (η!) 
can be set using statistical process control theory given by 
Eq. 15: 

 !! =  !  +  !! (15) 

where j is a constant  related to a given percentile of inverse 
normal distribution. For example, j is equal to 3 for 99.7 
percentile. Figure 3 below illustrates an example of a failure 
threshold for a surrogate measure of degradation (Y) being 
refined over successive time intervals using Bayesian 
updating. Fault detection is simply performed by calculating 
the Euclidian distance of a data point and comparing it to 
the failure threshold !!.  
For a bivariate case, failure threshold setting is 
accomplished through Bayesian updating of µ and 
Σ for each cluster . Initial parameter estimation is done 
through sampling points from the joint posterior distribution 
using Markov Chain Monte Carlo sampling techniques. For 

subsequent updates, the posterior result from the previous 
cycle becomes the prior for the current update cycle. In 
contrast to the univariate case, the bi-variate case requires 
the calculation of the Mahalanobis distance – which is a 
measurement of the distance of a data point Y! from the 
cluster mean as a function of the standard deviations and 
cross correlations in a multi-dimensional space. The 
Mahalanobis distance is given by: 

 !! = !! −  ! !!!!(!! −  !) (16) 

and follows chi-square distribution. For the multivariate 
case the value of k in Eq.15 is set using a chi-square chart. 
Faults are then detected by comparing D!  to η!  and 
checking for exceedance. 

2.6. Degradation modeling and RUL estimation 

While real-time fault detection can be an effective means at 
detecting faults early on in their development phase, it does 
not provide a long term forecast of the machine’s health. 
Degradation modeling is a useful prognostic tool for making 
long-term predictions regarding the health of the machine. 
The degradation process can either be modeled through the 
physics of the system (model-based) or through derived 
parameters obtained through sensor measurements (data-
driven). Furthermore, data-driven degradation models can 
be implemented alongside data-driven fault detection 
techniques since they could potentially utilize the same 
underlying dataset.  

In general, a degradation path of a monitored unit can be 
convex, concave, or linear in shape as shown in Figure 4.  
The selection of the appropriate shape for a given 
application is guided by field data, engineering judgment 
and some understanding of the mechanical laws that 
describe a system’s performance. The most suitable model 
for the degradation path depends on the application, and 
ranges from  simple regression type models (e.g., linear, 
exponential, power law, logistic and Gompertz) to more 
complex stochastic models (e.g.,  Gamma, Wiener and 
Markov process)  (Lu & Meeker, 1993; Meeker & Escobar, 
2014; van Noortwijk, 2009; Whitmore & Schenkelberg, 
1997). The regression model with power law is most 
appropriate for gearbox degradation where the shape of 
degradation path is not known a priori. This is because, a 
wide variety of degradation paths (including convex, 
concave and linear) can be generated by varying the 
exponent of power law, as also illustrated in Figure 4.This 
functional form has been applied widely; for e.g., 
degradation modeling  of concrete due to corrosion of 
reinforcement (Ellingwood & Yasuhiro, 1993), reliability 
analysis of hydraulic systems (Kumar & Klefsjo, 1992)  and 
bearing health (Ali et al., 2014).   
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Figure 3. Bayesian threshold updating of surrogate measure 

of degradation (Y) 

 
Figure 4. Various Shapes for Degradation Paths 

Let the Y!" be the observed surrogate measure of degradation 
for the i!" bearing at time t!". Then, the general degradation 
model is given as: 

 !!" = ℎ !!" , !! ,! + !!"  (17) 

where ℎ(⋅) is some function of  t, θ! and ϕ  are the vector of 
random and fixed effect respectively. The measurement 
errors ϵ!"  are assumed to be additive, conditionally 
independent and distributed as !(0,!!!). With the following 
parameters ! = (!!, !!), ϕ = ϕ! and the power functional 
form  (Kumar & Klefsjo, 1992; Sánchez-Silva et al., 2016; 
van Noortwijk, 2009) for ℎ(⋅)  in Eq. 17, the degradation 
model can be written as: 

 !! = !! + !!!!!!
!! + !!  (18) 

Furthermore, it is assumed that ! = (!!, !!) follow a 
multivariate normal (!"#(!!,!!))  distribution. A 
Bayesian approach is employed to estimate and update the 
model parameters (! =  !!,!! ,!!!) as more vibration data 
becomes available. For each GMM cluster, the Mahalanobis 
distance of each feature pair is calculated and the marginal 
posterior density of parameters is estimated by taking 
samples from a joint posterior distribution through MCMC.  
The failure thresholds are also updated for each cluster and 
the RUL is predicted at each update interval. Total system 
failure occurs when the surrogate degradation measure 
reaches the predefined threshold !!  and the RUL is the 

measure of the time between the current time and the 
predicted failure time.   

