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ABSTRACT 

Quantification of feature goodness, called feature evaluation, 

is crucial in the identification of best features and achieving 

high accuracy in diagnostics and prognostics. Even though 

feature evaluation for diagnostics is a mature area, it is a 

developing research area for prognostics. The feature 

goodness for prognostics is measured by change in 

degradation. Most, if not all, of existing methods, analyze the 

feature change in the whole failure degradation. In other 

words, features collected throughout the failure degradation 

are analyzed to create a goodness value for the feature. In 

reality, the goodness of the features may change during the 

failure progression. A feature may be a good representative 

of failure progression in the initial phase but not in the final 

phases, or vice versa. This paper presents a methodology that 

divides the features into segments, each of which may have 

different goodness for prognostics. Thus, some part of the 

feature may be good, whereas the others not. The presented 

approach leads to extract more value from the features’ 

changing properties during the failure degradation. The 

method has been applied to simulated and real datasets 

obtained from Li-ion batteries aging tests. State of health 

(SoH) estimation accuracy is enhanced with the presented 

approach. 

1. INTRODUCTION 

Diagnostics and prognostics are the major steps in 

Prognostics and Health Management (PHM) (Faith Camci & 

Chinnam, 2005; Zhang & Lee, 2011). Diagnostics is the 

process of identification of existing failures with its severity 

and/or location. Diagnostics is a classification or clustering 

problem in nature depending on the availability of labeled 

data. On the other hand, prognostics is the process of 

identification of Remaining Useful Life (RUL) of the system 

or component under observation given its current health 

status. Prognostics is a forecasting problem that makes it 

more challenging due to many uncertainties involved in 

failure progression. 

The raw sensory data is mostly large and include many 

useless data. Features are extracted from raw sensory data 

using statistical or computational methods such as mean, 

standard deviation, kurtosis, skewness, and Fourier transform 

etc. Features give more clear information about the system 

with less size compared to the raw data. Many features can 

be extracted from raw data and each feature gives different 

types of information about the system.  

The goodness of features varies depending on the purpose. 

The features are evaluated and selected based on their 

goodness for the defined purpose. Feature selection and 

evaluation in diagnostics have been studied in the literature 

extensively (Liang, Liu, Li, He, & Xu, 2016; Senoussi & 

Chebel-Morello, 2011). However, feature evaluation for 

prognostics is a relatively new problem and researchers have 

started publishing articles about the evaluation of features for 

prognostics in recent years (J. Coble & Hines, 2009). 

However, none of these works, to the best of our knowledge, 

addresses the features’ changing goodness during failure 

progression. A feature that does not represent the failure 

progression in the initial phase of the failure may represent 

the progression fully in the final phases. In contrary, a feature 

that represents the failure degradation perfectly in the initial 

phase may not represent the degradation in the final phases. 

In other words, the sensitivity of feature to the failure 

degradation may change in the life of the system due to 

environmental effects or operational profiles. Thus, feature 

evaluation based on the full life of the component or system 

may be misleading.  

The feature with highest goodness values may change during 

the failure degradation. It is possible to use different features 

to measure the failure degradation in different phases of the 
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component or system life. To the best of our knowledge, 

feature evaluation considering the features’ subsequence 

goodness change in the failure progression has not been 

addressed in the literature yet. This paper aims to fill this gap 

in the literature by presenting a segmentation based feature 

evaluation and fusion algorithm for prognostics. 

The organization of the paper is as follows: Section 2 gives 

the literature review; Section 3 discusses the presented 

method for dynamic feature evaluation and fusion. Section 4 

presents the results obtained by the presented method on 

simulated and real data obtained from Li-ion batteries. The 

paper is concluded with Section 5. 

2. LITERATURE REVIEW 

Diagnostics is the process of identification of the failure 

mode, its location, and severity. Measuring the effectiveness 

of features for diagnostics has been studied extensively 

(Cecille, Dana, & B;, 2015; Guana, Yuana, Leea, 

Najeebullaha, & Rasela, 2014; Hannah Inbarani, 

Bagyamathi, & T;, 2015; Lamraoui, Barakat;, Thomas, & 

Badaoui, 2015; Mwangi, Tian, & Soares, 2014). These 

studies can be categorized in two groups: non-transformed 

and transformed analysis (Mwangi et al., 2014). In the former 

one, the features are evaluated as they are without converting 

them into another form. Evaluation can be performed by an 

individual or combined analysis of features. The major 

disadvantage of this approach is the requirement of ignoring 

unselected features and not benefiting from the features that 

received a low grade in the evaluation. In the latter group, the 

features are converted into a different form in such a way that 

all features contribute to the new formatted features. The 

selection is performed based on the transformed features. In 

such a transformation, low graded features may also be 

contributed partially in the selected transformed features 

(Tianzhen, Hao, & Jingang, 2015). Principal component 

analysis (PCA) and independent component analysis (ICA) 

are two examples of this approach (Tianzhen et al., 2015; Z, 

Jin, & Guangming, 2011). PCA transforms the features into 

the lower dimension, which is obtained with the contribution 

of old features based on their variance. The new features are 

ranked from the ones that hold most information to least 

information. Thus, the features with least information can be 

dropped from the analysis leading to reduced number of 

features. ICA, on the other hand, performs the transformation 

based on the independence of features.  