3. IMPLEMENTATION OF CBM FOR THE APM GEARBOX 

The CBM test setup, termed “two-tier framework”, in this 
study has been designed as an auto-updating platform that is 
suitable for performing CBM on the APM gearbox. It is 
comprised of two distinct workstations: a CBM client and 
CBM server. The CBM client is installed on-site in the 
immediate proximity of the gearbox (Figure 1(b) and Figure 
6) and the CBM server could be placed anywhere with a 
network access (in our case, this was placed on site). Figure 
5 shows the overview of the two-tier framework 
components and how various components are 
interconnected for data sharing. 

3.1. CBM client and CBM server 

An embedded real-time controller with an onboard 667 
MHz dual-core processor and a user-reconfigurable field 
programmable gate array (FPGA) both residing on a 
Compact RIO (or cRIO) system are the key components of 
the CBM client workstation (see Figure 6 (a)).  

Compact RIO is a real-time embedded automation and data 
acquisition platform made by National Instruments. This 
system combines the reliability of FPGA technology with 
the high-speed computational capabilities of an embedded 
real-time processor and is suitable for applications that 
require high performance and reliability. The FPGA is a 
reconfigurable hardware chip that contains logic blocks, 
programmable interconnections and input/output (or I/O) 
blocks (see Figure 6 (b)). If programmed properly, FPGA 
can execute predefined tasks at very fast and deterministic 
rates without a need for CPU resources. 

In this application, the FPGA is the communication hub of 
the CBM client with the sensing hardware and the alarm 
system. It uses NI9234 and NI9263 C-series modules to 
acquire the vibration data from the sensors and issues 
command signals to the alarms, respectively. NI 9234, the 
accelerometer module, is a 4-channel, 24 bit analog input 
module that reads the accelerometer output voltage at up to 
50 kS/s (kilo sample per second) sampling rate per channel 
and then performs the analog to digital conversion internally 
(“NI 9234 User Guide and Specifications,” 2014). NI 9263, 
is a high performance 4-channel +/- 10 VDC analog I/O 
module that is used to handle the alarm system within the 
CBM implementation structure (“NI 9263 User Guide and 
Specifications,” 2014).In addition, a network of PCB 
piezoelectric accelerometers were utilized (described in the 
results section) to acquire vibration data for monitoring. The 
accelerometer arrangement and specifications can vary 
depending on the application.  
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Figure 5. Overview of the CBM test Setup 

 
Figure 6. a) cRIO (left), b) FPGA chip schematic (right) 

The CBM server is a windows based computer with a 
generic programming toolbox such as MATLAB and 
Python. It serves as the off-site computational workstation 
of the setup and is designed to handle the computationally 
intensive CBM tasks, such as GMM and degradation model 
updating that could not be loaded on the CBM client. The 
CBM server is interconnected with the CBM client via 
network using TCP/IP protocol. 

3.2. Task scheduling 

The CBM client accomplishes the following tasks 
continuously in near real-time: vibration data collection 
from accelerometers, feature calculations (condition 
indicator extraction), fault detection by comparing the 
extracted features to the thresholds received from the CBM 
server, alarm generation in the event of threshold 
exceedance, and curating of a text file containing 
information regarding a fault if one is detected by the 
system (i.e. time, date and location). In addition, the CBM 
client streams collected data and feature sets to the CBM 
server through the network connection. 