Changing features’ goodness has been studied for diagnostics 

in the literature. A feature may not be good in the beginning 

for diagnostics, but become good after the failure reaches to 

a point. Online PCA has been developed to be able to handle 

the changing goodness of the features (Honeine, 2012).  

Even though there has been extensive work on feature 

evaluation for diagnostics, this is not true for prognostics (F. 

Camci, Medjaher, Zerhouni, & Nectoux, 2013). The nature 

of the problem in prognostics is totally different from 

diagnostics. Thus the methods used in diagnostics for feature 

evaluation cannot be used for prognostics. 

Prognostics involves two major steps: health state estimation 

and trending (Omer F. Eker, Camci, & Jennions, 2015). 

Health state estimation can also be considered as severity 

detection in diagnostics. Health state can be continuous or 

discrete. If health state is continuous, then health state is 

trended towards future until it reaches a predefined threshold. 

When the trended health state reaches the threshold, the time 

is named as the expected failure time. In the basic approach, 

a feature such as average vibration, maximum temperature, 

the median force applied, etc. is assumed to be the health 

state. In most cases, one feature is not sufficient for effective 

prognostics. Several features can be processed and fused to 

obtain health state. Physical or data-driven methods are used 

to obtain the health state using various sensors. Even though 

these methods are effective, features to be used as input to 

these methods should be evaluated and selected. One can 

extract a large number of features, all of which cannot be 

processed to obtain the health status. Thus, it is important to 

evaluate and select the features before processing them.  

If the health state is discrete, then stochastic process models 

can be used to estimate the time to move from the current 

state to the failure state (Faith Camci & Chinnam, 2005). 

Transition probabilities between states are used for 

estimating the remaining useful life in these models (O F; 

Eker & Camci, 2013). State space models can also be used 

for discrete or continues health states. The parameters of 

stochastic and state space models should be learned using the 

features selected. Thus, it is important to evaluate features 

and select the good ones for further processing. The first 

study in prognostics feature evaluation was presented in (J. 

Coble, 2009; J. B. Coble, 2010). The authors presented 

prognosability, trendability and monotonicity feature 

evaluation metrics to identify the most suitable features for 

better RUL estimations. Feature evaluation methodology was 

also presented in  (F. Camci et al., 2013), that quantifies the 

monotonicity of the trend in the features by dividing them 

into windows. Statistical difference of data in consecutive 

windows is employed to quantify the monotonicity. 

Genetic algorithm (GA) has been used to generate a formula 

to calculate a new feature that represents the failure 

degradation using existing features (Linxia, 2014). GA 

selects features among a feature pool and operators from 

math operations pool. The resultant formula has been 

evaluated using its effectiveness in representing the failure 

degradation.  

Entropy-based sensor selection method is proposed in (Liu, 

Wang, Liu, Zhang, & Peng, 2015) for prognostics. This 

method quantifies the trend representing the failure 

degradation for given sensory dataset and entropy is used to 

represent the uncertainty within the data. Trigonometric 

functions and their cumulative transformation have been used 

to extract monotonic features. The goodness of the features 
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for prognostics has been quantified by analysis of 

monotonicity and trendability (Javed, Gouriveau, Zerhouni, 

& Nectoux, 2015). Monotonicity is the continuous increasing 

or decreasing nature of the feature and quantified as the sum 

of positive and negative derivatives. Trendability is basically 

defined as the correlation of a feature with time.  

Feature extraction and selection processes affect the data 

structure. The change due to feature selection process has 

been controlled through preserving the local and global 

structure of the data in order to achieve effective feature 

selection (Peng, Xu, Liu, & Li, 2015; Wang, Zhang, Yin, & 

Liu, 2014). A feature selection method that aims to preserve 

the local and global structure has been presented in (Wang et 

al., 2014), and its application in prognostics has been 

discussed in (Peng et al., 2015). A novel diagnostics feature 

extraction methodology was proposed in (Gelman, Patel, 

Persin, Murray, & Thomson, 2013) for bearing fault detection 

based on combination of frequency-domain based 

techniques. The authors in (Qu, Bechhoefer, He, & Zhu, 

2013) proposed a new physics-based feature extraction 

approach for gearbox fault detection using acoustic emission 

(AE) signals, which outperformed other frequency-domain 

features in gear fault detection.  

Even though these feature evaluation studies on prognostics 

have led to some level of success, they still miss an important 

aspect of the features. The effectiveness of a feature or 

sensory data may not be static throughout the life of the 

component or system under observation. A feature may be a 

good representative of the failure progression in the initial 

failure phase but not in the later part of the failure. In 

contrary, a feature may be effective close to the final phase 

of the failure but not in the initial phase. Thus, a single 

evaluation of a feature for whole failure degradation duration 

may not be effective. The bad failure progression 

representation in one part may negate the good failure 

progression representation in another part. This different 

goodness of a feature during the failure degradation is 

handled with online PCA approaches for diagnostics and 

other classification problems as discussed above. However, 

evaluation of features’ changing goodness in its degradation 

path has not been addressed in the literature. This paper 

presents a feature selection and fusion algorithm based on 

subsequence evaluation by enhancing and improving our 

previous work (Atamuradov & Camci, 2016). The main 

contributions of the paper can be summarized as follows: 

 The change of feature goodness in different phases of 

failure degradation is demonstrated. 

 The inefficiency of feature evaluation based on its single 

analysis in the whole failure degradation is validated. 

 The segmentation-based feature evaluation and selection 

methodology is presented to improve battery SoH 

estimation.  

3. PROBLEM DEFINITION 

State of Health (SoH) indicates the health of the system at a 

time indicating its location in the failure degradation 

pathway. The term ‘real SoH’ will be used as the ground truth 

of failure degradation. Features react differently to the failure 

progression. The failure degradation representation 

capability (FDRC) of a feature can be defined as the feature’s 

sensitivity to the real SoH progression and its real SoH 

identification ability. 

Monotonically decreasing or increasing features with failure 

degradation have been accepted as good representatives. 

However, the good representation may be partial in the life of 

the component or system. Figure 1 displays a linearly 

degrading system. The solid linear line in the middle gives 

the real SoH by time. FDRC of feature 1 is very high in the 

first phase of the life. However, the feature stays constant 

with some noise in the second phase of the component life 

with low FDRC. In contrary, feature 2 does not represent the 

failure progression in the initial phase. It then becomes a good 

representative in the second part with continuously 

increasing value. Note that y-axis for features shows feature 

values that will be used to extract SoH, not SoH itself.  

A single analysis of a feature based on the whole failure 

degradation may mislead the feature evaluation. It is 

important to take the most value from good representative 

phases of the features and avoid the effects of bad 

representative phases. Feature evaluation method that leads 

to high goodness value in the first (second) phase of the first 

(second) feature and low goodness value for the remaining 

phases for both features is needed to extract the most value 

from the features.  

4. METHODOLOGY 

The proposed methodology has four major steps: feature 

extraction and normalization, segmentation and selection, 

feature fusion, and prognostics.  

 

Figure 1. Features with different failure progression. 
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4.1. Feature Extraction and Normalization 

Different statistical features are extracted using descriptive 

statistics as shown in Table 6. Only the features with better 

failure representability (e.g.  monotonicity etc.) are selected 

and used for battery SoH estimation among time-domain 

based features. Features may be decreasing or increasing or 

may be in different scales. It is important to normalize these 

features for evaluation and fusion. Equation (1) shows the 

normalization for decreasing features with the failure 

progression, whereas equation (2) gives the normalization for 

increasing features with the failure progression. As a result of 

the normalization process, the features will be decreasing 

from 1 to 0 as the failure propagates. Please note that 

maximum (𝐹𝑚𝑎𝑥(1:𝑇) ) and minimum (𝐹𝑚𝑖𝑛(1:𝑇) ) of first T 

values of the features are selected in order to handle potential 

noise within the features.  

𝑁𝐹𝑖,𝑡 =
𝐹𝑖,𝑡

max⁡(𝐹𝑖,1:𝑇)
,∀⁡𝐹𝑖that decreases with failure progression (1) 

𝑁𝐹𝑖,𝑡 =
min⁡(𝐹𝑖,1:𝑇)

𝐹𝑖,𝑡
, ∀⁡𝐹𝑖that increases with failure progression (2) 

After the normalization, the degradation samples have been 

separated into two groups as training and testing. Training 

samples are used to identify the model parameters, whereas 

the testing samples are used to check the model accuracy with 

unforeseen samples. 

4.2. Feature Segmentation and Selection 

Time series segmentation has been defined as the 

decomposition of a time series data into a series of discrete 

segments. Time series segmentation is a mature area and has 

been applied in many engineering fields (Glezakos, 

Tsiligiridis, & Yialouris, 2014). Sliding window algorithm is 

used in this study for feature segmentation. 

The sliding window algorithm is initiated with n data points 

(called window) for a given feature (T {ti: i=1…n}). A linear 

model has been fitted to the data points within the window. If 

curve fitting error does not exceed a predefined threshold, the 

size of the window is increased to include the next data point 

outside of the window. This process continues until a point 

where the curve fitting error exceeds the threshold or end of 

the time series has been reached. When the curve fitting error 

exceeds the threshold, the last data point added to the window 

is defined as the start of the second segment. The predefined 

threshold values were optimized by the user to split a feature 

into two homogeneous segments due to features’ degradation 

behaviors. Table 1 gives the pseudo-code of the general 

segmentation algorithm. The features will be split into 

multiple segments depending on the change in the 

progression. In our case, the features consist of two segments. 

In a different system, the number may be different. However, 

a number of segments should not be too many, which may 

lead to instability. The detection of the transition point in 

various samples is a challenge. Thus, a high number of 

segments may lead to an increased challenge in the 

determination of the segment. The window size initially was 

set to 2. The optimized segmentation threshold values for the 

simulated and the real features are given in Table 2 and Table 

3, respectively. 