The tasks handled by the CBM server include feature 
selection, feature clustering, degradation modeling and RUL 
estimation. In general, the CBM server routine is conducted 
in two distinct phases: an initial training phase that occurs 
only at the onset of the project, and a continuous monitoring 
phase. During the training phase, the CBM server routine 
executes a training algorithm where it calls the client to 
perform frequent sampling and feature calculation for an 
extended period of time. This training phase is used to 

develop a representative dataset that encompasses all of the 
system’s operating states. For each feature or pair of 
features within the initial dataset, the optimal clustering 
configuration for a mixture of Gaussians is calculated using 
the Akaike or Bayesian Information Criterions. For each 
feature or feature pair, initial Bayesian thresholds are 
calculated, packaged and sent back to the client. The 
optimal feature set can be determined objectively using a 
method such as Hart Decision trees, or subjectively by 
selecting a feature clustering scheme that corresponds to 
some physical phenomena in the system. The CBM 
platform in this study is capable of monitoring and setting 
thresholds for a number of feature sets simultaneously. In 
the continuous monitoring phase, the CBM server uses the 
vibration and feature data streamed from the CBM client to 
regularly update the GMM, Bayesian thresholds and 
degradation models for RUL estimation. Once the model 
updating is completed the new failure thresholds are sent 
back to the CBM client. Figure 7 summarizes the task 
scheduling in the test setup. 

3.3. Software development 

Unlike turnkey systems, the computational/data acquisition 
platform that is used in this application must be 
programmed by the user to run all the designated tasks. The 
CBM client software is developed using NI LabVIEW. It 
consists of an FPGA VI, a Host VI (also called as real-time 
VI), and several sub VIs (equivalent to sub functions in 
MATLAB), all coordinated by a LabVIEW project.  

The Host VI (hereinafter referred to as “real-time VI”) is 
planned and programmed based on state machine design. 
The state machine is one of the most effective tools 
available in LabVIEW to handle applications with 
distinguishable states. State machines enable complicated 
decisions, summarized in a state flow diagram to be 
implemented. In a majority of applications with the state 
machine architecture, the process starts with an initialization 
state and ends with a stop or shut down state that clears all 
the actions undertaken by the system in the previous states. 
While the system is running, based on user inputs or in-state 
calculations, the state machine determines which state to go 
next. 
 

 
Figure 7. Summary of the tasks executed the CBM client 

and server 
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Figure 8 shows the state flow diagram of the host VI that 
was designed for the CBM client. The current version of the 
CBM client includes five operational states with 
distinguishable tasks. The CBM client begins with the 
“initialization” state that starts/ resets the FPGA target and 
writes all the user defined information such as sensor 
calibration data and data sampling rate to the associated 
constants in the software. This state is followed by the 
“start-up” state where the initial GMM input file that has 
been sent by the CBM server is read and the containing 
thresholds are written to the cRIO memory to be used 
throughout continuous monitoring. In addition, the DMA 
FIFO protocol is initiated for transferring the raw vibration 
data between the FPGA target and the Host VI. Next, the 
program moves into the “monitoring” state. In this state the 
sensor data is continuously acquired, calibrated and 
monitored. To minimize computational effort, the transition 
to the writing state is only triggered when a prescribed 
threshold for vibration is exceeded. The following three 
tasks are carried out concurrently in the “writing state”:  

1. The raw vibration data from sensors that is 
acquired through FPGA is passed to the host VI 
using FIFO protocol and then stored in the daily 
raw output files. 

2. The statistical feature data is computed based on 
the raw data and stored in the daily feature data.  

3. Posterior inference using Bayes rule is employed to 
determine the cluster membership of the incoming 
data. Once the correct data cluster is determined, 
the data is checked against the associated failure 
thresholds through calculation of Euclidian 
distance (1D) or Mahalanobis distance (2D). If an 
exceedance is detected, the user is notified via a 
LED indicator attached to the CBM client 
hardware and the corresponding time stamp, sensor 
name, and feature values are sent to the CBM 
server. If the user performs maintenance after a 
potential fault is detected and determines that there 
is no fault present, the CBM server will update the 
GMM model and thresholds accordingly.   

In the current version of the CBM platform the duration of 
the “writing” state is set to 9 sec. Due to the storage 
limitations it is not feasible to have vibration data 
continuously written onto the output file. After completion 
of the “write ” state, the state machine enters the “wait” 
state where the system goes on hold for one hour. Having 
the “wait state” enables the user to acquire/write vibration 
data at different times of day and night, hence capturing the 
system performance under different load conditions. It 
should be pointed out that during the “wait state” the 
condition indicators are still computed and monitored but 
nothing is written to the output files. Once the waiting time 
is over the state machine goes back to the “monitoring” state 
and the process repeats from there. 