Feature selection occupies an important role in many 

engineering problems after feature extraction step which 

helps to classify either redundant or irrelevant feature from 

useful ones without losing much information before model 

construction. In literature, mostly, selection of useful features 

is carried as a whole selection to be used in latter steps of 

aimed application. But in this current work, extracted features 

are partitioned into two homogeneous segments by 

segmentation algorithm and then subsequence feature 

selection is carried out. As stated in problem definition 

section, prognostics features do not degrade until to the end 

of life with same increasing/decreasing monotonicity  

sliding_window (data, max_err): 

anchor=1; 

while not segmented data 

w=2; % w: window size. err: estimated MSE 

 if err (data(anchor:anchor+w)) <max_err 

   w=w+1;  

 else %convert into segment 

segments <- data (anchor: anchor+(w-1)); 

anchor= anchor+w; %update anchor 

 end 

end 

Table 1. Sliding Window time series segmentation. 

Feature F1 F2 F3 F4 

Threshold 0.0036 0.0078 0.004 0.007 

Feature F5 F6 F7 F8 

Threshold 0.0125 0.0034 0.0038 0.003 

Feature F9 F10 F11 F12 

Threshold 0.0043 0.0034 0.00521 0.0045 

Feature F13 F14 F15 F16 

Threshold 0.0041 0.0045 0.0044 0.0088 

Feature F17 F18 F19 F20 

Threshold 0.007 0.0058 0.0041 0.0041 

Table 2. Segmentation threshold values for simulated 

features. 

 Feature F1 F2 F3 F4 

Threshold 0.0065 0.008 0.038 0.017 

Feature F5 F6 F7 F8 

Threshold 0.0129 0.00375 0.1 0.0067 

Feature F9 F10 F11 F12 

Threshold 0.06 0.0077 0.011 0.0067 

Feature F13 F14 F15 F16 

Threshold 0.008 0.0152 0.00891 0.019 

Feature F17 F18 x x 

Threshold 0.0075 0.012 x x 

Table 3. Segmentation threshold values for real features. 
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statistics. Hence, prior feature degradation behavior analysis 

and evaluation are very important before feature fusion 

process. The feature selection process was carried out in two 

steps; as a whole and segment based selection to emphasize 

the importance of proposed approach and then used in feature 

fusion for prognostics. An adopted feature selection criterion 

is the mean square error value between real SOH value and 

extracted features. 

4.3. Feature Fusion 

Feature fusion is the process of combining different features 

to enhance the SoH estimation of the electro-mechanical 

system. There are different methods used in the literature for 

fusion. The weighted average is one of the most widely used 

approaches in fusion (Williard, He, Osterman, & Pecht, 

2013). Fusion is commonly used in diagnostics and 

prognostics. A novel fusion approach in RUL prediction 

based on superstatistic and information fusion has been 

presented in (J. Lui, Zhang, Zuo, & Xie, 2014). Composite 

health index is obtained through fusion in (K. Lui, Gabraeel, 

& Shi, 2013). A three-step multi-sensor fusion approach for 

prognostics of partially degraded systems was proposed in 

(Fang, Paynabar, & Gebraeel, 2017), based on functional 

principal components analysis (FPCA) algorithm and 

penalized (log)-location-scale regression. The proposed 

approach was effectively validated on simulated aircraft 

engine degradations. In (Yan, Liu, Zhang, & Shi, 2016) 

authors proposed a fusion based health index (HI) 

construction methodology for better asset prognostics which 

operates under multiple operational conditions. The data-

level HI fusion methodology was validated on simulated data 

effectively. It is very difficult, if not impossible, to extract a 

single feature that perfectly represents the failure 

progression.  Thus, it is important to extract value from 

different features for better SoH estimation.  

Fusion is important for effective usage of segmented features 

since the segments of features with low goodness should be 

supported by other features with high goodness in the same 

phase of the failure degradation. The fusion algorithm to be 

employed should incorporate the changing goodness values 

of the features. The fusion process at any time 𝑡 requires 

analysis of the goodness of the features (or FDRC). The 

feature with high FDRC should be given more importance in 

SoH estimation compared to the feature with low FDRC. 

FDRC of feature 𝑖  at time 𝑡  is represented by weight 

parameter as 𝑤𝑖,𝑡 . The fusion process bases on weighted 

average calculation as shown in equation (3): 

𝑆𝑜𝐻𝑓,𝑡 =
∑ 𝑤𝑖,𝑡𝑁𝐹𝑖,𝑡
𝑁
𝑖=1

∑ 𝑤𝑖,𝑡
𝑁
𝑖=1

  (3) 

 

Initially, the feature weight values are initialized using 

feature samples obtained from similar degraded systems, if 

available. If previous data for the degraded system is not 

available, the weights of all features start with the same 

number giving equal importance to all. Since the system 

under observation may degrade differently compared to other 

similar systems, the weight values are updated with newly 

available data. The update is based on two major parameters: 

Time-based SoH similarity degree ( 𝑆𝐷𝑖,𝑡 ) and overall 

segment estimation accuracy (𝐸𝐴𝑖 ). Time based similarity 

degree (𝑆𝐷𝑖,𝑡) quantifies the effectiveness of the normalized 

feature of sample 𝑖 at a given time (𝑡) calculating the error at 

previous time (𝑡 − 1). Overall segment estimation accuracy 

(𝐸𝐴𝑗) quantifies the effectiveness of a segment calculating 

errors in SoH calculation within the segment using similar 

samples. Note that 𝑆𝐷𝑖,𝑡 bases on the degrading sample under 

observation, however, 𝐸𝐴𝑗  uses historical data (previously 

degraded systems) to measure the overall segment 

effectiveness. 𝑆𝐷𝑖,𝑡  is calculated using the difference 

between real SoH and normalized feature value at time 𝑡 − 1 

as shown in (4), where 𝑖 is the sample number, 𝑡 is the time.   

𝑆𝐷𝑖,𝑡 = 𝑒𝑥𝑝(−|𝑆𝑜𝐻𝑖,𝑡−1 − 𝑁𝐹𝑖,𝑡−1|) (4) 

 

Overall segment estimation accuracy (𝐸𝐴𝑖 ) is calculated 

using the sum of square of differences between real SoH and 

normalized feature values as shown in equation (5), where 𝑗 
is the segment number, 𝑆 is the sample size, 𝑖 is the sample 

number, 𝑇𝑖,𝑗 is the duration sample 𝑖 spent in segment 𝑗. 

 

𝐸𝐴𝑗 = 1 −
1

𝑆
(∑ (

1

𝑇𝑖,𝑗
∑ (𝑆𝑜𝐻𝑖,𝑡

𝑟𝑒𝑎𝑙 − 𝑁𝐹𝑖,𝑡)
2𝑇𝑖,𝑗

𝑡=1 )𝑆
𝑖=1 ) (5) 

 

High estimation accuracy of a feature segment and similarity 

degree should increase the weight of the feature. In contrary, 

low estimation accuracy and similarity score should decrease 

the weight. The update of weight at time 𝑡 + 1 is performed 

by using the weight at time 𝑡, similarity degree at time 𝑡, and 

segment estimation accuracy as shown in equation (6). As 

seen from the equation, weight values increase in any case. 

Increase amount depends on the values of segment estimation 

accuracy and similarity degree. High segment estimation 

accuracy and similarity degree lead to high increase in the 

weight value, whereas their low values lead to low increase.  

 

𝑤𝑖,𝑡+1 = 𝑤𝑖,𝑡 + (𝐸𝐴𝑖,𝑡 ∗ 𝑆𝐷𝑖) (6) 

 

Note that the weight values of a feature will converge to a 

number if FDRC of the feature stays constant. If FDRC of 

feature changes during the failure progression, the weight 

value will change and converge again in the new segment 

with new FDRC.  Once the weight is updated, the SoH 

estimation is calculated based on equation (3).   

4.4. Prognostics: Remaining Useful Life Prediction 

(RUL) 

Selection of prognostics algorithms plays a great importance 

in condition monitoring to increase system reliability, 

availability, and safety (Aizpurua & Catterson, 2015; Saxena, 

Celaya, Saha, Saha, & Goebel, 2010). In this paper, two 
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statistical trending algorithms Holt’s double exponential 

smoothing (HDES) (Holt, 2004) and Autoregressive 

Integrated Moving Average (ARIMA) (Saha, Goebel, & 

Christophersen, 2009) have been used for one-step RUL 

prediction due to their implementation simplicity. 

4.4.1. Holt’s Double Exponential Smoothing Method 

Exponential smoothing methods have been used widely in 

literature for time series forecasting (Maia & de Carvalho, 

2011). Holt’s method is extended version of simple 

exponential smoothing with trend component. This method 

consists of level, trend estimation and forecast equations as 

shown in (7), (8), and (9). 

ℓ𝑡 = 𝛼𝑦𝑡 + (1 − 𝛼)(ℓ𝑡−1 + 𝑏𝑡−1) (7) 

 

𝑏𝑡 = 𝛽(ℓ𝑡 − ℓ𝑡−1) + (1 − 𝛽)𝑏𝑡−1 (8) 

 

ŷ𝑡+ℎ = ℓ𝑡 + ℎ𝑏𝑡 (9) 

 

Where ℓ𝑡is level estimation at time t, derived by weighted 

average of observation 𝑦𝑡 ,⁡𝑏𝑡denotes trend estimation at time 

t, derived by weighted average of estimated trend, where 

𝛼 and 𝛽  are smoothing parameters for level and trend 

equations to be estimated. Intervals for 𝛽 is, 0 ≤ 𝛽 ≤ 1 and 

for 𝛼 is 0 ≤ 𝛼 ≤ 1. Initial values for ℓ0 = 𝑦1 and 𝑏0 = 𝑦2 −
𝑦1 can be assigned.  