 
Figure 8. State flow diagram of the Host VI for CBM client 

implementation 

The FPGA VI is programmed to handle the interfacing tasks 
with the hardware (e.g. vibration sensors and limit switches) 
and FIFO DMA protocol for transferring raw data from 
FPGA to the host VI. The CBM client is configured as an 
unsupervised computational/DAQ platform. Once the 
developed software is fully deployed onto the cRIO and the 
system is energized, it can perform all the required tasks 
automatically and unattended. Hence, the current 
implementation can be accurately described as a semi-
autonomous one, rather than a fully autonomous 
implementation. 

4. CASE STUDY AND RESULTS 

4.1. Case study description 

A field pilot was conducted on the APM gearbox described 
earlier to validate the developed CBM strategy, during late  
2016 and early 2017. For this particular case study, several 
decisions in the CBM server-side routine involved expert 
intervention. It is the authors’ goal in the future to develop 
and refine the criteria necessary to automate these decisions 
as well.  This APM system consists of a cable-driven, 
computer-controlled train that travels along a 1.5 km track 
over variable grade and connects three passenger stations 
(see Figure 9). The train travels in both directions along the 
same track, with a capacity of 2,500 pphpd (people per hour 
per direction).  
The APM gearbox was instrumented with four uniaxial PCB 
accelerometers (model #: 352C68) with sensitivity of 100 
mV/g, linearity between 0.5 Hz to 10 kHz and an output 
range of +/-50g, mounted radially on the gearbox housing 
with respect to the bearings, as depicted in Figure 1(b)). 
Data acquisition and on-site computation is handled using 
the CBM client platform. During the initial training period, 
training data for the APM was collected over eight discrete 
2-hour long sampling periods taken throughout the course of 
one month. The sampling periods were scheduled at 
different times of the day and week to encapsulate any 
fluctuations in load due to different passenger volumes. 
During each sampling period, the train acceleration was 
sampled at 1000 Hz (the authors recognize that a much 
higher sampling rate may be needed for bearing fault 
isolation, but this is not addresses in this paper) and the 
precise location of the train was recorded. Onboard feature 
calculation occurred at one-second intervals.  
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Figure 9. APM train and stations configuration 

4.2. Data analysis  

The following time-domain condition indicators were 
calculated from the vibration data obtained from each 
accelerometer: root-mean square, variance, kurtosis, crest-
factor and hyper-kurtosis (6th normalized moment). A 
preliminary study was conducted to verify a normality 
assumption and the probability paper plot revealed that the 
dataset was left-skewed due to significant zero entries as a 
result of periodic stops of the train. Hence, prior to 
clustering, the zeros were manually removed, resulting in a 
uniformly distributed dataset. The removal of zeros from the 
dataset is justified due to the fact that the periods of interest 
to this CBM implementation is where the system is under 
load and in motion. Furthermore, the data obtained during 
continuous monitoring will only contain non-zero entries 
due to the triggered sampling algorithm implemented.  

The discussion presented hereafter focuses on the data from 
a single accelerometer (i.e. A1 as shown on Figure 1(b)) and 
utilizes the feature pair subset of hyper-kurtosis and crest 
factor, as the clustering for this feature pair was observed to 
be consistent with the position/direction of the train.  Figure 
10 shows the GMM for the feature data for three clusters, 
where the number of clusters was obtained by using the 
minimum AIC or BIC value.  

A study was conducted to determine whether the clustering 
was related to any physical system characteristics. The APM 
feature data was sorted by train location and plotted in 
Figure 11 and Figure 12. Comparison of Figure 10 and 
Figure 11 shows that clusters 1 and 2 correspond to different 
directions of travel for the train, while cluster 3 corresponds 
to scatter, containing points from all track segments. The 
study illustrates a major advantage of using a state-based 
CBM approach: separating the behavior of a system into its 
different operational states not only improves the accuracy 
of SPC-based fault detection, but can also grant the user 
additional insight into how and where faults begin to 
develop within a system.  

 
Figure 10. GMM clusters (n=3), hyper kurtosis vs. CF 

 
Figure 11. Feature points based on train location, hyper 

kurtosis vs. crest factor 

Two-dimensional Bayesian thresholds were calculated for 
each of the clusters found in the hyper-kurtosis and crest 
factor feature pair at three time instances. First, the initial 
thresholds were set using the training dataset collected 
throughout the first month, designated by time t1. Next, the 
thresholds were updated bi-weekly at times t2 and t3. The 
Bayesian thresholds are shown in Table 1.  

 

Table 1: APM Posterior Parameters at Various Times 

t1 = End of Month 1 (end of training period) 

 Mean sd 2.5% 25% 50% 75% 97.50% 

!! 4.64 0.06 4.54 4.60 4.64 4.68 4.75 

!! 4.38 0.02 4.35 4.37 4.38 4.40 4.42 

!!! 0.90 0.08 0.77 0.85 0.90 0.95 1.06 

!!" 0.30 0.03 0.25 0.28 0.30 0.31 0.35 

!!! 0.12 0.01 0.10 0.11 0.12 0.13 0.14 

t2 = Middle of Month 2 

!! 4.59 0.05 4.50 4.56 4.59 4.62 4.68 

!! 4.36 0.02 4.32 4.35 4.36 4.37 4.39 

!!! 0.89 0.06 0.78 0.85 0.89 0.93 1.02 

!!" 0.29 0.02 0.25 0.28 0.29 0.31 0.34 

!!! 0.12 0.01 0.10 0.11 0.12 0.12 0.14 

t3 = End of Month 2 

!! 4.62 0.04 4.54 4.59 4.62 4.64 4.69 

!! 4.36 0.01 4.33 4.35 4.36 4.37 4.39 

!!! 0.91 0.05 0.81 0.87 0.91 0.94 1.02 

!!" 0.30 0.02 0.26 0.28 0.29 0.31 0.33 

!!! 0.12 0.01 0.11 0.11 0.12 0.12 0.13 
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Figure 12. 2-dimensional feature points separated based on train location and direction, hyper kurtosis vs. crest factor 

Table 1 shows very little fluctuation in the ! and ! values 
throughout the month-long period. The lack of change in the 
threshold parameters can be attributed to a number of 
factors: during the initial period, there is a bias towards the 
training data set since the size of the training sample is 
much larger than those from subsequent updating intervals 
(nt1 >> nt2, nt3). Secondly, the length of time considered 
for the study is small in comparison to the lifespan of the 
system. It is anticipated that a much longer monitoring 
period would be required to detect any changes in the 
threshold parameters due to degradation, which is planned 
for through a long-term monitoring program currently in 
place at this facility. 

4.3. Degradation modeling and reliability predictions  

As discussed in the methodology section, a regression 
model with the power law (see Eq. 5) is suitable for 
modelling the degradation path of the gearbox.  The key 
steps in building the degradation model are to calculate the  
Mahalanobis distance for each feature pair (i.e., hyper-
kurtosis, crest-factor) in a given GMM cluster from the 
corresponding threshold (i.e.,!, Σ assigned in the previous 
step), and to estimate the degradation model parameters. 

Two months of data from initial data collection period were 
used for this purpose and the aforementioned parameters 
were estimated to be !!! = 5.7, !!! = 3.5,Σ!! = 1.7,Σ!" =
0.15,Σ!! = 1.35. Note that these are the degradation model 
parameters and not the mean and covariance matrix 
estimated for GMM clusters presented previously. Next, 
since run-to-failure data is not available for this system, the 
initial parameters are used to predict the future Mahalanobis 
distances and degradation signal. Figure 13 (left panel) 
shows three simulated degradation paths using the initial 
parameters, at the end of 3, 5 and 6 years, respectively. 
Bayesian inference was then performed with the following 

 diffuse prior distributions 
!! =

!!!
!!! 	

∼ Multivriate Normal 0
0 , 1000 0

0 1000  

! = !!! !!"
!!" !!! ∼ Inverse Wishart 10 0

0 10 , 2 	

where !!! ∼ Inverse gamma 5, 0.0001  and the 
parameters were  estimated and updated by taking random 
samples from the joint posterior distribution of !! ,!! ,!!!  
using MCMC sampling. The right half of Figure 13 shows 
the updated posterior distribution of ! at the end of 3, 5 and 
6 year respectively. Note that, over time (commensurate 
with higher degradation), the posterior distribution becomes 
narrower and the parameters converge to their true values. 