4.4.2. Autoregressive Integrated Moving Average 

ARIMA is another widely-used forecasting approach 

integrating autoregressive (AR) with a degree of p and 

moving average (MA) with a degree of q model based on d 

times differencing. Given a time series 𝑦𝑡  , and ARIMA 

(p,d,q) model is formulated in (10): 

(1 − 𝜑1𝐵 −⋯− 𝜑𝑝𝐵
𝑝)(1 − 𝐵)𝑑𝑦𝑡 = 𝑐 + (1 + 𝜃1𝐵 +

⋯+ 𝜃1𝐵
𝑞)𝑒𝑡 (10) 

B is lag operator, 𝜑’s and 𝜃’s are parameters of AR and MA 

part of the model and 𝑒𝑡  is error term assumed to be 

independent and identically distributed (normal distribution 

with zero mean. The proposed methodology scheme is 

illustrated in Figure 3. 

5. RESULTS & DISCUSSIONS  

The presented approach has been implemented in two types 

of datasets: simulated data and Li-ion battery degradation 

data.  

5.1. Simulation Results 

The model is trained using some selected samples first and 

then the trained model is used for testing unused samples. In 

training, all extracted features from the selected samples went 

through segmentation, selection and fusion steps. In testing, 

the same selected features in training step are also selected 

from testing samples and are used in the fusion algorithm to 

estimate the SoH. In the simulated dataset, SoH degradation 

has been simulated first. Figure 2 displays the simulated SoH. 

Then, features that are functions of the simulated SoH 

degradation have been generated. 20 features have been 

simulated based on this simulated SoH degradation. Each 

feature is created based on one or two functions of SoH with 

some noise. When two functions are used, the first function 

represents some part of the SoH degradation, whereas the 

second one represents the remaining part of the SoH 

degradation. Totally 20 features for training the system and 

20 for testing have been simulated using the same a 

methodology based on simulated SoH value. Figure 4 

displays some of the simulated SoH degradation. In order to 

evaluate the value of the presented approach, SoH estimation 

has been performed under two scenarios. Scenario 1 involves 

utilizing all selected features without segmentation. Scenario 

2 involves using segmentation based feature evaluation as 

proposed in this paper. Feature selection process has been 

applied without segmentation in Scenario 1. The best features 

selected are displayed in the first column of  Table 4. Feature 

numbers 18, 20, 17, 15, and 9 have been selected in 

scenario1. In scenario 2, proposed segmentation based 

feature evaluation has been performed. Segmentation process 

has led to two segments in some features. Thus the evaluation 

process is reported for two segments. As seen in the second 

and third columns in Table 4, features (2, 8, 11, 14, 12) and 

(20, 1, 17, 8, 6) have been selected for the segments 

respectively. As a result, one can observe the value of 

segmentation through better evaluation of features in 

different phases of life with the changing weight values that 

are used in the fusion process. Different phases contribute 

differently in the fusion process avoiding the negative effect 

of a phase to the evaluation of a feature. The change of weight 

values depends on the similarity degree of the features. High 

similarity degree leads to high weight values. It is important 

to identify the phase that is highly correlated with the failure 

progression and give high importance to this feature in this 

phase as well as ignoring the uncorrelated phase. Figure 5 and 

Figure 6 display the SoH estimation results for both scenarios  

 

Figure 2. Simulated SoH feature. 
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Figure 3. Proposed methodology scheme.  

 

for training and testing, respectively. Figure 5.a and Figure 

6.a (Figure 5.b and Figure 6.b) display the simulated SoH 

degradation and SoH estimation result for scenario 1 

(scenario 2). As seen from segmented approach leads to 

better SoH estimation. Improvement in SoH estimation in the 

first phase is better observed. The SoH estimation errors for 

both training and testing results are given in Table 5 as Mean 

Square Error (MSE). As seen from the table, segmented 

feature selection fusion reduces the error. Results show that 

segmentation based feature evaluation and fusion improves 

SoH estimation. 

Selected 𝑭𝒊 
1st segment  

selection from 𝑭𝒊 
2nd segment 

 selection from 𝑭𝒊 

18 20 17 15 9 2 18 11 14 12 20 1 17 8 6 

Table 4. List of selected features. 

 Training Testing 

Scenario 1 0.0004 0.001 

Scenario 2 0.0002 0.0004 

Table 5. Estimated SoH feature MSE. 

Testing features 

Feature Extraction 
& 

Normalization 

Raw Data 

Feature Segmentation &  
Selection by Segment Evaluation 

Data Acquisition 

Training features 

Selected Testing 
Feature Segments 

Testing 
Fusion Model 

Estimated SoH 

Failure Prognostics 

Trained Model 

RUL 

Selected Training  
Feature Segments 

Training  
Fusion Model 

Estimated SoH 

RUL 
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Figure 4. Simulated features. 

 

 

Figure 5. Fusion results for training. 

 

Figure 6. Fusion results for testing. 
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5.2. Li-ion Degradation 

Li-ion batteries have been used in many areas in today’s 

world. SoH estimation and prognostics play a crucial role in 

reliability, safety, and cost of lithium-ion batteries (F Camci, 

Ozkurt, Toker, & V, 2015). This section discusses the 

application of the presented methodology on the degradation 

data obtained from Li-ion batteries in the lab environment.  

Two LiFePO4 14505 0.6Ah batteries with capacity and a 

nominal voltage of 3.2V are used in this paper, one for 

training the proposed methodology and second one for 

testing. Figure 7 shows the experimental setup used for the 

accelerated degradation tests. An accelerated test consists of 

three main phases: cycling, test measurement, and 

characterization. Prior to cycling process, the cell is kept at 

45 °C for two hours to stabilize cell temperature. Cycling 

process for Li-ion cells is carried out by charging cell up to 

3.6V with a constant current of 0.6Ah and discharging cell up 

to cut-off voltage 2V, SoH and internal resistance features 

were tested to make sure whether aging threshold is met or 

not. Constant current constant voltage (CCCV) charging 

protocol was used throughout the entire life of batteries. In 

constant current charging (galvanostatic mode) step, batteries 

were charged until it reached the maximum voltage threshold 

and in constant voltage (potentiostat mode) step, the voltage 

was applied to the batteries until current dropped down to 

predefined threshold value. A final characterization test takes 

place right after if the cells have met its predefined SoH 

threshold, where EIS and other characterization tests were 

applied to extract SoH indicatory features of cells.  

Several measurements have been collected during the 

accelerated tests such as cell capacity, charge (Chg)/ 

discharge (DChg) voltage curves, Chg/ DChg OCV curves at 

rest time and internal resistances through Electrochemical 

Impedance Spectroscopy (EIS). As seen from Figure 8, 

degradation of the battery is easily detected from changing 

Chg/DChg voltages and OCV curves. There are totally 18 

features (shown in Figure 9) extracted from aged battery 

measurements. These measurements have been further 

processed to obtain different features such as different types 

of resistances within the battery. Figure 9 and Figure 10 

displays the examples of the extracted and normalized 

features through the lifetime of batteries for both cells; y-axis 

displays values of the features, whereas the x-axis gives the 

time within a cycle. The progression of the features as the 

battery degrades is shown as different lines in the figure. The 

change in the shape of the line in the figure indicates the 

failure progression. Current discharge capacity is obtained 

through integration of discharge current using Coulomb 

Counting. 

In segmentation, the features have been segmented at most 

two parts. A number of segments depend on the error 

threshold in the segmentation process. Due to variance in 

features, the threshold of each feature should be analyzed and 

decided distinctly. Table 7 displays the features selected in 

both scenarios. As seen from the table, segmentation process 

leads to the selection of different features. In scenario 1, the 

best features are features 16, 4, 18, 17, 13, whereas features 

3, 4, 5, 10, 16 and feature 13, 16, 18, 17, 4 are selected as best 

features in the first and second segment in scenario 2. Since 

Li-ion batteries are electrochemical substances, degradation 

of batteries is highly dependent on the environmental changes 

such as; temperature and aging cycle profiles. Thus, accurate 

SoH estimation of Li-ion batteries should involve analysis of 

multiple features. The fusion process has been performed 

using two scenarios to evaluate the value of the presented 

approach. Scenario 1 involves feature evaluation and SoH 

estimation without segmentation process, whereas Scenario 2 

involves the same processes with a segmentation based 

selection. In training step, the battery cell 1 is used for 

training for both scenarios. In testing, the battery cell 2 is used 

in the model trained with battery cell 1. 

After features are selected, SoH estimation through the fusion 

of selected features. In order to identify the best number of 

features to be used, SoH estimation is performed with the best  

 

 

Figure 7. Experimental rig setup. 

 

Figure 8. Chg/DChg voltage and OCV curves. 

 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

10 

 

 

Figure 9. Extracted battery features. 

 

 

Figure 10. Normalized battery features.
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feature and the next best feature is added in the next iteration. 

In each iteration mean square error is calculated. Figure 11 

displays the error on y-axis and number of features used on 

the x-axis. As seen from the figure, the minimum error is 

obtained with 8 features. SoH estimation results for both 

scenario 1 and scenario 2 are given in Figure 12 for training 

and Figure 13 for testing. As seen from the Figure 12 and 

Figure 13, the presented method leads to better SoH 

estimation both in training and testing. SoH estimation curve 

is much closer to scenario 2 to the real SoH curve compared 

to scenario 1. In testing, SoH of the battery cell 2 was 

estimated based on the trained model.   Table 8 shows the 

error terms for training and testing for both scenarios. As seen 

from the table, the scenario 2, which is the proposed 

approach, leads to less error. 
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11 
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Skewness 

2 

Chg 

cycle 

 

CV time 

 
12 

DChg 

OCV 
Skewness 

3 EIS 

Resistance 

(R1-100% 

SoC) 

 

13 
DChg 

OCV 
Kurtosis 

4 EIS 

Resistance 

(R1-50% 

SoC) 

 

14 
DChg 

OCV 

Standard 

Deviation 

5 EIS 

Resistance 

(R1-0% 

SoC) 

 

15 
DChg 

OCV 

Peak 

value 

6 EIS 

Resistance 

(R2-100% 

SoC) 

 

16 
Chg 

OCV 
Skewness 

7 EIS 

Resistance 

(R2-50% 

SoC) 

 

17 
Chg 

OCV 

Standart 

Deviation 

8 EIS 

Resistance 

(R2-0% 

SoC) 

 

18 
Chg 

OCV 

Peak 

value 

9 
DChg 

Voltage 
Skewness    

10 
DChg 

Voltage 
Kurtosis    

Table 6. Extracted features from the measurements. 