Finally, the reliability at the end of 3, 5 and 6 year is 
predicted using Monte Carlo simulation, as presented in 
Figure 14. Upon closer inspection, Figure 14 reveals that the 
reliability remains approximately equal to one up until the 
sixth year and then decreases abruptly beyond that for all 
the three paths. Moreover, one can see the improvement in 
reliability predictions when more data is utilized in the 
analysis i.e., at the later stages of the degradation. For 
example, when the reliability is assessed by utilizing data up 
to 3 years, the model predicts a failure by the end of 7.6 
years with 80 percent probability. However, when the 
similar analysis was performed with 6 years of available 
data, it predicts failure at the age of 6.9 years. In other 
words, the 80 percent RUL CDF estimated using 3, 5 and 6 
years of data are 4.6, 2.4 and 0.9 years, respectively.  
Evidently, as more degradation data becomes available, the 
RUL prediction becomes more accurate and increasingly 
valuable for maintenance planning. Finally, it should be 
noted this model is only for illustration, and the simulated 
degradation paths will be updated over time as live data 
from the gearbox becomes available.  
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Figure 13.  a) Degradation signal until 3, 5 and 6 yr., b) updated  posterior distribution 

5. CONCLUSION 

A data-driven automated two-tier CBM frame work for the 
gearbox in a cable-driven APM was presented in this paper. 
APM gearboxes typically present these main challenges for 
CBM: they are low-speed, highly non-stationary and 
complex systems with multi-path convolved vibration 
sources and often accompanied with scarce availability of 
historical failure data. The CBM framework presented is 
able to address many of these challenges through the use of 
GMMs and degradation models, which are updated using a 
hierarchical Bayesian approach. The generated GMM 
clusters were able to decompose the behavior of the system 
based on the direction of travel of the train, which adds to 
information contained in each of these clusters.  Bayesian 
thresholds were derived for each cluster to perform SPC-
based fault detection, which makes this approach more 
robust than using a single set of thresholds. A regression 
model with power law was used to model the degradation 
and was shown to be effective when prior information 
regarding the nature of degradation is not available. 
Bayesian hierarchical updating is used to refine the model 
parameters periodically as new data becomes available, 
which fits within the long-term monitoring goals of this 
project. Results from this pilot show that the CBM 
framework is able to address many of the aforementioned 
challenges, which present themselves in low-speed, long-
life components.  

The framework can be further improved upon by 
introducing more sophisticated signal processing techniques 
to isolate and monitor specific components within the 
gearbox; work on this is ongoing, but is considered outside 

the scope of the current paper. Future work on the CBM 
platform is largely focused developing protocols to monitor 
the health of individual critical components within the APM 
gearbox. Signal separation and filtering techniques will be 
used to de-convolve the gearbox signals into its constituent 
components. Feature sets from frequency domain and time-
frequency domain will be investigated. The feasibility of 
contemporary fault detection and diagnostic techniques will 
be investigated in the context of low-speed rotating 
components to address the gaps in literature. Alternative 
feature space reduction tools such as linear discriminant 
analysis and principle component analysis will also be 
considered. 

 

 
Figure 14. Reliability predictions for the gearbox at the end 

of 3, 5 and 6 years 
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NOMENCLATURE 

CBM condition based monitoring 
APM automated people mover 
RUL remaining useful life 
MCMC Markov chain Monte Carlo 
SPC statistical process control 
GMM Gaussian mixture model 
AIC Akaike information criterion 
BIC Bayesian information criterion 
EM expectation maximization 
cRIO compact RIO 
FPGA field programmable gate array 
DAQ data acquisition 
p probability density function 
K number of mixture components 
!! mean 
!! standard deviation 
!! weight 
θ process parameters  
!! condition indicators 
! unknown process/model parameter 
! model with unknown process parameters θ 
! log likelihood function 
k number of estimated parameters 
j constant for percentile of inverse normal 
distribution  
!! failure threshold 
!!,!!! prior mean and variance 
 !, σ! posterior mean and variance 
! sample mean  
!! Mahalanobis distance 
Y observed surrogate measure of degradation 
!!" time 
!!" measurement errors 
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