The RUL estimation has been performed using SoH 

estimation based on both scenarios. Two data-driven 

algorithms (i.e., Holt’s method and ARIMA) have been used 

for trending the SoH. 

Implementation of Holt’s method starts with the estimation 

of α, β parameters, and initialization of l_0 and b_0. The 

initial value for level equation (7) is set to the first value of 

fused SoH feature, 0.9925 and for trend equation (8), was set 

to the difference of second and first values of fused SoH 

feature which is -0.0016. Smoothing parameters α was set to 

0.45 and β was set to 1 which gave minimum MSE error value 

in estimation. For ARIMA(p,d,q) method, orders of p, q was 

chosen as 1, and for differencing parameter d was chosen as 

2 with minimum model fit estimation error. Two RUL 

prediction results for both Holt’s method and ARIMA are 

given in Table 9 for fused SoH feature including both training 

and testing steps. End of Life (EOL) for estimated 

prognostics SoH from training step is 163 cycles, where for 

testing step is 189 cycles. The predicted RUL for either Holt’s 

or ARIMA is calculated by differencing the estimated EOL 

(eEOL) value with the given prediction point (see Table 9), 

with the confidence interval of 95%. For example, the 

estimated EOL cycle for Holt’s at point 125 was 157, from 

this given information the RUL prediction can be calculated 

as eEOL – 125, which is 32. As seen from Table 9 ARIMA 

gives better prediction results when compared to Holt’s 

Selected 𝑭𝒊 
1st segment  

selection from 𝑭𝒊 
2nd segment 

 selection from 𝑭𝒊 
16 3 13 

16, 4 3, 4 13, 16 

16, 4, 18 3, 4, 5 13, 16, 18 

16, 4, 18, 17 3, 4, 5, 10 13, 16, 18, 17 

16, 4, 18,17, 13 3, 4, 5, 10, 16 13, 16, 18, 17, 4 

Table 7. List of selected sample features. 

 

Figure 11. Fusion MSE values. 

M
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method for both training and testing SoH estimations. It’s 

important to note that prognostics algorithm selection is one 

of the essential steps to perform accurate RUL predictions, 

especially for systems where component degradation varies 

under different operational conditions.  

 Training Testing 

Scenario 1 0.0004 0.0012 

Scenario 2 0.0001 0.0007 

Table 8. Estimated SoH feature MSE. 

 

Point 
Training Real 

RUL 

Testing Real 

RUL Holt’s ARIMA Holt’s ARIMA 

105 49 38 59 80 82 84 

125 32 38 39 87 62 67 

Table 9. RUL prediction results. 

 

 

Figure 12. a) Scenario 1, and b) scenario 2 fusion results for 

training. 

 

Figure 13. a) Scenario 1, and b) scenario 2 fusion results for 

testing. 

5.3. Discussions 

As seen from Figure 12 and Figure 13, the Scenario 2 

estimation results of the training and testing steps 

overestimated the real EOL, which may result in a late RUL 

predictions affecting maintenance actions negatively. 

However, despite the SoH overestimation, the proposed 

segmentation-based feature evaluation methodology 

improved the SoH estimation by decreasing the estimation 

error when compared to the Scenario 1. It’s also important to 

note that the battery capacity, which was assumed as the best 

FDRC feature, may also have nonmonotonic degradation 

under different operational conditions (Williard et al., 2013). 

In this case, a filter based methods can be used to select the 

least sensitive feature with the better prognostics parameter 

(J. Coble & Hines, 2009) as a ground truth feature in 

component condition monitoring where the features have 

dynamic degradation. Consequently, it’s believed that the 

proposed feature evaluation methodology can improve a 

battery SoH estimation under different operational profiles 

for failure prognostics. 
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6. CONCLUSION 

Analysis of a feature for the whole life cycle may mislead the 

feature evaluation. Features may reflect the SoH differently in 

different phases of the life of the electro-mechanical system. 

It is important to take the most value from good representative 

phases of the features and avoid the negative effects of bad 

representative phases. A methodology for segmentation-based 

feature evaluation of features has been presented. SoH 

estimation based on segmented evaluation has been 

developed. The presented approach has been demonstrated in 

simulated and Li-ion battery degradation data. The results 

show that evaluation of features with segmentation improves 

SoH and RUL estimation results. Optimization of a number 

of segments and handling variance in segmentation points 

from different samples are the future research topics. 
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